Verifying Single and Multi-mutator Garbage
Collectors with Owicki-Gries in Isabelle/HOL

Leonor Prensa Nieto* and Javier Esparza

Technische Universitit Miinchen
Institut fiir Informatik, 80290 Miinchen, Germany
{prensani,esparza}@in.tum.de

Abstract. Using a formalization of the Owicki-Gries method in the the-
orem prover Isabelle/HOL, we obtain mechanized correctness proofs for
two incremental garbage collection algorithms, the second one parametric
in the number of mutators. The Owicki-Gries method allows to reason di-
rectly on the program code; it also splits the proof into many small goals,
most of which are very simple, and can thus be proved automatically.
Thanks to Isabelle’s facilities in dealing with syntax, the formalization
can be done in a natural way.

1 Introduction

The Owicki-Gries proof system [11] is probably the simplest and most elegant
extension of Hoare-logic to parallel programs with shared-variable concurrency.
Like Hoare-logic, it is a syntax oriented method, i.e., the proof is carried out
on the program’s text. Moreover, it provides a methodology for breaking down
correctness proofs into simpler pieces: once the sequential components of the
program have been annotated with suitable assertions, the proof reduces to
showing that the annotation of each component is valid in Hoare sense, and
that each assertion of an annotation is invariant under the execution of the
actions of the other components (so-called interference-freeness). Finally, the
annotated program helps humans to understand why the algorithm works, and
to gain confidence in the proof.

One problem of the method is that the number of interference-freeness tests
is O(k™), where n is the number of sequential components, and & is the maximal
number of lines of a component. This makes a complete pencil and paper proof
very tedious, even for small examples. For this reason, many of the interference-
freeness proofs, which tend to be very simple, are usually omitted. This, however,
increases the possibility of a mistake. One way out of this situation is to apply
a theorem prover which automatically proves the easy cases, ensures that no
mistakes are made, and guarantees that the proof is complete.

In [10], the Owicki-Gries method was formalized in the theorem prover Isa-
belle/HOL. In this paper we show that the method and its mechanization can be
successfully applied to larger examples than those considered in [10]. We study

* Supported by the DFG PhD program ”Logic in Computer Science”.

two garbage collection algorithms. We first verify (a slightly modified version of)
Ben-Ari’s classical algorithm [2]. A pencil and paper proof using the Owicki-Gries
method plus ad-hoc reasoning was presented in [14]. Our proof follows [14], but
it manages to formulate the extra reasoning within the Owicki-Gries method.
Ben-Ari’s algorithm has also been mechanically proved using the Boyer-Moore
prover [13] and PVS [6], but none of these proofs uses Owicki-Gries. This makes
the algorithm an excellent example for comparing the Owicki-Gries method with
others, and for comparing Isabelle/HOL with other theorem provers.

In the last section of the paper we verify a parametric garbage collector
in which an arbitrary number of mutators work in parallel. The algorithm was
proved by hand in [8] with the help of variant functions. To our knowledge this is
the first mechanized proof. Notice that correctness must be shown for an infinite
family of algorithms, which introduces an additional difficulty.

The paper is structured as follows: in Section §2 we briefly present our lan-
guage, the Owicki-Gries method and some basic information about Isabelle/HOL.
The basics of garbage collection algorithms are described in Section §3. Section §4
presents the proof of Ben-Ari’s algorithm in detail. Section §5 presents the proof
of the parametric algorithm. Section §6 contains conclusions.

For space reasons we only sketch the proof of the parametric algorithm, and
sligthly simplify the annotations of the programs. Complete annotations and
proof scripts can be obtained from http://www.in.tum.de/ prensani/.

2 The Owicki-Gries Method and Isabelle/HOL

The Owicki-Gries proof system is an extension of Hoare-logic to parallel pro-
grams. Two new statements deal with parallel processing. The COBEGIN-COEND
statement encloses processes that are executed in parallel; the AWAIT statement
provides synchronization. We consider the evaluation of any expression or exe-
cution of any assignment as an atomic action, i.e., an indivisible operation that
cannot be interrupted. If several instructions are to be executed atomically, they
form an atomic region. Syntactically, these are enclosed in angled brackets <
and >.

Proofs for parallel programs are given in the form of proof outlines, i.e., the
program is annotated at every control point where interference may occur. Given
two proof outlines S and T, we say that they are interference free if, for every
atomic action s in S with precondition pre(s), and every assertion P in T, the
formula {P A pre(s)} s {P} holds, and conversely. Thus, the execution of any
atomic action cannot affect the truth of the assertions in the parallel programs.
The inference rule for the verification of the COBEGIN-COEND statement is:

{pi}Si{a;} for i€ {1,...,n} are correct and interference free
{AL, pi} COBEGIN S1||...|| Sn COEND {A, g}

An important aspect of the Owicki-Gries method is the use of auxiliary vari-
ables. They augment the program with additional information for proof pur-
poses. An auxiliary variable a is only allowed to appear in assignments of the
form a :=t, and so it is superfluous for the real computation.

Isabelle [1,12] is a generic interactive theorem prover and Isabelle/HOL is
its instantiation for higher-order logic. For a tutorial introduction see [9]. We
do not assume that the reader is already familiar with HOL and summarize the
relevant notation: The ith component of the list zs is written zs!i, and zs[i:=x]
denotes zs with the ith component replaced by x. Set comprehension syntax is
{e. P}. To distinguish variables from constants, we show the latter in sans-serif.
We will use the syntax for while-programs as it is formalized in Isabelle/HOL:
Assertions are surrounded by “{.” and “.}”. The syntax for assignments is
z ::= t. Sequential composition is represented by a double semi-colon (;;) or by
a double comma (,,) when it occurs inside atomic regions.

3 Garbage Collection

Garbage collection is the automatic reclamation of memory space. User processes,
called mutators, might produce garbage while performing their computations.
The collector’s task is to identify this garbage and to recycle it for future use
by appending it to the free list. Incremental (also called on-the-fly) garbage
collection systems, are those where the garbage collection work is randomly
interleaved with the execution of instructions in the running programs.

The memory is modelled as a finite directed graph with a fixed number
of nodes, where each node has a fixed set of outgoing edges. A pre-determined
subset of nodes, called the Roots, is always accessible to the running program.
A node is called reachable or accessible if a directed path exists along the edges
from at least one root to that node, otherwise, it is called garbage. For marking
purposes, each node is associated a color, which can be black or white. The
memory structure can only be modified by one of the following three operations:
redirect an edge from a reachable node towards a reachable node, append a
garbage node to the free list, or change the color of a node.

The mutators abstractly represent the changes that user programs produce
on the memory structure. It is assumed that they only work on nodes that are
reachable, having the ability to redirect an edge to some new target. To make
garbage collection safe, the mutators cooperate with the collector by assuming
the overhead of blackening the new target. Thus, a mutator repeatedly redirects
some edge R to some reachable node T, and then colors the node T black.

It is customary to describe the collector’s task in this way: identify the
nodes that are garbage, i.e., no longer reachable, and append them to the free
list, so that their space can be reused by the running program. However, at
an abstract level it suffices to assume that the collector makes garbage nodes
accessible again: since the mutator has the ability to redirect arbitrary accessible
edges, it may reuse these nodes. In the sequel adding a node to the free list will
just mean making it accessible.

The collector repeatedly executes two phases, traditionally called “marking
phase” and “sweep” or “appending phase”. In the marking phase the collector
(1) colors the roots black; (2) visits each edge, and if the source is black it colors
the target black; (3) counts the black nodes; (4) if not all reachable nodes are

black, goes to step (2). In the appending phase, the collector (5) visits each
node, appending white nodes to the free list, and coloring black nodes white.
The safety property we prove says that no reachable node is garbage collected. In
other words, if during the appending operation a node is white, then it is garbage.
Clearly, this property holds if step 4 is correct. But how do we determine that
all reachable nodes are black? In the case of one mutator, Ben Ari’s solution is
to keep the result of the last count, and compare it with the result of the current
count. If they coincide, then all reachable nodes are black. For n mutators, we
compare the results of the last n+1 counts. So the algorithms for one and several
mutators differ only in step 4.

4 The Single Mutator Case

We verify (a slightly modified version of) Ben-Ari’s algorithm. We follow the
ideas of [14], but formulate the proof completely within the Owicki-Gries system.

The Memory. The memory is formalized using two lists of fixed size. In the first
list, called M, memory nodes are indexed by natural numbers that range from 0
to the length of M; the color of node i can be consulted by accessing M!i. The
second list, called E, models the edges; each edge is a pair of natural numbers
corresponding to the source and the target nodes. Roots is an arbitrary set of
nodes. Reach is the set of nodes reachable from Roots (including Roots itself).
Blacks is the set of nodes that are Black . Finally, BtoW are the edges that point
from a Black node to a White node.

The separate treatment of colors and edges in our data structure is an ab-
straction that considerably simplifies proofs relating to the changes in the graph.
If an edge is redirected, M remains invariant, while coloring does not modify E.

The Mutator. The auxiliary variable z is false if the mutator has already redi-
rected an edge but has not yet colored the new target. Some obvious conditions
required of the selected edge R and

LT ¢ Reach E A 2.3 node T, namely, R<length E and
WHILE True INV {.T € Reach E A z.} T<length M always hold and are
DO < E::=E[R:=(fst(E!R),T),, z::=~ z >55 | omitted in the annotated program

{.T € Reach E A — z.} . . .
< M::=M[T:=Black],, z::=— z > text. The verification requires to
0D {.False.} prove one lemma: an accessible node
cannot be rendered inaccessible by

Fig. 1. The mutator redirecting an edge to it.

The Collector. The collector first blackens the roots and then executes a loop.
The body of the loop consists of first traversing M coloring all reachable nodes
black, and then counting the number of black nodes. The loop terminates if
the results of the current count and the previous one coincide. After termi-
nation of the loop, the collector traverses M once more, this time making all
white nodes reachable and all black nodes white. We divide the algorithm into

modules, which are pieces of code together with their pre- and postconditions.
The Blackening_Roots module is straighforward; the codes and annotations of
the rest are explained separately. Obvious intermediate assertions are omitted.

{.True.}
WHILE True INV {.True.}
DO Blackening_Roots; ;
{.Roots C Blacks M.}
0BC::={};; BC::=Roots;; Ma::=L;;
WHILE 0BC # BC
INV {. Roots C Blacks M

DO OBC::=BC;; Propagating_Black;;
Ma::=M;; BC::={};; Counting
0D;;
{.Safe(M,E) .}
Appending
0D {.False.}

Fig. 2. The collector

Safe (M, E) states that all reach-
able nodes are black, i.e.,
Reach E C Blacks M. Since we
have Safe(M,E) before Append-
ing, all white nodes are garbage
right before the appending

A 0BC C Blacks Ma C BC C Blacks M Qe
A (Safe(M,E) Vv 0BC C Blacks Ma).} module starts. This is almost

the safety property we wish to
prove, since, as we shall show
later when describing the Ap-
pending module, if a white node
is garbage before Appending,
then it remains so until Append-
ing makes it reachable.

The variables BC (Black Count) and 0BC (Old Black Count) are used to
determine if the set of black nodes has grown during the last Propagating_Black
phase. Following [14], OBC is initialized to {}, and BC to the set Roots'. A single
auxiliary variable Ma is used for “recording” the value of M after the execution
of Propagating Black. The constant L is used to give Ma a suitable first value,
defined as a list of nodes where only the Roots are black.

{.Roots C Blacks M
A 0BC C BC C Blacks M.}
I::=0;;
WHILE I<length E
INV {. Roots C Blacks M
A 0BC C BC C Blacks M
AN PB(M,E,0BC,I,z)
A I < length E.}
DO IF M!(fst(E!I))=Black THEN
M::=M[snd(E!I) :=Black] FI;;
I::=I+1
0D
{.Roots C Blacks M
A 0BC C BC C Blacks M
A (0BC C Blacks M Vv Safe(M,E)).}

Fig. 3. Module Propagating_Black

The key parts of the invariant are
the second and third conjuncts. The
second conjunct guarantees that after
any execution of the body the car-
dinalities of OBC and BC are a lower
and upper bound, respectively, of the
number of black nodes after Propagat-
ing_Black. (It is clear that OBC is a
lower bound, because black nodes stay
black until the beginning of the ap-
pending phase. That BC is an upper
bound is the difficult part, since the
mutator can blacken nodes while the
collector executes Counting.) The third

conjunct guarantees that, if an execution of the body does not establish the
safety property, then 0BC is a proper lower bound, which means that some white
node was colored black during the execution of Propagating Black. The Prop-
agating Black and Counting modules have very clear tasks: Propagating Black
establishes the third conjunct, while Counting establishes the second.

! 0BC and BC are here sets of black nodes whereas in the original algorithm they
represent their cardinalities. We found the set approach easier to formalize but it
simplifies neither the algorithm nor the proofs.

Propagation of the Coloring. During this phase, the collector visits the edges in
a given order, coloring the target whenever the source was Black. This phase
establishes the third conjunct of the invariant.

The invariant of this module is tricky. The predicate PB is an adaptation of
the one proposed in [14]. PB(M,E,0BC,I,z) denotes the predicate

0BC C Blacks M vV (V i<I. - BtoW(E!i,M)
V (=z A i=R A snd(E!R)=T A (3 r<length E. I < r A BtoW(E!r,M))))

and it is the crux of the proof. Intuitively, its invariance is proved as follows. If
the collector or the mutator blacken some white node, then after execution of the
body 0BC C Blacks M holds. If all the edges visited by the collector point to a
Black node, then V i<I. - BtoW (E!i,M) holds. If some visited edge points to
a white node (because the mutator has redirected it), then (and this is Ben-Ari’s
main observation) there is another BtoW edge among those that have not yet
been visited: since the white

{.Roots C Blacks M node T is reachable, there is
N 080§ Blocks Ma € Blacks M a path to T from some root,
A (0BC C Blacks Ma Vv Safe(M,E)).} and since all roots are Black,

;ﬁ;:g‘;dength . some edge along this path must
INV {.Roots C Blacks M be a BtoW edge. Observe that

I O8C & placks Ma © Blacks M upon termination of the loop
A (0BC C Blacks Ma V Safe(M,E)) this last clause cannot hold
n ii%ﬁ;Igtﬁ yeyi=Blacky € 8O since I=length E. To obtain the

DO IF M!I=Black THEN BC::=(insert I BC) FI;; postcondition 0BCCBlacks M V

o T Safe(M,E) we need to prove a

{.Roots C Blacks M lemma;: if all Roots are Black

A 0BC C Blacks Ma C BC C Blacks M

nd n ints from
A (0BC C Blacks Ma V Safe(M,E)).} and no edge points from a

Black node to a White node,
then all reachable nodes are

Fig. 4. Module Counting Black

Counting Black Nodes. This phase finally re-establishes the invariant of the col-
lector’s outermost loop. The computed set BC must contain all nodes which were
black upon termination of Propagating_Black, or, since Ma records precisely this
set, the Counting phase must ensure

that Blacks Ma C BC holds. Since
{.Safe(M,E) .}
1::20;; the mutator can only blacken nodes,
WHILE T<length M this task is now trivial. With all
INV {.Safe_I(M,E,I) A I < length M.}
DO IF M!T—Black THEN M::=M[I:=White] reachable nodes marked we can pro-
ELSE {.I¢Reach E A Safe_I(M,E,I).} H
B oA endtoFree (1.E) ceed to the appending phase where
FI;; I::=I+1 all unmarked nodes are appended to
0D {.True.} the free list.
Fig. 5. Module AppendtoFree Appending to the Free List. Here we

follow our predecessors: Appending a
garbage node I to the free list (i.e. making I reachable) is modelled by an ab-

stract function AppendtoFree satisfying suitable axioms. In the annotated code,
Safe_| (M,E,I) states that all white nodes with index I or larger are garbage.
The precondition of the assignment to E guarantees that only garbage nodes are
collected (the conjunct Safe_|(M,E,I) is needed here to maintain the invariant
throughout the loop).

5 The Multi-mutator Case

If we allow the interaction with several mutators, new difficulties come into play.
We consider a solution, first presented in [8], in which the collector proceeds
to the appending phase only after n+1 consecutive executions of the Propagat-
ing_Black phase during which the set of black nodes did not increase. Observe
that in the case of one mutator this collector checks twice whether 0BC=BC, and
not only once, as the collector of Section §4. In [8] it is shown that n consecutive
executions suffice, but we do not consider this version in the paper.

The program consists of a fixed, finite and nonempty set of mutator processes
and one collector process. When the number of programs is a parameter, the list

of programs to be executed in parallel can be expressed using the function
map and the construct [i..j], which represents the list of natural numbers from
i to j (the syntax [i..j(] corresponds to [i..j-1]).

The syntax and the tactic for the generation of the verification conditions
presented in [10] have been extended to deal with this kind of program schemas.
They are preceeded by the word SCHEME.

The Mutators. A mutator

SCHEME map [X j. can only redirect an edge
L2 Ghasti)-} when its target is a reach-
INV {.Z (Muts!j).} able node, and redirecting
oI E: (ZET:;I%])MSS !R_'je)a:C:(fEs:(H;!l\I(R (Muts!j))), may make its old target inac-
T (Muts!j))] FI ,, cessible. If several mutators

{.}iutzs :<:n=$;t!sj[>j.:}=(mt5!j) (1z:=False)] > ;3 are active, then one of them

< M::=M[T (Muts!j):=Black] ,, may select a reachable node

o {_’;‘QET‘;‘“SU==(““'°S’J') (12:=True1 > T as new target, but another
[0..2Q one may render T inaccessi-
ble before the edge has been

Fig. 6. The mutators redirected to T'. To solve this

problem, selecting the new
target and redirecting the edge is modelled as a single atomic action.

Each mutator m selects an edge R, and a target node T,. As in the previous
section each mutator owns an auxiliary variable Z, that indicates when the mu-
tator is pending before the blackening of a node. These three objects are put
together in a record. Isabelle’s syntax for accessing the field Z of a record vari-
able Mut is Z Mut. Record update is written Mut (|Z:=True|), meaning that the
field Z of the record Mut is updated to the value True. The variable Muts is a
list of length n (the number of mutators) whose components are records of type

mut. For example, to access the selected edge of mutator j we write R (Muts!j).

The Collector. In the case of one mutator, if an execution of the body does not
establish the safety property, then some white node was colored black during the
execution of Propagating Black. When several mutators are present, there may
be other reasons. To describe them we need a new value Queue (Muts,M) which
represents the number of mutators that are queueing to blacken a white node.

The auxiliary variable Qa will
{.True.}

WHILE True INV {.True.}
DO Blackening_Roots; ;
0BC::={};; BC::=Roots;; 1::=0;;
WHILE 1<n+1
INV {. Roots C Blacks M
A 0BC C BC C Blacks M
A (Safe(M,E)
VvV ((BC C Blacks M
V 1 < Queue(Muts,M))
A 1<n+1)).}
DO 0BC::=BC;; Propagating-Black;;
< Ma::=M,,Qa: :=Queue (Muts,M) >;;
BC::={};; Counting;;
{. Roots C Blacks M
A 0BC C Blacks Ma C BC C Blacks M
A (Safe(M,E)
V 0BC C Blacks Ma
V (1<Qa A 0BC C Blacks M)
V (1<Qa A Qa < Queue(Muts,M)))
A Qa<n+1.}
IF 0BC=BC THEN 1::=1+1 ELSE 1::=0 FI
0D;;
{.Safe(M,E) .}
Appending
0D {.False.}

Fig. 7. The collector

“record” this value upon termi-
nation of the Propagating Black
phase. The invariant of the
one mutator case must be
compared with the precondi-
tion of the IF-THEN-ELSE in-
struction, because both corre-
spond to the assertion estab-
lished by the Counting phase.
The assertion Safe(M,E) VvV 0BC
C Blacks Ma has been weak-
ened with new disjuncts, corre-
sponding to the new situations
which can prevent Safe(M,E)
from holding. The first new dis-
junct corresponds to the case in
which at least one mutator joins
Queue(Muts,M) and then col-
ors its new target during Count-
ing. The second conjunct corre-
sponds to the case in which no

mutator performs any coloring. Intuitively, after n+1 non-blackening Propagat-
ing_Black iterations, the property Safe(M,E) must hold, since the number of
queueing mutators cannot exceed n.

The codes of the modules are the same as in §4 up to annotations in the
Propagating_Black and Counting phases, which have to be adapted to the new
invariant.

We just show the invariant of the Propagating_Black phase:

{. Roots C Blacks M A 0BC C BC C Blacks M A I < length E.
A (Safe(M,E) V 0BC C Blacks M V 1<Queue(Muts,M)
V (V i<I. - BtoW(E!'i,M) A 1 < Queue(Muts,M))) }

Any coloring establishes 0BC C Blacks M. (Observe that only coloring can make
the queue shorter.) If no coloring occurs then either all the visited edges point
to a black node, or some mutator has redirected an edge to a white source but
has not yet colored the target, which amounts to saying that the queue grows
(1<Queue (Muts,M)).

6 Conclusions and Related Work

The Owicki-Gries method splits the proof into a large number of simple interfer-
ence-freeness subproofs. These are very tedious to prove by hand, and so avoided
by humans, who prefer to split a proof into a few difficult cases. In order to
investigate if the use of a theorem prover can palliate this problem, we have
provided mechanically checked Owicki-Gries proofs for two garbage collection
algorithms. The result is: 320 out of 340 interference-freeness proofs in the final
annotations were automatically carried out by Isabelle/HOL. For the remaining
20 interference-freeness proofs only three lemmas had to be supplied. The proofs
of these lemmas, however, were very interactive.

We do not know of any complete Owicki-Gries proof for any of the two al-
gorithms. In his proof of Ben-Ari’s algorithm [14], van de Snepscheut mixes the
Owicki-Gries method with ad-hoc reasoning; in particular, he does not provide
an invariant for the outermost loop, implicitly claiming that doing so will be
complicated. However, the invariant turns out to be simple (3 clauses), and
has a clear intuitive interpretation. In [8], Jonker argues that “ A proof [of the
n-mutators algorithm] according to the Owicki-Gries theory would require the
introduction of a satisfactory number of ghost variables In an earlier version
of this paper the invariant we constructed was rather unwieldy and the proof of
invariance almost unreadable.” However, our proof only uses two auxiliary vari-
ables (Ma and Qa), plus a trivial auxiliary variable for each mutator. Extending
our proof to the more elaborated n-mutator algorithms of [8] should be possible
with reasonable effort.

We know of two other mechanized proofs of Ben-Ari’s algorithm, carried out
using the Boyer-Moore theorem prover [13] and PVS [6, 7]. The main advantage
of our approach is probably the closeness to the original program text, which
simplifies the interaction with the prover: Annotated programs are rather read-
able by humans, and they are also directly accepted as input by Isabelle. In
other approaches the program must be first translated into a different language
(e.g. LISP in [13]).

Another aspect of our formalization is that we only had to prove 8 lemmas
(3 of them trivial) about graph functions, whereas 100 lemmas were required
in [13], and about 55 in [6,7]. The reason for this is that many trivial lemmas
about sets or lists could be automatically proved using Isabelle’s built-in tactics
(rewriting, classical reasoning, decision procedures for Presburger arithmetic,
etc) and Isabelle’s standard libraries. The proof effort, however, took two months
for the one-mutator algorithm (similar to our predecessors) and another two
months for the n-mutator case. Most of the time was consumed in finding and
improving the invariants.

A disadvantage of the Owicki-Gries method (in its classical version) is that it
can only be applied to safety properties, while in [8,13,14] the liveness property
“every garbage node is eventually collected” is also proved to hold.

None of our two algorithms has been proved correct using fully automatic
methods. In [3] there is a proof of Ben Ari’s algorithm for 1 mutator and 4
memory cells. In [4], a predecessor of Ben Ari’s algorithm is proved correct using

automatic tools for generating and proving invariants. The key invariants, how-
ever, require intelligent input from the user. The paper suggests using predicate
abstraction for checking or strengthening invariants in a larger verification effort
involving interactive theorem provers, which is a promising idea.

Our overall conclusion is that the application of a theorem prover greatly

enhances the applicability of the Owicki-Gries method. The closeness to the
original program is preserved, and the large number of routine proofs is consid-
erably automatized.

References

10.

11.

12.

13.

14.

Isabelle home page. www.cl.cam.ac.uk/Research/HVG/isabelle.html.

M. Ben-Ari. Algorithms for on-the-fly garbage collection. ACM Toplas, 6:333-344,
1984.

G. Bruns. Distributed Systems Analysis with CCS Prentice-Hall, 1997.

S. Das, D. L. Dill and S. Park. Experience with predicate abstraction. In CAV
'99, LNCS 1633, 160-171, 1999.

E. W. Dijkstra, L. Lamport, A. J. Martin, C. S. Scholten and E. F. M. Steffens.
On-the-fly garbage collection: An exercise in cooperation. Communications of the
ACM, 21(11):966-975, 1978.

K. Havelund. Mechanical verification of a garbage collector. FMPPTA’99. Avail-
able at http://ic-www.arc.nasa.gov/ic/projects/amphion/people/havelund/.
K. Havelund and N. Shankar. A mechanized refinement proof for a garbage col-
lector. Formal Aspects of Computing, 3:1-28, 1997.

J. E. Jonker. On-the-fly garbage collection for several mutators. Distributed Com-
puting, 5:187-199, 1992.

T. Nipkow. Isabelle/HOL. The Tutorial, 1998. Unpublished Manuscript. Available
at www.in.tum.de/ nipkow/pubs/HOL.html.

T. Nipkow and L. Prensa Nieto. Owicki/Gries in Isabelle/HOL. In FASE’99, LNCS
1577, 188-203. Springer-Verlag, 1999.

S. Owicki and D. Gries. An axiomatic proof technique for parallel programs. Acta
Informatica, 6:319-340, 1976.

L. C. Paulson. Isabelle: A Generic Theorem Prover, LNCS 828 Springer-Verlag,
1994.

D. M. Russinoff. A mechanically verified garbage collector. Formal Aspects of
Computing, 6:359-390, 1994.

J. L. A. van de Snepscheut. “Algorithms for on-the-fly garbage collection” revisited.
Information Processing Letters, 24:211-216, 1987.

