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Abstract. A monotone system of min-max-polynomial equations (min-max-
MSPE) over the variables X1, . . . , Xn has for every i exactly one equation
of the form Xi = fi(X1, . . . , Xn) where each fi(X1, . . . , Xn) is an expres-
sion built up from polynomials with non-negative coefficients, minimum- and
maximum-operators. The question of computing least solutions of min-max-
MSPEs arises naturally in the analysis of recursive stochastic games [4, 5, 12].
Min-max-MSPEs generalize MSPEs for which convergence speed results of
Newton’s method are established in [9, 2]. We present the first methods for ap-
proximatively computing least solutions of min-max-MSPEs which converge at
least linearly. Whereas the first one converges faster, a single step of the second
method is cheaper. Furthermore, we compute ε-optimal positional strategies for
the player who wants to maximize the outcome in a recursive stochastic game.

1 Introduction

In this paper we study monotone systems of min-max polynomial equations (min-max-
MSPEs). A min-max-MSPE over the variables X1, . . . , Xn contains for every 1 ≤ i ≤
n exactly one equation of the form Xi = fi(X1, . . . , Xn) where every fi(X1, . . . , Xn)
is an expression built up from polynomials with non-negative coefficients, minimum-
and maximum-operators. An example of such an equation is X1 = 3X1X2+5X2

1∧4X2

(where ∧ is the minimum-operator). The variables range over non-negative reals. Min-
max-MSPEs are called monotone because fi is a monotone function in all arguments.

Min-max-MSPEs naturally appear in the study of two-player stochastic games and
competitive Markov decision processes, in which, broadly speaking, the next move is
decided by one of the two players or by tossing a coin, depending on the game’s posi-
tion (see e.g. [10, 6]). The min and max operators model the competition between the
players. The product operator, which leads to non-linear equations, allows to deal with
recursive stochastic games [4, 5], a class of games with an infinite number of positions,
and having as special case extinction games, games in which players influence with
their actions the development of a population whose members reproduce and die, and
the player’s goals are to extinguish the population or keep it alive (see Section 4).

Min-max-MSPEs generalize several other classes of equation systems. If product is
disallowed, we obtain systems of min-max linear equations, which appear in classical
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two-person stochastic games with a finite number of game positions. The problem of
solving these systems has been thoroughly studied [1, 7, 8]. If both min and max are
disallowed, we obtain monotone systems of polynomial equations, which are central
to the study of recursive Markov chains and probabilistic pushdown systems, and have
been recently studied in [3, 9, 2]. If only one of min or max is disallowed, we obtain
a class of systems corresponding to recursive Markov decision processes [4]. All these
models have applications in the analysis of probabilistic programs with procedures [12].

In vector form we denote a min-max-MSPE by X = f(X) where X denotes the
vector (X1, . . . , Xn) and f denotes the vector (f1, . . . , fn). By Kleene’s theorem, if
a min-max-MSPE has a solution then it also has a least one, denoted by µf , which
is also the relevant solution for the applications mentioned above. Kleene’s theorem
also ensures that the iterative process κ(0) = 0, κ(k+1) = f(κ(k)), k ∈ N, the
so-called Kleene sequence, converges to µf . However, this procedure can converge
very slowly: in the worst case, the number of accurate bits of the approximation grows
with the logarithm of the number of iterations (cf. [3]). Thus, the goal is to replace the
function f by an operator G : Rn → Rn such that the respective iterative process also
converges to µf but faster. In [3, 9, 2] this problem was studied for min-max-MSPEs
without the min and max operator. There, G was chosen as one step of the well-known
Newton’s method (cf. for instance [11]). This means that, for a given approximate x(k),
the next approximate x(k+1) = G(x(k)) is determined by the unique solution of a
linear equation system which is obtained from the first order Taylor approximation of f
at x(k). It was shown that this choice guarantees linear convergence, i.e., the number of
accurate bits grows linearly in the number of iterations. Notice that when characterizing
the convergence behavior the term linear does not refer to the size of f .

However, this technique no longer works for arbitrary min-max-MSPEs. If we ap-
proximate f at x(k) through its first order Taylor approximation at x(k) there is no
guarantee that the next approximate still lies below the least solution, and the sequence
of approximants may even diverge. For this reason, the PReMo tool [12] uses round-
robin iteration for min-max-MSPEs, an optimization of Kleene iteration. Unfortunately,
this technique also exhibits “logarithmic” convergence behavior in the worst case.

In this paper we overcome the problem of Newton’s method. Instead of approxi-
mating f (at the current approximate x(k)) by a linear function, both of our methods
approximate f by a piecewise linear function. In contrast to the applications of New-
ton’s method in [3, 9, 2], this approximation may not have a unique fixpoint, but it has
a least fixpoint which we use as the next approximate x(k+1) = G(x(k)). Our first
method uses an approximation of f at x(k) whose least fixpoint can be determined us-
ing the algorithm for systems of rational equations from [8]. The approximation of f at
x(k) used by our second method allows to use linear programming to compute x(k+1).
Our methods are the first algorithms for approximatively computing µf which converge
at least linearly, provided that f is quadratic, an easily achievable normal form.

The rest of the paper is organized as follows. In Section 2 we introduce basic con-
cepts and state some important facts about min-max-MSPEs. A class of games which
can be analyzed using our techniques is presented in Section 4. Our main contribution,
the two approximation methods, is presented and analyzed in Sections 5 and 6. In Sec-
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tion 7 we study the relation between our two approaches and compare them to previous
work. We conclude in Section 8. Missing proofs can be found in a technical report [?].

2 Notations, Basic Concepts and a Fundamental Theorem

As usual, R and N denote the set of real and natural numbers. We assume 0 ∈ N. We
write R≥0 for the set of non-negative real numbers. We use bold letters for vectors, e.g.
x ∈ Rn. In particular 0 denotes the vector (0, . . . , 0). The transpose of a matrix or a
vector is indicated by the superscript >. We assume that the vector x ∈ Rn has the
components x1, . . . , xn. Similarly, the i-th component of a function f : Rn → Rm

is denoted by fi. As in [2], we say that x ∈ Rn has i ∈ N valid bits of y ∈ Rn iff
|xj − yj | ≤ 2−i|yj | for j = 1, . . . , n. We identify a linear function from Rn to Rm

with its representation as a matrix from Rm×n. The identity matrix is denoted by I .
The Jacobian of a function f : Rn → Rm at x ∈ Rn is the matrix of all first-order
partial derivatives of f at x, i.e., the m×n-matrix with the entry ∂fi

∂Xj
(x) in the i-th row

and the j-th column. We denote it by f ′(x).
The partial order ≤ on Rn is defined by setting x ≤ y iff xi ≤ yi for all i =

1, . . . , n. We write x < y iff x ≤ y and x 6= y. The operators ∧ and ∨ are defined by
x ∧ y := min{x, y} and x ∨ y := max{x, y} for x, y ∈ R. These operators are also
extended component-wise to Rn and point-wise to Rn-valued functions. A function
f : D ⊆ Rn → Rm it called monotone on M ⊆ D iff f(x) ≤ f(y) for every
x,y ∈ M with x ≤ y. Let X ⊆ Rn and f : X → X . A vector x ∈ X is called
fixpoint of f iff x = f(x). It is the least fixpoint of f iff y ≥ x for every fixpoint
y ∈ X of f . If it exists we denote the least fixpoint of f by µf . We call f feasible iff
f has some fixpoint x ∈ X .

Let us fix a set X = {X1, . . . , Xn} of variables. We call a vector f = (f1, . . . , fm)
of polynomials f1, . . . , fm in the variables X1, . . . , Xn a system of polynomials. f is
called linear (resp. quadratic) iff the degree of each fi is at most 1 (resp. 2), i.e., every
monomial contains at most one variable (resp. two variables). As usual, we identify f
with its interpretation as a function from Rn to Rm. As in [9, 2] we call f a monotone
system of polynomials (MSP for short) iff all coefficients are non-negative.
Min-max-MSPs. Given polynomials f1, . . . , fk we call f1 ∧ · · · ∧ fk a min-polynomial
and f1 ∨ · · · ∨ fk a max-polynomial. A function that is either a min- or a max-
polynomial is also called min-max-polynomial. We call f = (f1, . . . , fn) a system
of min-polynomials iff every component fi is a min-polynomial. The definition of sys-
tems of max-polynomials and systems of min-max-polynomials is analogous. A system
of min-max-polynomials is called linear (resp. quadratic) iff all occurring polynomials
are linear (resp. quadratic). By introducing auxiliary variables every system of min-
max-polymials can be transformed into a quadratic one in time linear in the size of
the system (cf. [9]). A system of min-max-polynomials where all coefficients are from
Rn
≥0 is called a monotone system of min-max-polynomials (min-max-MSP) for short.

The terms min-MSP and max-MSP are defined analogously.

Example 1. f(x1, x2) = ( 1
2x2

2 + 1
2 ∧ 3, x1 ∨ 2)> is a quadratic min-max-MSP.
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A min-max-MSP f = (f1, . . . , fn)> can be considered as a mapping from Rn
≥0 to

Rn
≥0. The Kleene sequence (κ(k)

f )k∈N is defined by κ
(k)
f := fk(0), k ∈ N. We have:

Lemma 1. Let f : Rn
≥0 → Rn

≥0 be a min-max-MSP. Then: (1) f is monotone and
continuous on Rn

≥0; and (2) If f is feasible (i.e., f has some fixpoint), then f has a

least fixpoint µf and µf = limk→∞ κ
(k)
f .

Strategies. Assume that f denotes a system of min-max-polynomials. A ∨-strategy σ
for f is a function that maps every max-polynomial fi = fi,1 ∨ · · · ∨ fi,ki occurring
in f to one of the fi,j’s and every min-polynomial fi to fi. We also write fσ

i for σ(fi).
Accordingly, a ∧-strategy π for f is a function that maps every min-polynomial fi =
fi,1 ∧ · · · ∧ fi,k occurring in f to one of the fi,j’s and every max-polynomial fi to
fi. We denote the set of ∨-strategies for f by Σf and the set of ∧-strategies for f by
Πf . For s ∈ Σf ∪Πf , we write fs for (fs

1, . . . ,f
s
n)>. We define Π∗

f := {π ∈ Πf |
fπ is feasible}. We drop the subscript whenever it is clear from the context.

Example 2. Consider f from Example 1. Then π : 1
2x2

2 + 1
2 ∧ 3 7→ 3, x1 ∨ 2 7→ x1 ∨ 2

is a ∧-strategy. The max-MSP fπ is given by fπ(x1, x2)> = (3, x1 ∨ 2)>. ut

We collect some elementary facts concerning strategies.

Lemma 2. Let f be a feasible min-max-MSP. Then (1) µfσ ≤ µf for every σ ∈ Σ;
(2) µfπ ≥ µf for every π ∈ Π∗; (3) µfπ = µf for some π ∈ Π∗.

In [4] the authors consider a subclass of recursive stochastic games for which they
prove that a positional optimal strategy exists for the player who wants to maximize
the outcome (Theorem 2). The outcome of such a game is the least fixpoint of some
min-max-MSP f . In our setting, Theorem 2 of [4] implies that there exists a ∨-strategy
σ such that µfσ = µf — provided that f is derived from such a recursive stochastic
game. Example 4 shows that this property does not hold for arbitrary min-max-MSPs.

Example 3. Consider f from Example 1. Let σ1, σ2 ∈ Σ be defined by σ1(x1∨2) = x1

and σ2(x1 ∨ 2) = 2. Then µfσ1 = (1, 1)>, µfσ2 = (5
2 , 2)> and µf = (3, 3)>. ut

The proof of the following fundamental result is inspired by the proof of Theorem 2 in
[4]. Although the result looks very natural it is non-trivial to prove.

Theorem 1. Let f be a feasible max-MSP. Then µfσ = µf for some σ ∈ Σ.

¡¡¡¡¡¡¡ .mine

3 An Example of Application: Extinction Games

=======
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4 A Class of Applications: Extinction Games

¿¿¿¿¿¿¿ .r1222 In order to illustrate the interest of min-max-MSPs we consider extinc-
tion games, which are special stochastic games. Consider a world of n different species
s1, . . . , sn. Each species si is controlled by one of two adversarial players. For each si

there is a non-empty set Ai of actions. An action a ∈ Ai replaces a single individual of
species si by other individuals specified by the action a. The actions can be probabilis-
tic. E.g., an action could transform an adult rabbit to zero individuals with probability
0.2, to an adult rabbit with probability 0.3 and to an adult and a baby rabbit with proba-
bility 0.5. Another action could transform an adult rabbit to a fat rabbit. The max-player
(min-player) wants to maximize (minimize) the probability that some initial population
is extinguished. During the game each player continuously chooses an individual of a
species si controlled by her/him and applies an action from Ai to it. Note that actions on
different species are never in conflict and the execution order is irrelevant. What is the
probability that the population is extinguished if the players follow optimal strategies?

To answer those questions we set up a min-max-MSP f with one min-max-
polynomial for each species, thereby following [?,4]. The variables Xi represent the
probability that a population with only a single individual of species si is extinguished.
In the rabbit example we have Xadult = 0.2 + 0.3Xadult + 0.5XadultXbaby ∨Xfat, assum-
ing that the adult rabbits are controlled by the max-player. The probability that an initial
population with pi individuals of species si is extinguished is given by

∏n
i=1((µf)i)pi .

The stochastic termination games of [4, 5, 12] can be considered as extinction games.
In the following we present another instance.
The primaries game. In order to illustrate the interest of min-max-MSPs we consider
the following stochastic game. Hillary Clinton has to decide her strategy in the pri-
maries. Her team estimates that undecided voters have not yet decided to vote for her
for three possible reasons: they consider her (a) cold and calculating, (b) too much part
of Washington’s establishment, or (c) they listen to Obama’s campaign. So the team
decides to model those problems as species in an extinction game. The larger the popu-
lation of a species, the more influenced is an undecided voter by the problem. The goal
of Clinton’s team is to maximize the extinction probabilities.

¡¡¡¡¡¡¡ .mine So the team decides to model the state of an undecided voter by a triple
(na, nb, nc) of natural numbers indicating the degree to which the voter is influenced
by these three problems (the higher the number, the more influenced he or she is). The
goal of Clinton’s team is to bring as many voters as possible to the state (0, 0, 0).

If na > 1, Clinton can tackle problem (a) by either showing emotions or con-
centrating on her program. If she shows emotions, her team estimates that the voter’s
state changes by (−1, 0, 0) with probability 0.3, but with probability 0.7 the action
may backfire and change it by (+1, 0, 0). If she concentrates on her program, the state
changes by (−1, 0, 0) with probability 0.1, and by (−1, 0,+1) with probability 0.9.
Let X1 (resp. X2, X3) denote the probability that the voters’s state changes eventually
from (1, 0, 0) (resp. (0, 1, 0), (0, 0, 1)) to (0, 0, 0), assuming Clinton and Obama follow
perfect strategies. Then X1 satisfies equation (1) below. If nb > 1, Clinton can choose
between ======= Clinton’s possible actions for problem (a) are showing emotions or
concentrating on her program. If she shows emotions, her team estimates that the in-
dividual of problem (a) is removed with probability 0.3, but with probability 0.7 the
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action backfires and produces yet another individual of (a). This and the effect of con-
centrating on her program can be read off from Equation (1) below. For problem (b),
Clinton can choose between ¿¿¿¿¿¿¿ .r1222 concentrating on her voting record or her
statement “I’ll be ready from day 1”. Her team estimates the effect as given in Equa-
tion (2). Problem (c) is controlled by Obama, who has the choice between his “change”
message, or attacking Clinton for her position on Iraq, see Equation (3).

Xa = 0.3 + 0.7X2
a ∨ 0.1 + 0.9Xc (1)

Xb = 0.1 + 0.9Xc ∨ 0.4Xb + 0.3Xc + 0.3 (2)
Xc = 0.5Xb + 0.3X2

b + 0.2 ∧ 0.5Xa + 0.4XaXb + 0.1Xb (3)

¡¡¡¡¡¡¡ .mine(*I’ve added some lines here!*)

What is the probability, assuming perfect strategies, that a voter in state (1, 0, 0) is
eventually moved to (0, 0, 0) ? It is easy to see that it is given by the first component
of the least solution of this mn-max-MSP. We are also interested in the strategies by
Clinton and Obama that lead to this probability. In the next two sections we show how
to efficiently solve these problems.

This is an example of an extinction game. We have three populations of “problem
instances” (a state (na, nb, nc) indicates that the populations have na, nb, and nc indi-
viduals). Individuals can reproduce or die. The goal of one of the players (Clinton in our
case) is to get all populations “extinct”, while the other player wants to keep them alive.
Another example for an extinction game in appendix ??. ======= What should Clin-
ton and Obama do? What are the extinction probabilities, assuming perfect strategies?
In the next sections we show how to efficiently solve these problems. ¿¿¿¿¿¿¿ .r1222

5 The τ -Method

Assume that f denotes a feasible min-max-MSP. In this section we present our first
method for computing µf approximatively. We call it τ -method. This method com-
putes, for each approximate x(i), the next approximate x(i+1) as the least fixpoint of a
piecewise linear approximation L(f ,x(i))∨x(i) (see below) of f at x(i). This approx-
imation is a system of linear min-max-polynomials where all coefficients of monomials
of degree 1 are non-negative. Here, we call such a system a monotone linear min-max-
system (min-max-MLS for short). Note that a min-max-MLS f is not necessarily a min-
max-MSP, since negative coefficients of monomials of degree 0 are allowed, e.g. the
min-max-MLS f(x1) = x1 − 1 is not a min-max-MSP.

In [8] a min-max-MLS f is considered as a system of equations (called system of
rational equations in [8]) which we denote by X = f(X) in vector form. We identify
a min-max-MLS f with its interpretation as a function from Rn

to Rn
(R denotes the

complete lattice R ∪ {−∞,∞}). Since f is monotone on Rn
, it has a least fixpoint

µf ∈ Rn
which can be computed using the strategy improvement algorithm from [8].

We now define the min-max-MLS L(f ,y), a piecewise linear approximation of f
at y. As a first step, let us consider a monotone polynomial f : Rn

≥0 → R≥0. Given
some approximate y ∈ Rn

≥0, a linear approximation L(f,y) : Rn → R of f at y is
given by the first order Taylor approximation at y, i.e.,

L(f,y)(x) := f(y) + f ′(y)(x− y), x ∈ Rn.
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This is precisely the linear approximation which is used for Newton’s method. Now
consider a max-polynomial f = f1 ∨ · · · ∨ fk : Rn → R. We define the approximation
L(f,y) : Rn → R of f at y by L(f,y) := L(f1,y) ∨ · · · ∨ L(fk,y). We emphasize
that in this case, L(f,y) is in general not a linear function but a linear max-polynomial.
Accordingly, for a min-MSP f = f1 ∧ · · · ∧ fk : Rn → R, we define L(f,y) :=
L(f1,y) ∧ · · · ∧ L(fk,y). In this case L(f,y) is a linear min-polynomial. Finally, for
a min-max-MSP f : Rn → Rn, we define the approximation L(f ,y) : Rn → Rn of
f at y by L(f ,y) := (L(f1,y), . . . ,L(fn,y))> which is a min-max-MLS.

Example 4. Consider the min-max-MSP f from Example 1. The approximation
L(f , ( 1

2 , 1
2 )) is given by L(f , ( 1

2 , 1
2 ))(x1, x2) =

(
1
2x2 + 3

8 ∧ 3, x1 ∨ 2
)
. ut

Using the approximation L(f ,x(i)) we define the operator Nf : Rn
≥0 → Rn

≥0 which
gives us, for an approximate x(i), the next approximate x(i+1) by

Nf (x) := µ(L(f ,x) ∨ x), x ∈ Rn
≥0.

Observe that L(f ,x) ∨ x is still a min-max-MLS (at least after introducing auxiliary
variables in order to eliminate components which contain ∨- and ∧-operators).

Example 5. In Example 5 we have: Nf ( 1
2 , 1

2 )=µ(L(f , ( 1
2 , 1

2 )) ∨ ( 1
2 , 1

2 )>)=( 11
8 , 2)>.

We collect basic properties of Nf in the following lemma:

Lemma 3. Let f be a feasible min-max-MSP and x,y ∈ Rn
≥0. Then:

1. x,f(x) ≤ Nf (x);
2. x = Nf (x) whenever x = f(x);
3. (Monotonicity of Nf ) Nf (x) ≤ Nf (y) whenever x ≤ y;
4. Nf (x) ≤ f(Nf (x)) whenever x ≤ f(x);
5. Nf (x) ≥ Nfσ (x) for every ∨-strategy σ ∈ Σ;
6. Nf (x) ≤ Nfπ (x) for every ∧-strategy π ∈ Π;
7. Nf (x) = Nfπ (x) for some ∧-strategy π ∈ Π .

In particular Lemma 3 implies that the least fixpoint of Nf is equal to the least fixpoint
of f . Moreover, iteration based onNf is at least as fast as Kleene iteration. We therefore
use this operator for computing approximates to the least fixpoint. Formally, we define:

Definition 1. We call the sequence (τ (k)
f ) of approximates defined by τ

(k)
f := N k

f (0)
for k ∈ N the τ -sequence for f . We drop the subscript if it is clear from the context.

Proposition 1. Let f be a feasible min-max-MSP. The τ -sequence (τ (k)) for f (see
definition 1) is monotonically increasing, bounded from above by µf , and converges to
µf . Moreover, κ(k) ≤ τ (k) for all k ∈ N.

We now show that the new approximation method converges at least linearly to the
least fixpoint. Theorem 6.2 of [2] implies the following lemma about the convergence
of Newton’s method for MSPs, i.e., systems without maxima and minima.

Lemma 4. Let f be a feasible quadratic MSP. The sequence (τ (k))k∈N converges lin-
early to µf . More precisely, there is a kf ∈ N such that τ (kf +i·(n+1)·2n) has at least i
valid bits of µf for every i ∈ N.
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We emphasize that linear convergence is the worst case. In many practical examples,
in particular if the matrix I − f ′(µf) is invertible, Newton’s method converges expo-
nentially. We mean by this that the number of accurate bits of the approximation grows
exponentially in the number of iterations.

As a first step towards our main result for this section, we use Lemma 4 to show
that our approximation method converges linearly whenever f is a max-MSPs. In this
case we obtain the same convergence speed as for MSPs.

Lemma 5. Let f be a feasible max-MSP. Let M := {σ ∈ Σ | µfσ = µf}. The set M

is non-empty and τ
(i)
f ≥ τ

(i)
fσ for all σ ∈ M and i ∈ N.

Proof. Theorem 1 implies that there exists a ∨-strategy σ ∈ Σ such that µfσ = µf .
Thus M is non-empty. Let σ ∈ M . By induction on k Lemma 3 implies τ

(k)
f =

N k
f (0) ≥ N k

fσ (0) = τ
(k)
fσ for every k ∈ N. ut

Combining Lemma 4 and Lemma ?? we get linear convergence for max-MSPs:

Theorem 2. Let f be a feasible quadratic max-MSP. The τ -sequence (τ (k)) for f (see
definition 1) converges linearly to µf . More precisely, there is a kf ∈ N such that
τ (kf +i·(n+1)·2n) has at least i valid bits of µf for every i ∈ N.

A direct consequence of Lemma ?? is that the τ -sequence (τ (i)
f ) converges exponen-

tially if (τ (i)
fσ ) converges exponentially for some σ ∈ Σ with µfσ = µf . This is in

particular the case if the matrix I − (fσ)′(µf) is invertible. In order to extend this
result to min-max-MSPs we state the following lemma which enables us to relate the
sequence (τ (i)

f ) to the sequences (τ (i)
fπ ) where µfπ = µf .

Lemma 6. Let f be a feasible min-max-MSP and m denote the number of strategies
π ∈ Π with µf = µfπ . There is a constant k ∈ N such that for all i ∈ N there exists
some strategy π ∈ Π with µf = µfπ and τ

(i)
fπ ≤ τ

(k+m·i)
f .

We now present the main result of this section which states that our approximation
method converges at least linearly also in the general case, i.e., for min-max-MSPs.

Theorem 3. Let f be a feasible quadratic min-max-MSP and m denote the number of
strategies π ∈ Π with µf = µfπ . The τ -sequence (τ (k)) for f (see definition 1) con-
verges linearly to µf . More precisely, there is a kf ∈ N such that τ (kf +i·m·(n+1)·2n)

has at least i valid bits of µf for every i ∈ N.

The upper bound on the convergence rate provided by Theorem 2 is by the factor m
worse than the upper bound obtained for MSPs. Since m is the number of strategies
π ∈ Π with µfπ = µf , m is trivially bounded by |Π| but is usually much smaller. The
τ -sequence (τ (i)

f ) converges exponentially whenever (τ (i)
fπ ) converges exponentially

for every π with µfπ = µf (see [?]). The latter condition is typically satisfied (see the
discussion after Theorem 2).

In order to determine the approximate τ (i+1) = Nf (τ (i)) from τ (i) we must com-
pute the least fixpoint of the min-max-MLS L(f , τ (i))∨τ (i). This can be done by using
the strategy improvement algorithm from [8]. The algorithm iterates over ∨-strategies.
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For each strategy it solves a linear program or alternatively iterates over ∧-strategies.
The number of ∨-strategies used by this algorithm is trivially bounded by the number of
∨-strategies for L(f , τ (i))∨τ (i) which is exponentially in the number of ∨-expressions
occurring in L(f , τ (i)) ∨ τ (i). However, we do not know an example for which the al-
gorithm considers more than linearly many strategies.

6 The ν-Method

The τ -method, presented in the previous section, uses strategy iteration over ∨-
strategies to compute Nf (y). This could be expensive, as there may be exponen-
tially many ∨-strategies. Therefore, we derive an alternative generalization of Newton’s
method that in each step picks the currently most promising ∨-strategy directly, without
strategy iteration.

Consider again a fixed feasible min-max-MSP f whose least fixpoint we want to
approximate. Assume that y is some approximation of µf . Instead of applying Nf to
y, as the τ -method, we now choose a strategy σ ∈ Σ such that f(y) = fσ(y), and
computeNfσ (y), whereNfσ was defined in Section 5 asNfσ (y) := µ(L(fσ,y)∨y).
In the following we write Nσ instead of Nfσ if f is understood.

Assume for a moment that f is a max-MSP and that there is a unique σ ∈ Σ such
that f(y) = fσ(y). The approximant Nσ(y) is the result of applying one iteration of
Newton’s method, because L(fσ,y) is not only a linearization of fσ , but the first order
Taylor approximation of f at y. More precisely, L(fσ,y)(x) = f(y)+f ′(y)·(x−y),
and Nσ(y) is obtained by solving x = L(fσ,y)(x). In this sense, the ν-method is a
more direct generalization of Newton’s method than the τ -method. Formally, we define
the ν-method by a sequence of approximates, the ν-sequence.

Definition 2 (ν-sequence). A sequence (ν(k)
f )k∈N is called ν-sequence of a min-max-

MSP f if ν
(0)
f = 0 and for each k there is a strategy σ

(k)
f ∈ Σ with f(ν(k)

f ) =

fσ
(k)
f (ν(k)

f ) and ν
(k+1)
f = N

σ
(k)
f

(ν(k)
f ). We may drop the subscript if f is understood.

Notice the nondeterminism here if there is more than one ∨-strategy that attains
f(ν(k)). The following proposition is analogous to Proposition 1 and states some basic
properties of ν-sequences.

Proposition 2. Let f be a feasible min-max-MSP. The sequence (ν(k)) is monotoni-
cally increasing, bounded from above by µf , and converges to µf . More precisely, we
have κ(k) ≤ ν(k) ≤ f(ν(k)) ≤ ν(k+1) ≤ µf for all k ∈ N.

The goal of this section is again to strengthen Proposition 2 towards quantitative con-
vergence results for ν-sequences. To achieve this goal we again relate the convergence
of ν-sequences to the convergence of Newton’s method for MSPs. If f is an MSP,
Lemma 4 allows to argue about the Newton operator Nf when applied to approxi-
mates x ≤ µf . To transfer this result to min-max-MSPs f we need an invariant like
ν(k) ≤ µfσ(k)

for ν-sequences. As a first step to such an invariant we further restrict the
selection of the σ(k). Roughly speaking, the strategy in a component i is only changed
when it is immediate that component i has not yet reached its fixpoint.
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Algorithm 1 lazy ν-method

procedure lazy-ν(f , k)
assumes: f is a min-max-MSP
returns: ν(k), σ(k) obtained by k iterations

of the lazy ν-method
ν ← 0
σ← any σ ∈ Σ such that f(0) = fσ(0)
for i from 1 to k do

ν ←Nfσ (ν)
σ← lazy strategy update from ν and σ

od
return ν, σ

procedureNf (y)
assumes: f is a min-MSP, y ∈ Rn

≥0

returns: µ(L(f , y) ∨ y)
g← linear min-MSP with

g(d) = L(f , y)(y + d)− y

u← κ
(n)
geg← (eg1, . . . , egn)> whereegi =


0 if ui = 0
gi if ui > 0

d∗← maximize x1 + · · ·+ xn subject
to 0 ≤ x ≤ eg(x) by 1 LP

return y + d∗

Definition 3 (lazy strategy update). Let x ≤ fσ(x) for a σ ∈ Σ. We say that σ′ ∈ Σ

is obtained from x and σ by a lazy strategy update if f(x) = fσ′
(x) and σ′(fi) =

σ(fi) holds for all components i with fi(x) = xi. We call a ν-sequence (ν(k))k∈N lazy
if for all k, the strategy σ(k) is obtained from ν(k) and σ(k−1) by a lazy strategy update.

The key property of lazy ν-sequences is the following non-trivial invariant.

Lemma 7. Let (ν(k))k∈N be a lazy ν-sequence. Then ν(k) ≤ µfσ(k)π holds for all
k ∈ N and all π ∈ Π∗.

The following example shows that lazy strategy updates are essential to Lemma 6 even
for max-MSPs.

Example 6. Consider the MSP f(x, y) = ( 1
2 ∨ x, xy + 1

2 ). Let σ(0)( 1
2 ∨ x) = 1

2

and σ(1)( 1
2 ∨ x) = x. Then there is a ν-sequence (ν(k)) with ν(0) = 0, ν(1) =

Nσ(0)(0) = ( 1
2 , 0), ν(2) = Nσ(1)(ν(1)). However, the conclusion of Lemma 6 does not

hold, because ( 1
2 , 0) = ν(1) 6≤ µfσ(1)

= (0, 1
2 ). Notice that σ(1) is not obtained by a

lazy strategy update, as f1(ν(1)) = ν
(1)
1 . ut

Lemma 6 falls short of our subgoal to establish ν(k) ≤ µfσ(k)
, because Π \Π∗ might

be non-empty. In fact, we provide an example in [?] showing that ν(k) ≤ µfσ(k)π does
not always hold for all π ∈ Π , even when fσ(k)π is feasible. Luckily, Lemma 6 will
suffice for our convergence speed result.

The left procedure of Algorithm 1 summarizes the lazy ν-method which works by
computing lazy ν-sequences. The following lemma relates the ν-method for min-max-
MSPs to Newton’s method for MSPs.

Lemma 8. Let f be a feasible min-max-MSP and (ν(k)) a lazy ν-sequence. Let m be
the number of strategy pairs (σ, π) ∈ Σ ×Π with µf = µfσπ . Then m ≥ 1 and there
is a constant kas ∈ N such that, for all k ∈ N, there exist strategies σ ∈ Σ, π ∈ Π with
µf = µfσπ and ν

(kas+m·k)
f ≥ τ

(k)
fσπ .

In typical cases, i.e., if I − (fσπ)′(µf) is invertible for all σ ∈ Σ and π ∈ Π with
µfσπ = µf , Newton’s method converges exponentially. The following theorem cap-
tures the worst-case, in which the lazy ν-method still converges linearly.
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Theorem 4. Let f be a quadratic feasible min-max-MSP. The lazy ν-sequence
(ν(k))k∈N converges linearly to µf . More precisely, let m be the number of strat-
egy pairs (σ, π) ∈ Σ × Π with µf = µfσπ . Then there is a kf ∈ N such that
ν(kf +i·m·(n+1)·2n) has at least i valid bits of µf for every i ∈ N.

Next we show that Nfσ (y) can be computed exactly by solving a single LP. The
right procedure of Algorithm 1 accomplishes this by taking advantage of the follow-
ing proposition which states that Nfσ (y) can be determined by computing the least
fixpoint of some linear min-MSP g.

Proposition 3. Let y ≤ fσ(y) ≤ µf . ThenNfσ (y) = y+µg for the linear min-MSP
g with g(d) = L(fσ,y)(y + d)− y.

After having computed the linear min-MSP g, Algorithm 1 determines the 0-
components of µg. This can be done by performing n Kleene steps, since (µg)i = 0
whenever (κ(n)

g )i = 0. Let g̃ be the linear min-MSP obtained from g by substituting
the constant 0 for all components gi with (µg)i = 0. The least fixpoint of g̃ can be
computed by solving a single LP, as implied by the following lemma. The correctness
of Algorithm 1 follows.

Lemma 9. Let g be a linear min-MSP such that gi = 0 whenever (µg)i = 0 for all
components i. Then µg is the greatest vector x with x ≤ g(x).

The following theorem is a direct consequence of Lemma 6 for the case where Π =
Π∗. It shows the second major advantage of the lazy ν-method, namely, that that the
strategies σ(k) are meaningful in terms of games.

Theorem 5. Let Π = Π∗. Let (ν(k))k∈N be a lazy ν-sequence. Then ν(k) ≤ µfσ(k)

holds for all k ∈ N.

As (ν(k)) converges to µf , the max-strategy σ(k) can be considered ε-optimal. In terms
of games, Theorem 5 states that the strategy σ(k) guarantees the max-player an outcome
of at least ν(k). It is open whether an analogous theorem holds for the τ -method.
Application to the primaries example. We solved the equation system of Section 4 ap-
proximatively by performing 5 iterations of the lazy ν-method. Using Theorem 5 we
found that Clinton can extinguish a problem (a) individual with a probability of at least
Xa = 0.492 by concentrating on her program and her “ready from day 1” message.
(More than 70 Kleene iterations would be needed to infer that Xa is at least 0.49.) As
ν(5) seems to solve above equation system quite well in the sense that

∥∥f(ν(5))− ν(5)
∥∥

is small, we are pretty sure about Obama’s optimal strategy: he should talk about Iraq.
As ν

(2)
X1

> 0.38 and σ(2) maps f1 to 0.3 + 0.7X2
1 , Clinton’s team can use Theorem 5 to

infer that Xa ≥ 0.38 by showing emotions and using her “ready from day 1” message.

7 Discussion

In order to compare our two methods in terms of convergence speed, assume that
f denotes a feasible min-max-MSP. Since Nf (x) ≥ Nfσ (Lemma 3.5), it follows
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that τ
(i)
f ≥ ν

(i)
f holds for all i ∈ N. This means that the τ -method is as least

as fast as the ν-method if one counts the number of approximation steps. Next, we
construct an example which shows that the number of approximation steps needed
by the lazy ν-method can be much larger than the respective number needed by the
τ -method. It is parameterized with an arbitrary k ∈ N and given by f(x1, x2) =(
x2 ∧ 2, x2

1 + 0.25 ∨ x1 + 2−2(k+1)
)>

. Since the constant 2−2(k+1) is represented
using O(k) bits, it is of size linear in k. It can be shown (see [?]) that the lazy ν-
method needs at least k steps. More precisely, νf − τ (k) ≥ (1.5, 1.95). The τ -method
needs exactly 2 steps.

We now compare our approaches with the tool PReMo [12]. PReMo employs 4 dif-
ferent techniques to approximate µf for min-max-MSPs f : It uses Newton’s method
only for MSPs without min or max. In this case both of our methods coincide with
Newton’s method. For min-max-MSPs, PReMo uses Kleene iteration, round-robin iter-
ation (called Gauss-Seidel in [12]), and an “optimistic” variant of Kleene which is not
guaranteed to converge. In the following we compare our algorithms only with Kleene
iteration, as our algorithms are guaranteed to converge and a round-robin step is not
faster than n Kleene steps.

Our methods improve on Kleene iteration in the sense that κ(i) ≤ τ (i),ν(i) holds
for all i ∈ N, and our methods converge linearly, whereas Kleene iteration does not
converge linearly in general. For example, consider the MSP g(x) = 1

2x2+ 1
2 with µg =

1. Kleene iteration needs exponentially many iterations for j bits [3], whereas Newton’s
method gives exactly 1 bit per iteration. For the slightly modified MSP g̃(x) = g(x)∧1
which has the same fixpoint, PReMo no longer uses Newton’s method, as g̃ contains a
minimum. Our algorithms still produce exactly 1 bit per iteration.

In the case of linear min-max systems our methods compute the precise solution and
not only an approximation. This applies, for example, to the max-linear system of [12]
describing the expected time of termination of a nondeterministic variant of Quicksort.
Notice that Kleene iteration does not compute the precise solution (except for trivial
instances), even for linear MSPs without min or max.

We implemented our algorithms prototypically in Maple and ran them on the
quadratic nonlinear min-max-MSP describing the termination probabilities of a re-
cursive simple stochastic game. This game stems from the example suite of PReMo
(rssg2.c) and we used PReMo to produce the equations. Both of our algorithms
reached the least fixpoint after 2 iterations. So we could compute the precise µf and op-
timal strategies for both players, whereas PReMo computes only approximations of µf .

8 Conclusion

We have presented the first methods for approximatively computing the least fixpoint
of min-max-MSPs, which are guaranteed to converge at least linearly. Both of them
are generalizations of Newton’s method. Whereas the τ -method converges faster in
terms of number of approximation steps, one approximation step of the ν-method is
cheaper. Furthermore, we have shown that the ν-method computes ε-optimal strategies
for games. Whether such a result can also be established for the τ -method is still open.
A direction for future research is to evaluate our methods in practice. In particular, the
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influence of imprecise computation through floating point arithmetic should be studied.
It would also be desirable to find a bound on the “threshold” kf .
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