
Negotiation Programs

Javier Esparza1 and Jörg Desel2

1 Fakultät für Informatik, Technische Universität München, Germany
esparza@tum.de

2 Fakultät für Mathematik und Informatik, FernUniversität in Hagen, Germany
joerg.desel@fernuni-hagen.de

Abstract. We introduce a global specification language for distributed
negotiations, a recently introduced concurrent computation model with
atomic negotiations combining synchronization of participants and choice
as primitive. A token game on distributed negotiations determines reach-
able markings which enable possible next atomic negotiations. In a deter-
ministic distributed negotiation, each participant can always be engaged
in at most one next atomic negotiation. In a sound distributed negoti-
ation, every atomic negotiation is enabled at some reachable marking,
and from every reachable marking the final marking of the distributed
negotiation can be reached. We prove that our specification language has
the same expressive power as sound and deterministic negotiations, i.e.,
every program can be implemented by an equivalent sound and deter-
ministic negotiation and every sound and deterministic negotiation can
be specified by an equivalent program, where a program and a negotia-
tion are equivalent if they have the same Mazurkiewicz traces and thus
the same concurrent runs. The translations between negotiations and
programs require only linear time.

1 Introduction

Multi-party negotiation as a concurrent computation model has been recently
introduced in [1, 2] as a formalization of the negotiation paradigm given e.g. in
[3, 4]. In this model, distributed negotiations are described by combining atomic
negotiations, called atoms. Each atom has a number of parties (the set of agents
involved in it), and a set of possible outcomes. The parties of an atom agree on
an outcome, which transforms the internal state of the parties, and determines
the atoms each party is ready to engage in next. If each agent is always willing
to engage in at most one atom, the negotiation is called deterministic.

For an example, consider the left part of Figure 1, which shows a deterministic
negotiation with agents 1 to 4. Atoms are represented by black bars with white
circles (ports) for the respective participating agents. Initially all agents are ready
to engage in the initial atom n0, where they decide whether to start discussing
a proposal (outcome y(es)) or not (n(o)). If the agents agree on n, then the
negotiation terminates with the final atom nf . If they agree on y, then the
agents build two teams to study and modify the proposal in parallel: agents
1 and 2 “move” to atom n1, and agents 3 and 4 to n2. After n1 and n2, the

2

n0

n2

y y yy

a a a a

n3

n

pr

n1

nf

p

nn

p′r r

n y

r p′

3

r

1

y y

p p

y

p′

aa a a

p′ r

2

r r

4

n nn n

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

n0

n2

n3

nf

n1

n3

nf

n0 n0

n1

n3

nf

n0

n2

n3

nf

Fig. 1. Two negotiations between four agents.

four agents decide in n3 whether to accept (outcome a) or reject (r) the revised
proposal; in case of rejection, the two teams work again on revisions.

Negotiations can deadlock. For instance, if, in our example, the r-arc from
port 2 of atom n3 would lead to nf rather than to n1, then the negotiation reaches
a deadlock after the execution of y p p′ r p′. Loosely speaking, a negotiation is
sound if each atom can be executed in some reachable state and, whatever its
current state, it can always finish, i.e., execute the final atom. In particular,
soundness implies deadlock-freedom.

In this paper we investigate negotiations from a programming language point
of view. Negotiations can be seen as concurrent compositions of flowcharts, one
for each agent. For example, the negotiation on the left of Figure 1 is the com-
position of the four flowcharts shown on the right. So, just as flowcharts (or
if-goto programs) model unstructured sequential programs, negotiations model
unstructured concurrent programs. The Böhm-Jacopini theorem, often called
the Structure Theorem [5]3, states that every flowchart has an equivalent struc-
tured program [5–7]. This raises the question we investigate in the paper: Is
there a “Structure Theorem” for negotiations similar to the Böhm-Jacopini the-
orem for sequential computation? We give a positive answer for deterministic
negotiations with a surprising twist: We exhibit a programming language with
the same expressive power as sound deterministic negotiations. In other words,
every syntactically correct program is guaranteed by construction to be sound,
and for every sound deterministic negotiation there is an equivalent program ex-
hibiting the same degree of concurrency. A similar question has frequently been
studied for process models given as Petri nets or BPMN-diagrams, relating these
models to programs in some execution language such as BPEL. In this setting,
by now only partial solutions have been obtained. For example, [8] shows how to
find so-called blocks in diagrams, each corresponding to a XOR-split/XOR-join-
couple or to an AND-split/AND-join-couple. Process models with nested blocks
are always sound and can easily be translated in a programming language, but
not all sound process models have nested blocks.

An example program of our language is given in Figure 2. This program is
equivalent to the negotiation of Figure 1. The first two lines of the program

3 See [6], which convincingly argues that it should be considered a folk theorem.

3

agent a1, a2, a3, a4
outcome y, n, a, r : {a1, . . . , a4}; p : {a1, a2}; p′ : {a3, a4}
do [] y : (p ‖ p′) ◦

do [] a : end [] r : (p ‖ p′) loop od
end

[] n : end
od

Fig. 2. Program equivalent to the negotiation of Figure 1

specify the agents of the system, and, for each outcome, the set of agents that
have to agree to choose the outcome. The outer do · · ·od block corresponds
to the atom n0. The block offers a choice between outcomes y and n; in the
language, outcomes are prefixed by the [] operator. After outcome y, the two
outcomes p and p′ can be taken concurrently (actually, p is here an abbreviation
of do p : end od, a block with only one possible outcome). The operator ◦ is the
layer composition operator of Zwiers [9]. In every execution of P1 ◦P2, all actions
of P1 in which an agent a participates take place before all actions of P2 in which
a participates. If the sets of agents involved in P1 and P2 are disjoint, then P1

and P2 can be executed concurrently, and in this case we write P1 ‖ P2 (our
language has only layer composition as primitive, and concurrent composition
is just a special case). Finally, the block do [] a : end [] r : (p ‖ p′) loop od
offers a choice between two alternatives, corresponding to the outcomes a and
r. The alternatives are labeled with the keywords end and loop respectively,
which indicate what happens after the chosen alternative has been executed: in
the case of a loop, the block restarts, and for an end it terminates.

While we have presented both negotiations and negotiation programs as data-
less computational models, data can easily be added to both. In fact, in [1, 2] each
agent is assumed to have an internal state (which can be given by the valuation
of a set of local variables), and an outcome of an atom with a set X of agents
is assigned a state transformer relation which only applies to the internal states
of the involved agents. For programs, we can assign to each agent a set of local
variables, and to each outcome of an atom a guarded command over (a subset of)
the local variables of the participating agents of the atom. For instance, assume
that the purpose of the negotiation of Figure 1 is to fix a price. Agent ai stores
his current proposal for the price in a local variable xi (1 ≤ i ≤ 4). The outcome
n (no need to negotiate) is assigned the guard x1 = x2 = x3 = x4, while y is
assigned its negation. The outcome p is assigned a command x1, x2 := f(x1, x2),
where f represents a (possibly nondeterministic) function that returns an agreed
price between agents a1 ad a2. We proceed similarly with p′ and a function g. If
the two proposed prices agree, the program terminates. Otherwise, a new price
is negotiated by means of a third function h, and sent to the four agents.
Figure 3 shows a concrete negotiation program with data which corresponds to
the abstract program of Figure 2. The i-th agent stores its current price in a
variable xi. If the prices are initially different, then agents 1 and 2 and agents
3 and 4 build two teams and come up with new suggestions for the price, a

4

agent a1 var x1 :int
. . .
agent a4 var x4 :int

1 do [] ¬(x1 = x2 = x3 = x4) :

2 {x1, x2 := f(x1, x2) ‖ x3, x4 := g(x3, x4)} ◦
3 do [] (x2 = x3) : end

4 [] (x2 6= x3) :

5 x2, x3 = h(x2, x3) ◦
6 {x1, x2 := f(x1, x2) ‖ x3, x4 := g(x3, x4)}
7 end
8 od loop
9 [] (x1 = x2 = x3 = x4) : end
10 od

Fig. 3. A concrete program corresponding to the abstract program of Figure 2

process encapsulated in the functions f and g. The new suggestions are stored
in x2 and x3. If x2 and x3 are not equal, then agents 2 and 3 come up with a
new suggestion (function h), which is then sent again to the two teams.

Notice that, according to the above recursive procedure, the set of agents
executing the guards (x2 = x3) and (x2 6= x3) must be equal, and this set must
be a superset of the set of agents executing lines 5 and 6. Since all variables
appear in these lines, all agents must participate in the execution of the guards.
If only agents a2 and a3 execute the guards, then the program may deadlock,
because after line 2, process 1 does not know whether it has to execute line 6 or
finish.

The paper is structured as follows. In the following section, we recall defini-
tions and notations for negotiations. Section 3 introduces negotiation programs
formally. In Section 4, we show how to derive a negotiation from a program.
Section 5 is devoted to the converse direction, which is based on a technical re-
sult given in Section 6. Our result can be viewed as a solution to the realizability
problem, as posed for other models, which will be discussed in Section 7.

2 Negotiations: Syntax and Semantics

We recall the main definitions of [1] for syntax and semantics of negotiations.
However, here we do not consider states of agents and their transformations.
Throughout the paper, we fix a finite set A of agents representing potential
parties of negotiations.

Definition 1. A negotiation atom, or just an atom, is a pair n = (Pn, Rn),
where Pn is a nonempty set of parties (participants) and Rn is a finite, nonempty
set of results. For each result r, the pair (n, r), also denoted by rn, is the outcome
of n.

5

A negotiation is a composition of atoms. We add a transition function X that
assigns to each triple (n, a, r) consisting of an atom n, a party a of n, and a result
r of n a set X(n, a, r) of atoms, the set of atomic negotiations agent a is ready
to engage in after the atom n, if the result of n is r.

Definition 2. Given a finite set of atoms N , let T (N) denote the set of triples
(n, a, r) such that n ∈ N , a ∈ Pn, and r ∈ Rn.

A negotiation is a tuple N = (N,n0, nf ,X), where n0, nf ∈ N are the initial
and final atoms, and X : T (N)→ 2N is the transition function, such that

(1) every agent of A participates in both n0 and nf ;
(2) for every (n, a, r) ∈ T (N): X(n, a, r) = ∅ iff n = nf .
The negotiation N is deterministic if |X(n, a, r)| = 1 for each (n, a, r) ∈ T (N)

satisfying n 6= nf . We write X(n, a, r) = n′ instead of X(n, a, r) = {n′}.

In this paper we consider only deterministic negotiations. In the graphical
representation of a deterministic negotiation, an arc from the port of agent a in
atom n, labeled by r, leads to the port of a in the unique atom of X(n, a, r).
In the negotiation of Figure 1, the atom n0 has possible results y and n while
n1 only has the result p. By definition, the final atom nf has results, too. Since
after each outcome (nf , e) no agent is ready to engage in any atom, these results
are not represented in the figure. Whenever we choose disjoint names for results,
as we did in this example, we do not have to distinguish results and outcomes.

A marking of a negotiation N = (N,n0, nf ,X) is a mapping x : A → 2N .
Intuitively, x(a) is the set of atoms that agent a is currently ready to engage
in next. The initial and final markings, denoted by x0 and xf respectively, are
given by x0(a) = {n0} and xf (a) = ∅ for every a ∈ A.

A marking x enables an atom n if n ∈ x(a) for every a ∈ Pn. If x enables
n, then n can take place and its parties agree on a result r; we say that the
outcome (n, r) occurs. The occurrence of (n, r) produces a next marking x′ given
by x′(a) = X(n, a, r) for every a ∈ Pn, and x′(a) = x(a) for every a ∈ A \ Pn.

We write x
(n,r)−−−−→ x′ to denote this, and call it a small step. By this definition,

always either x(a) = {n0} or x(a) = X(n, a, r) for some atom n and outcome r.
Therefore, for deterministic negotiations, x(a) always contains at most one atom.

We write x1
σ−→ to denote that there is a sequence σ = (n1, r1) . . . (nk, rk) . . .

of small steps such that x1
(n1,r1)−−−−−→ x2

(n2,r2)−−−−−→ · · · (nk,rk)−−−−−→ xk+1 · · · We call σ
occurrence sequence from the marking x1, or enabled by x1. If σ is finite then we
write x1

σ−→ xk+1 and call xk+1 reachable from x1. If x1 is the initial marking,
then we call σ initial occurrence sequence. If moreover xk+1 is the final marking,
then σ is a large step.

The marking xf can only be reached by the occurrence of (nf , e) (e being a
possible result of nf), and it does not enable any atom. Any other marking that
does not enable any atom is considered a deadlock.

We represent a marking x of the negotiation of Figure 1 by the vector
(x(1), x(2), x(3), x(4)). With this notation, one of the occurrence sequences is:

(n0, n0, n0, n0)
y−→ (n1, n1, n2, n2)

p−→ (n3, n3, n2, n2)
p′−−→

(n3, n3, n3, n3)
a−→ (nf , nf , nf , nf)

e−→ (∅, ∅, ∅, ∅)

6

Following [10, 11], we introduce a notion of well-behavedness of negotiations:

Definition 3. A negotiation is sound if (a) every atom is enabled at some reach-
able marking, and (b) every initial occurrence sequence is either a large step or
can be extended to a large step.

Sound negotiations are necessarily deadlock-free. A sound negotiation also
has no livelocks, i.e., it cannot reach a behaviour from which it is impossible to
reach the the final marking. However, sound negotiations may not terminate. In
the rest of this paper, we often consider the set of all sound and deterministic
negotiations. We introduce the abbreviation SDN for the elements of this set.

Two distinct atoms which are both enabled at a reachable marking are con-
currently enabled. Hence two possible next outcomes (n1, r1) and (n2, r2) are
concurrent if n1 6= n2, and they are alternative if n1 = n2 and r1 6= r2. In an
occurrence sequence, concurrently occurring outcomes are ordered arbitrarily.
Conversely, two subsequent outcomes in an occurrence sequence occur concur-
rently if and only if the sets of agents participating in the respective atoms are
disjoint. This fact is utilized by the concurrent semantics of negotiations, the
Mazurkiewicz trace semantics.

A Mazurkiewicz trace language [12] is based on a finite alphabet Σ (of events)
and a dependence relation D ⊆ Σ × Σ which is reflexive and symmetric. The
independence relation I = (Σ × Σ) \D is symmetric and irreflexive. Two sub-
sequent independent events of a sequential observation of a concurrent run can
be interchanged, and the resulting sequence is an observation of the same run,
whereas the order of two subsequent dependent events matters.

Given any finite sequence σ of events over Σ, [σ] denotes the least set of
sequences which contains σ and is closed under permutation of subsequent in-
dependent events (i.e., if σ1 a b σ2 ∈ [σ] and (a, b) ∈ I then σ1 b a σ2 ∈ [σ]). Each
such [σ] is called a trace, and each set of traces is a trace language. Formally, a
trace language is defined on a distributed alphabet (Σ, I), where Σ is an alphabet
and I ⊆ Σ ×Σ is an independence relation.

Traces can be composed in a natural way: for σ1, σ2 ∈ Σ∗, [σ1] · [σ2] := [σ1σ2]
(it is easy to see that this is well-defined, i.e., for [σ′1] = [σ1] and [σ′2] = [σ2] we
have [σ1 σ2] = [σ′1 σ

′
2]). Similarly, we define composition of trace languages: if A

and B are sets of traces, then A ·B := {a · b | a ∈ A, b ∈ B}.
The Kleene star applied to a trace, [σ]∗, denotes the languages of all [σ]i, for

i = 0, 1, 2, Similarly, for a trace language A, A∗ is the union of all Ai.

Definition 4. Let N be a negotiation and let Σ be the set of all outcomes of
N. Define the independence relation I by ((n1, r1), (n2, r2)) ∈ I if Pn1 ∩Pn2 = ∅
(i.e., n1 and n2 are independent if they have disjoint sets of agents). The set of
traces of N, denoted by T (N), is the set of traces over (Σ, I) given by T (N) =
{[σ] | σ is a large step of N}.

The outcomes (n1, p) and (n2, p
′) of the negotiations of Figure 1 are inde-

pendent. The set of traces is the set {[σ] | σ ∈ (n + y p p′ (r p p′)∗ a)} (we abbre-
viate an outcome (n, r) to the result r). For instance, we have [y p p′ r p p′ a] =

{y p p′ r p p′ a, y p′ p r p p′ a, y p p′ r p′ p a, y p′ p r p′ p a}.

7

st st
n1

b b

a

a

n0

n2

n4

aa

bn3

a

a

n0

nf

nf

B

B

Fig. 4. Boxes.

It is convenient to assume that the initial and final atoms of a negotiation
are distinct and have one single result each, for which we use the symbols st and
end, respectively. We will moreover require that no port of the initial atom has
an ingoing arc. If the initial atom n0 does not satisfy this, then we add a new
initial atom n′0 with a single result st and set X(n′0, a, st) = n0 for each agent
a. For the final atom, we can easily replace all the results by a single result end.

Definition 5. A negotiation N = (N,n0, nf ,X) is normed if n0 and nf are
distinct and have one single result, called st for n0 and end for nf , and satisfies
n0 /∈ X(n, a, r) for each atom n, a ∈ Pn and r ∈ Rn. The normed trace semantics
of N is the set of traces [[N]] = {σ | stσ end ∈ T (N)} .

We use the abstract graphical representation of a normed negotiation shown
in Figure 4; we draw a box around its body and give it a name, in this case B.
Due to the convention above, for each agent there is exactly one arc connecting
its port in the initial atom to the body. However, there may be several arcs from
the body to the port of an agent in the final atom, although we represent them
as one arc. Observe that a negotiation is completely determined by its body,,
the initial and final atoms just play the rôle of a wrapper.

3 Negotiation Programs

In this section, we provide a language for the specification of negotiations. As we
have abstracted from states and state transformations of negotiations, we also
abstract from data but concentrate on the communication between agents.

Agents can agree on negotiation outcomes. For the language, we therefore
define a set of outcome names or names R (without stating anything about
atomic negotiations yet). We fix a function ` : R→ 2A that assigns to each name
a nonempty set of agents, intuitively the set of agents that have to agree on the
outcome to be taken. For every set X ⊆ A, we denote by RX the set of names
r ∈ R such that `(r) = X.

8

Definition 6. Let NP be the grammar consisting of the following productions
for every X ⊆ A, every X ′ ⊆ X, and every Y,Z ⊆ X such that Y ∪ Z = X:

prog[X] ::= ε

do {[] endalt[X]}+ {[] loopalt[X]}∗ od

prog[Y] ◦ prog[Z]

endalt[X] ::= name[X] : prog[X′] end

loopalt[X] ::= name[X] : prog[X′] loop

name[X] ::= element of RX

where, as usual, ε is the empty expression, {}+ stands for “one or more instances
of”, and {}∗ for “zero or more instances of”.

For every X ⊆ A, the negotiation programs over X are the expressions
derivable in NP from the nonterminal prog[X].

In the rest of the paper we use PX to denote a program over the set X of
agents. With this syntax, if PX′ is a subprogram of PX , then necessarily X ′ ⊆ X.

Intuitively, the semantics of negotiation programs is as follows:

– ε stands for a terminated negotiation
– do body od describes a negotiation starting with an atomic negotiation

among the agents of X, in which they agree on one of the alternatives in
the body. If they agree on an end-alternative a :PX′ end, then the program
continues with PX′ and terminates when (and if) PX′ terminates. If they
agree on a loop-alternative a : PX′ loop, then, after PX′ terminates (if it
does), the program restarts.

– PY ◦P ′Z combines sequential and concurrent composition.If Y ∩Z = ∅, then
PY and P ′Z are executed concurrently, and we may write PY ‖ P ′Z instead of
PY ◦ P ′Z .

Formally, the semantics of a negotiation program is a set of traces over a
distributed alphabet. We define the alphabet first.

Definition 7. Given a set of agents A, outcome names R and a labeling function
` as above, the distributed alphabet over A is the pair (Σ, I), where Σ = R and
(a, b) ∈ I iff `(a) ∩ `(b) = ∅. That is, two outcome names are independent if
their corresponding sets of agents are disjoint.

The semantics of a negotiation program PX over a set of agents X ⊆ A is
the set of traces [[PX]] over the distributed alphabet (Σ, I) inductively defined as

follows, where EiX and LjX denote end- and loop-alternatives, respectively:

[[ε]] = {[ε]}

[[do
k

[]
i=0

Ei
X

m

[]
j=1

Lj
X od]] =

(m⋃
j=1

[[Lj
X]]

)∗
·
(k⋃

i=0

[[Ei
X]]

)
[[a :PX′]] = {[a]} · [[PX′]]

[[PY ◦ P ′Z]] = [[PY]] · [[P ′Z]]

9

We use an abbreviation for do · · ·od constructs with only one alternative
(which must be an end-alternative): we shorten do [] a : ε end od to just a.

In our example, the body of the program shown in Figure 2 has the same
semantics as the negotiation of Figure 1. Observe that we need to duplicate the
subprogram (p ‖ p′). This is, however, already necessary in sequential compu-
tations. Consider the degenerate negotiation with only one agent obtained by
“projecting” the negotiation of Figure 1 onto the first agent (shown on the right
of the figure). The language of the program is given by the regular expression
yp(rp)∗a, which also contains two occurrences of p. No regular expression for
this language contains only one occurrence of p.

The main result of this paper, proved in the next sections, shows the equiva-
lence between negotiation programs and sound deterministic negotiations, where
a negotiation program and a SDN are equivalent if they have the same set
of Mazurkiewicz traces. This equivalence not only preserves the occurrence se-
quences, but also concurrency. In particular, in the SDN for a program P1 ‖ P2,
the negotiations for P1 and P2 are indeed executed concurrently. So the theo-
rem shows that every specification is deadlock-free and can be implemented, and
every sound implementation can be specified.

Theorem 1. (a) For every negotiation program P there is a normed SDN N

with the same set of agents such that [[P]] = [[N]]. Moreover, the number
of atoms and outcomes of N is equal to the number of do-blocks of P plus
2, and the total number of outcomes of N is equal to the total number of
alternatives of P plus 1.

(b) For every normed SDN N there is a negotiation program P with the same
set of agents such that [[P]] = [[N]].

In (b), the size of P can be exponential in the size of N. This is already the
case for negotiations with one single agent, in which N is essentially a deter-
ministic finite automaton, and P corresponds to a regular expression for this
automaton, which can be exponentially larger than the automaton itself.

4 From Programs to Normed SDNs

We show that for every negotiation program P there is a normed SDN N such
that [[P]] = [[N]], by induction over the structure of P . First we give a SDN for
the empty program, and then we give deterministic negotiations for P1 ◦P2 and
do []

k
i=1 ai :Pi end []

k+`
j=k+1 aj :Pj loop, assuming we have produced negotiations

for all Pi. In all cases, the proof that the negotiation is sound and has the same
traces as the program follows easily from the definitions, and is omitted.

Definition 8. The empty normed negotiation over a set X of agents is Nε
X =

({n0, nf}, n0, nf ,X) with X(n0, a, st) = nf , X(nf , a, end) = ∅ for each a ∈ X.

Lemma 1. [[ε]] = {[ε]} = [[Nε
X]] for every ∅ 6= X ⊆ A.

10

r1

r2
n

a1 a2 a3

st stst

r1 r2
r2r1

a2 a3a1 a2

a2 a3a1

B1 B2

B2B1

B1

B2

Fig. 5. The concatenation and the prefix operation.

Figure 5 illustrates the concatenation (middle) of two negotiations (left) with
bodies B1, B2 over two not disjoint sets of agents.

Definition 9. Let N1 = (N1, n01, nf1,X1), N2 = (N2, n02, nf2,X2) be negotia-
tions over (not necessarily disjoint) sets of agents A1, A2 satisfying N1∩N2 = ∅.
The negotiation N1 ◦N2 = (N,n0, nf ,X) over agents A1 ∪A2 is defined by:

– N = (N1 \ {n01, nf1}) ∪ (N2 \ {n02, nf2}) ∪ {n0, nf}

– X(n0, a, st) =

{
X1(n01, a, st) if a ∈ A1

X2(n02, a, st) if a ∈ A2 \A1

– For every n ∈ N1, for every a ∈ Pn, r ∈ Rn:

X(n, a, r) =

 X1(n, a, r) if X1(n, a, r) 6= nf1
nf if X1(n, a, r) = nf1, a ∈ A1 \A2,

X1(n01, a, r) if X1(n, a, r) = nf1, a ∈ A1 ∩A2,

– For every n ∈ N2, for every a ∈ Pn, r ∈ Rn:

X(n, a, r) =

{
X2(n, a, r) if X2(n, a, r) 6= nf2

nf if X1(n, a, r) = nf2

Lemma 2. If [[P1]] = [[N1]] and [[P2]] = [[N2]], then [[P1 ◦ P2]] = [[N1 ◦N2]].

Prefixing negotiations by an atom that chooses which negotiation to execute
next is illustrated in Figure 5 (right) for the special case of do [] r1 :P1 end []
r2 :P2 loop od, where P1, P2 are programs over agents {a1, a2} and {a2, a3},
respectively. As for concatenation, the textual definition is a bit laborious.

Definition 10. Let N1, . . .Nk+` be negotiations over (not necessarily disjoint)
sets of agents A1, . . . , Ak+`. Let Ni = (Ni, n0i, nfi,Xi) for every 1 ≤ i ≤ k + `,
where the Ni are pairwise disjoint. The negotiation

choice[N1, . . . ,Nk;Nk+1, . . . ,Nk+`] = (N,n0, nf ,X)

over agents A =
⋃k+`
i=1 Ai is defined as follows:

11

– N = {n, n0, nf} ∪
k+⋃̀
i=1

Ni \ {n0i, nfi}

– X(n0, a, st) = n for every a ∈ A

– For every 1 ≤ i ≤ k: X(n, a, ri) =

{
Xi(n0i, a, ri) if a ∈ Ai

nf if a /∈ Ai

– For every k + 1 ≤ i ≤ k + `: X(n, a, ri) =

{
Xi(n0i, a, ri) if a ∈ Ai

n if a /∈ Ai

– For every 1 ≤ i ≤ k, n ∈ Ni, a ∈ Pn, r ∈ Rn:

X(n, a, r) =

{
Xi(n, a, r) if Xi(n, a, r) 6= nfi

nf if Xi(n, a, r) = nfi

– For every k + 1 ≤ i ≤ k + `, n ∈ Ni, a ∈ Pn, r ∈ Rn:

X(n, a, r) =

{
Xi(n, a, r) if Xi(n, a, r) 6= nfi

n if Xi(n, a, r) = nfi

Lemma 3. Let P = do []
k
i=1 ai :Pi end []

k+`
j=k+1 aj :Pj loop. If [[Pi]] = [[Ni]] for

every 1 ≤ i ≤ k + `, then [[P]] = [[choice[N1, . . .Nk;Nk+1, . . . ,Nk+`]]].

5 From Normed SDNs to Programs

We show that for every normed SDN N there is a negotiation program P with
the same agents such that [[P]] = [[N]]. For this we use the results of [1, 2] on
reduction rules. Although we generally abstract from data aspects in this paper,
states and state transformations are helpful to understand the reduction rules.

Each agent a ∈ A has a (possibly infinite) nonempty set Qa of internal
states. We denote by QA the cartesian product

∏
a∈AQa. For each atom n and

result r ∈ Rn, there is a state transformer δn(r) representing a non-deterministic
state transforming function (this non-determinism is not related to the previ-
ously defined determinism of negotiations). Formally, δn(r) is a left-total re-
lation δn(r) ⊆ QA × QA satisfying: if ((qa1 , . . . , qa|A|), (q

′
a1 , . . . , q

′
a|A|

)) ∈ δn(r)

then qai = q′ai for all ai /∈ Pn (only the internal states of parties of n can
be transformed). We assign to each large step σ = (n0, r0) . . . (nf , rf) a trans-
former δσ = δ(n0, r0) · · · δ(nf , rf) (concatenation is the usual concatenation of
relations). The summary transformer of negotiation N and result rf of the final
atom nf , δN(rf), is the union of all δσ for large steps σ ending with (nf , rf).

Two negotiations N1 and N2 over A are semantically equivalent, denoted
N1 ≡ N2, if either both are not sound or if both are sound, their final atoms
have the same results and δN1

(rf) = δN2
(rf) for every final result rf .

A reduction rule, or just a rule, is a binary relation on the set of negotiations.

Given a rule R, we write N1
R−−→ N2 for (N1,N2) ∈ R. A rule R is correct if

N1
R−−→ N2 implies that N1 ≡ N2) and therefore in particular that N1 is sound

iff N2 is sound.

12

r′1

. . .

. . .

r

. . .

. . .

n

n

.

n

.

r r r

rmf r1f

r1 r1 rmrm

Merge rule

n

n

rf rf rf

Iteration rule Shortcut rule

n′

n

r

r

r′mr′mr′1

r′1f

r′mf r′mf
r′1f ,
. . . ,
r′mf

r′1f

r1f rmf

r1 rm

r1f rmf

r1 r1 r1r2 r2 r2

⇓⇓ ⇓

Fig. 6. The reduction rules

Given a set of rules R = {R1, . . . , Rk}, we denote by R∗ the reflexive and
transitive closure of R1 ∪ . . . ∪ Rk. We say that R is complete with respect to

a class of negotiations if N
R∗−−→ Nmin holds for every negotiation N in the

class, where Nmin is a minimal negotiation of that class. In the class of sound
negotiations, each minimal negotiation has a single atom, which is both initial
and final. In the class of normed sound negotiations, each minimal negotiation
has two atoms, an initial and a final one, and the initial one has only one result,
st, which sends all agents to the final atom.

Given a reduction rule R, we say that R−1 is its associated synthesis rule.
By the definition of completeness, for every normed SDN N over the set X of
agents there is a chain Nε

X = N1 ≡ N2 ≡ . . . ≡ Nm = N where each negotiation
is obtained from the previous one through the application of a synthesis rule.

We will prove the existence of a sequence ε = P1 ≡ P2 ≡ . . . ≡ Pm = P of
programs such that [[Pi]] = [[Ni]] for every 1 ≤ i ≤ n. We do so by proving the
following statement for each synthesis rule R−1 in the following complete set of
reduction rules: if (N,N′) ∈ R−1 and there is P such that [[P]] = [[N]], then there
exists P ′ such that [[P ′]] = [[N′]].

We repeat the correct and complete set of rules for normed SDNs from [2].

Rules are described by a guard and an action; N1
R−−→ N2 holds if N1 satisfies

the guard and N2 is a possible result of applying the action to N1. The rules
introduced in [1, 2] are summarized in Figure 6. The transformations of state
transformers (δn) are actually not important in the present context but are pro-
vided for the sake of completeness.

Merge rule. Intuitively, this rule (Figure 6, left) merges two outcomes with iden-
tical next enabled atoms into one single outcome with a fresh label.

Guard: N contains an atom n with distinct outcomes r1, r2 ∈ Rn
such that X(n, a, r1) = X(n, a, r2) for every a ∈ An.

Action: (1) Rn ← (Rn \ {r1, r2}) ∪ {rf}, with rf being a fresh label.
(2) For all a ∈ Pn: X(n, a, rf)← X(n, a, r1).
(3) δ(n, rf)← δ(n, r1) ∪ δ(n, r2).

13

Iteration rule. The rule replaces the iteration of an outcome r followed by some
other outcome by one outcome rf with the same effect (Figure 6, middle).

Guard: N contains an atom n with an outcome r
such that X(n, a, r) = n for every party a of n.

Action: (1) Rn ← {r′f | r′ ∈ Rn \ {r}}, with r′f being a fresh label.

(2) For all a ∈ Pn: X(n, a, r′f)← X(n, a, r′) \ {n}.
(3) For every r′f ∈ Rn: δn(r′f)← δn(r)∗ δn(r′).

Shortcut rule. The shortcut rule merges the outcomes of two atoms that can
occur subsequently into one single outcome with the same effect (Figure 6, right).

Given atoms n, n′, we say that (n, r) unconditionally enables n′ if Pn ⊇ Pn′

and X(n, a, r) = n′ for every a ∈ Pn′ . If (n, r) unconditionally enables n′ then,

for every marking x that enables n, the marking x′ given by x
(n,r)−−−−→ x′ enables

n′. Moreover, n′ can only be disabled by its own occurrence.

Guard: N contains two distinct atoms n, n′ 6= n0
such that (n, r) unconditionally enables n′.

Action:
(1) Rn ← (Rn \ {r}) ∪ {r′f | r′ ∈ Rn′}, with r′f being fresh labels.

(2) For all a ∈ Pn′ , r′ ∈ Rn′ : X(n, a, r′f)← X(n′, a, r′).

For all a ∈ P \ Pn′ , r′ ∈ Rn′ : X(n, a, r′f)← X(n, a, r).

(3) For all r′ ∈ Rn′ : δn(r′f)← δn(r)δn′(r
′).

(4) If X−1(n′) = ∅ after (1)-(3), then remove n′ from N , where
X−1(n′) = {(ñ, ã, r̃) ∈ T (N) | n′ ∈ X(ñ, ã, r̃)}.

Theorem 2. [1, 2] The merge, shortcut, and iteration rules are complete and
correct for the class of deterministic negotiations (and thus preserve soundness
as well as unsoundness). Moreover, every SDN with k atoms can be completely
reduced by means of a polynomial number (in k) of applications of the rules.

For defining according program rules, it is convenient to introduce labeled
programs, in which each do. . .od-block carries a label. Two blocks carry the
same label if and only if they are syntactically identical.

A labeled program P over a set of agents A matches a normed negotiation
N = (N,n0, nf ,X), denoted by P ∼A N, if each block P ′ of P is labeled with
an atom n′ ∈ N \ {n0, nf} having the same agents and outcomes as P ′, and for
each atom n′ ∈ N \ {n0, nf} some block of P is labeled by n.

For each of the rules above we prove the following statement: if (N,N′) ∈ R−1
and there is a negotiation program P such that [[P]] = [[N]] and P ∼A N, then
there exists a negotiation program P ′ such that [[P ′]] = [[N′]], and P ′ ∼A N′.
For the merge and iteration rules this is very simple, but the shortcut rule is
nontrivial.

In the rest of the section, kwd (for keyword) stands for either end or loop.

14

r, r′ r, r′ r, r′
n

n

do · · · [] r :P kwd [] · · · od
r r r

do · · · [] r :P kwd [] r′ :P kwd [] · · · od
⇓ ⇓

Fig. 7. Program rule for the (inverse of the) merge rule

r1 r1rm r1rm rm

.

n
r r r

n

r1rm r1rm rm

do
m

[]
i=1

ri :Pi kwd od
.

r1

do
m

[]
i=1

ri :Pi kwd [] r : loop od

⇓ ⇓

Fig. 8. Program rule for the (inverse of the) iteration rule

Merge rule.

Lemma 4. Let (N,N′) ∈ M−1, where M is the binary relation of the merge
rule. If there is P such that [[P]] = [[N]] and P ∼A N, then there exists P ′ such
that [[P ′]] = [[N′]], and P ′ ∼A N′.

Proof. Let (n, r) be the outcome of N to which the synthesis rule is applied.
Since P ∼A N, all blocks of P labeled by n are identical and have the form

n :: do · · · [] r :Pr kwd [] · · ·od (1)

for some program Pr. If P ′ is the result of replacing all blocks labeled by n by

n :: do · · · [] r :Pr kwd [] r′ :Pr kwd [] · · · od

then we clearly have [[P ′]] = [[N′]], and P ′ ∼A N′. ut

Observe that, due to the duplication of Pr, the size of P ′ can be essentially
twice the size of P .

Iteration rule.

Lemma 5. Let (N,N′) ∈ I−1 , where I is the binary relation of the iteration
rule. If there is P such that [[P]] = [[N]] and P ∼A N, then there exists P ′ such
that [[P ′]] = [[N′]], and P ′ ∼A N′.

Proof. Let n be the atom of N to which the synthesis rule adds one more out-
come, and let X be the set of agents of n. Since P ∼A N, all blocks of P labeled

15

n

r1, r2
r1 r1

r2 r2

r

r′1

n

n′
r

r′1

r

a1 a2 a3

a1 a2 a3

r′2

dor :
do [] r′1 : P1 end

[] r′2 : P2 end
od

od

do [] r1 :P1 end

[] r2 :P2 end
od

⇓ ⇓

r′2

Fig. 9. The näıve program rule for the shortcut rule fails

by n are identical and have the form

n :: do
m

[]
i=1

ri :Pi kwdi od (2)

Let P ′ be the result of replacing all blocks labeled by n by

n :: do
m

[]
i=1

ri :Pi kwdi [] r : loop od

Then we clearly have [[P ′]] = [[N′]], and P ′ ∼A N′. ut

Shortcut rule. The shortcut rule presents a problem, illustrated in Figure 9. The
left part of the figure represents an application of the synthesis rule. Let (N,N′) ∈
S−1 be this application, where S is the binary relation of the shortcut rule. The
program for N must contain a block labeled by n with set of agents {a1, a2, a3}
and two outcomes r1, r2, as shown in the upper-right part of the figure. Assume,
as shown in the figure, that P1 and P2 have {a1, a2} and {a1, a2, a3} as sets of
parties, respectively. Then the program for N′ must still contain a do-block P
for the atom n, but now with a single outcome r leading to a second do-block
P ′ with two outcomes r′1 and r′2, leading to the programs P1 and P2. Since the
outcome r only has a1 and a2 as parties, P ′ has to be a program derived from
the nonterminal 〈prog〉{a1,a2}. But then, since P2 has {a1, a2, a3} as parties, it
cannot be a subprogram of P ′.

Fortunately, we can sidestep the problem by having a close look at the com-
pleteness proofs of [1, 2]. Those proofs imply the following result: completeness
is retained if the shortcut rule is restricted to two special cases.

Definition 11. The one-outcome shortcut rule is like the shortcut rule, but with
the additional condition in its guard that the atom n′ has only one outcome.
The same-parties shortcut rule is like the shortcut rule, but with the additional
condition in its guard that atoms n and n′ have identical sets of parties.

16

n
r rr

n′
r

r′

n
r

r

r′

do · · · [] r :P kwd [] · · ·od

do · · · [] r : (do r′ : end od ◦ P) kwd [] · · ·od

⇓ ⇓

Fig. 10. Program rule mimicking the (inverse of the) one-outcome shortcut rule

The proof of this completeness result is non-trivial, and we delay it to Sec-
tion 6. Assuming the result holds, we show next that we find program trans-
formations matching the inverses of the one-outcome and same-parties shortcut
rules.

Lemma 6. Let (N,N′) ∈ O−1, where O is the binary relation of the one-
outcome shortcut rule. If there is P such that [[P]] = [[N]] and P ∼A N, then
there exists P ′ such that [[P ′]] = [[N′]], and P ′ ∼A N′.

Proof. Let n be the atom of N with an outcome r to which the inverse of
the one-outcome rule is applied. Given a set T of traces, let T [n, r, n′, r′] be
the result of replacing in T each trace of the form [σ1 (n, r)σ2] by the trace
[σ1 (n, r) (n′, r′)σ2]. It follows easily from the definition of N and N′ that [[N′]] =
[[N]][r, r′]. The construction is illustrated in Figure 10.

Since P ∼A N, all blocks of P labeled by n are identical and have the form

B = n :: do · · · [] r :Pr kwd [] . . .od .

Let P [B/B′] be the result of replacing all blocks labeled by n by

B′ = n :: do · · · [] r : (do r′ : end od ◦ Pr) kwd [] . . .od .

By the definition of the program semantics we have [[B′]] = [[B]][n, r, n′, r′]. We
prove [[P [B/B′]]] = [[P]][n, r, n′, r′] by induction on the structure of P , which,
taking P ′ = P [B/B′], concludes the proof.

– If P = B, then apply P [B/B′] = B′ and [[B′]] = [[B]][n, r, n′, r′].
– If P = do []

m
i=1 ri : Pi kwdi od, where kwdi = end for 1 ≤ i ≤ m′ and

kwdi = loop form′ < i ≤ m, then P [B/B′] = do []
m
i=1 ri :Pi[B/B

′] kwdi od.
By induction hypothesis [[Pi[B/B

′]]] = [[Pi]][n, r, n
′, r′], and so we get

[[P [B/B′]]]

=
(⋃m

i=m′+1[[Pi[B/B
′]]]
)∗⋃m′

j=1[[Pj [B/B
′]]]

=
(⋃m

i=m′+1[[Pi]][n, r, n
′, r′]

)∗⋃m′
j=1[[Pj]][n, r, n

′, r′] (induction hypothesis)

=
⋃m′
j=1

⋃m
i=m′+1 ([[Pi]][n, r, n

′, r′])
∗

[[Pj]][n, r, n
′, r′]

=
⋃m′
j=1

⋃m
i=m′+1 ([[Pi]]

∗[[Pj]]) [n, r, n′, r′]

=
((⋃m

i=m′+1[[Pi]]
)∗⋃m′

j=1[[Pj]]
)

[n, r, n′, r′]

= [[P]][n, r, n′, r′]

17

r′1r′1

rm
r1

.

r1 rm
r1 rm

n

.

r r r

r′1 r′m r′mr′m

n

n′
do [] r :do []mi=1 r′i :Pi kwdi od end
od

do []mi=1 ri :Pi kwdi od

⇓ ⇓

Fig. 11. Program rule for the (inverse of the) same-parties shortcut rule

– If P = P1 ◦ P2, then

[[P [B/B′]]]
= [[P1[B/B′]]] · [[P2[B/B′]]]
= [[P1]][n, r, n′, r′] · [[P2]][n, r, n′, r′] (induction hypothesis)
= ([[P1]] · [[P2]])[n, r, n′, r′]
= [[P1 ◦ P2]][n, r, n′, r′]

ut

Lemma 7. Let (N,N′) ∈ O−1, where O is the binary relation of the same parties
shortcut rule. If there is P such that [[P]] = [[N]] and P ∼A N, then there exists
P ′ such that [[P ′]] = [[N′]], and P ′ ∼A N′.

Proof. Let n be the atom of N with outcome r to which the inverse of the
same-parties rule is applied. Given a set T of traces, let T [n, r, n′, r′1, . . . , r

′
m]

be the result of replacing in T each trace of the form [σ1(n, ri)σ2] by the trace
[σ1(n, r)(n′, r′i)σ2]. It follows easily from the definition of N and N′ that [[N′]] =
[[N]][n, r, n′, r′1, . . . , r

′
m]. Figure 11 illustrates this construction.

Since P ∼A N, all blocks of P labeled by n are identical. Let B be the
syntactic expression of the block. Let B′ = do r :B end od. Then [[B′]] =
[[B]][n, r, n′, r′1, . . . , r

′
m]. Let P [B/B′] be the result of replacing all occurrences of

B in P by B′. An induction proof analogous to that of Lemma 6 shows that
[[P [B/B′]]] = [[B]][n, r, n′, r′1, . . . , r

′
m]. Taking P ′ = P [B/B′] we are done. ut

This concludes the proof of Theorem 1 (modulo the remaining proof obli-
gation discharged to Section 6). It was shown in [2] that every SDN N can be
completely reduced by means of O(a4 ·r) applications of the rules, where a and r
are the number of atoms and the total number of results of N. Since the program
rule for the inverse of the merge rule can at most duplicate the size of the pro-
gram, and the other program rules only increase its size by a constant, we obtain
an upper bound of O(2a

4·n) for the size of the program P equivalent to N. A
program of linear size can be obtained by enriching the programming language
with procedures. Instead of duplicating program Pr in the proof of Lemma 4,
we call twice a procedure with body Pr.

18

6 Completeness of Rules for normed SDNs

It remains to show that the merge, iteration, one-outcome shortcut and same-
parties shortcut rules are complete for normed SDNs, i.e., that they reduce every
normed SDN to a negotiation with just two atoms.

Definition 12. A cycle of a negotiation N is a sequence of outcomes (n1, r1),
. . . , (nk, rk) such that there are agents a1, . . . , ak and n2 ∈ X(n1, a1, r1),
n3 ∈ X(n2, a2, r2), . . . , n1 ∈ X(nk, ak, rk). The negotiation N is called cyclic
if it contains a cycle, and acyclic otherwise.

We consider the acyclic and cyclic cases separately.
The completeness of the rules (merge, iteration, one-outcome shortcut and

same-parties shortcut) in the acyclic case was proven in [1]:

Lemma 8. The merge rule, iteration rule, one-outcome shortcut rule and same-
parties shortcut rule are complete for sound deterministic acyclic SDNs.

Proof. This claim is an immediate consequence of Lemma 1 in [1] (our one-
outcome shortcut rule is called d-shortcut rule there). Actually, Lemma 1 in
[1] states that whenever the merge rule and the same-parties shortcut rule are
not applicable to a sound deterministic acyclic negotiation then every agent
participates in all atoms with more than one output. If the negotiation under
consideration is not minimal yet, we can apply the shortcut rule to atoms n
and n′. Since the same-parties shortcut rule is not applicable, n′ has less parties
than n, and hence not all agents participate in n′. Therefore n′ can have only one
outcome, and the conditions of the one-outcome shortcut rule are satisfied. ut

For the cyclic case, we have a closer look to the results of [2]:

Definition 13. A loop is an occurrence sequence σ such that x
σ−→ x for some

marking x reachable from the initial marking x0. A minimal loop is a loop σ
satisfying the property that there is no other loop σ′ such that the set of atoms
in σ′ is a proper subset of the set of atoms in σ.

Lemma 9 (Lemma 1 of [2]).

(1) Every cyclic SDN has a loop.
(2) The set of atoms of a minimal loop generates a strongly connected subgraph

of the graph of the considered negotiation.

Usually, more than one atom is involved in a loop, and these atoms have
different sets of parties. For sound deterministic negotiations, it was proven in [2]
that at least one of these atoms involve all parties that participate in any of these
atoms. These atoms are called synchronizers of the loop. In turn, a synchronizer
of one loop can synchronize other loops as well. For a single atom n we consider
the fragment of the negotiation which is constituted by all atoms and outcomes
appearing in any loop synchronized by the atom n (which is nonempty only if n

19

is a synchronizer of at least one loop). Each fragment is cyclic by construction.
Now we are looking for a fragment with the property that all its cycles pass
through its generating synchronizer n. It is not difficult to see that this property
is satisfied by minimal fragments, which do not properly include any smaller
ones: if a cycle of a fragment does not pass through the generating synchronizer
n, then there is an according loop for this cycle, which again has a synchronizer
n′, and the fragment generated by n′ is smaller than the one generated by n.

The procedure introduced in [2] shows that a minimal fragment generated
by a synchronizer n can be viewed as an acyclic sound negotiation starting with
n and ending with (a copy of) n, and can thus be reduced by the same rules as
for the acyclic case. This procedure ends with a minimal cycle, which enables
the iteration rule. After applying this rule, the cycle vanishes. The complete
procedure deletes this way cycle by cycle, until the negotiation is acyclic and
can be reduced to a minimal one as above.

Another important point made in [2] is that the atoms of a minimal fragment
enjoy the following property: Each atom is either a synchronizer (and has hence
the same parties as the generating atom) or has no exits, which means that
all outcomes of the atom are also outcomes of the fragment. This implies that
it suffices to apply the restricted same-parties and one-outcome shortcut rules
instead of the general shortcut rule also for the acyclic case, as we will argue
next. We have recalled above that the restricted rules suffice for sound and
deterministic acyclic negotiations, and we reduce the fragment exactly like a
corresponding acyclic negotiation. If a same-parties shortcut rule is applied in
the fragment, then the same rule applies to the entire negotiation. The one-
outcome shortcut rule, however, requires that the reduced negotiation (called n′

in the definition) has only one output. Even if this is the case within the fragment,
additional outputs might exist in the entire negotiation. However, in this case
this atom must be a synchronizer, and thus all parties of the fragment participate
in this atom. In particular, it cannot have less parties than the other atom of
the rule (called n in the definition), which implies that the additional guard of
the same-parties rule is also fulfilled. In other words: For each application of
the one-outcome shortcut rule in the fragment, which is not at the same time an
application of the same-parties shortcut rule, the reduced atom (n′) has only one
outcome in the negotiation, too, and hence, the same application of the shortcut
rule in the negotiation is also a one-outcome shortcut reduction.

These considerations, all from [2], prove the following lemma:

Lemma 10. The merge rule, iteration rule, one-outcome shortcut rule and same-
parties shortcut rule are complete for sound deterministic cyclic SDNs.

Finally, recall that completeness of a set of rules means that each negotiation
can be reduced to a minimal one. Minimal negotiations have a single atom,
whereas minimal normed negotiations have two. Since we apply the reduction
rules to normed negotiations, we still have to show that we are always able to
end the reduction procedure with a minimal normed negotiation.

Theorem 3. The merge rule, iteration rule, one-outcome shortcut rule and
same-parties shortcut rule are complete for normed SDNs.

20

Proof. This proof is heavily based on Lemma 8 and Lemma 10. We only have to
show that for every normed SDN N at least one rule can be applied that does
not spoil the normedness property.

By definition of the rules, application of the merge rule or of the iteration
rule transforms a normed SDN into a normed SDN. For the shortcut rule, the
derived negotiation might be not normed, if the rule is applied to the initial
atom n0 and its unique successor. However, it suffices to consider the restricted
variants of the one-outcome shortcut rule and the same-parties shortcut rule. We
moreover rule out the case that the negotiation before transformation is already
a minimal normed one, i.e., we assume that it has more than two atoms. For
the one-outcome shortcut rule, in the resulting negotiation, the initial atom still
has one outcome only, by definition of the shortcut rule. For the same-parties
shortcut rule, however, this is not necessarily the case. So we consider this case
in the sequel and assume that the same-parties shortcut rule can be applied to
the initial atom n0 and its successor n1 of a normed negotiation.

By definition of a normed negotiation, none of the ports of the initial atom
has an ingoing arc. Since the same-parties shortcut rule is applicable, n1 contains
the same parties as n0, and since n0 is the initial atom, all agents participate
in both atoms. So it is obvious that the negotiation obtained after deletion of
n0, taking n1 as initial atom, is also sound (but not normed in general). This
smaller negotiation N′ can be reduced to a minimal negotiation by the merge
rule, the iteration rule and the two restricted variants of the shortcut rule. We
consider two cases: If N′ is already minimal, it consists of a single atom. Then
the considered negotiation with n0 is already a minimal normed SDN. If N′ is
not minimal, then one of the rules can be applied to N′. The same rule can be
applied to N, referring to the same involved atoms. ut

7 Conclusions

We have introduced a specification language for deterministic negotiations. The
language has a very special feature: every program of the language is sound (the
program can terminate from every reachable state, meaning in particular that
the program is deadlock-free) and every sound negotiation can be specified in the
language. So the language provides a syntactic characterization of soundness.

Design requirements for distributed systems are often captured with the help
of scenarios, specifying the interactions that take place between sequential pro-
cesses. There exist different formal notations for scenarios, depending on the
underlying communication mechanism between processes. Formal notations also
permit to specify multiple scenarios by means of operations like choice, concate-
nation, and repetition. A set of scenarios specified using such operations can be
viewed as an early model of the system analyzable using formal techniques.

A key feature of scenario-based notations is that they present a global view
of the system as a set of concurrent executions representing use cases. While
this view is usually more intuitive for developers, implementations require a
concurrent composition of sequential models, i.e., of state machines. A specifi-

21

cation is realizable if there exists a set of state machines, one for each sequential
component, whose set of concurrent behaviours coincides with the set globally
specified. The realizablity problem consists of deciding if a given specification is
realizable and, if so, computing a realization, i.e., a set of state machines. The
problem has been studied for various formalisms.

For negotiations, the realizability problem reads as follows: given a syntac-
tically correct negotiation program, is there a sound deterministic negotiation
with the same behaviour? The results of this paper show that, for deterministic
negotiations, the realizability problem is far more tractable than in other lan-
guages, because the answer to the above question is always positive. In turn,
negotiation programs are expressively complete: every sound deterministic ne-
gotiation diagram has an equivalent negotiation program. Finally, negotiation
programs can be distributed in linear time. We provided an algorithm to derive
a deterministic negotiation from a program that generalizes classical construc-
tions to derive an automaton from a regular expression. The negotiation is then
projected onto its components.

Negotiations are closely related to workflow Petri nets representing business
processes, and deterministic negotiations to free-choice workflow nets. Our future
work transfers the concepts of this paper to the area of business processes.

References

1. Esparza, J., Desel, J.: On negotiation as concurrency primitive. In: CONCUR.
(2013) 440–454

2. Esparza, J., Desel, J.: On negotiation as concurrency primitive II: Deterministic
cyclic negotiations. In: FoSSaCS. (2014) 258–273

3. Davis, R., Smith, R.G.: Negotiation as a metaphor for distributed problem solving.
Artificial intelligence 20(1) (1983) 63–109

4. Jennings, N.R., Faratin, P., Lomuscio, A.R., Parsons, S., Wooldridge, M.J., Sierra,
C.: Automated negotiation: prospects, methods and challenges. Group Decision
and Negotiation 10(2) (2001) 199–215

5. Böhm, C., Jacopini, G.: Flow diagrams, turing machines and languages with only
two formation rules. Commun. ACM 9(5) (May 1966) 366–371

6. Harel, D.: On folk theorems. Commun. ACM 23(7) (1980) 379–389
7. Kozen, D., Tseng, W.L.D.: The Böhm-Jacopini theorem is false, propositionally.

In: MPC. (2008) 177–192
8. Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. Data

Knowl. Eng. 68(9) (2009) 793–818
9. Zwiers, J.: Compositionality, Concurrency and Partial Correctness - Proof Theories

for Networks of Processes, and Their Relationship. Volume 321 of Lecture Notes
in Computer Science. Springer (1989)

10. van der Aalst, W.M.P.: The application of Petri nets to workflow management. J.
Circuits, Syst. and Comput. 08(01) (1998) 21–66

11. van der Aalst, W.M.P., van Hee, K.M., ter Hofstede, A.H.M., Sidorova, N., Verbeek,
H.M.W., Voorhoeve, M., Wynn, M.T.: Soundness of workflow nets: classification,
decidability, and analysis. Formal Asp. Comput. 23(3) (2011) 333–363

12. Diekert, V., Rozenberg, G., Rozenburg, G.: The book of traces. Volume 15. World
Scientific (1995)

