On the model checking problem for branching time logics

and Basic Parallel Processes

Javier Esparza and Astrid Kiehn
Institut fur Informatik, Technische Universitat Minchen

Arcisstr.21, D-80290 Miunchen, Fax +49 2105 8207

{esparza,kiehn}@informatik.tu-muenchen.de

Abstract

We investigate the model checking problem for
branching time logics and Basic Parallel Processes.
We show that the problem is undecidable for the
logic VL(O, F, U) (equivalent to C'T'L*) in the usual
interleaving semantics, but decidable in a standard
partial order interpretation.

1 Introduction

Most techniques for the verification of concurrent
systems are only applicable to the finite state case.
However, many interesting systems have infinite
state spaces. In the last years, several verification
problems have been shown to be decidable for two
classes of infinite-state systems, namely the pro-
cesses of Basic Process Algebra (BPA) [1], a natu-
ral subset of ACP, and the Basic Parallel Processes
(BPP) [3], a natural subset of CCS. These results
can be classified into those showing the decidability
of equivalence relations [3, 4], and those showing the
decidability of model checking for different modal
and temporal logics. In this paper, we contribute
to this second group. In the sequel, when we say
that a logic is decidable for a class of processes, we
mean that the model checking problem is decidable.

BPA processes are recursive expressions built out
of actions, variables, and the operators sequen-
tial composition and choice. They are a model of
sequential computation. For BPA processes, the
modal mu-calculus, the most powerful of the modal
and temporal logics commonly used for verifica-
tion, is known to be decidable. The proof is a
complicated reduction to the validity problem for
S2S (monadic second order logic of two successors)
[15, 8]. Simpler algorithms have been given for the

alternation-free fragment of the mu-calculus [2, 14].

BPPs are recursive expressions built out of ac-
tions, variables, and the operators prefix, choice,
and parallel composition. BPPs without the par-
allel operator have the same expressive power as
finite automata. Therefore, they are a sort of min-
imal concurrent extension of finite automta, and so
a good starting point for the study of concurrent
infinite-state systems. In [10] it was shown that the
linear time mu-calculus, which contains many other
linear time logics, like PLTL [6] or EL [22] is decid-
able. It was also shown that the modal mu-calculus
is undecidable. The decidability of branching time
logics like CTL [5], or CTL*[7], which are some of
the most frequently used for automatic verification
in the finite-state case, was open.

In this contribution, we consider a logic equiva-
lent to CTL* and two interpretations: the usual one
based on the interleaving of concurrent actions, and
a natural partial order interpretation.

In the first half of the paper, we prove that, in the
interleaving interpretation, a small fragment of this
logic (equivalent to the fragment of CTL formed
by propositional logic, AX, and AF), is already
undecidable for BPPs, even for BPPs without the
choice operator. Since a result of [11] shows that
the fragment containing AG instead of AF is de-
cidable, this establishes the decidability border for
branching time logics in this interpretation.

In the second half of the paper, we prove that the
logic is decidable in the partial order interpretation
(more precisely, we prove it for a subset of BPPs,
and show how our results could be extended to the
whole class).

The paper is organised as follows. Section 2 intro-
duces Basic Parallel Processes. Section 3 describes
the syntax and interleaving semantics of the logic

VL(O, F,U). The undecidability result for the in-
terleaving interpretation is contained in Section 4.
Section 5 gives a Petri net semantics for a subclass
of BPPs. Using this semantics, Section 6 gives a
partial order interpretation of VL(O, I, U). The de-
cidability of model checking for this interpretation
is contained in Section 7.

2 Basic and Very Basic Parallel
Processes

The class of Basic Parallel Process (BPP) expres-
sions is defined by the following abstract syntax:

0 (inaction)
| X (process variable)
| a-FE (action prefix)
| FE (choice)
| FE (merge)

where a belongs either to a set of atomic actions
Act. The BPP expressions containing no occurrence
of the choice operator + are called Very Basic Par-
allel Process (VBPP) expressions.

A BPP is defined by a family of recursive equa-
tions

E={Xx;YE|1<i<n)

and the F;
BPP expressions at most containing the variables
{X1,...,X,}. We further assume that every vari-
able occurrence in the F; is guarded, that is, appear
within the scope of an action prefix. The variable

where the X, are distinct are

X is singled out as the leading variable.

Any BPP determines a labelled transition sys-
tem 7 = (S,{->| a € Act}), whose states are the
BPP expressions reachable from the leading vari-
able, and whose transition relations are the least
relations satisfying the following rules:

E - F

a E-“E - (x¥E
X — F'
E - F F - F
E+F - FE E+F -5 F
E - FE F - F

E|F-SE|F E|F-SE|F

3 The logic VL(O, F,U)

Stirling uses in [20] the notation L(Op,...,0py)
to name the linear-time temporal language whose
temporal operators are Opy,...,0Op,. He also uses
VL(Op1,...,0p,) to name the language obtained
by extending L(Op1,...,0p,) with the branching
operator V, which allows to quantify on paths.
We stick to this notation, with a small deviation,
namely that the logics we consider have true as
only atomic proposition, instead of a set of propo-
sitional variables.

The syntax of VL(O, F, U) with a sort of labels £
is given by the following grammar:

¢ n=true| —¢1 | P1ADy | V1 | (a)dr | For | ¢1U e

where @ € £. 3 abbreviates -V-.

Let 7 be the transition system of a BPP E over
Act. We interpret VL(O, F,U) with sort of labels
Act on 7. We need some preliminary definitions.
A path of T is a (finite or infinite) sequence sy —%
of states s; and labels a;. A path 7 is
a run if it is maximal, i.e. either it is infinite or it

a1
81 —/> ...

is ﬁnite of length n and there is no a, s such that
Sp —— 5. Given a tun 7, Min(~) denotes sg. Given
two runs 7 and 7', we say 7 C 7’ if 7’ is a suffix of

ag 12 _ ag al
w,and we say 7 — 7' if 7 = 59 — sy — ... and

a
T =5 =5 ...
The denotation of a formula is a set of runs

through 7, defined according to the following rules:

[=¢ll = R -4l
61 A dall = il Nl
Vo] = {reR|Vr' eR.
Min(z") = Min(r) = ' € ||¢||}
l@al = {reR 7 Ax' €]}
|F|| = {reR|In"eR.aCa' Ar"€|¢]}
|61U6sll = {r € R |3 € R.7xC ' A’ € |6l

AV eR.xCa"Ca’ = 7" €|}

where R denotes the set of runs of 7.

Observe that the operator V is a quantifier over
all paths starting at a particular state.

We say that & satisfies a formula ¢ if

Vr e R.Min(r)= X1 = 7 € ||¢|

where X is the leading variable of £.
In the sequel we refer to these definitions as the
interleaving interpretation of VL(O, F,U).

4 Undecidability of the inter-

leaving interpretation

We show in this section that the model checking
problem for the language YL(O, F,U) and BPPs is
undecidable under the interleaving interpretation.
In fact, we show that the problem is already unde-
cidable for VBPPs and the following sublanguage
of VL(O, F,U):

¢ u=true| =g | ¢1 Ada | V(a)p | VF

Notice that this is a pure branching-time language,
because the linear time operators O and F can
only appear quantified. Following [20], we call it
B(O, F).

Branching-time logics have another interpreta-
tion, equivalent to the one given above, in which
the denotation of a formula is a set of states. A
state belongs to the new denotation of a formula iff
all the runs starting at it belong to the old denota-
tion. We use this interpretation in this section.

We prove undecidability by a reduction from the
halting problem of counter machines whose counters
are initialised to 0 [16].

A counter machine M is a tuple

({90, - cCmt, {60y, 00})

where ¢; are the counters, q; are the states with ¢q
being the initial state and g,+1 the unique halting
state, and ¢; is the transition rule for state ¢; (0 <
i <mn). The states qq,...,q, are of two types. The
states of type I have transition rules of the form

'7Qn+1}7 {Cla H

c; :=c; +1; goto g,

for some j, k. The states of type II have transition
rules of the form

if ¢; = 0 then goto ¢, else (¢; := ¢; — 1; goto qx/)

for some 7, k, K. A configuration of M is a tuple
(¢yJ1s---5Jm), where ¢; is a state, and j1,...,7m
are natural numbers indicating the contents of the
counters. The initial configuration is (qo,0,...,0).
The computation of M is the sequence of configura-
tions which starts with the initial configuration and
is inductively defined in the expected way, accord-
ing to the transition rules. Notice that the compu-
tation of M is unique, because each state has at
most one transition rule. We say that M halts if its

computation is finite. It is undecidable whether a
counter machine halts [16].

Given a counter machine M, our reduction con-
structs a VBPP with leading variable M, and a for-
mula Halt of B(O, F') such that M halts if and only
if the VBPP satisfies Halt.

If instead of VBPPs we were considering a
Turing-powerful model like CCS, the problem would
be trivial: M would just be a faithful model of the
counter machine M, in which the occurrence of an
action halt signals termination, and we would take

Halt =V F 3(halt)true

which expresses that M eventually reaches a state
from which it can do halt.

However, VBPPs are much less powerful than
Turing Machines. The idea of the reduction is to
construct a VBPP which simulates the counter ma-
chine in a weak sense: the VBPP may execute many
runs from M, some of which — the ‘honest’ runs —
simulate the computation of the counter machine,
while the rest are ‘dishonest’ runs in which, for in-
stance, a counter is decreased by 2 instead of by
1.

We shall replace the formula Halt above by an-
other one, more complicated. First, we shall con-
struct a formula ¢, satisfying the following two
properties:

(1) there exists a run starting at the leading vari-
able whose states satisfy ¢, and

(2) if all the states of a run starting at the leading
variable satisfy ¢y, then the run is honest.

Then, we shall define
Halt = VF(=¢, V 3(halt)true)

If the model M of the counter machine satisfies Halt,
then the runs starting at M that satisfy ¢y at every
state must contain a state satisfying J(halt) true.
Since such runs exist and are honest by (1) and
(2), and since honest runs faithfully simulate the
behaviour of the counter machine, the counter ma-
chine terminates.

Conversely, assume that the counter machine ter-
minates. A run starting at M either is honest or con-
tains a state which does not satisfy ¢;. In the first
case, since the machine terminates, the run con-
tains a state satisfying 3(halt) true, and therefore

it satisfies Halt. In the second case, the run directly
satisfies Halt.

We construct the VBPP model in two steps.
First, we describe a rather straightforward VBPP
model. Unfortunately, it is not possible to find the
formula ¢, for it. We solve this problem by ‘refin-
ing’ this model in an appropiate way.

A first ‘weak’ model of a counter machine.
A counter c¢; containing the number n is modeled
by n copies in parallel of a process Cj.
Cj def decj -0

The action decj models decreasing the counter c;
by 1. Notice that VBPPs cannot enforce synchro-
nisation between the action decj and a change of
state of the counter machine. In some sense, the
formula Halt will be in charge of modelling these
synchronisations.

The states of the counter machine are modelled

according to their transition rule. A state g; of type
I is modelled by

sq; in;i - (SQ; || Qi)

0 < outs - (Qx | C5)

A state ¢; of type II with is modelled by

sq; in;i - (SQ; || Q1)

def
Qi =

out; -0

Notice that VBPPs cannot model the fact that from
state ¢; the states g; or ¢, can be reached, because
in order to describe the choice between ¢; and ¢,
we need the choice operator.

The halting state ¢,4+1 is modelled by

def .
SQn+1 = ifng1 - (SQnt1 || Qnyt)
Onit = halt-0
Finally, M is defined by
def

SM = (SQu | - [/ SQn+1)

M < sm | Qo

It follows easily from the operational semantics of
BPPs that the reachable states of M have the form

(SM[| Qo™ [| ... || Qngt™* || €47 || ... || Ca™)

where P* is defined as P || ... || P (and P° means
k

that the state contains no copies of P at all). The
reachable states in which all the indices %, ..., t,41
except one, say 7;, are 0, and moreover i; = 1, corre-
spond to the configurations of the counter machine.
The nonzero index indicates the state, and the in-
dices ji,...,Jm the values of the counters. We say
that these states are meaningful.

The honest runs of M are defined as those contain-
ing a prefix with the following property: the pro-
jection of the sequence of states reached along the
prefix on the set of meaningful states corresponds
to the computation of the counter machine M. It
is clear that M has honest runs, but not every run
of M is honest.

A second ‘weak’ model. Following an idea in-
troduced by Hirshfeld in [13], we split the actions
of the first model. A counter ¢; is now modelled by

, def 1 2 3
CJ = decj decj decj 0

A state ¢; of type II is modelled by

in} - (Q [8Q4)

outj?L . out% -0

In the other equations we replace inj and out;
by in% and out% for consistency, but the actions are
not splitted.

In order to describe the formula ¢, we first in-
troduce some notations. Define

k

/\ 3(a;) true

=1

where EN stands for ENabled. Now, let A be the
set of actions of the form out}, out%, dec% or dec?,

EN(ay,...,a;) =

and let aq,...,ar be actions of A. Define
EN(ay,...,a;) = EN(ay,...az) A
k
/\ ﬁEI(ai)EN(ai) A
=1

—|EN(a)

A

a€A\{a1...ar}

e

In other words, EN(aq,...,a;) states that the ac-
tions aq,...ar are enabled, no sequence a; a; is en-

abled, and all the other actions of A are disabled.

The formula ¢, is a disjunction of formulae. For
each state ¢; of type I, ¢ contains a disjunct of the
form ﬁ(out%). For each state ¢; of type II, ¢y
contains two disjuncts. The first is

—|EN(dec31~) A —J?N(dec?) A —|EN(dec:J3) A
(EN(outl) v EN(out?)v
ﬁ(out%,outll() \% ﬁ(out%())

and the second is

(EN(dec}) v EN(dec?) Vv EN(dec‘;-’)) A
(ﬁr(out%) \% ﬁ(out%,dec%) %

ﬁf(out%,dec?) % ﬁf(out%,decg’) \%

EN(out?, outi,, deci-’) Vv ﬁ(outll(,, decg’))

It is easy to see that some run starting at M sat-
isfies ¢p. The following lemma proves that ¢ also
satisfies condition (2).

Lemma 4.1 If all the states of a run of M satisfy
the formula ¢y, then the run is honest.

Proof Consider an arbitrary meaningful state
E=(suflQsfci |l ...[lca™)

of a run in which every state satisfies ¢5. We show
that the next meaningful state of the run is the one
that corresponds to the next configuration in the
computation of the counter machine.
cretely, we examine the actions enabled at F, and
check that only one leads to a state E’ satisfying ¢y.
The proof is carried out by examining the actions
enabled at F, and checking that only one leads to
a state E’ satisfying ¢5. Then we examine the ac-
tions enabled at E’, check again that only one leads
to a state satisfying ¢y, and so on. The procedure
terminates when a sequence of actions leading to a
meaningful state has been determined.

Let ¢; be the counter corresponding to the state
¢; that appears in £. There are three possible cases:
(1) g; is of type I; (2) ¢; is of type II, and ; = 0; (3)
¢; is of type II, and i; > 0. We only deal in detail
with the case (2), i.e., the case in which ¢; is of the
form

More con-

if ¢; = 0 then goto ¢ else (¢; := ¢; — 1; goto qx/)

for some j,k,k’, and E contains no copies of the
process ('}, i.e. we have i; = 0.

In this case, the actions enabled at F are out%,
all the in actions, and the dec! actions of the coun-
ters which are nonempty at £. The in actions lead
to a state where either out} and some other out
action are enabled, or the sequence out% out% is
enabled. Such a state does not satisfy ¢5,. The
dec! actions lead to states where some dec? action,
different from dec?,
abled out! action is out%, they states do not satisfy
¢, either. So the next action in the run can only

out%
be out%. Then we have £ —— E’, where

is enabled. Since the only en-

E'=(sM|out?-0 Ccit || ... | Cu™)

At the new state E’, the enabled actions are
out%, all the in actions, and the dec! actions of
the nonempty counters. The action out% leads to a
state where no out action is enabled, and the dec!
actions are not possible by the same argument as
above. The only possible action is inlli, which leads
to the state

E"=(SM||out? -0 Qx| C1" || ... || Ca'™)

The actions enabled at E* are out%(7 out% and the
dec! actions of the nonempty counters. It is easy
to see that the only next possible action is out%,
which leads to the state

E" = (sM[| Qi [| ¢4 || .. || Ca™)

E" is a meaningful state. Therefore, the run exe-
cutes out% inll(out% from E. This sequence faith-
fully simulates the transition from ¢; to ¢ while
keeping the counter ¢; to 0.

In case (1), the only possible next action is out},
and in case (3) the only possible sequence is

decl

j outj?L dec? inlli, outg dec?

Again, these sequences faithfully simulate the com-
putation of the counter machine. a

Now, we use the argument presented at the be-
ginning of the section to prove that a machine M
terminates iff the model M satisfies the formula Halt.

Theorem 4.2 The model checking problem for the
logic B(O,U) and VBPPs is undecidable.

5 A partial order interpretation

of VL(O,F,U)

We give a partial order interpretation of VL(O, F, U)
for the subclass of simple BPPs. More precisely, we
translate simple BPPs into Petri nets, and then use
the standard partial order semantics of Petri nets
given in [9].

The subclass of simple BPP expressions is defined
in two steps:

S u=0 (inaction)
| X (process variable)
| a-FE (action prefix)
| —|— S (choice)
E =9 (an initially sequential process)
| E||E (merge)

In general, simple BPP processes are not finite-
state but they can be characterised using a finite

set of process expressions. To a family of recursive

equations £ = {X; o | 1 <i < n} we associate

the set of generators Gen(&) = |JGen(F;) defined
by:
Gen(X) = 0
Gen(0) = {0}
Gen(a-Ey) = {a-FE1}UGen(FE,)
Gen(FE1+ FE3) = {F1+ E} U (Gen(Fq)\ {F1})
U(Gen(Es) \ {F2})
Gen(FEy || Fy) = Gen(FE1)U Gen(Ey)

Note that all generators in G'en(£) are initially se-
quential.

Let = denote the congruence generated by the
equations expressing commutativity and associativ-
ity of ||. We use [[;c; 5; to denote the parallel prod-
uct S;, || Sy || .- || Si, where I is the finite index
set {i1,...7;}. Given an expression ' = [[;c; 5,
let |E| be the multiset of parallel components of
[I;cr Si- The number of occurences of an element
G in the multiset |E| is denoted by |F|g.
Proposition 5.1 Let £ = {X; e g, |1 <7< n}
be a simple BPP process.

1. Gen(€&) is finite,

2. Ei =[l;e;9; for a finite index set J and 5; €
Gen(€&),

3. if G € Gen(E) and G & H then there are finite
index sets J and K such that H = [[;c; 5; ||
[Trer Xi, where all 55 € Gen(€) and all X;, s

are variables of £,

4. for each G € Gen(&) and each G & H there is
ezactly one representation according to 3. (up
to =).

5.1
A labelled net is a fourtuple (5,7, W,l), where S, T

are disjoint sets of places and transitions, W: (S x
T)U(T xS) — IN is a weight function, and [: T — L
is a labelling function. For 2 € SUT, *z = {y €
SuT | W(y,z) > 0} and z* = {y € SUT |
W(z,y) > 0}. A marking of a net is a function
M:S5 — IN. A Petri net is a pair (N, My), where
N is a net and My is a marking of N, called the
initial marking.

The net of a simple BPP process is obtained by
The transitions a

The Net Representation

taking its generators as places.
generator can perform determine the Petri net tran-
If G & H for a generator GG, then the net
contains a transition with G as input place. The
definition of the output places is a bit more in-
volved, because the process H is not necessarily
a generator. Due to the previous proposition we
know that H can be uniquely represented (up to =
) as a parallel product of generators and variables.
Moreover, the variables are defined by expressions
which, due to their guardedness, can also be seen
as a parallel product of generators. In this way we
can uniquely associate to H a multiset of genera-
The elements of this multiset are the output
places of the transition.

sitions.

tors.

N(E):=(8¢,Te, We,lg) where
Se = Gen(€)
Te = {(Gop)| G € Gen(€),G %)

1ift=(G,a, H)

0 otherwise

We(G,t) = {

Wg(t,G) = | H S]'|G + E |E2k|G with
jed kinK
= (G a,H),H=]]5 Il] Xi
JjeJ keK
le(t) = a where t = (G,a, H)

The initial marking M¢ is defined by M§(G) =
| E1|q for every G € Gen(E) where Ej is the expres-
sion defining the leading variable X;. So the Petri

a.(X1]| (b.X5 + c.0))

Figure 1: Net representation of the BPP given in
the text.

net associated to &€ is
PN (&) = (N(&), M{).

The net representation of

X; Yoo (X1 (b- Xy 4c-0))

X, ¥a.x|d-x,
with leading variable X7 is given in Figure 1. Only
the names of the places and the labels of the tran-
sitions are shown. The main property of the net
representation follows immediately from the defini-
tions:

Proposition 5.2 In the net representation of a
BPP process, every transition t has exactly one in-
put place s, and the weight of the arc from s to t is
1.

6 The unfolding of a Petri net

In this section we define partial order counterparts
of the notions of labelled transition system, state,
and run, that were used in the interleaving inter-
pretation.

Unfoldings. The counterpart of a labelled tran-
sition system is the unfolding of the Petri net, a well
known partial order semantics [9]. The unfolding of
a Petri net is an acyclic net, usually infinite. Fig-
ure 2 shows an initial part of the infinite unfolding
of the Petri net shown in Figure 1. Although the
notion of unfolding is intuitively rather clear, its for-
mal definition requires some effort. We follow the

a.(X1]| (b.X5 + c.0))

L’L(X1|| (bX2 + C.O)) II(X1|| (bX2 + C.O))

Figure 2: The unfolding of the Petri net of Figure
1

lines of [9], with a small change: in [9], unfoldings
are defined for nets (5,7, W) in which the weights
W {(z,y) have the value 0 or 1 for every two nodes
z and y. We generalise them to labelled nets with
arbitrary weights.

Let (S5,7,W) be a net and let 1, 2o € SUT.
The nodes z; and z5 are in conflict, denoted by
T1# 29, if there exist distinct transitions #1, t9 € T
such that *t; N %ty # 0, and there exist paths in the
net leading from t¢; to z1, and from t3 to z,. For
xz € SUT, z is in self-conflict if x#z.

An occurrence net is a non-labelled net N =

(B, E,W) such that:
(1) the range of W is included in {0, 1},

(2) for every b€ B, |*b] < 1,
(3) N contains no cycles,
(4) N is finitely preceded, i.e., for every z € BUFE,

the set of elements y € B U F such that there
exists a path from y to z is finite, and

no e € F is in self-conflict.

(5)

The net of Figure 2 is an occurrence net.

The elements of B and F are called conditions
and events, respectively. Given two nodes z, y of
an occurrence net, we say z =< y if there is a path
from z to y. Due to (3), the relation < is a partial
order. Min(N) denotes the set of minimal elements
of B U F with respect to <.

A branching process of a labelled Petri net ¥ =
(N, My) is a pair 8 = (N', p), where N’ is a labelled
occurrence net, and pis a function p: BUE — SUT,
satisfying the following conditions:

(i) p(B)C S and p(E)C T,

(ii) for every place s of N, Min(N')n |[p~i(s)| =
Zwo(S),

(iii) for every transition ¢ and every place s of N,
if an event e € F satisfies p(e) = ¢, then |*e N
p(s)] = W(s,1), and [e* 1 p~(s)] = W1, 5);

(iv) for every e1,e3 € F, if *e; = ®e3 and p(e1) =
p(ez) then eq = es.

(v) if p(z) is labelled by I, then z is also labelled
by 1.

In Figure 2 we show the names of the places asso-
ciated to the conditions, and the labels of the tran-
sitions associated to the events.

Engelfriet proves in [9] that a Petri net has a
unique maximal branching process up to isomor-
phism. We call this maximal element the unfolding
of the Petri net.

We fix in the sequel a BPP £, and the unfolding
Bu = (Ny, py) of the Petri net PN(E).

Cuts. We define cuts, which are the partial order
counterparts of the states of the transition system,
and a relation between cuts which corresponds to
the reachability relation between states.

A set B’ of conditions of N, is a co-set if

Vb,b' € B': (b < b') A =(b < b) A —(b#b)

A maximal co-set B’ with respect to set inclusion
is called a cut.
We define the following relation between cuts:

iff Vby € ¢q by € co: b1 < by

c1 e

It is easy to see that C is a partial order.
We define a mapping Mark which associates to a
cut of 3, a marking of the net N.

Mark(c)(s) = |en p;t(s)]

That is, the number of tokens that Mark(c) puts
in the place s is equal to the number of conditions
of ¢ labelled by s.

The following proposition can be easily proved:

Proposition 6.1 1. A marking M of N is reach-
able from My iff there exists a cut ¢ of B, such
that M = Mark(c).

2. Let My and My be two reachable markings of
Y. My is reachable from M,y iff there exist two
cuts ¢ and ¢y of By such that My = Mark(cy),
My = Mark(cg), and ¢1 C c3.

(Partial order) runs. Finally, in order to give a
partial order interpretation to VL(O, F,U), we re-
define the notion of run in partial order terms. To
exhibit the analogy with the interleaving case, we
also denote these new runs with the symbol .

A (partial order) run of 8, is a pair 7 = (N, p),
where N is a subnet of N,, and

o Min(N)is a set of conditions;

e every condition of N has at most one output
event in N;

e every node of N, that does not belong N either
precedes or is in conflict with some node of N;

e p is the restriction of p, to the nodes of N.

These conditions imply in particular that Min(N)
is a cut of N,. Sometimes, we denote the minimal
elements of N by Min(r).

As in the interleaving case, a run represents one
of the possible futures of the system from a certain
reachable state.

6.1 The partial order interpretation

We interpret the logic VL(O, I, U) on the set of runs
of the unfolding f,.

In correspondence with the interleaving interpre-
tation we write for two runs 7 an 7’ having £ and
E’ as sets of nodes, respectively,

e TCn'if ' C Fie. 7'isa suffix of 7 and

e 7Ll if E\ E' = {e} and I(e) = a.

Note, that we could have formulated a more general
. . A, .
notion of an execution step: @ — 7’ where A is a
multiset of actions and the set of nodes underlying
A is a co-set in m. We refrained from considering
this more concurrent version of a step to keep the
same logic for the interleaving and the noninterleav-

ing interpretation.

The denotation of a formula is a set of runs of
(., defined according to exactly the same rules as
in the interleaving case, but taking partial order
runs instead of interleaving runs.

Let £ be a BPP with leading variable X = F|
and let R be the set of runs of its unfolding. We
say that & satisfies a formula ¢ if

V1 € R. Min(m) = Min(N,) = 7 € ||¢]|

The runs 7 such that Min(r) = Min(N,) are,
loosely speaking, those starting at the initial state.

In the sequel we refer to this definition as the
partial order interpretation of VL(O, F,U).

7 Decidability of the partial or-
der interpretation

The key to prove the decidability of the partial order
interpretation is to observe that the unfolding of a
BBP is almost a bipartite labelled tree. We have
that:

¢ the conditions of an unfolding have at most one
input event, because unfoldings are occurrence
nets;

e the events of the unfolding of a BPP have at
most one input condition, because the transi-
tions of the nets obtained from BPPs have one
single input place.

The “almost” is due to the fact that an unfolding
may have more than one minimal element. This
is only a minor technical difficulty, which can be
easily overcome by adding a ‘junk’ root node to the
unfolding.

We now profit from the fact that the validity
problem for the monadic second order logic of a tree
with fan-out degree n, denoted by SnS, is decidable
[19]. We shall reduce the model checking problem
for the partial order interpretation of VL(O, F,U)
to this problem.

We first fix some notations on SnS. The language
of SnS contains a constant e, unary function sym-
bols succq, ..., succ,, a binary predicate symbol <
and an arbitrary finite set of unary predicate sym-
bols. SnS is the monadic second order logic over
this language; i.e. formulas are built from the sym-
bols of the language, first-order variables z,y, ...,
second order variables X,Y,... and the quantifiers

3, V (ranging over either kind of variable). Unary
predicates can be interpreted as sets; according with
it, we write 2 € P instead of P(z).

The standard interpretation has {1,2,...,n}* as
domain; € is mapped to the empty string; for
1 = 1,...,n, succ; is mapped to the function
succ;(z) = z7; < is mapped to the prefix relation
on {1,2,...,n}*
the infinite tree of fan-out degree n.

This structure is also known as

We proceed as follows. Given a BPP £ and a for-
mula ¢ of VL(O, F,U), we construct two formulae
of SnS, where n is large enough, for instance the
length of the description of PN (&) (with numbers
represented in unary). The first of these two formu-
lae, which we call Unf, has a unique model, which is
(isomorphic to) the unfolding 3, of £. The second
formula, which we call Gy, has as models the un-
foldings which satisfy ¢. Once these two formulae
have been constructed, the model checking problem
reduces to showing that the formula Unf(€) = G,
is valid.

The definition of Unf(E)is easy. Let {s1,..., sk}
and {ti,...,t;} be the sets of places and transi-
tions of PN(&). We introduce for every place s;
a predicate P, for every transition ¢; a predicate
P4,,1¢(¢,)), and finally a predicate Pj,, to identify
junk nodes. We can easily express the following
conditions in SnS:

e every node of the tree satisfes exactly one pred-
icate,

o the root satisfies Pjy,,

e for every place s;, the successors M& (s1)+.. .+
ME (s;_1) to M§(s1)+ ...+ M§(s;) of the root
satisfy P, and the rest of the successors satisfy
Pjun]m

o for every place s;, if a node satisfies P;,, then
its successors We(s;, 1)+ ...+ We(si, tj-1) to
We(si, t1)+. .. +We(s;,t;) satisfy P, ¢t,))» and

the rest of its successors satisfy Py,

e for every transition ¢;, if a node satisfies
Pt,1¢(¢;))» then its successors We(t,s1) + ...+
We(t,si—1) to We(t,s1)+ ...+ W(t,s;) satisfy

P, , and the rest of its successors satisfy Pj,,t,

e if a node different from the root satisfies Pj,,z,
then its succesors satisfy Pjyni.

Unf(€) is the conjunction of these conditions. It is
routine to see that its only model is the maximal
branching process of PN(E), once the junk nodes
are removed.

We now introduce some auxiliary formulas of
SnS. They contain some free variables; the name
of the formula is parameterized with them.

The irreflexive prefix relation < on {1,...,n}"
is definable in SnS. Using this fact, we can easily
express that two nodes z,y are in conflict by the
following formula Conf(z,y):

3z. \/ z€ P, A
sES
z<zANz<y A =(z<y)V-(y<z))

We now construct a formula Run(X) which ex-
presses that X is the set of nodes of a run. It suf-
fices to require four conditions: X is conflict-free,
its minimal elements are conditions, every element
which does not belong to X is either smaller than or
in conflict with some element of X and, finally, that
X is upwards closed. In order to express the sec-
ond condition, we construct the formula Min(z, X),
which expresses that = is a minimal element of X:

Vy.ye X — =(y<z)

We define Run(X) as the conjunction of the follow-
ing formulae:

Vo . Min(z, X) — \/ z € P
SES
VzVy.(z € X Ay € X) — —~Conf(z,y)

VeVyVz. (€ XAyeX ANz <z<y)—z€eX
Ve.=(z€X)—3dy.ye X Az <yV Conf(z,y))

Now we define the formula Suce(X,Y, z).

YCX AVy. (ye X A=(yeY)A
\V v€Pujwy) —y=2
tETg

With the help of these formulae, we encode the par-
tial order interpretation of VL(O, F, U) into SnS. To
simplify the formulae, we assume that V, 3 quantify
over runs.

= Run(X)

= ~Fy(X)

= F¢1(X)/\F¢2(X)

= YW.(VYz.Min(z, X) < Min(z,Y))

Figure 3: Net semantics of (a || b) 4+ ¢

— Fy(Y)
Flays(X) = Y. 32.Suce(X,Y, v)
N \/ S P(t,a) A F¢(Y)
tElgl(a)
Fyue,(X) =W XCYANFL(Y)ANVZXCZ

NZCY — F(bl(Z)

Finally, since & satisfies a formula ¢ of VL(O, F, U)
if all the runs that start at the initial state are in
[|¢||, we introduce a formula I Run(X):

Run(X) A (Jzdy.y <z A Min(z, X)) —
Vz. —|(Z < y)

i.e. TRun(X) holds if X is a run and the only node
of the tree smaller than some minimal element of X
is the root.

We obtain:

Theorem 7.1 Let £ be a simple BPP and let ¢ be
a formula of VL(O, F,U). Then & satisfies ¢ iff the
following formula of SnS' is a tautology:

Unf(€) — (VX . IRun(X) — Fy(X))

There are no serious conceptual problems to ex-
tend this result to all BPPs. We can take the net se-
mantics of CCS without restriction and relabelling
given by Gorrieri and Montanari in [12], which as-
sociates to every BPP a finite Petri net. This se-
mantics is more difficult to describe succintly than
the one shown here, and that is why we have not
considered it in the first place. It introduces some
extra transitions that do not correspond to the ex-
ecution of process actions. For instance, the non-
simple BPP expression (a ||) 4 ¢ is translated into
the net of Figure 3. The unfoldings of the nets ob-
tained with this semantics are again trees. It is easy

10

(but tedious) to change the definition of the partial
order interpretation to take into accout that an ac-
tion corresponds to the atomic occurrence of several
transitions.

A natural question to ask is why this decidability
proof does not work in the interleaving case. The
proof consists of three parts:

o BPPs are given a semantics with a tree struc-
ture,

o the tree is encoded into SnS, and
¢ the logic is encoded into SnS.

When we try to extend this decidability proof to
the interleaving case, there are two possibilities. In
the first one, we take the unfolding of the Petri net
as semantics. As we have seen, this unfolding can be
encoded into SnS. However, the interleaving inter-
pretation of the logic cannot: it is not possible to
replace Run(X) by a formula FiringSequence(X),
because a firing sequence is not characterised by
its set of events. In the second possibility, we
take the unfolding of the transition system as se-
mantics. Now, we can construct an SnS formula
FiringSequence(X)), which holds for a set of reach-
able states X iff they are the states of a maximal
path, but it is no longer possible to encode the un-
folding as an SnS formula!

8 Conclusions

We have proved the undecidability of the model
checking problem for the fragment B(O, I) of the
logic VL(O, F,U) and VBPPs (recursive processes
built out of atomic actions and the prefix and par-
allel operators) in the usual interleaving semantics.
B(O, F) corresponds to the fragment of CTL con-
taining the operators AX and AF. This result
shows that most branching time logics described
in the literature become undecidable even for very
simple infinite-state concurrent systems. The sit-
uation of the finite state case, in which branching
time logics are easier to check than linear time ones,
gets inverted, because the linear time mu-calculus,
a rather powerful linear time logic, is decidable for
BPPs, and even for Petri nets, which have larger
expressive power [10].

We also show that VL(O, F,U) is decidable for

simple BPPs in a natural partial order semantics.

11

The result follows easily from the fact that this
semantics is always a tree expressible in SnS, the
monadic second order logic of n successors.

This result is not as conclusive as the first, be-
cause BPPs have a limited expressive power, and we
do not know how far can the decidability result be
extended to larger classes of processes. However, it
adds a new motivation for the study of partial order
logics. So far, these logics have been studied either
because they can express some properties difficult
to formalise with interleaving logics like serializabil-
ity of transactions, or concurrency of program seg-
ments [17, 18], or because they extend well-known
interleaving logics [21]. In the finite state case, par-
tial order logics tend to have higher complexity than
interleaving logics. Qur results show that in the in-
finite state case partial order logics may be easier
to handle.

References

[1] J.A. Bergstra and J.W. Klop. Process algebra
for synchronous communication. Information
and Computation 60:109-137, 1984.

O. Burkart and B. Steffen. Model checking for
context-free processes. In Proceedings of CON-

CUR 92, LNCS 630:123-137, 1992.

S. Christensen, Y. Hirshfeld, and F. Moller.
Bisimulation Equivalence is Decidable for all
Basic Parallel Processes. In Proceedings of

CONCUR 93, LNCS 715:143-157, 1993.

5. Christensen, H. Hiittel, and C. Stirling.
Bisimulation Equivalence is Decidable for all

Context-free Processes. In Proceedings of CON-
CUR 92, LNCS 630:138-147, 1992.

E.M. Clarke and E.A. Emerson. Design and
Synthesis of synchronization skeletons using
Branching Time Temporal Logic. In Proceed-
ings of Workshop on Logics of Programs, LNCS
131:52-71, 1981.

E.A. Emerson. Temporal and Modal Logic. In
Handbook of Theoretical Computer Science, Vol-
ume B, 995-1072, 1990.

E.A. Emerson and J.Y. Halpern. “Sometimes”
and “Not Never” revisited: on Branching versus

Linear Time Temporal Logic. Journal of the

ACM 33(1):151-178, 1986.

[8] E.A. Emerson and C. S. Jutla. Tree Automata,
Mu-Calculus and Determinacy. In Proceedings

of FOCS *91, 1991.

[9] J. Engelfriet. Branching processes of Petri nets.
Acta Informatica 28:575-591, 1991.

[10] J. Esparza. On the Decidability of the Model
Checking Problem for Several p-calculi and
Petri Nets. In Proceedings of CAAP °94, LNCS
787:115-129, 1994.

[11] J. Esparza. On the uniform word problem for
commutative context-free grammars. Submitted
for publication, 1994.

[12] R. Gorrieri and U. Montanari. A Simple Cal-
culus of Nets. In Proceedings of CONCUR °90,
LNCS 458:2-30, 1990.

[13] Y. Hirshfeld. Petri Nets and the Equivalence
Problem. In Proceedings of CSL 93, 1994.

[14] H. Hungar and B. Steffen. Local Model Check-
ing for Context-Free Processes. In Proceedings

of ICALP *93, LNCS 707, 1993.

[15] D. Muller and P. Schupp. The Theory of Ends,
Pushdown Automata and Second Order Logic.
Theoretical Computer Science 37: 51-75, 1985.

[16] M. Minsky: Computation. Finite and Infinite
Machines. Prentice-Hall, 1967.

[17] D. Peled, S. Katz, and A. Pnueli. Specifying
and Proving Serializability in Temporal Logic.
In Proceedings of LICS 91, 232-245, 1991.

[18] W. Penczek. Temporal Logics for Trace Sys-
tems: On Automated Verification. International
Journal on Foundations of Computer Science
33:31-67, 1992.

[19] M.O. Rabin. Decidability of second-order theo-
ries and automata on infinite trees. Transactions
of the American Mathematical Society 141:1-35,
1969.

[20] C. Stirling. Modal and Temporal Logics. In
Handbook of Logic in Computer Science, Oxford
University Press, 1991.

12

[21] P.S. Thiagarajan. A Trace Based Extension of
PTL. In Proceedings of LICS 94, 1994.

[22] P. Wolper. Temporal Logic can be more ex-
pressive. [Information and Control 56(1,2):72—
93, 1983.

