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Abstract

In this paper we develop a model checkmg algorithm which is fast in
" the size of the system. The class of system models we consider are safe
_ persistent Petri nets; the logic is Sy, i.e. proposxtxonal logic with a ‘some
~ time’ operator. Our algonthm does not require to construct any transi-

~ tion system: We reduce the model checking problem to the problem of

computing certain Parikh vectors, and we show that for the class of safe
marked graphs these vectors can be computed — from the structure of
the Petri net — in polynomial time in the size of the system. .

| 1 ‘Introduction

:‘:'iModel checking - the algonthm:c determination of truth or falsehood of a modal or
“temporal logic formula, given a model - faces, when applied to concurrent systems,
‘the state explosion problem:. the size of the transition system (when finite) can at
‘best be assumed exponential in the size of the underlying system. Therefore, in
_order to be able to verify properties of non-toy systems, the algorithms have to be
“able to accept as input graphs containing millions of nodes. - -

- Much work has been done on how to palliate this problem, following two approaches.
“The first is to improve the efficiency of existing general algorithms: explicit knowl-

é&dge about concurrency can be used in order to obtain condensed transition systems

9,11 18] These techniques have the advantage of being generally applicable; how-
ever, it is very difficult to know @ priori if they will be really effective.

The second approach attemps to take advantage of special properties of the under-
lying model in order to speed up the model checking algorithm. This could lead to
efficient, albeit special purpose methods. Two examples of this line of work are [5,15].
¢ However, these papers also require the construction of transition systems. In this
* contribution, we are more radical: we investigate the possibility of obtaining model
»’rlcheckers which do not require at all to construct the associated transition system,

‘i.e. model checkers that work directly on the syntax. We consider the modal logic Sa
1partly supported by the Esprit Basic Research Action 3148 DEMON
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(10] tailored for safe Petri nets (our syntax), and concentrate on a particular subclass
of models, namely safe persistent Petri nets [13]. The logic can express properties
such as reachability of a marking, liveness of a transition or mutual exclusion of a
set of transitions. It also allows some “counting”: properties such as “in order to
reach a marking in which place s has one token, transition ¢ has to occur 4 times”
can be expressed as well.

(Safe) persistent nets are being currently used to model self-timed circuits [17}. In
general, concurrent but deterministic systems (applications appear mainly in hard-
ware design) can be modelled using persistent nets.

Given a safe persistent system T and a formula ¢, we show how to reduce the model
checking problem to a set of Linear Programming problems. For the subclass of safe
T-systems, we prove that the model checker is polynomial in the size of 3, although
exponential in the length of ¢. Since formulae are usually short, while systems can
be very large, this is a very satisfactory result; moreover, as shown in the paper, a
model checker polynomial in both the size of ¥ and the length of ¢ can exist only if
P=NP,

The paper is organised as follows. Section 2 introduces the logic. Section 3 discusses
briefly the model checking problem. Section 4 introduces the models: persistent and
strongly persistent systems. Section 5 presents some results on net processes; in
particular, that strongly persistent systems have one single maximal process. The
main theorem for the construction of the model checker is proved in Section 6. The
model checker itself is described in Section 7. The particular case of T-systems is’
studied in Section 8. Some basic definitions are contained in an Appendix, although
reading this paper is easier if the reader is familiar with the basic notions of Petri
nets (otherwise, see [16]).

2 A Modal Logic for Safe Petri Nets

We define a simple modal logic over computations (more precisely occurrence se-
quences) of safe' marked Petri nets, with the following basic propositions:

- Assertions of the form s, to be used with a model containing a place named s.
The intended meaning is ‘after the present computation, a token is on s’.

- Assertions of the form ¢ < 4, to be used with a model containing a transition
named {. The intended meaning is ‘in the present computation ¢ occurs no
more than 4 times’.

Our logic is Sy [10], ie. » propositional logic a.ugmented with the modal operator <,
meaning ‘it is possible that ... ’.
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Definition 2.1 Syntaz of formulae

The formulae ¢ of our logic have the following form:

¢ u= true . (Truth)
s : (Place assertion)
t<k (keNu{-1}U{w}) (Transition assertion)
-¢ (Negation)
1A (Conjunction)
h Ve (Disjunction)
O (Some time ¢).

A literal is a (possibly negated) place or transition assertion. A formula is called
propositional iff it does not contain a modal operator. : - m2l1

Derived formulae and operators are: (¢1 = ¢2) = —¢1 V ¢2; etc., and the modal
operator [1 ¢ = ~O=¢ (‘always ¢’). We also write t > k for (¢ < k).

This logic can be interpreted on safe marked Petri nets T = (S, T, F, Mo). We define
what it means for ¥ to satisfy a formula by defining inductively what it means that
a formula is satisfied by an occurrence sequence 0. We fix some notations first:
the set of all occurrence sequences from the initial marking M, is denoted by £(Z),
the language of . For two occurrence sequences o, T, 0 < 7 if o is a prefix of 7.
Given a total ordering on the set T of transitions, the Parikh vector of an occurrence
.sequence o, denoted by P(¢), is given by:

P(o)(t;) = number of times t; appears in 0.

Definition 2.2 Satisfaction

Let ¢ be a formula (of the above form), let £ = (S, T, F, Mp) be a safe marked
Petri net and o € £(Z). We define o |= ¢ (o satisfies ¢) inductively:

o [ true ~ always.

oglks iff Mo[o)M AM(s)=1.
clt<k iff Plo)t)<k.

oE-¢ iff not o = ¢.
0"=¢1/\¢2 iff a|=¢1anda]=¢g.

o0 Ve iff o ¢iorol= .
o E=<¢ iff Ir>o:r k.

Finally, ¥ |= ¢ iff € |= ¢ (where ¢ is the empty sequence). m22

Notice that (¢ < w) > true and (¢t < —1) ¢ false. These formulae are introduced
just out of syntactic convenience in order to write formulae in a more compact form.

The logic permits one to express safety properties such as:

Reachability of a marking. The system of figure 1 satisfies O(—s; AsA—83A34)
iff the marking (sy, 82, 83, 34) = (0, 1,0, 1) is reachable.



Figure 1: A safe system

- Concurrency of transitions. The system satisfies O(s1 A s3) iff transitions ¢;
and ?; are concurrently enabled at some reachable marking.

- Liveness of a transition. The system satisfies (3, iff transition 3 is live.

These properties involve place assertions only. 1ransition assertions permit to ca-
pasos properties as ‘in order to reach a state with M(s3) = 1, transition t3 has to

occur’:(J (3 = t3 > 0).

3 The Model Checking Problem

The Model Checking Problem (MCP) investigated in this paper is the problem of
determining, given a formula ¢ in our logic and a system I, whether or not  |= ¢.
It is easy to give a lower bound on the complexity of the MCP: since the reachability.
problem is known to be PSPACE-complete for safe Petri nets [12], and reachability is
expressible in our logic, the MCP is PSPACE-hard. Moreover, even for the simplest
concurrent systems the problem is still NP-hard.

Let i € N and &; = (S;, T3, F}, M;) be the system given by:

S,' ={81,...,8.'}

1} = {tl""’ti} A

F, = {(#l)tl)v -+ (80, %)}
Mi(s;) =1forall j,1 < j <

Define § = {X; | i € N}.
Proposition 3.1
The MCP for S is NP-hard.
Pmbf: By reduction from SAT (satisfiability of propositional logic),- Let K be a
~ propositional formula on variables z;,...,zs. We construct the formula Og,

where ¢ is obtained from K by replacing z; by s; for all j,1 < j < k. It'is
easy to show that K is satisfiable iff Ii |= O¢ (see [3]). 3l
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So even for such a simple class as §, there is little hope to find a polynomial algorithm
for MCP. However, there could exist an algorithm which is exponential on the length
of the formula, but polynomial in the size of the system. Such a result carries
interest, because the system is usually much larger than the formula. We design
in the following sections a model checking algorithm for safe (strongly) persistent
systems, and show that for the subclass of safe T-systems — of which § is, in turn,
a trivially small subclass - this type of complexity (exponentiality in the size of the
formula but polynomiality in the size of the system) can be obtained.

4 Persistent and strongly persistent net systems

We are interested in the class of nets without conflicts: when two transitions are
enabled at a marking, then they are concurrent. We call these systems strongly
persistent. Strongly persistent systems are a subclass of the slightly larger and well
known class of persistent systems [13], in which when two transitions are enabled at
a marking then they can occur in any order, but not always concurrently. The model
checking problem for persistent systems reduces easily to the problem for strongly
persistent systems.

Definition 4.1 Persistence and strong persistence

(i) A Petri net I is persistent iff for all M € [ M) and for all 3,3 € T',t; # 83,
if M[t1) and M[tz) then M[txtz) and M[tztl).
~ (ii) X is strongly persistent iff for all M' € [ Mp) and for all ¢,¢; € T',; # &5, if
M[tl) and M[tz) then M[{tl,tg}). =4l

Strong persistence implies persistence, but the converse is not true.

‘Persistent systems can be translated into strongly persistent systems, so that a for-
mula is true of a persistent system if and only if it is true of its translation. The
proof of this result can be found in {3].

Lemma 4.2

Let 3 be a persistent system. There ezist a polynomial time algorithm to con-
struct a system T, with the same set of transitions as L, enjoying the following
" properties:
(i) ¥’ is strongly persisient.

(ii) £(Z) =L(X).

(iii) There is a function f from the formulae ofE in the formulae of ¥’ ‘such
that
c=FinZiffol= f(F)in X' ‘ S ma2

(Strongly) persistent systems find applications in the design of switching circuits [17]
and when modelling deterministic concurrent systems by means of Petri nets.
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5 The lattice of cuts. Processes of strongly per-
sistent systems
In this section, we state some elementary properties of finite occurrence nets. Basic

definitions are given in the Appendix. The proofs appear either in [8] or in [3].

Throughout the section, let N = (B, E, F) be a finite occurrence net, let C denote
the set of B-cuts of N, and let (X, <) = (BU E, F) be the partial order associated
with N [4]. Whenever we speak of cuts in the sequel, we shall always mean B-cuts.

Figure 2.(a) shows a strongly persistent system; its reachability graph is shown in
Figure 2.(b). Finally, Figure 2.(c) shows one of its processes and some cuts. For
a,c €C, let ¢y C ¢y iff

Vi € 1 Vb € ca: (b2 < ba).
We study some properties of this definition.

sl s2 MO
tl 12 3
3 1t
tl
3 s4 M2 M3
(a) A strongly-persistent system (b) Its reachability graph
cl
s3
2

s4

+ () Oneof its processes, and some cuts. . -

Figure 2; Illustration of the notion of process and cut

Lemma 5.1

C is transitive and antisymmeiric. m 5.1

Forze BUE and c€C,let + <cdenote 3 € c:z < V.
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Lemma 5.2
Let c1,c; €C. Then

(i) ala = (Ua)\({healh<alU{heal|b<a))
is the lowest upper bound of ¢;,c; with respect to C.
@) aNg = (aUa)\({fheala<hlU{hbeala=<bh))
is the greatest lower bound of c1,c; with respect to C.
() anNez € (alea)n(ele)
(iv) aUe; 2 (alcg)U(cMNe)
(v) N and U are monotonic with respect to C. = 5.2

In the process of Figure 2.(c), ¢ = ¢ U c; is the lowest upper bound of ¢; and ¢;.
As a consequence of parts (i) and (ii) of this lemma, (C,U,N) is a lattice. This
lattice has always a least element, denoted by Min(r), but not always a maximal
one, depending on whether the process = is infinite or not. When the maximal
element exists, we denote it by Maz(x). Further, |} ¢ denotes the subprocess of
x below ¢, i.e. the elements between Mm('ir) and c (inclusively). 1} ¢ denotes the
elements above ¢ including c itself.

The nice property of safe strongly persistent systems we shall exploit is that they
have exactly one maximal process, up to isomorphism. A process of a system T is
called maximal if it is not isomorphic to a subprocess of a process of I.

Theorem 5.3 [3]

All mazimal processes of a safe strongly persistent system are isomorphic to each
other.

The uniqueness of the maximal process and the safeness of the system guarantee
that, given a sequence o, there exists a (unique) cut ¢ of the maximal process such
that o € Lin({} c). We introduce the following definition.

Definition 5.4 The mapping Cut

Let T be a safe strongly persistent system. The mapping Cut: L(Z) — C is
defined by
Cut(0) = the cut ¢ of the maximal process of I such that o € Lin({c).

m5.4

6 Conjunctive Propositional Formulae

In this section we show that strongly persistent nets, due to Theorem 5.3, have inter-
esting properties with respect to our logic. We start, however, with an observation
valid for all safe Petri nets: occurrence sequences with the same Parikh vector satisfy
the same properties.
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Lemma 6.1

Let o, T be two occurrence sequences of a system such that P(o) = P(7). Then,

for every formula ¢: cf=d ST .

Proof: Follows easily from the definition of |= and the fact that both ¢ and 7 lead
to the same marking: Mo[ o) M and Mo[7)M. m6.1

For the rest of the section T = (S, T, F, M,) denotes a strongly persistent safe Petri
net and r = (B, E, F', p) its unique maximal process.

Lemma 6.2

Let o4, 03 be two occurrence sequences. Let ¢; = Cut(al) and c; = Cut(o3).
Ifoe Lm(l}(cl U cz)), then P(o) = max{P(a;),'P(az)}

Proof: (i) P(0) 2 m&x{'P(Ul), 'P(Uz)}

. 'We have: , , ,
'P(a,)(t) = feeEle<aAp(e)=t)|
Paa)(t) = [{e€Ele<anp(e)=t}|
S Ple)t) = 1{e€ Ele<(aUa)Ap(e)=t}|

It follows easily that for every transition ¢, P(c)(t) 2 P(e1)(t) and P(a)(t) >
P(03)(t). Hence, (1) holds.

(i) Plo) < max{P(c1),P(02)}-
We prove the following claim first.

Claim. If there exist e;, e; € E such that p(el) p(eg) =t,

then -((oz <e<a)A(a<e=<a).

Proof.  Suppose, on the contrary, that (a <ea < a)A(a < e < g)
Then ej coe; and ey # e;; this is because if (for instance) e; < e, then
by<e <e < b’,, for some b;,b; € c;, contradicting the fact that ¢; is a cut.
But since e coez, Theorem 3.19 of [2] shows that ¢ = p(e1) = p(es) can be
concurrently enabled, contradicting the safeness of L. . End of proof.

The claim implies that we have either one of the following two cases:

(a) {e€cEle<(aUa)Aple)=t}C{c€E|e<cAple)=t}
(b) {e€E|le<(aUca)Aple)=t}C{e€ E|e<czAp(e)=t}.

In the first case, P(0) < P(01). In the second, ’P(U) < P(02). Hence, (2)
holds. " m6.2

As a corollary of this lemma, we obtain the following result of [13]. In fact, the result
was proved there for arbitrary (strongly) persistent nets, not just safe ones. :



Corollary 6.3 [13]

Let 01, 02 € L(X). There exist sequences 11, 12 such that o111, 0273 are occur-
rence sequences and

'P(a’l‘rl) = P(d‘z‘l‘g) = inax{'P(a;), P(d'z)}.

;Pmof Let ¢; = Cut(01) and ¢; = Cut(oy).
Take 73 € Lin(ftaiN Y (a1 U 3)), 12 € Lin(ft N §(e1 U c3)) (the intersection
is defined componentwise, and can easily be shown to be a process).
Then o171, 03712 € Lin( (1 U ¢3)), and the result follows from Lemma 6.2.
6.3

‘We are now ready to prove the following theorem:

Théorem 6.4

Let x a conjunction of literals. Let 01,02 € L(X).
Ifor [= x and o3 |= X, then for every o € L(T) such that P(0) = max{P(a1), P(02)},

we have o |= x.

Proof: By Lemma 6.1, it suffices to prove the property for a particular o satisfying
the condition on the Parikh vector. Let ¢; = Cut(01), ¢ = Cut(o3). Using
Lemma 6.2, we choose o as one of the linearisations of {}(c; U c;). We prove
the claim separately for the possible literals in .

(@D (nFt<kAnft<k)=olt<k
We have P(01)(t) < k and P(a3)(t) < k.
Then P(0)(t) = max{P(a1)(t), P(o2)(t)} < k.
(@) (mEt>kAnEt>E)=>0kEt>k
We have P(0;)(t) > k and P(o3)(t) > k.
Then P(0)(t) = max{P(a )(t),'P(az)(t)} > k
(iii) (or FsAorf=s)=>o s
Let Mo[dl)Ml and Mo[o’z)Mz.
Because 0y |= s and o3 |= s, we have:

3 €c:p(h)=s and by €crp(h) =35

Case 1: b; = b,.

Then b, = b; € ¢; N ¢z, and by Lemma 5.2(iii), also b = b; € ¢; U c3.
Case 2: b # b;. )

Then by the safeness of ¥ (and Theorems 3.15, 3.17 and 3.19 of [2]), it
cannot be the case that by co b;. Therefore, either by < b; or b < b;.
In the former case, by € ¢; U ¢, in the latter case, b; € ¢; Lic,.

In all cases, 3b € ¢; U ¢: p(b) = s.
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(iv) (v l=EsAoz l=ms) =0 |= s %
Let Mo[dl)Ml and Mo[dz)Mz.
Since 01 |= s and 03 |= s, we have s ¢ p(c1) and s ¢ p(c;). Because
of aUe; € a Uc; (Lemma 5.2(iv)), we also have s ¢ p(c1 U ¢;), and
hence o |= —s.

From (i)~(iv), it follows that if both oy and o, satisfy a conjunction of literals
X, then o satisfies it as well. m6.4

Remark 6.5
Theorem 6.4 is false if x is allowed to be a disjunction. Consider the formula
¢ = 33 V 84 in the example of Figure 2. We have t3t; |= ¢ and ta3t3 |= ¢, but
tatits - 6. m6.5
We associate to a conjunction of literals x a Parikh vector in the following way:
Definition 6.6 The mapping Last,

Let x be a conjunction of literals. The mapping Last,:T — N U {-1} U {w}
(with w > k for every k € N) is defined as follows:

Last,(t) = -1 _ if no occurrence sequence satisfies X
X7 | sup{P(o)(t) |0 = x} otherwise
= 6.6
Remark 6.7
By Theorem 6.4, Lastx = sup{?(g-) I o ‘: x}. n6.7

The interest of this definition lies in the following result. Loosely speaking, Last,(t)
indicates the maximum number of times (arbitrarily many if Last,(t) = w) that tran-
sition ¢ can occur without losing the possibility of extending the current occurrence
sequence {o one satisfying x.



Lemma 6.8

Let 0 € L(X). o can be extended to an occurrence sequence T > o wzih TEX
iff P(o) < Last,.

'Proof (=): Follows easily from the definition of Laatx ;
(«): I P(0) = Lasty, then take 7 = 0. If 'P(a‘) # Laatx then we have:

P(o) # Lasty
=> { Remark 6.7} .
o ExAP(e) S P(o) < Laatx
=>
max{P(0), P()} = P(?)
= { Corollary 6.3 }
Jo": oo is an occurrence sequence A P(od”) = P(o'),
= {0’ = x, Lemma 6.1 }

Jdo”: o¢0” is an occurrence sequence A o” |= x.

Taking 7 = go”, the result follows. | = 6.8

The following theorem is the kernel of our model checker: it shows how to replace a
formula with one modality by a propositional formula.

Theorem 6.9

Let T be a safe persistent system. For every conjuncition x of literals and cm:fy
occurrence sequence o

ocl=Ox & gk A\t < Last(t).

teT

Proof: By definition of |=, o |= O iff there exists 7 > o such that 7 = x. By Lemma
6.8, this is the case iff P(¢) < Lasty. By definition of |= again, P(c) < Last,
iff 0 = Aver t < Lasiy(t). m6.9

7 The Model Checker

Before presenting formally the model checker, we need to introduce a standard form
for the formulae of our logic.

Definition 7.1 Standard form

A formula O¢ is a first-degree formula iff ¢ contains no modalities. A formula
¢ is in standard form iff:

.¢ contains no derived operators, and

- for every first-degree subformula O¢' of ¢, ¢' is a conjunction of literals.
=71
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s1 M0=(1,1,0,0)
1l
tl M1=(0,1,1,0)
12
s3
52 M2=(0,0,1,1)
12 3 13 1
s4 M3=(1,0,0,1)

Figure 3: A system on which to use the model checker
Proposition 7.2

_Every formula is equivalent to a (not necessarily unigue) formula in standard
Jorm.

Proof: Easy, using propositional calculus and the schema O(¢; V ¢3) = 0¢; v<4,,
valid in our logic. R S mT72

Algorithm 7.3 The model checker.

Input: A safe strongly persistent system I = (N, Mp)-and a formula ¢.
Output: T =dor L ¢,

begin
while ¢ contains modalities do
¢ := ¢ in standard form;
for every first-degree subformula <y of ¢ do
compute Last,;
substitute Ox by Aer t < Last,(t)
endfor
endwhile |
(*'Now ¢ contains no modalities *)
check if T |= ¢ using the definition and answer accordingly
end
=73

We apply the model checker to a small example. Consider the safe strt_ingly
persistent system I on the left of Figure 3.

We use the model checker to a.nswer,

) |= O <>(aa A(s2V 84)) )
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We put the formula in (1) in standard form:
"’0(”0(83 N 82) A ‘10(33 A 34)) (2)

Both O(s3A3) and 0(33/\34) are first—degree subformulae. It is easy to see that
Last(s;ns;) = (1,0,0) and Last(sns,) = (w,1,w). We substitute both formulae by
the corresponding conjunctions of transition assertions:

~O~((t1 1AL <OAt3SO)V (8 SwAta S 1AL <w)) (3)

Replacmg t < w and #3 € w by true, simplifying and puttmg the result in
standard form again, we get:

(Ot >1At:>1) v Oty ‘>~0Atz >1) vV O(ta>0A82 > 1)) (4)

There is no sequence satisfying ¢; > 1 Aty > 1. Hence, the corresponding Last
vector is (~1,—1,—1), and similarly for the other two disjuncts of (4) :

“((tl S=-1Atz:<-1AH < —l)V.;.V(tl S=-1IAH <-1AH < —1)) (5)
Replacing t; < —1 by false we get
- -(falsevfalsev false) ' " ) L (6)

which evaluates to true. Since ¢ |= true, X satisfies the origin#.l formula.

Putting ¢ in standard form can make the size of ¢ grow exponentially (this
may happen, for instance, if ¢ = <¢', where ¢’ is a propositional formula in
conjunctive normal form). Therefore, the number of Last vectors to be computed
is in the worst case exponential in the length of ¢ (and independent of the size
of X).

Our model checker is completely specified only after giving the description of a
procedure for computing this vector. This is done in the next section for the
class of safe T-systems (which can easily be shown to be persistent).

8 Computing Last, for safe T-systems

Definition 8.1

A net (S,T,F) is a T-net iff for every s € S:[*s| <1 and |s*| < 1.
(S,T, F,M,) is a T-system iff (S, T, F) is a T-net. =81

Throughout this section, £ = (S, T, F, M,) is a safe T-system, and C the inci-
dence matrix of (S, T, F'), which we suppose to be weakly connected (this con-
straint is introduced to simplify the presentation; the results can be extended to
non-connected T-systems by computing their connected components first, and
considering them separately). We shall make use of some results on T'-systems
that are presented now. They are immediate consequences of results of [7,14].
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Theorem 8;2

Let Ty be the set of transitions t of T that do not appear in any sequence of
L(Z). X is an mteger solutzon of the sy.stem of linear (in)egqualities

0
0 | ' .
0

M0+C X
"Vt € Ty X(t)
X

AW,

iff there ezists an occurrence sequence o such that P(o) = X. = 8.2

The constraints on the transitions of Ty are necessary. If they are suppressed
then, for instance, X = (1) is a solution of the equation system corresponding to
the T-net ({s}, {t}, {(s,),(2, s)}) with marking Mp(s) = 0. However, there is no
occurrence sequence with X as Parikh vector. Once the constraint X(t) = 0 is
added, the only solution is X = (0), which corresponds to the empty occurrence
sequence.

The set Ty can be very easlly computed in polynomxa.l time in the size of T, as
shown in [3].

The computa.tlon of Last, can now be reduced to the solution of a Linear Pro-
gramming problem. Let us see first how to associate linear constraints to the
basic propositions of our logic.

Let x be a conjunction x; A X2...A Xu of hterals The system of inequalities 'S’x
is obtained by adding to the system of Theorem 8.2 a linear constraint for each
literal Xi in the followxng way:

(1) ¥ x; = s, then add (Mo+C X)(s)-l
(2) ¥ x; = —s, then add (Mp + C - X)(s) = 0.
(3) ¥ x; = ¢ < k then add X(t) < k.

(4) ¥ x; =t > k then add X(t) > k.

Sx has the following properties:

Lemma 8.3

(i) If o = x, then P(0) is solution of Sy.
(i) If X is solution of Sy, then there ezists o such that P(o) = X and
ckEx.
(#i) If Sy has mﬁmtely many solutions, then for every k e N there ezists o
~ solution X > k= (k,k,. k).

Proof: (i) and (ii) follow from the definition of |= and Theorem 8.2. (iii) follows
from results of [7], taking into account that we only consider connected
T-systems. - » m8.3
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We define the Linear Programming problem LPy

maximise Y er X(2)
subject to Sy

LP, has the following property:

Lemma 8.4
Optimal solutions of LP, are integér.
Proof: Sy can be written in compact form in the following way:

P<My+C-X<P
H<X<T

. for adequate vectors Py, P;, Ty, T;. In particular, 0 < P, < Py < I
may have w-components, meaning that there is no upper bound for the
corresponding component of X.

We show that if X is a solution of Sy, so is [X]. The lemma then follows

from
LX) < ):fX ®)1-

teT
Let My = Mo+C-X and M; = Mo+C [X]. Let s bea.place We have
I°s| <1and|s*| < 1. Then, taking into account that P,, P, are vectors
over {0,1}, we have

P(s) £ [_Ml(a)J < My(s) < [M;(s)] < Pg(s)

Moreover, since T, Tj are  vectors on NU{w}, wehave T; < X < [X] <
I;. 7 - m84

We can now give the following computational characterisation of Last,.
Theorem 8.5

Let 3 be a safe T-system and x as above.

(i) If LPy has no solution, then Last, = —1.

(ii) If LPy has solutions but no optimal solution, then Last, = &.
(iii) If LPy has an optimal solution X then Last, = X.

Proof: (i) If LPy has no solution, then by Lemma 8. 3(1) no occurrence sequence
satisfies x. By definition, Last, = -1
(#) In this case, Sy has infinitely many solutions. By Lemma 8.3(3), there
exists for every k € N a solution ¢ with P(a) > k. By Lemma 8. 3(2),
Last, > k for every k € N. Hence, Last, =3&.
(##) By Lemma 8.4, X is integer. By Lemma 8.3(2), there exists o such
that P(¢) = X and ¢ |= x. By the optimality of X, there ismor2>o
such that 7 |= x. By Lemma 6.8, Last, = X. : - m85
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Since Linear Programming is known to be polynomial in the size of the equation
system, Theorem 8.5 implies that the computation of Last,, is polynomial in the
size of the T-system. Therefore, our model checker is polynomial in the size of
the system (although it has exponential worst-case complexity in the length of
the formula). ,

It is well known that simplex seems to have better average complexity than the
existing polynomial algorithms for Linear Programming, and therefore it is the
algorithm that should be used in practice.

9 Conclusions

We have tailored the modal logic S; for safe Petri nets. The resulting logic is
rather modest; for instance, it is not possible to express liveness properties (such
as ‘the system will eventually reach a state with one token in place s’) but many
useful safety properties (reachability, reversibility, liveness of transitions) can be
expressed, and the logic has some counting power. We have proved that even for
this simple logic (in fact, for any logic extending the propositional calculus) and
the simplest classes of concurrent systems, the model checking problem is NP-
hard. This shows that model checkers polynomial in both the size of the system
and the length of the formula are very unlikely to exist: however, there can still
be model checkers exponential in the length of the formula, but polynomial in
the size of the system.

We have designed a model checking algorithm for safe strongly persistent sys-
tems; the model checking problem is reduced to obtaining a set of so called Last
vectors, whose number can be exponential in the length of the formula. We-
have shown that for the class of safe T-systems, the Last vectors can be com-
puted solving a Linear Programming problem, in polynomial time in the size of
the system. Therefore, for this class we have obtained a model checker with the
complexity mentioned above. This is the first time, to the best of our knowledge,
that such a result is obtained for a non—trivial class of systems and a non-trivial
logic.

Classical results (see, for instance, [7]) showed that particular properties such
as liveness or reachability could be verified in polynomial time for T-systems.
These results are subsumed by our paper (for the safe case); we have shown
that the polynomiality result can be extended to the whole class of properties
expressible by a logic.

Our results are also related to the the constrained expression formalism of [1).
In this framework, linear constrains on the behaviour of the system are obtained
from its structure. Then, Integer Linear Programming is used as a decision
algorithm to verify properties. In this paper, we have shown how this method
can be improved for the particular class of T-systems. In particular, Integer
Linear Programming, which is known to be N P-complete, can be replaced by
Linear Programming. Linear Programming is also used in the work of [6] on
semidecision algorithms of some first-order assertions.
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Appendix: Basic Notions

An occurrence net N = (B, E, F') is an acyclic net without branched places, i.e.,
FraFPYHr=9 (acyclicity) and Vb € B:|*b| < 1A |b°] < 1 (no branching of
places). Elements of E are called events and elements of B are called conditions.
An occurrence net may be infinite, or may contain isolated conditions (but no
isolated events). To every occurrence net, a poset (X,%X)=(BUE,F™) can be
associated. ‘ ’
We denote li =X U > and co = ((X x X)\li)Uid|x. ¢ C X is called a co-set iff
any two elements in ¢ are unordered, i.e. in relation co. «

A cut ¢ C X is a maximal co-set. A cut cis called B-cut iff ¢ C B.

Min(N) is defined as {z € X | *z N X = 0}; Maz(N) is defined similarly.

A process # = (N, p) = (B, E, F', p) of a marked net £ = (S, T, F, M,) consists of
an occurrence net N = (B, E, F') together with a labelling p: BUE — SUT which
satisfy appropriate properties such that = can be interpreted as a concurrent run
of . To be a process of I, = must satisfy the following properties:

() p(B)C S andp(E)CT.

(i) Vz € BUE:| |z| € N (this implies that Min(N) is a cut).

(i) lVe € ‘?P('e) = "ple): Ip(*e)l = |'p(e)| and p(e”) = (p(e))", Ip(e*)] =
(g(a;)s)ition environments are respected).

(iv) Vs € S: Mo(s) = |p~(s) N Min(N)| (i.e., Min(N) corresponds to the initial
marking Mp). ’

Lin(x) denotes the set of occurrence sequences which are linearisations of .
For a detailed explanation of these notions (and a proof that the set Lin(x) is-
always nonempty), the reader is referred to [2]. An example is given in the paper
(Figure 2(c)). A



