Efficient Algorithms for pre* and post* on Interprocedural Parallel Flow Graphs

Javier Esparza

Technische Universitat Munchen
80290 Miinchen, Germany,

esparza@informatik.tu-muenchen.de

Abstract

This paper is a contribution to the already existing series of
work on the algorithmic principles of interprocedural anal-
ysis. We consider the generalization to the case of paral-
lel programs. We give algorithms that compute the sets
of backward resp. forward reachable configurations for par-
allel flow graph systems in linear time in the size of the
graph viz. the program. These operations are important in
dataflow analysis and in model checking. In our method, we
first model configurations as terms (viz. trees) in the pro-
cess algebra PA that can express call stack operations and
parallelism. We then give a ‘declarative’ Horn-clause spec-
ification of the sets of predecessors resp. successors. The
‘operational’ computation of these sets is carried out using
the Dowling-Gallier procedure for HornSat.

1 Introduction

The interprocedural dataflow analysis of sequential pro-
grams and the intraprocedural dataflow analysis of parallel
programs have both been extensively studied (see for in-
stance [15, 17] and the references therein). In this paper
we go a step further, and study the interprocedural dataflow
analysis of parallel programs. We do not impose any con-
straint on the interplay of procedures and parallelism. For
instance, in the body of a procedure II; both II; and an-
other procedure II» can be called in parallel. This spins off
a new instantiation of I each time II; is called.

We model parallel programs with procedures as sets of
parallel flow graphs (one for the main program and one for
each procedure). Parallel flow graphs may contain procedure
calls and parbegin-parend constructs.

In [10] the PA-algebra, a well-known process algebra [1],
has been used to give these flow graphs a very simple op-
erational semantics. The algebra contains two operators -
and ||, which are used to express stack operations and par-
allelism. For example, the PA-term (N1, Nz)— written
Ni - N2 in infix notation—models the configuration with
control at program node n; that will, after the end of the

Andreas Podelski

Max-Planck-Institut fiir Informatik
66123 Saarbriicken, Germany
podelski@mpi-sb.mpg.de

current procedure, ‘return’ to n2. The return itself is for-
mally modelled by the fact that the term Ni;-Nz can
be rewritten (possibly in many steps) to &- N2, where ¢
is a special symbol modelling termination. The PA-term
(N1||N2) - N3 models the configuration with control at pro-
gram nodes ny and n2 ‘in parallel’ that will, after the cor-
responding parend, go to node n3. The term (Ni||Nz2) - N3
can be rewritten to (g|¢) - Ns.

As shown in [10], many bitvector problems and other dis-
tributive data flow problems can be reduced to computing
the sets pre(L), pre* (L), post(L), post* (L) of immediate pre-
decessors, predecessors, immediate successors and successors
of certain regular sets L of PA-terms. A set of PA-terms is
regular if the syntax trees of its elements form a regular tree
language; a tree language is regular if it is accepted by a
tree automaton (see [12]).

In a very interesting paper [18] (which, in fact, trig-
gered this work), Lugiez and Schnoebelen prove that if
a set L of PA-terms is regular then so are the sets
pre(L),pre* (L), post(L), post* (L) wrt. a given PA alge-
bra A. In their complexity analysis, they focus on the num-
ber of states of the tree automata to be constructed, but not
on the cost of a concrete algorithm for the construction itself
(they only state that the construction can be implemented
in polynomial time). They show that the number of states
does not depend on the size of A (in fact, A can even be
infinite). The constructions seem rather complicated, and
they are derived ad-hoc for each of the two cases of pre* and
of post™.

In this paper, we present simple algorithms, derived in
a systematic way (see below), and we show that given a
program of size n and a tree automaton of size m accepting
a set of PA-terms L, our algorithms compute tree automata
for pre(L),pre* (L), post(L), post* (L) in O(n - m) time, i.e.,
in linear time in the size of the program if the size m of
the tree automaton is assumed to be constant. Finally, our
paper also contributes the application of the algorithms to
some dataflow analysis problems.

In our approach we look at tree automata as a particu-
larly simple class of logic programs. Our algorithm for the
operation pre* (the algorithms for the other operations are
similar) consists of a declarative and an operational step.
In the declarative step, pre*(L) is expressed as the least
model of a logic program P4 which does not have the par-
ticularly simple form of tree automata, but can be directly
(and easily) derived from the definition of pre*. In the oper-
ational step, P4 is transformed into an equivalent logic pro-
gram that does correspond to a tree automaton; equivalence

means here equality of the least models. The transforma-
tion is also performed in two stages. First, P4 undergoes
a saturation procedure, after which all the clauses not cor-
responding to a tree automaton become redundant; then,
these clauses are removed. The saturation procedure makes
use of the Dowling-Gallier algorithm for HornSat [9]. The
declarative and operational step run together in O(n - m)
time, as mentioned above. This bound is a direct conse-
quence of the fact that the Dowling-Gallier procedure runs
in linear time. We thus avoid having to deal with worklist
strategies and indexing techniques as is the case in other
dynamic programming algorithms for similar problems.

Related Work. In the area of infinite-state model
checking, a variety of systems performing push and pop
operations on a single stack have been studied under the
name of context-free and pushdown processes; for references
see e.g. [3, 4, 6, 5, 11]). Model-checking techniques for
context-free processes have inspired algorithms for dataflow
analysis of sequential FGSs [16]. These algorithms are very
different from ours, since they follow the classical approach
of computing the “meet over all paths” semantics by means
of the “maximal fixpoint semantics”. In our approach we
work directly with the “meet over all paths” semantics.

Reps [23] has also developed a non-classical approach to
the interprocedural analysis of sequential programs based
on algorithms for CFL graph reachability. Here, procedures
are modelled by a restriction on valid paths (calls and re-
turns must match, i.e. the edge labels must form a word in a
context-free language). The problem can be solved by a dy-
namic programming algorithm which generalizes the CYK
algorithm for CFL recognition and is related to the bottom-
up evaluation of a special class of Datalog programs [23]. In
the sequential case, the saturation part of our algorithm is
reminiscent of Reps algorithm for CFL graph reachability, a
connection that deserves further study.

The analysis of parallel programs as presented here
can be contrasted with recent work by Ramalingam [22]
that shows that synchronization-sensitive, context-sensitive
interprocedural analysis of multi-tasking concurrent pro-
grams is undecidable. Evidently parallelism specified with
parbegin-parend is less powerful than parallelism controlled
by synchronication primitives.

Our algorithms are inspired by set-based program anal-
ysis, in which the abstract semantics of a program is the
(generally) least solution of a set constraint. However, the
logic program P4 mentioned above does not seem to corre-
spond to any known class of set constraints (although other
forms of logic programs doj; see [6]).

Melski and Reps have shown that CFL graph reachability
can be reduced to set constraint solving, and vice versa [20],
and McAllester has shown that ‘all’ dynamic programming
algorithms can be reduced to HornSat [19]. So the novelty
of our contribution lies not so much in the general idea of
applying set-based techniques and HornSat to the compu-
tation of pre(L), pre* (L), post(L), post* (L), but in the con-
crete way of applying them.

Structure of the paper. The remainder of the paper is or-
ganized as follows. In Section 2 we introduce the flow graph
model. The PA-algebra is introduced in Section 3, and a
PA-semantics for the flow graph model is presented. Section
4 presents the algorithm for the predecessor operator pre*.
Section 5 describes the changes needed to obtain the al-

gorithms for the successor operator post®, the immediate-
predecessor operator pre and the immediate-successor op-
erator post. Section 6 sketches the application to dataflow
analysis. Section 7 presents conclusions.

2 Parallel Flow Graphs

The intraprocedural control flow of a single procedure is
represented by a flow graph as in Figure 1. The nodes
correspond to program points. The edges (expressing the
control flow) are labeled by statements. Statements are as-
signments of the form v:= exp (where v is a variable, exp
is an expression) or call statements of the form call II(Ezp)
(where II is a procedure identifier, and Ezp is a tuple of ex-
pressions). Control flow is interpreted nondeterministically;
i.e., the guards of assignments are replaced by true. The
interprocedural control flow of a sequential program with
possibly several procedures is represented by a flow graph
system (FGS) containing one flow graph for the main pro-
gram and one flow graph for each procedure; see Figure 1.

n,;VARab M, VARcxy
startOQ /i\rtl
O
cal My l cal n
a :bT x:=ath
endo O C
c:=a+c y:=c+b
O end;

Figure 1: A flow graph system of a program with procedures.

In a parallel FGS we also allow hyperedges of the
form n — {ni,...,ni} that model a parbegin command,
and hyperedges of the form {ni,...,nx} — n, modelling a
parend command. Wlog. we assume k£ = 2. We assume
that the parbegin and parend hyperedges are properly
nested. We do not restrict the nesting of procedure calls
and parbegin-parend instructions.

FGSs can be given a semantics in terms of exzecution
paths, corresponding to the executions of the program with
properly nested calls and returns. In the same manner (but
with a much more complicated definition), parallel FGSs can
be given a similar semantics in which parallelism is modelled
by interleaving. We omit the formalization of this semantics;
in the next section, we present a much simpler semantics
using the PA-algebra. The PA-algebra semantics will clearly
correspond to the expected behavior of a parallel FGS, and
can be taken as fundamental semantics.

3 The Process Algebra PA

We introduce the syntax and semantics of the process al-
gebra PA [1] closely following the presentation in [18].

Roughly, the process algebra specifies action-labeled transi-
tions t —=+ ¢’ between states denoted by PA-terms t and #'.
The term t' is obtained from ¢ through rewriting of sub-
terms.

The set Tpa of PA-terms is built up from finitely many
given process constants and from the empty process € using
sequential composition “-” and parallel composition “||”; i.e.
(we use t, t', t1 etc. for PA-terms and X, Y, Z, X; etc. for
process constants),

tu=g| X |t1-ta | ta]lta.

A PA declaration is a finite set A of process rewrite rules
of the form X —=» ¢, where X is a process constant, ¢ is a
PA-term and a is an action from a given finite set of actions.

Given a PA declaration A, the transition relation ——
over the set of PA-terms is the least relation satisfying
the following inference rules, where the premises are placed
above and the consequence below the horizontal line:

A (X S HeA
X -t
a, u
seql — 1t
t1 -t — tll -t2
a. g
seq2 % (t1 € IsNil)
t1-ta —> 11 -ty
a, gy
parl %
ti|lta — t|lt
a,
par2 ta —r t,

_tr—ty
ti]|te — talt;,

The rule seq2 has an additional side condition (which can
be seen as an additional premise). The set IsNil contains all
PA-terms built up from the empty process with sequential
and parallel composition. Intuitively, they correspond to
the terminated terms, i.e. the terms that cannot execute
any action. In particular seq2 states that ¢; -t can do an a
if t1 is terminated and ¢5 can do an a. If ¢; is not terminated
then ¢; - ¢2 can do an a only if ¢{; can.

The relation — is the union of the relations —= for all
actions a. The reachability relation — is the reflexive and
transitive closure of the relation — that is the union of ——
for all actions a.

The set pre* (L) of predecessors (with respect to the given
PA declaration A) of a set of PA-terms L is the set of all
PA-terms ¢ that can reach a PA-term in L, i.e. t —» ¢' for
some t' € L. The sets pre(L), post(L) and post*(L) of im-
mediate predecessors, immediate successors, and successors
are defined similarly.

pre*(L)={t |t —t' for some t' € L}
pre(L)={t|t — t' for some t' € L}
post(L)={t |t — t for some t' € L }
post* (L) ={t | t' —= t for some t' € L}

The Translation of FGSs. We translate a parallel
FGS into a PA declaration A. For each program node n
we introduce a process constant N. The actions are the
assignment statements of the program). The rewrite rules
of A are as follows.

N —M for n—m
viz=t vi= ¢t
N—M for n ——m

call II; (T)

N — START; - M for n ————m

END; — ¢ for end node of procedure II;

N — (M1||M2) . M,
M — ¢, for
My — ¢

n — {mi,ma},

{mf,mb} — m.

In this definition n —— m means that the parallel FGS con-
tains en edge between the program points n and m labeled
by I. N — M is an abbreviation of N —— M for an special
“silent” action 7. The definition assumes that the hyper-
edges n — {mi,m2} and {mi,m5} — m match, i.e.,
that they correspond to a parbegin-parend instruction.
For instance, the parallel flow graph for the program
parbegin z := 1,z := 2 parend; y := =z
is translated into the following PA declaration.

START — K - N3
K — N1||N2

z:=1

N, —> ¢

z:=1

Ny —— ¢

N: 25 BND
END —s ¢

A possible execution of the program is

START —— K - N3
e (N1||N2) - N3

z:=2

— (el|V2) - N3
z:=1

— (elle) - N

% (elle) - END
— (glle) - .

The terms in this execution describe the control of the pro-
gram. For instance, the term (INi||N2) - N3 describes that
control is at the nodes n1 and n2, and that after termination
of the parbegin-parend instruction the execution will be
resumed at ns.

We now modify the translation of the two hyperedges
n — {m1, m2} and {m}, m5} — m as follows. We replace
the rule N — (Mi||M2) - M by two rules (using a new
auxiliary symbol K). That is, the last case becomes:

N—K-M,

K—)M1||M2 n—){mhm?},
M — ¢, {mi,my} — m.
My — ¢

Observe that now, the terms appearing in A are of depth 1,
i.e. of the form ¢, X, X -Y or X||Y. This will play a role
in the complexity analysis of the algorithm to be presented
next.

4 The Algorithm for pre*

The problem is to compute the set pre*(L) of predecessors
of a language L, wrt. a PA declaration A that is derived
from a parallel FGS through the translation presented in
the previous section. In particular, the terms appearing in A
have depth 1.

The language L can be infinite; identifying a PA-term
with its syntax tree, we only require L to be a regular set of
trees, i.e. to have a finite representation in the form of a tree
automaton. The set pre*(L) should also be represented as
another tree automaton, incidentally proving that pre* (L)
is regular whenever L is.

Following [6], we look at tree automata as a specially
simple class of logic programs. We introduce this view of
tree automata in Section 4.1.

We assume that L is a so-called e-closed set of terms.
Section 4.2 introduces these sets, and shows why this as-
sumption can be made without loss of generality.

The algorithm consists of a declarative and an operational
step. In the declarative step, pre*(L) is expressed as the
least model of a logic program (denoted by P4) which does
not have the particularly simple form corresponding to a tree
automaton, but can be directly (and easily) derived from the
definition of pre*(L). This step is described in Section 4.3.

In the operational step P4 is transformed into an equiv-
alent logic program RedPa that does correspond to a tree
automaton, where equivalence means equality of the least
models. This transformation is performed in two stages.
First, a logic program SatP4 is obtained from P4 by means
of a saturation procedure. Then, some clauses are removed
from SatPa to yield RedP4. Both stages are described in
Section 4.4.

An important point is that the operational part,
which is the most complicated, is the same in the four
cases pre(L),pre*(L),post(L), post*(L). This allows to de-
rive the four algorithms in an unified way (thus improving
on the results of [18], where the two cases for predecessors
and successors have to be considered separately). Only the
formulation of the logic program P4 depends (in a rather
straightforward way) on the particular case.

4.1 Tree Automata

In this paper (following the representation e.g. in [6, 5]), a
tree automaton A is a special kind of logic program, namely
a set of implications (Horn clauses) of the form:

q(f(z1,- .., 2x)) < q1(z1), - - -, qr(zx)

where k& > 0 is the arity of the function symbol f (if K = 0,
we write ¢(f) for the clause ¢(f) < true; in our algorithm
we will have 0 < k < 2). We call Horn clauses of this form
reduction clauses.

A tree t is accepted by A from state ¢ if the atom ¢(t)
lies in the least model of A. We recall that this is equiv-
alent to saying that the atom ¢(t) is logically entailed by
the program A (formally, A |= ¢(¢)), or that the atom g(t)
has a successful derivation; since a derivation is isomorphic
to a run of a top-down tree automaton as in [12, 21]), our
notion of acceptance coincides with the standard one. The
set of all trees accepted by a tree automaton A from state ¢

is denoted by L,(A)." Thus,

Lqo(A) = {t| A= q()}.

If g is a fixed initial state of A, we write L(A) for Lq(A);
if the language L is equal to L(A), we say that L is recog-
nized by A. Any set of trees L such that L is recognized by
some tree automaton is called a regular language. An impor-
tant property of tree automata is the fact that the tests of
emptiness and of membership (for the recognized language)
are linear [12].

Example of a Regular Language: IsNil. We recall
that the set IsNil contains all PA-terms built up from the
empty process and sequential and parallel composition. If
we fix the predicate g. as the initial state, the set IsNil is
recognized by the tree automaton given by the three clauses
below.

g(¢)

ge(21 -+ T2) ¢ ge(21),¢e(72)

ge(z1]|w2) = ge(@1), e (2)

Example of a Regular Language: At,. We define
a regular set At, of PA-terms which will be used later in
Section 6. Intuitively, Aty is the set of PA-terms such that
control is at the node n (and possibly also at some other
nodes). Formally, we define that a node n is active at a
PA-term ¢ if

e t=N,or

e t =1t t2 and n is active at 1, or

e ¢ =t1||t2 and n is active at 1 or at ¢z, or

o t=1t; tz and t; € IsNil and n is active at ta.

We denote by At,, the set of PA-terms at which n is active.
This set is a regular language; it is recognized by the tree
automaton below.

q(N)
q(@1 - T2) < q(z1)
q(z1||z2) < g(z1)
q(@1||z2) < g(z2)
q(z1 - 22) < ge(21),9(22)
(all rules of the tree automaton for IsNil)

Note that this logic program is of constant size (i.e. not de-
pending on the size of the flow graph). (In contrast, a tree
automaton in the classical presentation [12] would amount
to having clauses of the form ¢(z1-z2) < ¢(21), gau(z2) etc.,
where the predicate g, stands for the state from which all
terms are accepted. The definition of g, requires a transi-
tion rule for each process constant.)

4.2 ¢-Closure

A language L of PA-terms is e-closed if the PA-terms -, £||¢,
and t||e lie in L if and only if the PA-term ¢ does.

We restrict the algorithm computing pre* (L) (or pre(L),
post(L) or post* (L)) to e-closed languages L. This restric-
tion is justified by the following facts (the first one relies
crucially on the side condition for the structural rule seq2).

1We extend this notation to general logic programs P;
thus, Ly(P) = {t | P = a(t)}.

1. The PA-terms t, €-t, t||e generate isomorphic transition
sequences.?

2. If the language L is e-closed then so are the lan-
guages pre(L), pre* (L), post(L) and post*(L).

3. If the language L is regular then so is its e-closure.

By (1), the terms t, ¢ - t, and t||e are equivalent for all
dataflow analysis purposes. The facts (2) and (3) guaran-
tee that pre, pre*, post and post* are internal operations on
regular e-closed sets.

Every tree automaton recognizing a language L can be
transformed into one recognizing the e-closure of L. We only
need to add a state g. and the clause ¢.(¢) and, for every
state ¢ (including g.), the clauses

q(z1 - z2) ¢ ge (1), 9(z2),
q(m1||m2)<—q5(x1),q(1‘2), (1)
q(z1|z2) < q(z1), e (22)-

For any state g, the language L, recognized by this new tree
automaton from g is e-closed. In particular, for ¢ = ¢., the
recognized language is L,, = IsNil. (Note that we could
have defined IsNil as the e-closure of the singleton set {e}.)

4.3 The Declarative Part: Defining Pa

Given a PA declaration A and a tree automaton A accepting
an e-closed set L of PA-terms, we construct a logic program
P, with a distinguished predicate po such that

t € pre* (L) iff P4 | po(t).

In other words, the PA-term ¢ is a predecessor of a PA-term
in L if and only if the atom po(¢) belongs to the least model
of Pa.

We assume that the states of the tree automaton A are
40,91, - -,qn—1,qe (we identify g and g,,). We fix go as the
initial state, i.e. L = Lg,. The automaton is given by a
logic program consisting of reduction clauses of the form
(where 0 < ,7,k <n)

gi(e) or

qi(X) o

gz - y)<—t1;($),qk() or
(

qi(z||y) < gj(z), qr (y)-

We assume in particular that A contains reduction clauses of
the form (1), according to the special role of the predicate ge.

We define P4 as the logic program consisting of all
reduction rules of the tree automaton A and the addi-
tional clauses in Figure 2. These clauses define new predi-
cates po, p1,-- -, Pe- Schematically:

P4 = {clauses for ¢;’s in A} U

{clauses for p;’s in Figure 2}

The intended meaning of the predicate p; is that p;(¢) can
be derived from P4 if and only if ¢ € pre*(Lg,), or, loosely
speaking, “p; = pre*(g;)”; in particular, po(t) can be derived
from P4 iff t € pre*(L).

2They are even strongly bisimilar.

pi(X) + qi(X)
for each X € {process constants of A} U {e}

pi(X) < pi(t)
for each X %3¢ in A

pi(1 - 22) pj(21), qr(z2)
for each ¢i(z-y) < ¢;j(z),qx(y) in A

pi(x1 - 22) — pe(1), pi(22)
for each ¢;(z-y) < ¢;j(z),qx(y) in A

pi(zi]|lz2) < pj(21), pr(z2)
for each ¢i(z|ly) < gj(z),qx(y) in A

Figure 2: The clauses defining the predicates p; in the logic
program Pj4 for the successor operator pre*, wrt. the tree
automaton A with states g; (for ¢ = 0,...,n, where g, = ¢¢)
and wrt. the PA declaration A.

As we did with ¢. and g¢,,, we identify p. and p,. Observe
that, by assumption, the tree automaton A contains the
clauses

gi(z - y) < g:(z),4i(v)

for every ¢ = 0,...,n; thus, the program P4 contains the

clauses
pi(z1 - T2) < pe(@1), pi(z2)

for every ¢ = 0,...,n. Since we identify ¢. and g, these
clauses are a special case of the third kind of clauses defining
the predicate p; in Figure 2. We still list them in Figure 2
for systematic reasons.

From now on, we always use X as standing either for
process constants or for the empty process €.

In order to show that the intended meaning of p; matches
the real meaning, we first need the following characterization
of the sets pre*(Lg;):

Proposition 1 The sets pre*(Lg,) (for s = 0,1,...,n) are
the smallest sets such that the followmg holds:

1. if X € Ly;, then X € pre*(Ly;);

2. if X %3 tis arule in A and t € pre*(Ly,), then X €

pre*(Lq;);

3. if gi(z1 - 2) « ¢j(z1),qx(z2) is a clause in A and ¢; €
pre*(Ly;) and t2 € Lg, then t; -t2 € pre*(Ly,);

4. if ¢; € pre*(IsNil) and t2 € pre*(Lg;) then t; -tz €
pre*(Lq;);

5. if g;(z1]|z2) « gj(21),qr(2z2) is a clause in A and ¢; €
pre*(Lg;) and ta € pre*(Lg,) then t1||ts € pre™(Ly;).

Proposition 2 The sets pre*(Lg;) (for = 0,1,...,n) are

the smallest sets such that the followmg holds:
1. if X € Ly, then X € pre*(Ly;);

2. if X %3 tisarulein A and t € pre*(Ly,), then X €
pre” (Lqg;);

3. if g;(z1 - 2) + ¢j(z1),qx(z2) is a clause in A and ¢; €
pre*(Lg;) and t2 € Lg,, then t1 -2 € pre*(Ly,);

4. if ¢; € pre*(IsNil) and ¢2 € pre*(Lg;) then ¢1 - t2 €
pre”(Lg;);

5. if ¢;(z1]|z2) « qj(21),qk(2z2) is a clause in A and ¢, €
pre*(Lg;) and t2 € pre*(Lg,) then t1||ta € pre”(Ly;).

Proof. We first prove that the sets pre*(Lgy,;) satisfy the
conditions, and then that they are the smallest such sets.
Let us prove that the sets satisfy the third condition, the
others being similar. Since t; € pre*(Ly;), there is a term

ty € Lg; such that ¢ —~5 t}. By repeated application of the

rule seql we have t1 - to — t} - ta. We prove t} - ta € Lg,,
which implies t1-t2 € pre*(Lg,). Sincet] € Ly; andts € Lg,,
we have A |= ¢;(t}) and A |E qx(t2). Since qi(z1 - z2) +
¢j(z1),qx(z2) is a clause of A, we also have A |= ¢;(t] - t2).
So tll -to € Lqi.

To prove that pre*(Lg;) are the smallest sets satisfying
the properties specified in Conditions 1 to 5, let Sp,..., Sy
be arbitrary sets satisfying the properties (i.e., Conditions 1
to 5 hold if we replace if we replace pre*(Ly;) by S;). We
prove that for every term ¢ and for every i = 0,...,n, if
t € pre*(Ly;) then t € S;.

We write t —— ' to abbreviate that there is a sequence
of rewriting steps from ¢ to ¢’ whose length is smaller than
or equal to k. Thus, t € pre*(L,,) means that t — ¢’ for
some t' € Ly,. We proceed by induction on k to prove the
following statement:

for all k for all ¢t for all i (if t — ¢' € Ly, then t € S;).

Base Case: k = 0. We proceed by structural induction
on t to show:

for all ¢t for all ¢ (if ¢t € Ly, then ¢t € S;).
e t =X € Lg;. By Condition 1, t € S;.

o t =t -ty € Lg,. There exists a clause ¢;(z1 - z2) +
¢; (1), qr(x2) in A such that 1 € Ly; and t2 € Lg,,. By
induction hypothesis (of the induction on the structure
of t), t1 € Sj. By Condition 3, ¢t € S;. (Condition 4 is
here the special case of Condition 3 for j = n.)

ot =1t || t2 € Lg;. This case follows the lines of the
previous case, using Condition 5.

Induction Step: k£ > 0. We proceed by structural induc-
tion on ¢ to show:

for all ¢t for all ¢ (if ¢ Eyte Lg, then t € S;).

et=Xe€L,. Weassume X — ¢" 253 ¢/ € L, for
some term t5. Then, by induction hypothesis (of the
induction on k), we have t” € S;. From X — t" we
infer X -2+ " € A for some action a. By Condition 2,
X € S;.

e ¢t =t1-t2 € Lq;. A simple inspection of the operational
semantics of the PA-algebra shows that there are two
possible cases:

— " =t/ ty and t; — ¢, (“the rewriting in the
left subterm is non-terminating”). Since t' € L,
there is a clause ¢;(z1,z2) < ¢;j(z1),qr(z2) in A
such that t1 € Lg; and ta € Lg, . We infer t1 € S;

from t; — ¢} € Lg; by induction hypothesis (of
the induction on t). By Condition 3,t =%, -t2 €
S;.

—t =t -ty and ¢, € IsNil and t; —> ¢, and
ty — ty (“the rewriting in the left subterm is
terminating”). Since t; — t}| € IsNil, we have
t1 € pre*(IsNil). Since t] -t5 € Ly, and t; € IsNil,
we have ty € Lgy;; here we use our assumption
that A contains reduction clauses of the form (1)

for every state g. That is, for some decomposition
of k into k = k' + k", we have®

t Xt B¢ e IsNil
ts sty Es th € L,

We apply the induction hypothesis (of the induc-
tion on t) on the fact t2 € pre*(Lg;) (which holds

because ts — th € Ly;) and obtain t; € Si. By
Condition 4, t = t1 - t2 € S;.

ot =1t || t2 € Lg;. This case is very similar to the
first subcase of the case for ¢t = ¢1 - t2. Here, we use
Condition 5 instead of Condition 3 to show t € S;. O

We can now prove that the intended meaning of the predi-
cates p; coincides with its formal meaning.

Theorem 1 (“pre*(¢;) = pi”) A PA-term t is a predeces-
sor of some PA-term in the language L,; recognized by A
from the state ¢; if and only if p;(¢) lies in the least model
of the logic program P4. Formally,

pre” (Lg;) = {t € Tea | Pa |= pi(t)}.

Proof. The rules of P4 model exactly the conditions defin-
ing the sets pre*(Lg;) in Proposition 2. Thus, the sets
{t € Tra | Pa = pi(t)} are the smallest sets satisfying those
conditions. Now, we only need to apply Proposition 2 in
order to obtain the statement. a

4.4 The Operational Part: P4 +— SatPs +— RedPa

In the first stage of the operational part of the algorithm,
we saturate P4. This means that we infer all clauses of
the form p(X) (where X is a process constant X of A or the
empty process £) such that P4 |= p(X), and add them to P4.
The result is the saturated logic program SatP4. Observe
that the added clauses are a special case of reduction clauses.
Schematically:

‘SatPA =PsU{p(X) | Pal= P(X)}‘

3According to the semantics of the PA algebra, the steps rewrit-
ing the left subterm precede the steps rewriting the right subterm.
However, the proof that the term ¢ = ¢1 - t2 is a predecessor of some
term in L4, proceeds by two proofs applied to the two subterms in
any order (one deriving that the left subterm is a predecessor of a
term in IsNil and one deriving that the right subterm is a predecessor
of a term in L,). This is perhaps the intuitive explanation for the
efficiency of the algorithm.

In the second stage, we define Red P4 as the logic program
consisting of all reduction clauses of Sat P4, schematically:

Red P4 = {reduction clauses in SatPa} ‘

We show that all clauses in SatP4 that are not reduction
clauses are redundant in SatPj4, in the sense that omitting
them does not change the least model.

The logic program Red P, is a tree automaton. Having
fixed go as the initial state of A, we fix po as the initial state
for the tree automaton Red P4. This tree automaton, which
recognizes the set pre*(L), is the output of the algorithm.

Saturating P4 via HornSat. The only clauses in Py
that contain variables are reduction clauses of the form

r(z10xz2) + ri(z1),r2(x2)

where r, 1 and ro are g; or p; for some ¢ between 0 and n
and “o” is either “” or “||”. If the number of clauses in A
is ma, then the number of clauses of P4 containing variables
is 2m4 (Pa contains one new clause defining p; for each ‘old’
clause defining ¢;; see Figure 2).

We now define the logic program P§°""? as the result
of replacing each clause with variables, which is necessarily
of the form r(z1 o z2) < 7r1(z1),r2(z2), by a set of ground
clauses. This set contains a clause 7(¢1 0 t2) ¢ r1(¢1), r2(t2)
for each rewriting rule X -2 ¢; 05 in A. If na is the
size of the PA declaration measured by its number of rules
(viz. the size of the parallel low graph measured by its num-
ber of edges), then the number of all such instantiations
is O(ma -na). Thus, the total size of P§°*™ is bounded
by O(ma - na).

The interest of the logic program P§°"*¢ lies in the fol-
lowing proposition.

Proposition 3 If a clause 7(X) is a consequence of P4 then
also of P§°**¢, formally

P4 |=r(X) if and only if P§°"" = r(X).

Proof. The “if” direction is trivial. For the other direction,
one can show, by induction over the length of a derivation
for »(X) wrt. the logic program P4, that each atom in the
derivation is a ground atom p(t) (where ¢ is a PA-term of
depth at most 1) such that, if p(¢) unifies with the head of a
clause in P4 then P§°"™ contains a ground instance of that
clause whose head is p(t); i.e., each resolution step wrt. Pa
is possible also wrt. P§°". O

Proposition 3 reduces the problem of saturating P4 to the
problem of saturating P§*™® and then deriving all conse-
quences of the form r(X) from the set P§**¢ of ground Horn
clauses. This is an instance of HornSat, where the proposi-
tional constants are the atoms of the form r(X’) and r(X oY)
appearing in P§°""?. This problem can be solved in linear
time by the Dowling-Gallier procedure [9]. More precisely,
this procedure computes the set of all derivable atoms in
linear time (in the size of the logic program). (The idea of
the Dowling-Gallier procedure is to iterate the following in-
struction: for each propositional constant forming the head
of a clause with an empty body, remove the propositional
constant from all clauses where it appears in the body.)
Therefore, since the size of SatPa is O(ma - na), the pro-
gram Sat Py is obtained from the program P4 in O(ma4-na)
time.

From SatPs to RedPj. In the second stage of the
operational part, we obtain the logic program RedPs by
removing from Sat P4 all non-reduction clauses. The output
of the algorithm is the program Red P4 (which consists of
reduction rules only) as a tree automaton representing the
set pre* (L) of all predecessors of L wrt. A.

We show that Sat P4 and Red P4 are equivalent, i.e., that
the non-reduction clauses of SatP4 are redundant.

Proposition 4 SatPy is equivalent to Red Py, i.e., the fol-
lowing set is empty:

M = {r(t) | SatPa |=r(t) and RedP4 [~ r(t)}.

Proof. For a proof by contradiction, assume that M is
not empty. Let r(¢) be an element of M with the shortest
derivation wrt. the logic program SatP4. This derivation
must have an application of a clause which is not in Red Pa.
Such a clause is of the form p;(X) < This means that
we have found an atom p;(X) (the one to which this clause is
applied) that has a derivation wrt. Sat P4 (a derivation using
a the clause p;(X) < ... which is not a reduction clause).
Thus, the atom p;(X) lies in the least model of Sat P4, which
is equal to the least model of P4 |= p;(X). By the construc-
tion of Sat P4 and by Proposition 3, Sat P4 contains all of its
consequences in the form of a ground atom, and in partic-
ular the clause p; (X). It follows that the derivation of r(t)
wrt. the logic program SatPa can be made at least one step
shorter, namely by applying the clause p;(X). This is a
contradiction. |

Correctness. Since RedP4 is the output of the algo-
rithm, correctness is stated as follows.

Theorem 2 Given the PA declaration A, a PA-term t is
a predecessor of a PA-term in the language L4, recognized
by the tree automaton A from the state ¢; if and only if ¢
is recognized by the tree automaton Red P4 from state p;.
Formally,

pre*(Lg;) = {t € Tpa | RedP4s = pi(t)}.

In particular, pre*(L) is the set of PA-terms recognized
by RedPa.

Proof. By Proposition 3 and Proposition 4, P4 = pi(t)
iff RedP4 |= pi(t). Apply now Theorem 1.

The last statement of the theorem is the instance
for ¢ = 0, since we fixed ¢o as the initial state of A
and po as the initial state of RedPs (i.e. L = Lg, (A) and
pre*(L) = Ly, (Red P4)). O

Complexity. Since P§°*"? can be constructed in O(m4-
na) time, the complete algorithm runs in O(ma4 - na) time;
i.e., the algorithm is linear in the size ma of the tree au-
tomaton A (i.e. the number of its clauses) and linear in
the size na of the PA declaration A (i.e. the number of its
rewrites rules, which is the number of edges of the parallel
flow graph). In many applications to data flow analysis, the
tree automaton A can be viewed as a constant parameter in
the problem formulation with PA algebras (see Section 6),
i.e., ma can be assumed constant.

The number of states of the computed tree automaton
representing pre* (L) is twice the number k4 of states of the
automaton representing the language L (to compare, the
tree automaton obtained in [18] has 4 k4 states); i.e., this

bound does not depend on the input PA declaration. In
contrast, the number of its clauses is bounded by 2ma +
ka - ka where ka is the number of process constants of A.

The algorithms for pre(L), post*(L) and post(L) are ob-
tained in a similar way (see below) and have the same com-
plexity.

pre*(C) (C is set of configurations,
pre* refers to flow graph system)
= pre*(L) (L is e-closure of set of PA-terms,
represented by tree automaton A,
pre* refers to PA declaration A)
= Im(Py4) (P4 is a logic program (Figure 2))
= Im(SatP4) (saturation via HornSat)
= Im(RedPs) (reduction clauses of SatPa})

Figure 3: Schematically, the steps of the algorithm for pre*;
the PA declaration A is obtained by translating a flow graph
system (Section 3); the notation im stands for ‘least model’.

5 The Algorithms for post*, pre and post

We only need to specify the declarative part of the algo-
rithms computing post*(L), pre(L) and post(L), respec-
tively, for a set L of PA-terms given by the tree automa-
ton A, wrt. a given PA algebra A; the operational part is
the same as for pre*.

The Algorithm for post*. We assume the setting described
in Section 4.3, where we replace pre* by post*. The analogue
of Proposition 2 is the following statement.

Proposition 5 The sets post*(Ly;) (fori=0,1,...
the smallest sets such that the following holds:

1. if X € Ly; then X € post*(Lg;);

,n) are

2. if X 25t is a rule in A and X € post*(Lg,), then
t € post™(Lg;);

3. if gi(z1 - z2) « ¢j(z1),qx(z2) is a clause in A and t1 €
post*(L;) and t2 € Ly then ti -ta € post™(Lg,;);

4. if gi(z1 - x2) < gj(21),qr(z2) is a clause in A and t1 €
post*(L;) N IsNil and t2 € post*(Lg) then t1 - t2 €
post™ (Lg;);

5. if qi(z1-z2) + gj(21),qr(z2) is a clause in A and t1 €
post*(L;) and t2 € post™(Ly) then ti||ta € post™(Lg;).

Proof. The proof is analogous to the one of Proposition 2.
O

We define Pj"“* as the logic program that consists of all
reduction rules of the tree automaton A and the additional
clauses in Figure 4. (Recall that IsNil = Lg,.) Schemati-
cally:

P = {clauses for ¢;’s in A} U
{clauses for p;’s in Figure 4}

The meaning of the new predicates p; defined by the clauses
in Figure 4 is that “p; = post*(g;)”, i.e., that the atom p;(t)
lies in the least model of Pj;"“* if and only if the PA-term ¢
is reachable from a PA-term in Lg,, formally

Ly (P5"") = post™ (Lq; (A)).

pi(X) < qi(X)
for each X € {process constants of A} U {e}

pi(t) + pi(X)
for each X %3¢ in A

pi(z1 - x2) « pj(z1), g (z2)
for each ¢i(z-y) < ¢j(z),qx(y) in A

pi(@1 - x2) ¢ pj(21), ¢ (1), p(22)
for each gi(z-y) + ¢;(2),qx(y) in A

pi(zi]lz2) < pj(21), pr(22)
for each gi(z|ly) + ¢;j(z),qx(y) in A

Figure 4: The clauses defining the predicates p;
in the logic program Pj"“* for the successor opera-
tor post*, wrt. the tree automaton A with states g¢;
(for t =0,...,n, where ¢, = ¢.) and wrt. the PA declara-
tion A.

We note that the fourth kind of clauses in Figure 4 is a
special form of a reduction clause containing two atoms with
the same variable. The saturation procedure will lead to an
alternating tree automaton, i.e. one that contains reduction
clauses with conjunctions of atoms with the same variable.
The membership test for alternating tree automata is still
linear, while the emptiness test is exponential in general. In
this case, however, we can replace the conjunction

pj(z1), g (1)

by the atom pj(z1) and add the following clauses defining
the new predicates p;, for i =0,...,n.

pi(e
pi (21 22
pi (z1]|z2
p; (1|2

— pi(e)

+ ge(z1),p; (z2)
+ ge(z1), pi (22)
Rl 21 (xl)vqa(xQ)

— — — —

The meaning of p§ is given by
Lyps (P5>") = post™ (Lg, (A)) N IsNil.

The Algorithms for pre and post. We omit the analogue of
Proposition 2 or 5, respectively, and instead give directly the
clauses that need to be added to the reduction clauses of the
tree automaton A in order to define the logic programs P3;™
for the immediate-predecessor operator and P3°* for the

immediate-successor operator. We obtain these clauses by
small changes of Figure 2 and 4, respectively. Namely, we
omit the first kind of clauses (“the immediate-predecessor
and immediate-successor relations are not reflexive”) and
replace the predicate p; by the predicate ¢; in the second
kind of clauses (“the immediate-predecessor and immediate-
successor relations are not transitive”); the other clauses
remain the same.

pi(X) + ¢(t)
foreach X %3¢ in A

pi(z1 - 22) + pj(21),qr(22)
for each ¢;(z - y) + ¢;(z),qx(y) in A

pi(z1 - x2) pe(z1),pi(z2)
for each ¢;i(z-y) < ¢;j(z),qx(y) in A

pi(z1lz2) + pj(z1), pr(z2)
for each ¢;i(z|ly) + ¢;j(z),qx(y) in A

Figure 5: The clauses defining the predicates p; in the logic
program P5™ for the immediate-predecessor operator, wrt.
the tree automaton A with states g; (for 1 = 0,...,n, where
gn = gc), and wrt. the PA declaration A.

pi(t) + ¢i(X)
foreach X 25t in A

pi(z1 - x2) + pj(21),qr(22)
for each gi(z - y) + ¢;j(z),qe(y) in A

pi(x1 - 2) + pj(21),4e (1), p(22)
for each ¢i(z - y) « ¢;(z),qx(y) in A

pi(z1llz2) + pj(z1), pr(z2)
for each ¢;i(z|ly) + ¢;j(z),qr(y) in A

Figure 6: The clauses defining the predicates p; in
the logic program P5>* for the immediate-successor
operator, wrt. the tree automaton A with states g¢;
(for i =0,...,n, where ¢, = ¢.) and wrt. the PA declara-
tion A.

6 Applications

Our algorithms can be used to solve bitvector problems and
other distributive dataflow analysis problems for parallel
FGSs along the lines of [10]. We briefly sketch the solu-
tion of [10] to a simple problem, namely whether a global
variable v is live at a program point n. Then we show how
to extend the technique to the case in which the program

has both local and global variables, a problem that was left
open in [10].

Assume the original parallel FGS has been translated
into a PA declaration A. As usual, a program variable v is
said to be live at the program point corresponding to the
node n of the FGS if there is program path starting at (a pro-
gram state with control at) n in which v is referenced before
being redefined. (For simplicity, we assume that no instruc-
tion simultaneously redefines and references a variable.) If
START denotes the process constant corresponding to the
start node of the main program, then this is equivalent to
saying that there exists a rewriting sequence of PA-terms
wrt. the PA declaration A,

o p u = ezp(v)
START T ¢, T4, — 5 ¢,

where the PA-term ¢; is reached from the PA-term START,
and the PA-term t¢2 reached from the PA-term t: after steps
with actions that form the string o, such that the following
properties are satisfied.

1. The PA-term START can reach a PA-term ¢; such that
node n is active at t1, formally START — t; € At,
(“the program execution reaches a state with control
at n”).

2. No action of the form v:= exp is contained in the
string o (“the variable v is not defined during the ex-
ecution of the statements in o after that state with
control at n”).

3. The PA-term t» can be rewritten using a rule with an
action of the form u:= exp(v) that stands for an assign-
ment of an expression containing the variable v (“the
variable v is referenced”).

Let A, be the subset of rewrite rules of A of the form

u 1= exp

X — t

where the variable v appears in the expression erp. Then,
the set of terms ¢, satisfying the property described un-
der (3) is pres, (T'p4), where the immediate-predecessor op-
erator pre, refers to the reachability relation of A,.

Let Apq be the subset of rewrite rules of A obtained by
removing all rules of the form

v I= ezxp

X — t

from A; the predecessor operator prej, . refers to the reach-
ability relation of A,q. Then, the set of terms t; such
that t; —Z» to for some string o satisfying the property de-
scribed under (2) is prej ,(prea, (Tpa)).

Finally, the subset of the terms ¢, satisfying the property
described under (1) is

Atp, Nposty ({START}) Nprep (prea, (Tra)).

This set of PA-terms can be computed using the results of
Section 4 and standard algorithms for computing the inter-
section of regular tree languages. (It is possible to add some
optimizations which are out of the scope of this paper.)

In the same manner we can solve the main bitvector
problems of Hecht’s hierarchy [13], namely the computation
of very busy expressions, available expressions, and reach-
ing definitions. In order to deal with kills in independent

threads, intersection problems such as available expressions
require that the problem is put in dual form (i.e., one solves
the union problem of unavailable expressions and then com-
plements the answer).

Local variables. When both local and global variables are
present, it is necessary to distinguish between different in-
carnations of the same variable. This can be achieved by
translating the program into a new PA declaration A’. The
intuition is that A’ simulates a new program that could be
obtained by a source-to-source translation of the old one
such that the new program contains a ‘copy’ of each proce-
dure; the copy can be called (nondeterministically) at most
once in any execution path (at any point from where the
original procedure can be called); we analyze, say, the live-
ness of a local variable (which is based on the ezistence of
an execution path) wrt. the copy. Thus, the PA declara-
tion A’ has the same rewrite sequences of PA-terms as A
except for the fact that, for each procedure II;, at most one
call is marked. Formally, this means that a rewriting rule

mark
N — START; - M

with the special action symbol mark is applied at most once
for each ¢ (where START; is the process constant corre-
sponding to the start node of the procedure II). Termina-
tion of the marked call is signaled by executing an action
return.

The restriction to at most one application to the rewrit-
ing rule above (translating a marked procedure call) is ob-
tained by ‘coloring’ the process constants. That is, each
process constant X of A is split in A’ into three process con-
stants X9, X", X®, where the superscripts stand for green,
red, and black. The rules of A’ are defined in such a way
that

(a) red process constants can only be generated at the
marked call;

(b) green process constants can only be generated in the
same computation thread as the marked call, and be-
fore the marked call starts, i,e, before the process con-
stant mark;

(c) black process constants can only be generated in par-
allel to the marked call (i.e., in computation threads
parallel to the one which initiated the marked call), or
after the marked call has terminated;

(d) every run contains the process constant mark at most
once.

For instance, a rule N — START; - M of A is replaced
in A' by the following set of rules:

e N°®_— START? - M®
Black constants only generate black constants.

mark
e N9 —— START? - M°.
The procedure call is marked and START; becomes
red.

e NY — START{ - M"
This rule does not mark the call of the procedure II;,
and by coloring M black it guesses that some call

will be marked before execution is resumed at M (no-
tice that this is only a guess, because the green con-
stant STARTY may, but does not necessarily have to,
generate a red constant). The guess may be wrong,
but in this case the run contains no marked call at all,
which is harmless.

e N9 — START? - M¢
Same as above, but this time the rule imposes that no
call will be marked before execution is resumed at M9.

o N" — START? - M"
This rule can only be applied during the marked call.
By calling II; the run leaves the marked call, and
so START; is colored black. The execution of the
marked call is resumed at M, and so we have M".

For each execution of A’ and each procedure call in the ex-
ecution we have an execution of A’ in which the process
constants generated during the procedure call are red. The
liveness problem for a local variable can now be solved apply-
ing the same technique as above; the only change is that in
the definition of A, we only preserve red process constants,
and in the definition of A],; we only remove red process con-
stants. These are process constants that define or reference
a particular incarnation of the variable. The other bitvector
problems can be solved analogously.

7 Conclusion

From the perspective of program analysis, we have shown
that the extension of the interprocedural setting to parallel
programs does not increase the computational complexity
of the operations pre* and post*. We have accommodated
the extension by using structured data for the representa-
tion of states (here, terms over “” and “||”; other operators
than “||” might be added).

From the perspective of model checking, it comes per-
haps as a surprise that the predecessor operator can be com-
puted in linear time for a class of pushdown processes, the
existing algorithms for this operator (see e.g. [3, 4, 11]) being
at least cubic.

We can also look at our results as a step towards car-
rying automated analysis methods over from hardware to
programming languages. When programs without proce-
dures are abstracted to flow graphs, finite-state model check-
ing methods are applicable to the transition system whose
states are the nodes of the flow graph. On the other
hand, in a transition system modelling procedure calls and
returns, states range over an infinite domain (stacks, es-
sentially); i.e., finite-state model checking methods are no
longer applicable. (In contrast, the module notions that
help to structure concurrency in hardware-like systems lead
to the phenomenon of state explosion but preserve finite-
ness.) The present paper presents a seemingly new algorith-
mic principle for interprocedural analysis, in which we pro-
pose to combine a process algebraic formal framework with
procedures inspired by the automata-theoretic approach to
model-checking (see [10]) and by research on set-based anal-
ysis.

Future work. As pointed out in the introduction, our
techniques seem to be connected to the CFL graph reacha-
bility approach of Reps [23]. This connection deserves fur-
ther study. Moreover, Reps has pointed out a connection

between that approach and the Dolev-Karp algorithm for
verifying cryptographic protocols [8]. The techniques pre-
sented in this paper have potential applications also in that
area.

Stacks are, of course, only one dimension of the infin-
ity problem with program analysis/carrying model checking
over from hardware to programming languages. The other
dimension are data (integers, reals etc.) ranging over an infi-
nite domain; sometimes the domain cannot be abstracted to
a finite domain in an interesting way. The challenge remains
to combine e.g. model checking over integers or reals as in
the systems HyTech [14], Uppaal [2], DMC [7] and others
with interprocedural analysis.

Acknowledgments. We thank Harald Ganzinger for
discussions, and Tom Reps for encouraging us to improve
the complexity bound of our algorithms.

References

[1] J. C. M. Baeten and W. P. Weijland. Process Alge-
bra. Cambridge Tracts in Theoretical Computer Sci-
ence, 1990.

[2] J. Bengtsson, K. Larsen, F. Larsson, P. Petersson,
W. Yi, and C. Weise. New generation of UPPAAL.
In Proceedings of the International Workshop on Soft-
ware Tools for Technology Transfer, Aaalborg, Den-

mark, 1998.
[3] A. Bouajjani, J. Esparza, and O. Maler. Reach-
ability Analysis of Pushdown Automata: Applica-

tion to Model Checking. In A. W. Mazurkiewicz
and J. Winkowski, editors, CONCUR’97: Concur-
rency Theory, volume 1243 of LNCS, pages 135-150.
Springer, 1997.

[4] O. Burkart and B. Steffen. Model—checking the full
modal mu—calculus for infinite sequential processes. In
P. Degano, R. Gorrieri, and A. Marchetti-Spaccamela,
editors, International Colloguium on Automata, Lan-
guages, and Programming (ICALP’97), volume 1256 of
LNCS, pages 419-429. Springer, 1997.

[6] W. Charatonik, D. McAllester, D. Niwinski, A. Podel-
ski, and I. Walukiewicz. The Horn mu-calculus. In
V. Pratt, editor, Proceedings of LICS’98: Logic in
Computer Science, pages 58-69. IEEE Computer So-
ciety Press, 1998.

[6] W. Charatonik and A. Podelski. Set-based analysis of
reactive infinite-state systems. In B. Steffen, editor,
Proceedings of TACAS’98: Tools and Algorithms for
the Construction and Analysis of Systems, volume 1384
of LNCS, pages 264—289. Springer-Verlag, 1998.

[7] G. Delzanno and A. Podelski. Model checking in CLP.
In R. Cleaveland, editor, Proceedings of TACAS’99:
Tools and Algorithms for the Construction and Anal-
ysis of Systems, volume 1579 of LNCS, pages 223-239.
Springer-Verlag, 1999.

8] D. Dolev, S. Even, and R. M. Karp. On the security of
Yy
ping-pong protocols. Information and Control, 55(1—
3):57-68, Oct./Nov./Dec. 1982.

[9]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

21]

[22]

23]

W. F. Dowling and J. H. Gallier. Linear-time
algorithms for testing the satisfiability of proposi-
tional Horn formulae. Journal of Logic Programming,
1(3):267-284, Oct. 1984.

J. Esparza and J. Knoop. An automata-theoretic
approach to interprocedural dataflow analysis. In
W. Thomas, editor, Proceedings of FoSSaCS’99: Foun-
dations of Software Science and Computation Struc-
tures, volume 1578 of LNCS, pages 14 — 30. Springer-
Verlag, 1999.

A. Finkel, B. Willems, and P. Wolper. A direct sym-
bolic approach to model checking pushdown systems.
Electronic Notes in Theoretical Computer Science 9,
www.elsevier.nl/locate/entcs, 13 pages, 1997.

F. Gécseg and M. Steinby. Tree Automata. Akademiai
Kiado, Budapest, 1984.

M. S. Hecht. Flow Analysis of Computer Programs.
Elsevier, North-Holland, 1977.

T. Henzinger, P.-H. Ho, and H. Wong-Toi. Hytech:
a model checker for hybrid systems. In Proceedings
of CAV’97, volume 1254 of LNCS, pages 460-463.
Springer-Verlag, 1999.

J. Knoop. Optimal Interprocedural Program Optimiza-
tion: A new Framework and its Application. PhD the-
sis, Univ. of Kiel, Germany, 1993. LNCS Tutorial 1428,
Springer-Verlag, 1998.

J. Knoop, O. Riithing, and B. Steffen. Towards a
tool kit for the automatic generation of interprocedural
data flow analyses. Journal of Programming Languages,
4(4):211-246, 1996.

J. Knoop, B. Steffen, and J. Vollmer. Parallelism for
free: Bitvector analyses — No state explosion! In
Proceedings of TACAS’95, volume 1019 of LNCS, pages
264 — 289. Springer-Verlag, 1995.

D. Lugiez and P. Schnoebelen. The regular viewpoint
on PA-processes. In D. Sangiorgi and R. de Simone, ed-
itors, Proceedings of CONCUR’98: Concurrency The-
ory, volume 1466 of LNCS, pages 50-66, 1998.

D. A. McAllester. Automatic recognition of tractability
in inference relations. Journal of the ACM, 40(2):284—
303, April 1993.

D. Melski and T. Reps. Interconvertibility of a class of
set constraints and context-free language reachability.
Theoretical Computer Science. To appear. Preliminary
version in Proceedings of PEPM’97, Proceedings of the
ACM SIGPLAN Symposium on Partial Evaluation and
Semantics-Based Program Manipulation, ACM, New
York, NY, 1997, pp. 74-89.

M. Nivat and A. Podelski. Tree Automata and Lan-
guages. North-Holland, Amsterdam, 1992.

G. Ramalingam. Context-sensitive synchronization-
sensitive analysis is undecidable. Research Report
RC 21493, IBM T.J. Watson Research Center, York-
town Heights, NY, May 1999.

T. Reps. Program analysis via graph reachability. In-
formation and Software Technology, 40(11-12):701-726,
November /December 1998.

