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Abstract. Negotiations, a model of concurrency with multi party nego-
tiation as primitive, have been recently introduced in [?,?]. We initiate
the study of games for this model. We study coalition problems: can a
given coalition of agents force that a negotiation terminates (resp. block
the negotiation so that it goes on forever)?; can the coalition force a
given outcome of the negotiation? We show that for arbitrary negoti-
ations the problems are EXPTIME-complete. Then we show that for
sound and deterministic or even weakly deterministic negotiations the
problems can be solved in PTIME. Notice that the input of the prob-
lems is a negotiation, which can be exponentially more compact than its
state space.

1 Introduction

In [?,?], the first author and Jörg Desel have introduced a model of concurrency
with multi party negotiation as primitive. The model allows one to describe dis-
tributed negotiations obtained by combining “atomic” multi party negotiations,
or atoms. Each atom has a number of parties (the subset of agents involved), and
a set of possible outcomes. The parties agree on an outcome, which determines
for each party the subset of atoms it is ready to engage in next.

Ill-designed negotiations may deadlock, or may contains useless atoms, i.e.,
atoms that can never be executed. The problem whether a negotiation is well
designed or sound was studied in [?,?]. The main result was the identification of
two classes, called deterministic and acyclic weakly deterministic negotiations,
for which the soundness problem is tractable: while the problem is PSPACE-
complete for arbitrary negotiations, it becomes polynomial for these two classes.

In this paper we start the study of games on negotiations. As for games
played on pushdown automata [?], vector addition systems with states (VASS)
[?], counter machines [?], or asynchronous automata [?], games on negotiations
can be translated into games played on the (reachable part of the) state space.
However, the number of states of a negotiation may grow exponentially in the
number of agents, and so the state space can be exponentially larger than the
negotiation. We explore the complexity of solving games in the size of the ne-
gotiation, not on the size of the state space. In particular, we are interested in
finding negotiation classes for which the winner can be decided in polynomial
time, thus solving the state space explosion problem.

We study games formalizing the two most interesting questions related to
a negotiation. First, can a given coalition (i.e., a given subset of agents) force
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termination of the negotiation? (Negotiations may contain cycles.) Second, can
the coalition force a given final outcome?

Our first results show that these two problems are EXPTIME-complete in the
size of the negotiation. This is the case even if the negotiation is deterministic,
and so it seems as if the tractability results of [?,?] cannot be extended to
games. But then, we are able to show that, very surprisingly, the problems are
polynomial for deterministic (or even weakly deterministic) negotiations that
are sound. This is very satisfactory: since unsound negotiations are ill-designed,
we are not interested in them anyway. And, very unexpectedly, the restriction
to sound negotiations has as collateral effect a dramatic improvement in the
complexity of the problem. Moreover, the restriction comes “at no cost”, because
deciding soundness of deterministic negotiations is also decidable in polynomial
time.

Related work. Our games can be seen as special cases of concurrent games [?,?] in
which the arena is succinctly represented as a negotiation. Explicit construction
of the arena and application of the algorithms of [?,?] yields an exponential
algorithm, while we provide a polynomial one.

Negotiations have the same expressive power as 1-safe Petri nets or 1-safe
VASS, although they can be exponentially more compact (see [?,?]). Games for
unrestricted VASS have been studied in [?]. However, in [?] the emphasis is on
VASS with an infinite state space, while we concentrate in the 1-safe case.

The papers closer to ours are those studying games on asynchronous au-
tomata (see e.g. [?,?,?]). Like negotiations, asynchronous automata are a model
of distributed computation with a finite state space. These papers study algo-
rithms for deciding the existence of distributed strategies for a game, i.e., local
strategies for each agent based only on the information the agent has on the
global system. Our results identify a special case with much lower complexity
than the general one, in which local strategies are even memoryless.

Finally, economists have studied mathematical models of negotiation games,
but with different goals and techniques (see e.g. [?]). In our terminology, they
typically consider negotiations in which all agents participate in all atomic ne-
gotiations. We focus on distributed negotiations, where in particular atomic ne-
gotiations involving disjoint sets of agents may occur concurrently.

2 Negotiations: Syntax and Semantics

Negotiations are introduced in [?]. We recall the main definitions. We fix a finite
set A of agents representing potential parties of negotiations. In [?,?] each agent
has an associated set of internal states. For the purpose of this paper the internal
states are irrelevant, and so we omit them.

Atoms. A negotiation atom, or just an atom, is a pair n = (Pn, Rn), where
Pn ⊆ A is a nonempty set of parties, and Rn is a finite, nonempty set of outcomes.

(Distributed) Negotiations. A distributed negotiation is a set of atoms to-
gether with a transition function X that assigns to every triple (n, a, r) consisting
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of an atom n, a party a of n, and an outcome r of n a set X (n, a, r) of atoms.
Intuitively, this is the set of atomic negotiations agent a is ready to engage in
after the atom n, if the outcome of n is r.

Formally, given a finite set of atoms N , let T (N) denote the set of triples
(n, a, r) such that n ∈ N , a ∈ Pn, and r ∈ Rn. A negotiation is a tuple N =
(N,n0, nf ,X ), where n0, nf ∈ N are the initial and final atoms, and X : T (N)→
2N is the transition function. Further, N satisfies the following properties: (1)
every agent of A participates in both n0 and nf ; (2) for every (n, a, r) ∈ T (N):
X (n, a, r) = ∅ iff n = nf .

F D Mn0

F Dn1

D Mn2

F D Mnf

st st st

y,n,am

am

y,n

y,n y,n

F D Mn0

F Dn1

F D Mn2

F D Mnf

y y y

tm tm

y y y

n n n

r r

r

Fig. 1. An acyclic and a cyclic negotiation.

Graphical representation. Negotiations are graphically represented as shown
in Figure ??. For each atom n ∈ N we draw a black bar; for each party a of
Pn we draw a white circle on the bar, called a port. For each (n, a, r) ∈ T (N),
we draw a hyper-arc leading from the port of a in n to all the ports of a in the
atoms of X (n, a, r), and label it by r. Figure ?? shows two Father-Daughter-
Mother negotiations. On the left, Daughter and Father negotiate with possible
outcomes yes (y), no (n), and ask mother (am). If the outcome is the latter,
then Daughter and Mother negotiate with outcomes yes, no. In the negotiation
on the right, Father, Daughter and Mother negotiate with outcomes yes and no.
If the outcome is yes, then Father and Daughter negotiate a return time (atom
n1) and propose it to Mother (atom n2). If Mother approves (outcome yes),
then the negotiation terminates, otherwise (outcome r) Daughter and Father
renegotiate the return time.

Semantics. A marking of a negotiation N = (N,n0, nf ,X ) is a mapping
x : A→ 2N . Intuitively, x(a) is the set of atoms that agent a is currently ready
to engage in next. The initial and final markings, denoted by x0 and xf respec-
tively, are given by x0(a) = {n0} and xf (a) = ∅ for every a ∈ A.

A marking x enables an atom n if n ∈ x(a) for every a ∈ Pn, i.e., if every
party of n is currently ready to engage in it. If x enables n, then n can take
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place and its parties agree on an outcome r; we say that (n, r) occurs. Abusing
language, we will call this pair also an outcome. The occurrence of (n, r) produces
a next marking x′ given by x′(a) = X (n, a, r) for every a ∈ Pn, and x′(a) = x(a)

for every a ∈ A \ Pn. We write x
(n,r)−−−→ x′ to denote this.

By this definition, x(a) is always either {n0} or equals X (n, a, r) for some
atom n and outcome r. The marking xf can only be reached by the occurrence
of (nf , r) (r being a possible outcome of nf ), and it does not enable any atom.
Any other marking that does not enable any atom is a deadlock.

Reachable markings are graphically represented by placing tokens (black
dots) on the forking points of the hyper-arcs (or in the middle of an arc). Figure
?? shows on the right a marking in which F and D are ready to engaging n1 and
M is ready to engage in n2.

We write x1
σ−→ to denote that there is a sequence

x1
(n1,r1)−−−−→ x2

(n2,r2)−−−−→ · · · (nk−1,rk−1)−−−−−−−−→ xk
(nk,rk)−−−−−→ xk+1 · · ·

such that σ = (n1, r1) . . . (nk, rk) . . .. If x1
σ−→, then σ is an occurrence sequence

from the marking x1, and x1 enables σ. If σ is finite, then we write x1
σ−→ xk+1

and say that xk+1 is reachable from x1.

Soundness. A negotiation is sound if (a) every atom is enabled at some reach-
able marking, and (b) every occurrence sequence from the initial marking either
leads to the final marking xf , or can be extended to an occurrence sequence that
leads to xf .

The negotiations of Figure ?? are sound. However, if we set in the left negoti-
ation X (n0, M, st) = {n2} instead of X (n0, M, st) = {n2, nf}, then the occurrence
sequence (n0, st)(n1, yes) leads to a deadlock.

Determinism and weak determinism. An agent a ∈ A is deterministic if
for every (n, a, r) ∈ T (N) such that n 6= nf there exists an atom n′ such that
X (n, a, r) = {n′}.

The negotiation N is weakly deterministic if for every (n, a, r) ∈ T (N) there
is a deterministic agent b that is a party of every atom in X (n, a, r), i.e., b ∈ Pn′
for every n′ ∈ X (n, a, r). In particular, every reachable atom has a deterministic
party. It is deterministic if all its agents are deterministic.

Graphically, an agent a is deterministic if no proper hyper-arc leaves any
port of a, and a negotiation is deterministic if there are no proper hyper-arcs.
The negotiation on the left of Figure ?? is not deterministic (it contains a proper
hyper-arc for Mother), while the one on the right is deterministic.

3 Negotiation Games

We study a setting that includes, as a special case, the questions about coalitions
mentioned in the introduction: Can a given coalition (subset of agents) force
termination of the negotiation? Can the coalition force a given final outcome?

We need the notion of an independent set of atoms.
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Definition 1. A set of atoms S is independent if no two distinct atoms of S
share an agent, i.e., Rn ∩Rn′ = ∅ for every n, n′ ∈ S, n 6= n′.

It follows immediately from the semantics that if a marking x enables all atoms
of S, then there is a unique marking x′ such that x

σ−→ x′ for every sequence
σ = (n1, r1) . . . (nk, rk) such that each atom of S appears exactly once in σ. In
other words, x′ depends only on the outcomes of the atoms, and not on the
order in which they are fired.

A negotiation arena is a negotiation whose set N of atoms is partitioned into
two sets N1 and N2. We consider concurrent games [?,?] with three players called
Player 1, Player 2, and Scheduler. At each step, Scheduler chooses a nonempty
set of independent atoms among the atoms enabled at the current marking of
the negotiation arena. Then, Player 1 and Player 2, independently of each other,
select an outcome for each atom in S∩N1 and S∩N2, respectively. Finally, these
outcomes are fired in any order, and the game moves to the unique marking x′

mentioned above. The game terminates if it reaches a marking enabling no atoms,
otherwise it continues forever.

Formally, a partial play is a sequence of tuples (Si, Fi,1, Fi,2) where each
Si ⊆ N is a set of independent atoms and Fi,j assigns to every n ∈ Si ∩ Nj
an outcome r ∈ Rn. Furthermore it must hold that every atom n ∈ Si is en-
abled after all atoms in S0, ..., Si−1 have occurred with the outcomes specified
by F0,1, F0,2, ..., Fi−1,1, Fi−1,2. A play is a partial play that is either infinite or
reaches a marking enabling no atoms. For a play π we denote by πi the partial
play consisting of the first i tuples of π.

We consider two different winning conditions. In the termination game, Player
1 wins a play if the play ends with nf being fired (notice that no atom is enabled
after nf fires); otherwise Player 2 wins. In the final-outcome game, we select for
each agent a a set of outcomes Ga such that nf ∈ X (n, a, r) for r ∈ Ga (that is,
after any outcome r ∈ Ga, agent a is ready to terminate). Player 1 wins if the
the play ends with nf being fired, and for each agent a the last outcome (n, r)
of the play such that a is a party of n belongs to Ga.

A strategy σ for Player j, j ∈ {1, 2} is a partial function that, given a par-
tial play π = (S0, F0,1, F0,2), .., (Si, Fi,1, Fi,2) and a set of atoms Si+1 returns a
function Fi+1,j according to the constraints above. A play π is said to be played
according to a strategy σ of Player j if for all i, σ(πi, Si+1) = Fi+1,j . A strategy
σ is a winning strategy for Player j if he wins every play that is played according
to σ. Player j is said to win the game if he has a winning strategy. Notice that
if Player 1 has a winning strategy then it wins every play against any pair of
strategies for Player 2 and Scheduler.

Definition 2. Let N be a negotiation arena. The termination (resp. final-outcome)
problem for N consists of deciding whether Player 1 has a winning strategy for
the termination game (final-outcome game).

Consider the example negotiation in figure ?? with Father (F), Mother (M)
and two daughters (D1, D2) as agents. The solid edges for the daughters from
n2 to n3, n4 to n6, and n5 to n7 are “ask the other parent” outcomes, while
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the dashed edges represent the “yes” and “no” outcomes. Assume the daughters
form a coalition. Then N1 = {n1, n2, n3}, since these are the atoms where the
daughters have a majority; N2 contains all other atoms. Can the daughters force
termination?

At atom n1 the daughters have the choice to split up and talk to one parent
each (outcome s) or talk to their father together (outcome t). If the daughters
choose outcome s, then Father and Mother can force an infinite loop, either
between n4 and n6, or between n5 and n7. On the contrary, if the daughters
choose to stay together, then, since they own atom n2, they can force a “yes” or
“no” outcome, and therefor termination.

The questions whether a coalition C of agents can force termination or a cer-
tain outcome are special instances of the termination and final-outcome prob-
lems. In these instances, an atom n belongs to N1—the set of atoms controlled
by Player 1— iff a strict majority of the agents of n are members of C.

3.1 Coalitions

Before we turn to the termination and final-outcome problems, we briefly study
coalitions. Intuitively, a coalition controls all the atoms where it has strict major-
ity. We show that while the definition of the partition of the atoms N according
to the participating agents may seem restricting, this is not the case: In all
cases but the deterministic sound case, any partition can be reached, possibly
by adding agents.

We define the partition of N via a partition of the agents: Let the agents A be
partitioned into two sets A1 and A2. Define N1 = {n ∈ N : |Pn∩A1| > |Pn∩A2|},
N2 = N\N1. Note that ties are controlled by A2.

A Bn0

A Bn1

A Bn2

A Bnf

A B an0

A B an1

A Bn2

A B anf

A B a bn0

A B an1

A Bn2

A B a bnf

Fig. 3. Atom control via additional agents

We first show that in the nondeterministic and weakly deterministic case,
this definition is equivalent to one where we decide control for each atom and
not for each agent: Consider the example given in Figure ??. On the left a
deterministic negotiation with two agents is given. Assume the coalitions are



8

A1 = {A} and A2 = {B}. By the definition above, N2 = N , thus coalition A2

controls every atom. We want to change control of n1 so that A1 controls n1,
changing the negotiation to a weakly deterministic one on the way. We add an
additional agent a that participates in n0, n1, nf as shown in Figure ?? in the
middle and set A1 = {A, a}. Now A1 controls n1 but also n0 and nf . We therefore
add another agent b that participates in n0, nf as shown in Figure ?? on the
right. Now the partition of atoms is exactly N1 = {n1} and N2 = {n0, n2, nf},
as desired. In general, by adding nondeterministic agents to the negotiation, we
can change the control for each atom individually. For each atom n whose control
we wish to change, we add a number of agents to that atom, the initial atom
n0 and final atom nf . We add nondeterministic edges for these agent from n0
to {n, nf} for each outcome of n0 and from n to {n, nf} for each outcome of n.
It may be necessary to add more agents to n0 that move to nf as to not change
the control of n0 or nf . This procedure changes the control of n while preserving
soundness and weak determinism.

We proceed by showing that in the deterministic case, we cannot generate
any atom control by adding more agents.

Lemma 1. We cannot add deterministic agents to the negotiation above in a
manner, such that soundness is preserved and Player 1 controls n1, Player 2
controls n2.

Proof. Consider again the deterministic negotiation game on the left of Figure
??. Assume we have added deterministic agents such that Player 1 controls n1.

After the occurring sequence x0
(n0,a)−−−−→ x1

(n1,a)−−−−→ x2, those additional agents
have moved deterministically, either to n1 or nf . 1 If any agent remains in n1,
choosing outcome b in n2 leads to a deadlock, otherwise, choosing a leads to a
deadlock. Thus the negotiation is no longer sound. ut

4 The termination problem

We turn to the general complexity of the termination problem. To show EXPTIME-
membership, we use the results of [?]. We begin by introducing the notion of a
concurrent game structure.

A concurrent game structure is a tuple S = (k,Q,Π, π, d, δ) where

– k ≥ 1 is a natural number, the number of players.
– Q is a finite set of states.
– Π is a finite set of propositions.
– π assigns every state q ∈ Q a set of propositions that are true in q.
– d assigns every player a ∈ {1, ..., k} and every state q ∈ Q a natural number
da(q) ≥ 1 of possible moves. We identify these moves with natural numbers
1, ..., d(a, q). For each state q, we write D(q) for the set {1, ..., d1(q)} × ...×
{1, ..., dk(q)} of move vectors.

1 Moving to n2 would change the control there, thus additional agents have to be
added to n2, we then can use a similar argument as follows by exchanging the roles
of n1 and n2.
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– δ is the transition function that assigns a state q ∈ Q and a move vector
(j1, ..., jk) ∈ D(q) a state δ(q, j1, ..., jk) that results from state q if every
player a ∈ {1, ..., k} chooses move ja.

The following is one of the results from [?]:

Theorem 1. Model checking for reachability objectives on concurrent game struc-
tures possible in time linear in the number of transitions of the game and the
length of the reachability formula.

Using this result, it is easy to see that the termination problem can be solved
in exponential time.

Theorem 2. The termination problem is in EXPTIME.

Proof. We construct a 3-player concurrent game structure and a reachability
objective such that Player 1 wins the negotiation game iff she wins this new game
against the coalition of the other two players. The game has single exponential
size in the size of the negotiation arena.

The states of the game are either markings x of the negotiation, or pairs
(x, Nx), where x is a marking and Nx is an independent set of atoms enabled
at x. Nodes x belong to Scheduler, who chooses a set Nx, after which the play
moves to (x, Nx). At nodes (x, Nx) Players 1 and 2 concurrently select subsets
of Nx, and depending on their choice the play moves to a new marking.

The states of the concurrent game structure are the following:

Q = {x : x a reachable marking} ∪ {(x, Nx) : x a reachable marking,
Nx a set of independent atoms enabled in x}

Only one proposition is needed to mark the final state:

Π = {final}

π(x) =

{
final if x = xf

∅ otherwise

π((x, Nx)) = ∅

The move vectors, given by the cartesian product of the possible moves of each
player, are defined as follows:

– D(x) = {1} × {1} × S is the set of move vectors from state x, where S is
the set of all sets of independent atoms enabled in x.

– D((x, Nx)) = {F1}×{F2}×{1} is the set of move vectors from state (x, Nx),
where Fi is the set of all functions assigning each n ∈ Nx ∩Ni an outcome
r ∈ Rn.



10

The transition function δ is defined by δ(x, (1, 1, s)) = (x, s), and
δ((x, Nx), (f1, f2, 1)) = x′, where x′ is the result of firing from state x all the
atoms of Nx with the outcomes specified by f1, f2. Notice that, since the atoms
are independent, x′ does not depend on the order in which they are fired.

Player 1 wins if the play reaches the final marking xf , or equivalently, the
reachability objective is ♦final. Using theorem ??, the result follows. ut

Unfortunately, there is a matching lower bound.

Theorem 3. The termination problem is EXPTIME-hard even for negotiations
in which every reachable marking enables at most one atom.

Proof. The proof is by reduction from the acceptance problem for alternating,
linearly-bounded Turing machines (TM). We are given an alternating TM M
with transition relation δ, and an input x of length n. We assume that M always
halts in one of two designated states qaccept or qreject, and does so immediately
after reaching one of those states.

We define a negotiation with two agents P and I modeling the head position
and internal state of M , and one agent Ck for each cell. The set of atoms contains
one atom nq,α,k for each triple (q, α, k), where q is a control state of M , k is the
current position of the head, and α is the current letter in the k-th tape cell.

Ck I P Ck I P

Ck I P Ck I P

Ck I P Ck I P

Ck+1 I P Ck+1 I P

Ck+1 I P Ck+1 I P

Ck+1 I P Ck+1 I P

tape cell k (current cell) tape cell k+1

a

b

c

q1 q2 q1 q2

TM
statecell

content

Fig. 4. Part of the negotiation representing a TM, the edges drawn represent the
transition (q2, a) → (q1, b, R)

Figure ?? shows a part of the negotiation corresponding to a TM with two
internal states, q1, q2 and three tape symbols a, b, c. The part shown represents
two cells of the tape as well as the movement of the agents corresponding to the
TM taking the transition (q2, a)→ (q1, b, R).
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The parties of the atom nq,α,k are I, P and Ck, in particular, I and P
are agents of all atoms. The atom nq,α,k has one outcome rτ for each element
τ ∈ δ(q, α), where τ is a triple consisting of a new state, a new tape symbol, and
a direction for the head. We informally define the function X (nq,α,k, Ck, rτ ) by
means of an example. Assume that, for instance, τ = (q′, β, R), i.e., at control
state q and with the head reading α, the machine can go to control state q′, write
β, and move the head to the right. Then we have: (i) X (nq,α,k, I, rτ ) contains
all atoms of the form nq′, , (where stands for a wild card); (ii) X (nq,α,k, P, r)
contains the atoms n , ,k+1; and (iii) X (nq,α,k, Ck, rτ ) contains all atoms n ,β, .
If atom nq,α,k is the only one enabled and the outcome rτ fires, then clearly in
the new marking the only atom enabled is nq′,β,k+1. So every reachable marking
enables at most one atom.

Finally, the negotiation also has an initial atom that, loosely speaking, takes
care of modeling the initial configuration.

The partition of the atoms is: an atom nq,α,k belongs to N1 if q is an exis-
tential state of M , and to N2 if it is universal. It is easy to see that M accepts
x iff Player 1 has a winning strategy.

Notice that if no reachable marking enables two or more atoms, Scheduler
never has any choice. Therefore, the termination problem is EXPSPACE-hard
even if the strategy for Scheduler is fixed.

Formally, we are given an alternating TM M = (Q,Γ, δ, q0, g) with tape
alphabet Γ and a function g : Q → {∧,∨, accept, reject} that determines the
state type, and an input x of length n. We assume that M always halts, does
so in designated states qaccept or qreject, and does so immediately when reaching
one of those. We define a negotiation game NM,x as follows:

– The set of agents is

A = {I, P} ∪ {Ck : k ∈ {0, ..., n− 1}}

– The set of atoms is

N = {n0, nf} ∪ {nq,α,k : (q, α, k) ∈ Q× Γ × {0, ..., n− 1}}

– The set N1 of atoms owned by Player 1 contains n0, nf , and all atoms nq,α,k
such that g(q) 6= ∧. The set N2 contains all other atoms.

– The set of parties of each atom is given by Pn0
= Pnf = A, and

Pnq,α,k = {I, P, Ck} for every nq,α,k ∈ N .

– The set of outcomes of each atom is defined as follows: Rn0
= {st},

Rnf = {end}, and for every nq,α,k ∈ N

Rnq,α,k =


{f} if q = qaccept

{f} if q = qreject

{rτ : τ ∈ δ(q, α)} otherwise
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– The X ( , I, ) function for agent I is given by:

X (n0, I, st) = {nq0,α,0 : α ∈ Γ}

X (nq,α,k, I, rτ ) =

{
{nq′,α,k−1 : α ∈ Γ} if τ = (q′, , L)

{nq′,α,k+1 : α ∈ Γ} if τ = (q′, , R)

X (nqaccept,α,k, I, f) = {nf}
X (nqreject,α,k, I, s) = {nqreject,α,k}

– The X ( , P, ) function for agent P is given by X (n, P, r) = X (n, I, r) for all
n ∈ N, r ∈ Pn.

– Finally, the X ( , Ck, ) function for agent Ck (the only part of the definition
that depends on the input x to M) is given by

X (n0, Ck, st) = {nq,α,k : q ∈ Q,α the initial value of cell k} ∪ {nf}
X (nq,α,k, Ck, rτ ) = {nf} ∪ {nq′,β,k : q′ ∈ Q} if τ = ( , β, )

X (nqaccept,α,k, Ck, f) = {nf}
X (nqreject,α,k, Ck, s) = {nqreject,α,k}

Observe that, in general, the negotiation NM,x is nondeterministic and un-
sound. Initially, we have x0(a) = {n0} for every agent a, and so only the atom n0
is enabled. Thereafter, at any point in time, exactly one atom nq,α,k is enabled
until nqaccept,α,k or nqreject,α,k is reached. Finally, nf is enabled iff nqaccept,α,k
was reached. Since the outcome of nq,α,k is chosen by Player 1 when q is an
existential state, and by Player 2 when it is a universal state, Player 1 has a
winning strategy iff M accepts x. ut

Notice that if no reachable marking enables two or more atoms, Scheduler
never has any choice. Therefore, the termination problem is EXPTIME-hard
even if the strategy for Scheduler is fixed.

A look at points (i)-(iii) in the proof of this theorem shows that the nego-
tiations obtained by the reduction are highly nondeterministic. In principle we
could expect a better complexity in the deterministic case. However, this is not
so.

Theorem 4. The termination problem is EXPTIME-hard even for determinis-
tic negotiations in which every reachable marking enables at most one atom.

Proof. Sketch. (See the appendix for details.) We modify the construction of
Theorem ?? so that it yields a deterministic negotiation. The old construction
has an atom nq,α,k for each state q, tape symbol α, and cell index k, with I, P ,
and Ck as parties.

The new construction adds atoms nq,k, with I and P as parties, and nα,k,
with P and Ck as parties. Atoms nq,k have an outcome for each tape symbol α,
and atoms nα,k have an outcome for each state q. New atoms are controlled by
Player 1.

In the new construction, after firing the outcome of nq,α,k for transition
(q′, β, R) ∈ δ(q, α), agent Ck moves to nβ,k, and agents I and P move to nq′,k+1.
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Intuitively, Ck waits for the head to return to cell k, while agents I and P pro-
ceed. Atom nq′,k+1 has an outcome for every tape symbol γ. Intuitively, at this
atom Player 1 guesses the current tape symbol in cell k + 1; the winning strat-
egy corresponds to guessing right. After guessing, say, symbol γ, agent I moves
directly to nq′,γ,k+1, while P moves to nγ,k+1. Atom nγ,k+1 has one outcome for
every state of M . Intuitively, Player 1 now guesses the current control state q′,
after which both P and Ck+1 move to nq′,γ,k+1. Notice that all moves are now
deterministic.

If Player 1 follows the winning strategy, then the plays mimic those of the old
construction: a step like (nq,α,k, (q

′, β, R)) in the old construction, played when
the current symbol in cell k+1 is γ, is mimicked by a sequence (nq,α,k, (q

′, β, R))
(nq′,k+1, γ) (nγ,k+1, q

′) of moves in the new construction. ut

5 Termination in sound deterministic negotiations

In [?,?] we showed that the soundness problem (deciding whether a negotiation
is sound) can be solved in polynomial time for deterministic negotiations and
acyclic, weakly deterministic negotiations (the case of cyclic weakly determinis-
tic negotiations is open), while the problem is PSPACE-complete for arbitrary
negotiations. Apparently, Theorem ?? proves that the tractability of determi-
nistic negotiations stops at game problems. We show that this is not the case.
Well-designed negotiations are sound, since otherwise they contain atoms that
can never occur (and can therefore be removed), or they can reach a dead-
lock. Therefore, we are only interested in the termination problem for sound
negotiations. We prove that for sound deterministic negotiations (in fact, even
for the larger class of weakly deterministic negotiations) the termination and
final-outcome problems are polynomial. For this, we show that the well-known
attractor construction for reachability games played on graphs as arenas can be
“lifted” to sound and weakly deterministic negotiation arenas.

Definition 3. Let N be a negotiation arena with a set of atoms N = N1 ∪N2.
Given n ∈ N , let Pn,det be the set of deterministic agents participating in n.

The attractor of the final atom nf is A =
∞⋃
k=0

Ak, where A0 = {nf} and

Ak+1 = Ak∪ {n ∈ N1 : ∃r ∈ Rn∀a ∈ Pn,det : X (n, a, r) ∈ Ak}
∪ {n ∈ N2 : ∀r ∈ Rn∀a ∈ Pn,det : X (n, a, r) ∈ Ak}

Given a marking x 6= xf of N and a deterministic agent a, the attractor
position of a at x is the smallest k such that x(a) ∈ Ak, or ∞ if x(a) /∈ A. Let
a1, . . . , ak be the deterministic agents of N . The position vector of x is the tuple
(p1, ..., pk) where we assume that a1, . . . , ak are the deterministic agents of N ,
and pi is the attractor position of ai.

Theorem 5. Let N be a sound, weakly deterministic negotiation arena. Player
1 has a winning strategy in the termination game iff n0 ∈ A.
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Proof. We start with an observation: If all deterministic agents are ready to take
part in nf , then nf and only nf is enabled. Indeed, since deterministic agent are
only ready to engage in at most one atom, the only atom with a deterministic
party that can be enabled is nf . Moreover, by weak determinism every atom has
a deterministic party, and so no atom other than nf can be enabled. Finally, by
soundness at least one atom is enabled, and so nf is the only enabled atom.

(⇐): Assume that n0 ∈ A. We fix the attractor strategy for Player 1. We define
the attractor index of an atom n ∈ A as the smallest k such that n ∈ Ak.
The strategy for an atom n ∈ N1 ∩ A is to choose any outcome such that all
deterministic parties of n move to an atom of smaller attractor index; formally,
we choose any outcome r such that for every deterministic party a the singular
atom in X (n, a, r) has smaller attractor index than n. Such an outcome exists
by construction of A. For atoms n ∈ N1 \A we choose an arbitrary atom. Notice
that this strategy is not only memoryless, but also independent of the current
marking.

We show that the attractor strategy is winning. By the definition of the game,
we have to prove that every play following the strategy ends with nf being fired.
By the observation above, it suffices to prove that the play reaches a marking at
which every deterministic agent is ready to engage in nf .

Assume there is a play π where Player 1 plays according to the attractor
strategy, which never reaches such a marking. Then the play never reaches the
final marking xf either. We claim that at all markings reached along π, the
deterministic agents are only ready to engage in atoms of A. We first observe
that, initially, all deterministic agents are ready to engage in n0, and n0 ∈ A.
Now, assume that in some marking reached along π the deterministic agents are
only ready to engage in atoms of A. Then, by weak determinism, all enabled
atoms belong to A, and therefore also the atoms chosen by Scheduler. By the
definition of A, after firing atoms of N2∩A the deterministic agents are ready to
engage in atoms of A only; by the definition of the attractor strategy, the same
holds atoms of N1 ∩ A. This concludes the proof of the claim.

Since all markings x reached along π satisfy x 6= xf and x(a) ∈ A for
every deterministic agent a, they all have an associated attractor position vector
whose components are natural numbers. Let Pk denote the position vector of
the marking reached after k ≥ 0 steps in π. Initially only the initial atom n0 is
enabled, and so P0 = (k0, k0, . . . , k0), where k0 is the attractor position of n0.
We have k0 < |N |, the number of atoms of the negotiation arena N . Given two
position vectors P = (p1, ..., pk), P ′ = (p′1, ..., p

′
k), we say P ≺ P ′ if pi ≤ p′i

for every 1 ≤ i ≤ k, and pi < p′i for at least one 1 ≤ i ≤ k. By the definition
of the attractor strategy, the sequence P0, P1, ... of attractor positions satisfies
P0 � P1 � P2 . . .. Since ≺ is a well-founded order, the sequence is finite, i.e., the
game terminates. By the definition of the game, it terminates at a marking that
does not enable any atom. Since, by assumption, the play never reaches the final
marking xf , this marking is a deadlock, which contradicts the soundness of N .

(⇒): Let B = N \ A, and assume n0 ∈ B. We give a winning strategy for
Player 2. The strategy for an atom n ∈ N2 ∩ B is to choose any outcome r such
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that at least one deterministic agent moves to an atom not in A, i.e., such that
X (n, a, r) /∈ A for at least one deterministic agent a. Such an outcome exists
because, since n ∈ B, we have n /∈ Ak for every k, and so by definition and
monotonicity of Ak there exists r ∈ Rn such that X (n, a, r) /∈ Ak for some
deterministic agent a and every k. For atoms in N2 \ B we chose an arbitrary
outcome.

We show that this strategy is winning for Player 2. Once again, because
the negotiation is sound, no play played according to this strategy ends in a
deadlock. So we have to prove that every game played following the strategy
never ends. By the observation above, it suffices to prove that the play never
reaches a marking at which every deterministic agent is ready to engage in nf .
Further, since nf ∈ A, it suffices to show that for every marking x reached along
the play there is a deterministic agent a such that x(a) ∈ B.

Initially all deterministic agents are only ready to engage in n0, and n0 ∈ B.
Now, assume that at some marking x reached along π there is a deterministic
agent a that satisfies x(a) = n and n ∈ B. We prove that the same holds for
the marking x′ reached after one step of the play. If n is not enabled at x, then
we have x′(a) = x(a) ∈ B, and we are done. The same holds if n is enabled
at x, but is not selected by the Scheduler. If n is enabled and selected by the
Scheduler, there are two possible cases. If n ∈ N1 then by the definition of A for
every outcome r of n there is a deterministic agent a such that X (n0, a, r) ∈ B,
and so x′(a) ∈ B. If n ∈ N2, then by definition the strategy chooses an outcome
r for which there is an agent a such that X (n0, a, r) ∈ B, and we again get
x′(a) ∈ B. ut

Corollary 1. For the termination game over sound and weakly deterministic
negotiations, the following holds:

(a) the game collapses to a two-player game;
(b) memoryless strategies suffice for both players;
(c) the winner and the winning strategy can be computed in O(|R| ∗ |A|) time,

where A is the set of agents and |R| the total number of outcomes of the
negotiation.

Proof. (a) and (b): The attractor computation and the strategies used in the
proof of Theorem ?? are independent of the choices of Scheduler; the strategies
are memoryless.
c) We describe an algorithm that computes the set A and the winning strategy.

1 array [ ] [ ] count
2 array [ ] outcomes
3 array [ ] s t r a t e g y
4 s e t border
5 s e t A
6 f o r every atom n :
7 outcomes [n ] = |Rn |
8 f o r every outcome r ∈ Rn :
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9 count [n ] [ r ] ← |Pn |
10 A ← {nf}
11 border ← {nf}
12 outcomes [nf ] ← 0
13 f o r every r ∈ Rnf
14 count [nf ] [ r ] ← 0
15 whi l e border != ∅
16 choose and remove an atom n from border
17 f o r every atom n′ ∈ N where X (n′, a, r) = n f o r some a ∈ P ′n, r ∈ R′n
18 count [n′ ] [ r]−−
19 i f count [n′ ] [ r ] = 0 and n′ ∈ N1

20 outcomes [n′ ] ← 0
21 s t r a t e g y [n′ ] ← r
22 add n′ to border
23 i f count [n′ ] [ r ] = 0 and n′ ∈ N2

24 outcomes [n′ ]−−;
25 i f outcomes [n′ ] = 0
26 add n′ to border
27 re turn A

Intuitively, count[n][r] counts the ports of atom n that do not reach the attractor
with outcome r, outcomes[n] counts the outcomes of n for which count[n][r] 6= 0
or is zero of n is in the attractor.

This algorithm terminates and computes A, the check n0 ∈ A is done by
checking whether outcomes[n0] is zero. Furthermore, the strategy for Player 1
is computed in strategy[n]. Every outcome is inspected at most once per agent,
thus the running time is at most O(|R| ∗ |A|). This leads to a total running time
of at most O(|R| ∗ |A|+ |N |) ∈ O(|R| ∗ |A|). Computing the strategy for Player
2 can be done in a straightforward loop over all outcomes choosing any outcome
for which count[n][r] 6= 0 in running time O(R). ut

A B Cn0

B

n1

A Bn2 B Cn3

A B Cnf

b

a

a,b

a

b
b a

Fig. 5. A negotiation game where memoryless strategies do not suffice
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We conclude this section by pointing out that memoryless strategies indeed
only suffice for weakly deterministic sound negotiation games. Figure ?? shows a
negotiation game, sound and nondeterministic. Imagine Agent B tries to enforce
termination against the coalition of A and C, thus by majority Player 1 controls
n1, Player 2 controls the remaining atoms. This game requires a strategy with
memory for Player 1 to win: Player 1 has to mirror Player 2’s initial choice to win,
otherwise an endless loop will be the result. A similar game that is deterministic
but unsound can be obtained by removing the edges looping back to n1. Again,
the initial decision has to be mirrored, the result of deciding “wrong” will be a
deadlock.

We still have to consider the possibility that requiring soundness alone, with-
out the addition of weak determinism, already reduces the complexity of the
termination problem. The following theorem shows that this is not the case, and
concludes our study.

Theorem 6. The termination problem is EXPTIME-hard for sound negotiation
arenas.

Proof. We modify the construction of Theorem ?? so that it yields a sound
negotiation.

Recall that a negotiation is sound if every atom is fired in at least one occur-
rence sequence, and every occurrence sequence can be extended to a sequence
that fires the final atom nf . There are two reasons why the negotiation NM,x

defined in the proof of Theorem ?? is unsound in general:

– If M does not accept, then the final atom nf is not reachable.
– If the head can never reach cell k with symbol α in it, then the atom nq,α,k

never occurs in any occurrence sequence,.

To solve these problems, we modify the construction of Theorem ??. The
negotiation of Theorem ??, which we now call the old negotiation, just simulates
a run of the machine. The new negotiation also does that in a first stage, but
it also exhibits additional behavior. Intuitively, if the run rejects, then the new
negotiation enters a “anything is possible”- mode, or anything-mode for short:
the negotiation is then able to repeatedly fire any non-final atom, or fire the final
atom and terminate. Furthermore, if the run accepts, then the new negotiation
can either directly fire nf , or enter the anything-mode.

Now we can argue why the new negotiation is sound. Since, by assumption,
every run of the machine either accepts of rejects, the negotiation can always
reach the anything-mode, which allows it to fire any atom, including the final
atom.

However, we also have to guarantee that Player 1 has a winning strategy in
the new negotiation iff the machine accepts. For this, we ensure two things. First,
when the run accepts, the choice between firing nf and entering the anything-
mode is taken by Player 1. The winning strategy for Player 1 is to choose nf .
Second, in the anything-mode the choice whether to fire the final atom or some
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other atom is controlled by Player 2; therefore, if the anything-mode is entered
after a reject run, Player 2 wins by never selecting the final atom.

We implement this idea by introducing a new agent S and two new atoms
n1, n2. All agents, including S, participate in both n1 and n2, but n0, n1, n2, nf
are the only atoms in which S participates. After n0 occurs, agent S is ready
to engage in both nf and n1. Firing n1 signals the start of the anything-mode.
After firing n1, all agents move to n2. Atom n2 has two outcomes, s and f :
after the outcome f all agents move to nf , and so by choosing this outcome
the negotiation terminates. After the outcome s, all agents but S are ready to
engage in any atom, while S is only ready to engage in n2 again. So this outcome
corresponds to choosing any non-final atom of the old negotiation and firing it.
But we still have to guarantee that after this atom is fired, atom n2 is enabled
again. For this, we add n2 as n2 to X (n, a, r) for every atom n 6= {n1, n2, nf},
agent a 6= S, and outcome r

To ensure that the anything-mode is entered if the run of the Turing machine
rejects, atoms of the form nqreject,α,k are given one single outcome, and the X ()
function is modified as follows: P and I move to n1, and we add n1 to the set
X (n,Ck, r) for every atom n and outcome r. So after nqreject,α,k fires n1 is the
only atom enabled.

Now we ensure that if the run of the Turing machine accepts, then Player
1 can decide whether to terminate or enter the anything-mode. For this we let
atoms of the form nqaccept,α,k to be controlled by Player 1, and add to them a
second outcome that enables n1 (additionally to the one enabling nf ).

The formal description of this construction can be found in the appendix.

6 The final-outcome problem

We demonstrate that the algorithm can also be used to solve the last-outcome
problem. Going back to the negotiation of Father, Mother and two Daughters,
imagine the goal of daughter D1 is to get a “yes” answer for herself, but a ‘no”
answer for D2, who always spoils the fun. Will a coalition with one parent suffice
to achieve the goal? To answer this question, we modify the negotiation before
applying the construction as shown in Figure ??. We introduce dummy atoms
nyes and nno for each daughter, and we redirect“yes” edges leading to nf to
nyes, analogously for nno.

We apply the algorithm starting from all the dummy atoms representing
edges we want to be taken. So we start from the set containing atom nyes of
D1 and nno of D2. Applying the algorithm for the coalition Father-D1 yields
{nyes1, nno2, n4} as attractor; For Mother-D1 we get {nyes1, nno2, n6}. So neither
parent has enough influence to achieve the desired outcome.

7 Conclusions and related work

We have started the study of games in the negotiation model introduced in
[?,?]. Our results confirm the low computational complexity of deterministic
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negotiations, however with an important twist: while even the simplest games
are EXPTIME-hard for arbitrary deterministic negotiations, they become poly-
nomial in the sound case. So soundness, a necessary feature of a well designed
negotiation, also turns out to have a drastic beneficial effect on the complexity
of the games.

We have shown that our games are also polynomial for sound and weakly
deterministic negotiations. However, the complexity of deciding soundness for
this case is unknown. We conjecture that it is also polynomial, as for the deter-
ministic case.

We have only considered 2-player games, since in our settings the behavior
of the third player (the Scheduler) is either irrelevant, or is controlled by one
of the other two players. We intend to study the extension to a proper 3-player
game, or to a multi player game, in particular for negotiations where the game
objective involves the internal state of the agents.

8 Appendix

8.1 Proofs of section ??

Theorem ??. The termination problem is EXPTIME-hard even for determin-
istic negotiations in which every reachable marking enables at most one atom.

Proof. We now modify the initial construction to yield a deterministic (but still
unsound) negotiation. First we present a general construction to remove non-
determinism from arbitrary negotiations, we then apply this construction with
some alterations to fit the needs of negotiation games. The transformation is
as follows: for any triple (n, a, r) such that X (n, a, r) = {n1, . . . , nk} for some
k > 1, we introduce a new atom na,r, assigned to Player 1, with a as sin-
gle party, and with k different outcomes r1, . . . , rk, and redefine X as follows:
X (n, a, r) = {na,r}, and X (na,r, ri} = {ni} for every 1 ≤ i ≤ k. Intuitively, in
the original negotiation after the outcome (n0, st) agent a is ready to engage
in n1, . . . , nk; in the new negotiation, after (n0, st) a commits to exactly one of
n1, . . . , nk, and the choice is controlled by Player 1. Unfortunately, we cannot
apply this construction directly because of the following problem: An agent Ck
has to decide in which of the nq,α,k they want to participate next, therefore
he needs to know the state q in which the head will arrive next in cell k. But
this may not be decided until the head arrives in cell k. Therefore we need to
postpone this decision until the head actually arrives in cell k.

This is achieved by the following alterations: In the new construction, after
firing the outcome of nq,α,k for transition (q′, β, R) ∈ δ(q, α), agent Ck moves to
nβ,k, and agents I and P move to nq′,k+1. Intuitively, Ck waits for the head to
return to cell k, while agents I and P proceed. Atom nq′,k+1 has an outcome for
every tape symbol γ. Intuitively, at this atom Player 1 guesses the current tape
symbol in cell k + 1; the winning strategy corresponds to guessing right. After
guessing, say, symbol γ, agent I moves directly to nq′,γ,k+1, while P moves to
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nγ,k+1. Atom nγ,k+1 has one outcome for every state of M . Intuitively, Player 1
now guesses the current control state q′, after which both P and Ck+1 move to
nq′,γ,k+1. Notice that all moves are now deterministic.

If Player 1 follows the winning strategy, then the plays mimic those of the old
construction: a step like (nq,α,k, (q

′, β, R)) in the old construction, played when
the current symbol in cell k+1 is γ, is mimicked by a sequence (nq,α,k, (q

′, β, R))
(nq′,k+1, γ) (nγ,k+1, q

′) of moves in the new construction.
Formally, the construction is the following:

– The set of agents is

A = {I, P} ∪ {Ck : k ∈ {0, ..., n− 1}}

– The set of atoms is

N = {n0, nf} ∪{nq,α,k : (q, α, k) ∈ Q× Γ × {0, ..., n− 1}}
∪{nα,k : (α, k) ∈ Γ × {0, ..., n− 1}}
∪{nq,k : (q, k) ∈ Q× {0, ..., n− 1}}

– The set N1 of atoms owned by Player 1 contains n0, nf , all atoms nα,k, all
atoms nq,k, and all atoms nq,α,k such that g(q) 6= ∧. The set N2 contains all
other atoms.

– The set of parties of each atom is given by

Pn0
= Pnf = A

Pnq,α,k = {I, P, Ck} for every nq,α,k ∈ N

Pnα,k = {P,Ck} for every nα,k ∈ N

Pnq,k = {I, P} for every nq,k ∈ N

– The set of outcomes of each atom is defined as follows: Rn0 = {st},
Rnf = {end}, and

Rnq,α,k =


{f} q = qaccept

{s} q = qreject

{rτ : τ ∈ δ(q, α)} otherwise

for every nq,α,k ∈ N

Rnq,k = {rα : α ∈ Γ} for every nq,k ∈ N

Rnα,k = {rq : q ∈ Q} for every nα,k ∈ N

– The X ( , P, ) function for agent P is given by:

X (n0, P, st) = {nα,0 : α is the initial content of cell 0}

X (nq,α,k, P, rτ ) =

{
{nq′,k−1} if τ = (q′, , L)

{nq′,k+1} if τ = (q′, , R)
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X (nq,k, P, rα) = {nα,k}

X (nα,k, P, rq) = {nq,α,k}

X (nqaccept,α,k, P, f) = {nf}

X (nqreject,α,k, P, s) = {nqreject,α,k}

– The X ( , I, ) function for agent I is given by:

X (n0, I, st) = {nq0,α,0 : α is the initial content of cell 0}

X (nq,α,k, I, rτ ) =

{
{nq′,k−1} if τ = (q′, , L)

{nq′,k+1} if τ = (q′, , R)

X (nq,k, I, rα) = {nq,α,k}

X (nqaccept,α,k, I, f) = {nf}

X (nqreject,α,k, I, s) = {nqreject,α,k}

– Finally, the X ( , Ck, ) function for agent Ck is given by

X (n0, Ck, st) = {nα,k : α is the initial content of cell k}

X (nq,α,k, Ck, rτ ) = {nβ,k} if τ = ( , β, )

X (nα,k, Ck, rq) = {nq,α,k}

X (nqaccept,α,k, Ck, f) = {nf}

X (nqreject,α,k, Ck, s) = {nqreject,α,k}
ut

8.2 Proofs of section ??

Theorem ??. The termination problem is EXPTIME-hard for sound negotia-
tion arenas.

Proof. Recall that a negotiation is sound if every atom is fired in at least one
occurrence sequence, and every occurrence sequence can be extended to a se-
quence that fires the final atom nf . There are two reasons why the negotiation
NM,x defined in the proof of Theorem ?? is unsound in general:

– If M does not accept, then the final atom nf is not reachable.
– If the head can never reach cell k with symbol α in it, then the atom nq,α,k

never occurs in any occurrence sequence,.
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To solve these problems, we modify the construction of Theorem ??. The
negotiation of Theorem ??, which we now call the old negotiation, just simulates
a run of the machine. The new negotiation also does that in a first stage, but
it also exhibits additional behavior. Intuitively, if the run rejects, then the new
negotiation enters a “anything is possible”- mode, or anything-mode for short:
the negotiation is then able to repeatedly fire any non-final atom, or fire the final
atom and terminate. Furthermore, if the run accepts, then the new negotiation
can either directly fire nf , or enter the anything-mode.

The visual representation of the construction (with a simplified representa-
tion of the TM) can be found in Figure ??. Dashed edges always mean that all
agents Ck have nondeterministic edges for every outcome to that port/from that
port to all other ports.

I P C SSn0

I P Ck
nqaccept,α,k I P Ck

nqreject,α,k

I P C SSnf

I P C SSn1

I P C SSn2

Fig. 7. Constructing a sound negotiation for the TM reduction. C means all agents Ck

Now we can argue why the new negotiation is sound. Since, by assumption,
every run of the machine either accepts of rejects, the negotiation can always
reach the anything-mode, which allows it to fire any atom, including the final
atom.

However, we also have to guarantee that Player 1 has a winning strategy in
the new negotiation iff the machine accepts. For this, we ensure two things. First,
when the run accepts, the choice between firing nf and entering the anything-
mode is taken by Player 1. The winning strategy for Player 1 is to choose nf .
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Second, in the anything-mode the choice whether to fire the final atom or some
other atom is controlled by Player 2; therefore, if the anything-mode is entered
after a reject run, Player 2 wins by never selecting the final atom.

We implement this idea by introducing a new agent S and two new atoms
n1, n2. All agents, including S, participate in both n1 and n2, but n0, n1, n2, nf
are the only atoms in which S participates. After n0 occurs, agent S is ready
to engage in both nf and n1. Firing n1 signals the start of the anything-mode.
After firing n1, all agents move to n2. Atom n2 has two outcomes, s and f :
after the outcome f all agents move to nf , and so by choosing this outcome
the negotiation terminates. After the outcome s, all agents but S are ready to
engage in any atom, while S is only ready to engage in n2 again. So this outcome
corresponds to choosing any non-final atom of the old negotiation and firing it.
But we still have to guarantee that after this atom is fired, atom n2 is enabled
again. For this, we add n2 as n2 to X (n, a, r) for every atom n 6= {n1, n2, nf},
agent a 6= S, and outcome r

To ensure that the anything-mode is entered if the run of the Turing machine
rejects, atoms of the form nqreject,α,k are given one single outcome, and the X ()
function is modified as follows: P and I move to n1, and we add n1 to the set
X (n,Ck, r) for every atom n and outcome r). So after nqreject,α,k fires n1 is the
only atom enabled.

Now we ensure that if the run of the Turing machine accepts, then Player
1 can decide whether to terminate or enter the anything-mode. For this we let
atoms of the form nqaccept,α,k to be controlled by Player 1, and add to them a
second outcome that enables n1 (additionally to the one enabling nf ).

Formally, here are the changes to the construction of Theorem ??:

– S is added to the set of agents: A′ = A ∪ {S}
– n1, n2, controlled by Player 2 are added to the atoms: N ′ = N ∪ {n1, n2}

and N ′2 = N2 ∪ {n1, n2}
– All agents participate in n1, n2 (and S in n0, nf ):

P ′n0
= P ′nf = P ′n1

= P ′n2
= A′

– The outcomes for n1 and n2 are define by: R′n1
= {s}, R′n2

= {s,f}
– All atoms nqaccept,α,k get a second outcome: R′nqaccept,α,k = {s,f}
– The X (n1, , ) function for atom n1 is given by

X ′(n1, a, s) = {n2} for all a ∈ Pn1

– The X (n2, , ) function for atom n2 is given by

X ′(n2, a, s) = {n ∈ N ′\{nf} : a ∈ Pn} for all a ∈ Pn2\{S}

X ′(n2, a, f) = {nf} for all a ∈ Pn2

– The X ( , S, ) function for agent S is given by:

X ′(n0, S, st) = {nf , n1}
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X ′(n2, S, s) = {n2}

X ′(n2, S, f) = {n2}

– The X (n, , ) function for all accepting and rejecting atoms nqaccept,α,k, nqreject,α,k
is modified to:

X ′(nqaccept,α,k, a, s) = {n1} for all a ∈ P ′nqaccept,α,k

X ′(nqaccept,α,k, a, f) = {nf} for all a ∈ P ′nqaccept,α,k

X ′(nqreject,α,k, a, s) = {n1} for all a ∈ P ′nqreject,α,k
– And finally, all agents except S are ready to take part in n2 at any time:

X ′(n, a, r) = X ′(n, a, r) ∪ {n2} for all n ∈ n ∈ N ′\{nf}, a ∈ P ′n\{S}, r ∈ R′n

Now all atoms are enabled after some sequence, the end atom can always be
reached, and P1 can enforce the end atom iff M terminates in qaccept. ut


