
Quantitative Analysis of Probabilistic Pushdown Automata:
Expectations and Variances

(Extended Abstract)

Javier Esparza
Institute for Formal Methods in Computer Science,

University of Stuttgart,
Universität str. 38, 70569 Stuttgart, Germany.
esparza@informatik.uni-stuttgart.de

Antonı́n Kučera∗

Faculty of Informatics, Masaryk University,
Botanická 68a, 60200 Brno,

Czech Republic.
tony@fi.muni.cz

Richard Mayr
Department of Computer Science, Campus Box 8207,

North Carolina State University, Raleigh, NC 27695-8207, USA
mayr@csc.ncsu.edu

Abstract

Probabilistic pushdown automata (pPDA) have been iden-
tified as a natural model for probabilistic programs with re-
cursive procedure calls. Previous works considered the de-
cidability and complexity of the model-checking problem for
pPDA and various probabilistic temporal logics. In this pa-
per we concentrate on computing the expected values and
variances of various random variables defined over runs
of a given probabilistic pushdown automaton. In particu-
lar, we show how to compute the expected accumulated re-
ward and the expected gain for certain classes of reward
functions. Using these results, we show how to analyze var-
ious quantitative properties of pPDA that are not express-
ible in conventional probabilistic temporal logics.

1. Introduction

Pushdown automata (or recursive state machines) are a nat-
ural model for sequential programs with recursive proce-
dure calls [5, 2, 10, 4]. Recent papers are, e.g., [1, 8, 3].
Recently, probabilistic aspects of such programs have been
taken into account, and several papers have studied in de-
tail the decidability and complexity of model-checking both
linear and branching-time probabilistic temporal logics for
probabilistic pushdown automata (pPDA) [6, 11, 13, 12].
Using these results it is possible to decide if, say, the proba-

∗ Supported by the Alexander von Humboldt Foundation and by the re-
search centre Institute for Theoretical Computer Science (ITI), project
No. 1M0021620808.

bility that a pPDA terminates is at least 0.98, even though its
associated Markov chain may have infinitely many states.

However, we are often interested not only in the prob-
ability of termination, but also in the expected termination
time, defined over the runs of the program that terminate.
Moreover, we may wish to obtain some more information
about the probability distribution of the termination time, in
particular its variance.

In this paper we address this problem. We obtain some
generic results about computing expectations and variance
of reward functions, and apply them to three fundamen-
tal problems: termination time, renewal time (time between
two visits to a given control state), and stack length. All
three are obviously relevant for the design and performance
analysis of probabilistic programs.

The semantic of a pPDA is a possibly infinite Markov
chain whose states are configurations, i.e., pairs consisting
of a control state and a stack content. A trajectory in this
chain is called a run. We consider reward functions that as-
sign a reward to every configuration of the pPDA. When
the pPDA enters a configuration, it collects its associated
reward. Given a reward function, our goal is to compute
(a) the expectation of the reward accumulated during a fi-
nite run. For infinite runs this reward is usually infinite, and
so our goal is to compute (b) the expectation of the gain,
defined as the average reward earned per transition. (For-
mally, the gain is the random variable that assigns to an in-
finite run the limit, as n approaches infinity, of the reward
accumulated during the first n transitions divided by n.) We
are also interested in the variances of the corresponding ran-
dom variables.

The first part of the paper deals with reward functions
that only depend on the control state, which we call simple
functions. In a first step (Section 3) we show how to com-
pute the expected accumulated reward and its variance for
finite runs of the pPDA starting at a configuration of the
form pX (control state p and stack content X , of length 1),
and ending at a configuration qε (control state q and empty
stack). The termination time corresponds to the simple re-
ward function that assigns 1 to each control state.

In a second and more involved step (Section 4), we use
the results of Section 3 to compute the expected value of
the gain for simple reward functions. We apply the tech-
nique developed in [11] (see also [12]) to solve the LTL
model-checking problem. This technique consists of com-
puting a finite Markov chain which records the minima of
an infinite run of the pPDA, defined as the configurations
at which the run reaches for the first time a certain length,
but in such a way that in the future it never goes below that
length. A transition of this finite chain, which in the rest of
the introduction we call a ‘jump’, corresponds to the (finite)
sequence of transitions carried out by the pPDA in order to
move from one minimum to the next. We define a modifi-
cation of this chain, and show how to compute the expected
accumulated reward for each jump. Then, we show how to
use this information to obtain the expected gain. In fact, the
technique has a limitation: It only works if the expected re-
ward for each jump is finite. Fortunately, the case of infinite
expected reward per jump is rather pathological, and should
correspond to a design fault in most cases. The renewal time
for a set P of control states, i.e., the expected time between
two visits to configurations whose control states belong to
P , corresponds to the simple function which assigns 1 to
the control states of P , and 0 to the others. More precisely,
the renewal time is the inverse of the gain of this function.

In the second part of the paper, we extend the techniques
of the first part to reward functions that depend on the con-
trol state and (linearly) on the length of the stack, which
we call linear reward functions. Again, this part is divided
into two steps. The first step (Section 5) extends the results
of Section 3, and is rather straightforward. The second step
(Section 6) requires some more care. The reason is that, in
general, the reward obtained when executing a jump now
may depend on the past, i.e., on all the previous jumps. For-
tunately, we are able to show that when this is the case the
expected reward is infinite. So we only need to worry about
the memoryless case, and we are thus able to apply the re-
sults of Section 4. The expected average stack length corre-
sponds to the linear function that assigns to a configuration
the length of its stack content.

While the expectation of the average stack length pro-
vides some useful information, there is a more interesting
parameter, namely the maximal stack length, i.e., the ran-
dom variable that assigns to a run the maximal stack length

reached along it. In Section 6.1 we provide some partial re-
sults on this variable. More precisely, we show how to com-
pute the probability that the maximal stack length remains
bounded, and the probability, for each value n, that the max-
imal stack length is at most n.

2. Preliminaries

Let N, N0, Q, Q+, R, and R+ denote the sets of posi-
tive integers, non-negative integers, rational numbers, non-
negative rational numbers, real numbers, and non-negative
real numbers, respectively. We also use Q+

ω and R+
ω to de-

note the sets Q+ ∪ {ω} and R+ ∪ {ω}, respectively, where
ω 6∈ Q ∪ R is a special symbol. We stipulate that c + ω =
ω + c = ω + ω = ω and c/ω = 0 for each c ∈ R+, and
c · ω = ω for each positive c ∈ R+.

For a given alphabet Σ, the symbol Σ∗ denotes the set
of all finite words over Σ. The length of a given w ∈ Σ∗ is
denoted by |w|, and the empty word is denoted by ε.

Definition 2.1. A (fully) probabilistic transition system is a
triple T = (S,→,Prob) where S is a finite or countably in-
finite set of states, → ⊆ S × S is a transition relation, and
Prob is a function which to each transition s → t of T as-
signs its probability Prob(s → t) ∈ (0, 1] so that for ev-
ery s ∈ S we have

∑

s→t Prob(s → t) ∈ {0, 1}. (The
sum above can be 0 if s does not have any outgoing transi-
tions.)

In the rest of this paper we also write s
x
→ t instead of

Prob(s → t) = x. A path in T is a finite or infinite se-
quence w = s0, s1, · · · of states such that si → si+1 for ev-
ery i. We also use w(i) to denote the state si of w (by writ-
ing w(i) = s we implicitly impose the condition that the
length of w is at least i + 1). The prefix s0, s1, . . . , si of w
is denoted by wi. A run is a maximal path, i.e., a path which
cannot be prolonged. The sets of all finite paths and all runs
of T are denoted FPath and Run, respectively. Similarly,
the sets of all finite paths and runs that start in a given s ∈ S
are denoted FPath(s) and Run(s), respectively.

A strongly connected component (SCC) of T is a subset
C ⊆ S where for all x, y ∈ C we have that x →∗ y. A SCC
is a bottom SCC (BSCC) if no other SCC is reachable from
it. It follows that all BSCC are maximal SCC.

A reward function is a function f : S → Q+ that as-
signs to a state s a reward f(s). We assume that when
a process enters a configuration s it collects the reward
f(s). Given a reward function f , we extend it to a func-
tion F : FPath → Q+ by F (s0, · · · , sn) =

∑n

i=1 f(si).
Hence, F assigns to each path its accumulated reward. Note
that f(s0) is not included in the sum.

Each w ∈ FPath determines a basic cylinder Run(w)
which consists of all runs that start with w. To every s ∈ S
we associate the probabilistic space (Run(s),F ,P) where

F is the σ-field generated by all basic cylinders Run(w)
where w starts with s, and P : F → [0, 1] is the unique
probability function such that P(Run(w)) = Πm−1

i=0 xi

where w = s0, · · · , sm and si
xi→ si+1 for every 0 ≤ i < m

(if m = 0, we put P(Run(w)) = 1).

Definition 2.2. A probabilistic pushdown automaton
(pPDA) is a tuple ∆ = (Q, Γ, δ,Prob) where Q is a fi-
nite set of control states, Γ is a finite stack alphabet, δ ⊆
Q × Γ × Q × Γ∗ is a transition relation such that when-
ever (p, X, q, α) ∈ δ, then |α| ≤ 2, and Prob is a function
which to each transition pX → qα assigns a rational prob-
ability Prob(pX → qα) ∈ (0, 1] so that for all p ∈ Q and
X ∈ Γ we have that

∑

pX→qα Prob(pX → qα) ∈ {0, 1}.

In the rest of this paper we adopt a more intuitive notation,
writing pX → qα instead of (p, X, q, α) ∈ δ and pX

x
→ qα

instead of Prob(pX → qα) = x. The set Q×Γ∗ of all con-
figurations of ∆ is denoted by C(∆). Given a configuration
pXα of ∆, we call pX the head and α the tail of pXα.

To ∆ we associate the probabilistic transition system T∆

where C(∆) is the set of states and the probabilistic transi-
tion relation is determined by pXβ

x
→ qαβ iff pX

x
→ qα is

a transition of ∆.

Now we recall some known results which will be
used in the following sections. Let us fix a pPDA ∆ =
(Q, Γ, δ,Prob). For all p, q ∈ Q and X ∈ Γ, the sym-
bol [pXq] denotes the probability that a run initiated in
pX hits qε. More precisely, [pXq] = P(w ∈ Run(pX) |
∃i ∈ N : w(i) = qε). It has been shown in [11] (see also
[13]) that there effectively exists a finite system of recur-
sive quadratic equations with variables of the form 〈pXq〉
(i.e., there is a variable 〈pXq〉 for all p, q ∈ Q and X ∈ Γ)
such that the family of all [pXq] probabilities forms the
least solution of this system of equations with respect to
component-wise ordering. Since all terms in these equations
are built using just summation, multiplication, and rational
constants, each of the [pXq] probabilities is effectively ex-
pressible in (R, +, ∗,≤) in the following sense: there effec-
tively exists a formula Φ of (R, +, ∗,≤) with one free vari-
able x such that Φ[x/c] holds iff c = [pXq]. Hence, for
all ∼ ∈ {<, >,≤,≥, =} and all rational constants % one
can decide if [pXq] ∼ % simply by checking if the formula
∃x(Φ∧x∼%) is valid or not. One can also compute the value
[pXq] up to an arbitrarily small non-zero error (for exam-
ple, by a simple binary search). Since the value of [pXq] can
be irrational [13], it cannot be computed precisely in gen-
eral.

The decidability of (R, +, ∗,≤) is due to Tarski [15],
and some fragments of (R, +, ∗,≤) are known to have a
relatively reasonable complexity. For example, the existen-
tial (and hence also the universal) fragment is in PSPACE
[7], and each fragment with a bounded alternation depth of

quantifiers is in EXPTIME [14]. We use these results to es-
timate the complexity of our algorithms.

In this paper we show that a number of quantitative fea-
tures of pPDA are effectively expressible in (R, +, ∗,≤)
(we just say that a given random variable, or its expected
value, or its variance, is “expressible”). This also applies to
features which can be infinite. For example, in the next sec-
tion we consider the expected length of a terminating com-
putation (i.e., we express the average length of the subset of
all finite runs) which can be infinite even if a given pPDA
configuration terminates with probability one. In that case,
the associated formula Φ does not hold for any c ∈ R+

0 . So,
the problem whether the expected time is finite or infinite
can be decided by checking whether the formula ∃x ≥ 0.Φ
is valid or invalid, respectively. If the time is finite, we can
use the formula Φ in the ways described above.

Let us note that once a certain feature is shown express-
ible, it can be used to define other features which then be-
come expressible as well. In some cases, the structure of
the resulting formula is quite complicated. Our complex-
ity results are based on evaluating the size and structure of
these formulae. The size remains typically polynomial in
the size of the original pPDA. Sometimes we obtain a for-
mula of the existential fragment, and sometimes we need
to nest the quantifiers to some fixed depth. Therefore, typi-
cal upper bounds presented in this paper are PSPACE and
EXPTIME.

In the following sections we also use [qY ↑] to denote the
probability that a run initiated in qY is infinite. Observe that
since [qY ↑] = 1−

∑

p∈Q[qY p], this probability is express-
ible. Finally, let us note that since the variance of a given
random variable Y is equal to E(Y 2) − (E(Y))2, the vari-
ance of Y is expressible if both E(Y) and E(Y 2) are ex-
pressible (and this is what we usually prove).

3. Simple reward functions: Expected accu-
mulated reward

In this section, let us fix a pPDA ∆ = (Q, Γ, δ,Prob) such
that for each transition pX

x
→ qα we have that |α| ∈ {0, 2}.

This assumption is not restrictive (for every PDA there is an
equivalent one in this form, up to transition graph isomor-
phism), and becomes particularly useful in this section (oth-
erwise, the systems of equations considered in Theorem 3.1
and Theorem 3.4 would take even less readable form).

Since the probabilities [pXq] are known to be express-
ible (see Section 2), we assume that they are already
“known” and can safely be used in expressions for other
variables (see the discussion in Section 2).

In this section we consider simple reward functions. A
reward function f is simple if f(pα) only depends on p.
For the rest of the section we fix a simple reward function
f , and write f(p) instead of f(pα).

For all p, q ∈ Q and X ∈ Γ, we compute the condi-
tional expectation of the reward accumulated by the pPDA
along a path, under the condition that the path starts at pX
and ends at qε. We also compute the corresponding condi-
tional variance.

Consider the probabilistic space (Run(pX),F ,P). For
each q ∈ Q, let Run(pXq) be the set of all w ∈ Run(pX)
such that w(i) = qε for some i ∈ N. For a given pX we
consider only those q ∈ Q such that [pXq] > 0. The other
control states are irrelevant (and the notions introduced be-
low do not make sense if [pXq] = 0).

We define a random variable RpXq over Run(pX) in the
following way:

RpXq(w) =

{

0 if w 6∈ Run(pXq)
F (w`) if w(`) = qε

Then E(RpXq | Run(pXq)) is the conditional expected ac-
cumulated reward from pX to qε, under the condition that
qε is reached. From now on we write [E(pXq)] instead of
E(RpXq | Run(pXq)).

We show that [E(pXq)] can be computed as the min-
imal solution of a system of linear equations over R+

ω . Let
V := {〈E(pXq)〉 | p, q ∈ Q, X ∈ Γ, [pXq] > 0} be a set of
variables over Rω. That is, for every [E(pXq)] there is the
associated variable 〈E(pXq)〉. Consider the following sys-
tem of recursive equations: 〈E(pXq)〉 = 0 for [pXq] = 0.
Otherwise,

〈E(pXq)〉 =
1

[pXq]

0

B

@

X

pX
x
→qε

x · f(q) +
X

pX
x
→rY Z

x · KpX,rY Z

1

C

A

where the term KpX,rY Z is given by
∑

s∈Q

[rY s][sZq](f(r) + 〈E(rY s)〉 + 〈E(sZq)〉)

If [rY s] or [sZq] is zero, then the corresponding summand
of KpX,rY Z is removed (thus we avoid problems with un-
defined expressions like 0 · ω; note that, e.g., [E(rY s)] can
be ω).

Theorem 3.1. The tuple of all [E(pXq)] values is exactly
the least solution of the above system of equations in R+

ω

with respect to component-wise ordering.

Proof sketch. The system of equations determines a unique
operator F : (R+

ω)|V| → (R+
ω)|V| where F(t) is the tuple

of values obtained by evaluating the right-hand sides of the
equations where each variable of V is substituted with its
associated value in t. Since F is monotonic and continuous,
F has the least fixed-point µ. We show that µ is exactly the
tuple of all [E(pXq)] values.

We first prove that µ is smaller than or equal to the tu-
ple of [E(pXq)] values. We show that the equations hold if
each 〈E(pXq)〉 is substituted with [E(pXq)] (which means

that the tuple of all [E(pXq)] values is a fixed-point of F ,
and hence this tuple can only be larger that µ). A run that
starts with a transition pX

x
→ rY Z and ends at qε must

go through a first configuration of stack length 1. Moreover,
this configuration must have Z as stack content. Fix a state
s, and consider the accumulated reward under the assump-
tion that this intermediate state of the run is s. The run can
be split into three parts as follows: pX

x
→ rY Z →∗ sZ →∗

qε. The expectation of the reward accumulated during the
path is the sum of the expectations of the accumulated re-
wards, and so equal to f(rY Z)+[E(rY Z, sZ)]+[E(sZq)],
where [E(rY Z, sZ)] denotes the conditional expected ac-
cumulated reward between the configurations rY Z and sZ.
Since f is simple, we have f(rY Z) = f(r), and, moreover,
the rewards accumulated during the path rY Z →∗ sZ and
the path rY →∗ sε obtained by removing Z from all con-
figurations of rY Z →∗ sZ coincide. So [E(rY Z, sZ)] =
[E(rY s)], and so the expected value for paths of the form
pX

x
→ rY Z →∗ sZ →∗ qε is f(r)+[E(rY s)]+[E(sZq)].

The conditional expectation under the assumption that the
run starts with pX

x
→ rY Z and has s as intermediate state

is then given by [rY s][sZq](f(r)+〈E(rY s)〉+〈E(sZq)〉).
The other inequality is proven inductively—for each

i ∈ N we define a random variable RpXq,i over
Run(pX), which returns F (w`) if w(`) = qε for
some `≤i, and zero otherwise. Then we can also ap-
proximate [E(pXq)] by a family of conditional expecta-
tions [E(pXq)]i = E(RpXq,i | Run(pXq)). Obviously,
[E(pXq)] = limi→∞[E(pXq)]i. Then, it is inductively
shown that for each i ∈ N, the tuple of all [E(pXq)]i val-
ues can only be less then µ. Hence, the same holds for the
limit [E(pXq)].

Corollary 3.2. [E(pXq)] is expressible. Moreover, the
problem whether [E(pXq)] ∼ %, where % ∈ Qω and
∼ ∈ {<, >,≤,≥, =}, is in PSPACE.

In Corollary 3.2, some extra care is needed to compute all
[E(pXq)] that take the value ω.

Example 3.3 (Termination time). If we assume that every
transition of the pPDA takes one time unit, the expected ter-
mination time of the system when started in the configura-
tion p0X0 can be computed as follows. Let f be the simple
reward function that assigns 1 to each control state. Then,
the expected termination time under the condition that the
pPDA terminates (i.e., reaches a configuration with empty
stack) is given by

∑

q∈Q[E(p0X0q)] · [p0X0q]

1 − [p0X0↑]

Hence, the conditional expected termination time is express-
ible (of course, the fraction only makes sense if the proba-
bility of termination is non-zero).

Let us note that the problem of computing the expected ac-
cumulated reward between a given pair of (arbitrary) con-
figurations pα and qβ is easily reducible to the problem of
computing [E(pXq)]. Hence, we can also solve this prob-
lem.

Now we show how to compute the conditional vari-
ance of the accumulated reward of a path under the con-
dition that it starts at pX and ends at qε. Since we al-
ready know how to compute E(RpXq | Run(pXq)), it
only remains to compute the conditional second moment
E(R2

pXq | Run(pXq)).
Similarly as before, consider the probabilistic space

(Run(pX),F ,P). For every q ∈ Q such that [pXq] > 0
we define a random variable QpXq over Run(pX) as fol-
lows:

QpXq(w) =

{

0 if w 6∈ Run(pXq)
(F (w`))2 if w(`) = qε

E(QpXq | Run(pXq)) is the conditional expected square
of the accumulated reward from pX to qε, under the con-
dition that qε is reached. From now on we write [Q(pXq)]
instead of E(QpXq | Run(pXq)).

Analogously as for [E(pXq)] we now show that the tu-
ple of all [Q(pXq)] values forms the least solution of an ef-
fectively constructible system of linear equations. Since the
values of [E(pXq)] are expressible, they can be used as co-
efficients in the system. So, let V = {〈Q(pXq)〉 | p, q ∈
Q, X ∈ Γ, [pXq] > 0} be a set of variables over R+

ω . Con-
sider the following system of linear equations (linear in the
〈Q(aBc)〉 variables): 〈Q(pXq)〉 = 0 for [pXq] = 0, else

〈Q(pXq)〉 =
1

[pXq]

0

@

X

pX
x
→qε

x · f(q)2 +

+
X

pX
x
→rY Z

x ·
X

s∈Q

[rY s][sZq]KpX,rY Z,s

1

A

where the expression KpX,rY Z,s stands for

〈Q(rY s)〉 + 〈Q(sZq)〉 + f(r)2+

2[E(rY s)][E(sZq)] + 2f(r)[E(rY s)] + 2f(r)[E(sZq)]

If [rY s], [sZq], [E(rY s)], or [E(sZq)] is zero, then the cor-
responding summands are eliminated. Now we derive anal-
ogous results as in the case of [E(pXq)]:

Theorem 3.4. The tuple of all [Q(pXq)] is exactly the least
solution of the above system of equations in R+

ω .

Proof sketch. The structure of the proof is the same as for
Theorem 3.1. Let us just explain the key points for obtain-
ing KpX,rY Z,s. Recall that if A and B are independent ran-
dom variables, then E((A + B)2) = E(A2) + E(B2) +
2E(A) ·E(B). In general, if X =

∑n

i=1 Xi and the Xi are
pairwise independent, then E(X2) is expressible as a poly-
nomial in E(Xi) and E(X2

i).

We are interested in the conditional second moment of
the accumulated reward of a path under the assumption that
the path has the form pX

x
→ rY Z →∗ sZ →∗ qε for fixed

pX , rY Z, sZ, and qε, as in Theorem 3.1. Now we make
two observations. First, for simple reward functions the ex-
pectation of the reward accumulated along the path is given
by f(r) + [E(rY s)] + [E(sZq)] (see the proof of Theo-
rem 3.1). Second, for arbitrary reward functions the random
variables that assign to each part of the run its accumulated
reward are pairwise independent (follows from the fact that
we have fixed the configurations rY Z, sZ, qε, and so the
initial configuration of a part of the path does not depend
on the previous parts). From these two observations follows
that the square of the accumulated reward can be expressed
in terms of (f(r))2, [Q(rY s)], [Q(sZq)], f(r), [E(rY s)],
[E(sZq)]. The term KpX,rY Z,s is now obtained by a rou-
tine calculation.

Corollary 3.5. [Q(pXq)] is expressible. Moreover, the
problem whether [Q(pXq)] ∼ %, where % ∈ Qω and
∼ ∈ {<, >,≤,≥, =}, is in PSPACE.

Example 3.6. Consider the pPDA model of the “gambler’s

ruin” problem. We have the rules pC
x
→ pCC, pC

1−x
→ pε,

and the initial configuration pC. The minimal solution of
the recursive equation system for [pCp] yields that [pCp] =
1 if x ≤ 1/2 and [pCp] = (1 − x)/x if x > 1/2.

By solving the recursive equations of Theorem 3.1 and
Theorem 3.4, one obtains the following results. The condi-
tional expectation [E(pCp)] of the distance from pC to pε
is 0 for x = 1, ω for x = 1/2, and otherwise

[E(pCp)] =
1 − x + x[pCp]2

[pCp] − 2x[pCp]2

The conditional expectation [Q(pCp)] of the square of the
distance is 0 for x = 1, ω for x = 1/2, and otherwise

[Q(pCp)] =
(1 − x) + x[pCp]2(2[E(pCp)]2 + 4[E(pCp)] + 1)

[pCp]− 2x[pCp]2

For x = 3/4 one obtains [pCp] = 1/3, [E(pCp)] = 2,
and [Q(pCp)] = 10. Hence, the conditional variance is 6.

For x = 1/2 one obtains the well-known result
[pCp] = 1 and [E(pCp)] = ω, i.e., although pε is reached
almost surely, the expected number of steps to get there is
infinite.

Finally, let us note that the approach of this section can
be used to compute the conditional kth moment E(Rk

pXq |
Run(pXq)) for every k ∈ N, which can be useful for a
deeper analysis of Run(pXq).

4. Simple reward functions: Expected gain

Similarly as in Section 3, let us fix a simple reward func-
tion f and its associated function F which assigns an ac-

cumulated reward to each finite computation path. We also
fix a pPDA ∆ = (Q, Γ, δ,Prob). To simplify our presen-
tation, we assume that there is a special initial configura-
tion q0Z0, where q0 ∈ Q and Z0 ∈ Γ, such that the symbol
Z0 can never be removed from the stack.

We define a function Gf : Run(q0Z0) → R+ as follows.

Gf (w) =

(

limn→∞
F (wn)

n
if the limit exists;

⊥ otherwise.

If P(Gf=⊥) = 0 and P(Gf≤x) exists for each x ∈ R+,
then Gf is a random variable where Gf (w) corresponds
to the average reward earned per transition during the ex-
ecution of w, which we call the gain of w. Our aim is
to compute the expected value of Gf , which is given by
E(Gf) =

∫

Run(q0Z0) Gf (w) dP , assuming that the inte-
gral exists. Generally, computing E(Gf) appears to be a
difficult problem. Nevertheless, it becomes solvable under
a relatively mild assumption. In order to formulate the as-
sumption, we need to recall a definition of [11]. (In fact, this
definition is slightly extended to fit our present needs.)

Definition 4.1. Let w = p1α1, p2α2 · · · be an (infinite) run
in Run(q0Z0). For each i ∈ N we define the ith minimum
of w, denoted mini(w), inductively as follows. The ith min-
imum can be either increasing or non-increasing.

• min1(w) = p1α1 (i.e., min1(w) is the starting config-
uration q0Z0 of w). We stipulate that min1(w) is non-
increasing.

• Let mini(w) = p`α`. Then mini+1(w) = pkαk where
k is the least number such that k > ` and |αk′ | ≥ |αk|
for each k′ ≥ k. Observe that |αk| − |α`| equals either
1 or 0. In the first case, mini+1(w) is increasing. Other-
wise, mini+1(w) is non-increasing.

Our assumption is the following: the expected accumulated
reward between any two consecutive minima is finite. A pre-
cise formulation of this condition is given below; as we shall
see, the condition can be effectively checked in polynomial
space. From a practical point of view, the introduced re-
striction is not strong. In the context of programs with pro-
cedures, one sufficient condition which implies that our as-
sumption is satisfied is that the expected termination time of
each procedure is finite. One can argue that if the expected
termination time for some procedure is infinite, there is a
design error in the system.

The Markov chain X. For each i ∈ N we define a random
variable Xi over Run(q0Z0) as follows: Xi(w) = (qY, m),
where qY is the head of mini(w), and m is either +
or 0 depending on whether mini(w) is increasing or non-
increasing, respectively. The next lemma reveals that the se-
quence X = X1, X2, · · · is a homogeneous Markov chain.

Lemma 4.2. For all n≥2 and (q1Y1, m1), · · · , (qnYn, mn)

where P(
∧n−1

i=1 Xi=(qiYi, mi))>0 we have that

P(Xn=(qnYn, mn) |
n−1̂

i=1

Xi=(qiYi, mi)) =
K

[qn−1Yn−1↑]

where K is equal either to
X

qn−1Yn−1

x
→qnYnZ

x · [qnYn↑] or to

X

qn−1Yn−1

x
→rZYn

x·[rZqn]·[qnYn↑]+
X

qn−1Yn−1

x
→qnYn

x·[qnYn↑]

depending on whether mn is equal to + or 0, respectively.

Proof sketch. Let us assume that the current minimum is
pXα. This assumption means that we only consider those
runs from pXα which never access α (and hence α is com-
pletely irrelevant). Under this assumption, the probability
that the next minimum will be increasing and of the form
qY Zα is equal to the probability that we execute a tran-
sition of the form pX

x
→ qY Z from pXα and the stack

is never decreased to Zα in the future. Hence, the consid-
ered conditional probability is equal to

∑

pX
x
→qY Z

x· [qY ↑]
[pX↑] .

Similarly, the conditional probability that the next minimum
will be non-increasing and of the form qY α is also evalu-
ated by considering the first transition of pXα. This transi-
tion is either of the form pX

x
→ qY , in which case the con-

sidered conditional probability equals x · [qY ↑]
[pX↑] , or of the

form pX
x
→ rZY , where we have to get rid of the sym-

bol Z by a sequence of transitions of the form rZ →∗ qε.
Hence, in the second case the conditional probability equals
x[rZq] [qY ↑]

[pX↑] .

Observe that the expression given in Lemma 4.2 depends
just on the values of Xn and Xn−1. Since all probabilities
which appear in this expression are expressible, the transi-
tion probabilities of X are expressible as well.

A trajectory in X is an infinite sequence s0, s1, · · · of
states of X such that s0 = (q0Z0, 0) and the probability of
si → si+1 is non-zero for each i ∈ N0.

To each w ∈ Run(q0Z0) we can associate its footprint
X1(w), X2(w), · · · . Note that there can be runs whose foot-
prints are not trajectories in X. Let C1, · · · , Ck be the BSCC
of X. To each Ci we associate the set Run(q0Z0, Ci) con-
sisting of all w ∈ Run(q0Z0) such that the footprint of w
is a trajectory in X which hits the component Ci. Note that
since X has finitely many states, P(Run(q0Z0, Ci)) is com-
putable by standard methods for finite-state Markov chains.
Moreover, it can easily be shown that

k
∑

i=1

P(Run(q0Z0, Ci)) = 1 (1)

In the following we show that various quantitative proper-
ties of Run(q0Z0) can be analyzed by considering the prop-
erty for each Run(q0Z0, Ci) separately and combining the
obtained results. For this we use generic results which are
described next.

The random variable M f . For each i ∈ N we define
a random variable M f

i over Run(q0Z0) as follows: Let
w = s1, s2, · · · be a run of Run(q0Z0). Then Mf

i (w) =
F (sk, · · · , s`), where sk = mini(w) and s` = mini+1(w).
In other words, M f

i (w) is the reward accumulated between
mini(w) and mini+1(w).

Lemma 4.3. Let i ∈ N, and let (pX, m), (qY, n) be
two states of X (not necessarily different) such that
P(Xi=(pX, m)∧Xi+1=(qY, n)) > 0. The conditional ex-
pectation

E(Mf
i | Xi=(pX, m) ∧ Xi+1=(qY, n))

is equal either to f(q) or to
P

pX
x
→rZY

x[rZq][qY ↑](f(r) + [E(rZq)]) +
P

pX
x
→qY

x[qY ↑]f(q)

Prob((pX, m) → (qY, n))

depending on whether n is equal to + or 0, respectively.

Proof sketch. We use a similar approach as in Lemma 4.2,
only that now the associated analysis of possible runs be-
tween two consecutive minima must be carried out rather
carefully.

Since E(Mf
i | Xi=(pX, m) ∧ Xi+1=(qY, n)) is indepen-

dent of i as long as P(Xi=(pX, m)∧Xi+1=(qY, n)) > 0,
this conditional expectation can be associated directly with
the edge (pX, m) → (qY, n) in X, and will be denoted by
Ef ((pX, m) → (qY, n)) in the rest of this paper. Observe
that Ef ((pX, m) → (qY, n)) is expressible due to the re-
sults of Section 3.

Similarly, we can also express the conditional second
moment E((Mf

i)2 | Xi=(pX, m)∧Xi+1=(qY, n)) by em-
ploying the results of Section 3. The conditional second mo-
ment (and hence also the conditional variance) are thus ex-
pressible.

Now we introduce another random variable M f over
Run(q0Z0) which corresponds to the average accumulated
reward between two consecutive minima. Formally, for
each w ∈ Run(q0Z0) we define

M
f (w) =

(

limn→∞

M
f
1

(w)+···+Mf
n(w)

n
if the limit exists;

⊥ otherwise.

Theorem 4.4. Let C be a BSCC of X, and let µC be
the invariant probability distribution for C (here we
view C as an irreducible finite-state Markov chain).
Let kC =

∑

s∈C µC(s) ·
∑

s
x
→t

x · Ef (s → t). Then
P(Mf = kC | Run(q0Z0, C)) = 1.

Proof sketch. Realize that if the transitions of C were as-
signed fixed values, we could apply standard results for
finite-state Markov chains to compute the average reward
of a transition. The resulting expression would be the one
given in our theorem. Since we deal with expected rewards
between two states, a full proof is somewhat technical.

According to Theorem 4.4, the variable M f takes the same
value kC for almost all runs of Run(q0Z0, C). Together
with Equation (1), this implies that P(M f=⊥) = 0. More-
over, we have the following corollary:

Corollary 4.5. Let C be a BSCC of X. Then

E(Mf | Run(q0Z0, C)) =
∑

s∈C

µC(s) ·
∑

s
x
→t

x · Ef (s → t)

and thus

E(Mf) =
X

C∈C

P(Run(q0Z0, C))·
X

s∈C

µC(s)·
X

s
x
→t

x·Ef (s → t)

Hence, E(Mf) is expressible.

Consider the reward function 1 that assigns 1 to each con-
trol state. Let C be a BSCC of X. The next lemma tells
how to compute Gf (w) for the runs of Run(q0Z0, C) when
Ef (s → t) is finite for all states s, t of C.

Lemma 4.6. Let C be a BSCC of X, and let us assume that
for all states s, t ∈ C we have that Ef (s → t) is finite.
Then for almost all w ∈ Run(q0Z0, C) we have that

Gf (w) =

∑

s∈C µC(s) ·
∑

s
x
→t

x · Ef (s → t)
∑

s∈C µC(s) ·
∑

s
x
→t

x · E1(s → t)

Hence, Gf (w) is the same for almost all w ∈
Run(q0Z0, C), and thus we finally obtain:

Theorem 4.7. Let C be the set of all BSCC of X. Let
us assume that for each C ∈ C and all states s, t ∈
C we have that Ef (s → t) is finite. Then E(Gf) =
∑

C∈C P(Run(q0Z0, C)) · Gf (C), where

Gf (C) =

∑

s∈C µC(s) ·
∑

s
x
→t

x · Ef (s → t)
∑

s∈C µC(s) ·
∑

s
x
→t

x · E1(s → t)

Remark 4.8. Note that Lemma 4.6 actually says that the
variable Gf only takes one of the finitely many given val-
ues for almost all runs of Run(q0Z0). Since these values
and the associated probabilities are expressible, we have a
bit more detailed information about the behaviour of q0Z0,
which is not reflected in the average E(Gf).

The complexity bounds associated to Theorem 4.7 are given
in the following corollary:

Corollary 4.9. The problem whether the assumption of
Theorem 4.7 is satisfied for a given pPDA ∆ is in PSPACE.
If the assumption is satisfied, then the problem whether
E(Gf) ∼ %, where ∼ ∈ {<, >,≤,≥, =} and % ∈ Q, is
in EXPTIME.

Finally, let us note that E(Gf) can exist even if the assump-
tion of Theorem 4.7 is not satisfied. This is demonstrated in
the following example:

Example 4.10. Let us consider a pPDA given by the rules

qZ
1/2
→ pIZ qZ

1/2
→ pZ qI

1/2
→ pII qI

1/2
→ pε

pZ
1/2
→ qIZ pZ

1/2
→ qZ pI

1/2
→ qII pI

1/2
→ qε

where the initial configuration is qZ. Then the chain X looks
as follows (we omit the states that are not reachable from
the state (qZ, 0)):

PSfrag replacements

1/2

1/2

1/21/2 (pZ, 0) (qZ, 0)

Let f(p) = 1 and f(q) = 0. Since Ef ((pZ, 0) → (qZ, 0))
and Ef ((qZ, 0) → (pZ, 0)) are infinite, Theorem 4.7 can-
not be applied. Nevertheless, E(Gf) = 1/2 because the
control states p and q regularly alternate in each w ∈
Run(qZ).

Renewal times. Given a set P ⊆ Q of control states, let
fP be the reward function given by fP (p) = 1 if p ∈ P
and fP (p) = 0 otherwise. The variable GfP

assigns to
an infinite run the average number of visits to states of P
per transition. Therefore, if E(GfP

) 6= 0, then 1/E(GfP
)

gives the average number of transitions between any two
visits to P , i.e., the average renewal time associated to P (if
E(GfP

) = 0 then we can say that the average renewal time
is infinite).

5. Linear reward functions: Expected accu-
mulated reward

Let us fix a pPDA ∆ = (Q, Γ, δ,Prob) as in Section 3. A
reward function f : C(∆) → R+ is linear if there are func-
tions g : Q → R+ and c : Γ → R+ such that for every pα ∈
C(∆) we have that f(pα) = g(p) +

∑

Y ∈Γ c(Y) · #Y (α),
where #Y (α) denotes the number of occurrences of Y in
α. Notice that the simple reward functions correspond to
the special case when c(Y) = 0 for every Y ∈ Γ.

For the rest of this section we fix a linear reward func-
tion ` given by the functions g and c. The associated reward
function for finite paths is denoted L.

We use the notation introduced in Section 3. Observe
that the definition of conditional expectation [E(pXq)]
makes sense for an arbitrary reward function f . We write
[E(pXq), f] to denote this conditional expectation for a

given f . In particular, we shall consider the function ` in-
troduced above, and the function 1 of the previous section
which assigns 1 to all configurations. Since the function 1
is simple, [E(pXq), 1] is expressible (see Corollary 3.2).

Let 〈E(pXq), `〉 be a variable for all p, q ∈ Q and
X ∈ Γ such that [pXq] > 0. Now consider the system
of recursive equations, where each variable 〈E(pXq), `〉 is
equal to

1

[pXq]

0

B

@

X

pX
x
→qε

x · `(qε) +
X

pX
x
→rY Z

x ·
X

s∈Q

[rY s][sZq]K′
pX,rY Z

1

C

A

where the term K ′
pX,rY Z is given by

〈E(rY s), `〉 + 〈E(sZq), `〉 + `(rY Z) + c(Z)[E(rY s, 1)]

Observe that in the case when c(Y) = 0 for every Y ∈ Γ
we recover the system of Section 3. Also note that since
[E(pXq, 1)] appears in the above equation, we would still
have to handle simple reward functions separately if we
started directly with linear reward functions in Section 3.

Theorem 5.1. The tuple of all [E(pXq), `] values is ex-
actly the least solution of the above system of equations in
R+

ω with respect to component-wise ordering.

Proof sketch. The proof is very similar to that of Theo-
rem 3.1. The only difference is the following. As in The-
orem 3.1, let rY →∗ sε be the path obtained by remov-
ing Z from all configurations of rY Z →∗ sZ. In the case
of simple reward functions, the rewards accumulated during
rY Z →∗ sZ and rY →∗ sε coincide. In the case of lin-
ear functions, the reward accumulated during rY Z →∗ sZ
is equal to the reward accumulated during rY →∗ sε
plus c(Z) times the length of rY →∗ sε. So, in average
this reward equals [E(rY s), `]+ c(Z)[E(rY s, 1)], because
[E(rY s, 1)] is the expected length of the path rY Z →∗ sZ.
This leads to the term K ′

pX,rY Z .

For the conditional second moment, we adopt a similar no-
tation as above. Consider the system of equations

〈Q(pXq), `〉 =
1

[pXq]

0

@

X

pX
x
→qε

x · `(qε)2 +

X

pX
x
→rY Z

x ·
X

s∈Q

[rY s][sZq]K′
pX,rY Z,s

1

A

where the expression K ′
pX,rY Z,s stands for

〈Q(rY s), `〉 + 〈Q(sZq), `〉 + `(rY Z)2 + 2[E(rY s, `)][E(sZq, `)]

+2`(rY Z)[E(rY s, `)] + 2`(rY Z)[E(sZq, `)]

+2c(Z)([E(rY s, `)] + (`(rY Z) + [E(sZq, `)])[E(rY s, 1)]) +
c(Z)2[E(rY s, 1)])

Again, taking c(Y) = 0 for every Y ∈ Γ we recover the
system of Section 3. We have the following result, which is
proved by combining the observations presented in proofs
of Theorem 3.4 and Theorem 5.1:

Theorem 5.2. The tuple of all [Q(pXq, `)] values is ex-
actly the least solution of the above system of equations in
R+

ω with respect to component-wise ordering.

6. Linear reward functions: Expected gain

Let us fix a pPDA ∆ = (Q, Γ, δ,Prob) and its initial con-
figuration q0Z0 as in Section 4. We also fix a linear reward
function ` given by the functions g and c. In this section we
show how to compute E(G`).

We say that a transition (qY, m) → (rZ, n) of the
Markov chain X is bounded if either n = + and for all
transitions of the form qY

x
→ rZT we have that c(T) = 0,

or n = 0 and for all transitions of the form qY
x
→ tTZ

we have that [E(tT r), `] is finite. Note that we can effec-
tively check if a given transition is bounded by using the re-
sults of Section 5. A transition which is not bounded is un-
bounded.

Lemma 6.1. Let C be a BSCC of X which contains an un-
bounded transition. Then for almost all w ∈ Run(q0Z0) we
have that G`(w) is infinite.

Now assume that C is a BSCC of X where all transitions
are bounded. For simplicity, consider first the case when X
is strongly connected. As in Section 4, define a random vari-
able M `

i which for every w ∈ Run(q0Z0) returns the ac-
cumulated reward between mini(w) and mini+1(w), and a
random variable M ` as the average reward collected when
moving from one minimum to the next.

In the case of a simple function f that depends only on
the control state, the variable M f

i depends only on Xi and
Xi+1. This is no longer the case for a linear function `. The
reason is that the variable Xi records only the head of the
ith minimum, but not the stack content which is needed
to compute the reward. The stack content of the ith min-
imum depends on the values of all of X1, . . . , Xi. When-
ever one of these variables is of the form (pX, +), the stack
length of the ith minimum increases by 1. Fortunately, since
we assume that all transitions are bounded, increasing min-
ima are no longer a problem, because the c-value of sym-
bols that are pushed is zero. Then M `

i depends only on Xi

and Xi+1, and we can reuse all the results of Section 4.
In particular, Lemma 4.3 still holds after some straightfor-
ward modifications (these modifications are based on the
same idea which was used in Theorem 5.1 to modify the
equations of Theorem 3.1). This shows how to compute
E`((pX, m) → (qY, n)). Corollary 4.5 shows how to com-
pute E(M `) after replacing f by `, and Theorem 4.7 shows
how to compute E(G`) after replacing f by `.

If X is not strongly connected, then the problem is
slightly more complicated, and we only sketch the argu-
ment. Let B be the random variable which for every w ∈
Run(q0Z0) returns either ⊥ if the footprint of w does not

hit a BSCC of X, or c(β) where β is the tail of the first mini-
mal configuration which hits a BSCC of X. For each BSCC
C, we express E(BC), the conditional expected value of
B under the assumption that the BSCC reached by the
run is C. Now we express E(G`,C), the conditional ex-
pected value of G` under the condition that the run starts
in C (this can be done by the method described in the pre-
vious paragraph). Thus, for each BSCC C of ∆ we get
E(G` | Run(q0Z0, C)) = E(BC) + E(G`,C), hence

E(G`) =
∑

C

P(Run(q0Z0, C)) · (E(BC) + E(G`,C))

Average stack length. The average stack length corresponds
to the linear function `(pα) = |α|, and so its expectation can
be computed using the results of this section.

6.1. Maximal stack length

For many applications, the maximal stack length of a run
is perhaps more interesting than the average stack length
which can be computed by applying the results of the pre-
vious section.

Formally, let us define the random variable ML over
Run(q0Z0) as follows: ML(w) is the least % ∈ R+

ω such
that `(w(i)) ≤ % for all i ∈ N. If ML(w) < ω, then w
is called bounded. Observe that in the special case when
g(p) = 0 and c(Y) = 1 for all p ∈ Q and Y ∈ Γ we have
that ML(w) is the maximal stack length in w. We are inter-
ested in the probability P(ML=ω) of unbounded runs. The
next theorem says how to compute this probability, but we
need a preliminary definition.

We say that a transition (qY, m) → (rZ, n) of X is lim-
ited if either n = + and for all transitions of the form
qY

x
→ rZT we have that c(T) = 0, or n = 0 and there

is % ∈ R+ such that for every path w from qY to rZ we
have that `(w(i)) ≤ % for every state w(i) of w. Observe
that the exact values of transition probabilities in ∆ do not
matter here. Hence, one can rely on standard results for non-
probabilistic PDA and conclude that the problem whether a
given transition is limited is decidable in polynomial time.
(The problem whether (qY, m) → (rZ, 0) is limited can
be decided, e.g., using the results of [10]: One can com-
pute the set post∗(qY) of all successor configurations of
qY , the set pre∗(rZ) of all predecessor configurations of
rZ. Since these sets are regular, their homomorphic images
obtained by replacing all Y ∈ Γ such that c(Y) = 0 with ε
are also regular. Obviously, the considered transition is lim-
ited iff the intersection of these two images is finite. The
whole procedure can be implemented in polynomial time.)

Theorem 6.2. Let C be the set of all BSCC of X which con-
tain at least one non-limited transition. Then P(ML=ω) is
equal to

∑

C∈C P(Run(q0Z0, C)).

Proof sketch. Let C be a BSCC of X. We show that (1)
if C ∈ C then almost all runs of Run(q0Z0, C) are
unbounded, and (2) if C 6∈ C then almost all runs of
Run(q0Z0, C) are bounded. For (1) we can distinguish two
cases:

(a) If C contains a non-limited transition of the form
(qY, m) → (rZ, +), one can argue that almost all runs of
Run(q0Z0, C) contain infinitely many pairs of consecutive
configurations of the form qY α, rZTα, where c(T) > 0,
which are both minimal (realize that if w(i) is an increas-
ing minimum of a run w, then w(i− 1) is also a minimum).
Hence, the T is pushed infinitely many times when enter-
ing a minimal configuration, and hence almost all runs of
Run(q0Z0, C) are unbounded.

(b) If C contains a non-limited transition of the form
(qY, m) → (rZ, 0), one has to realize that almost all runs
of Run(q0Z0, C) have infinitely many pairs of consecu-
tive minima whose X-values are (qY, m) and (rZ, 0). Since
each finite path between qY and rZ has a non-zero fixed
probability, almost all runs of Run(q0Z0, C) execute each
of these finite paths infinitely many times. Hence, almost all
runs are again unbounded.

Finally, (2) follows by observing that almost all runs of
Run(q0Z0, C) have only finitely many “properly increas-
ing” minima, i.e., those increasing minima where the in-
coming transition pushes a symbol T such that c(T) > 0.
Hence, the value of ` remains bounded if we restrict our-
selves to the minimal configurations. However, from the
definition of limited transitions it follows that the value of
` is bounded also between the minimal configurations by a
global constant.

Corollary 6.3. The problem whether P(ML=ω) ∼ %,
where ∼ ∈ {<, >,≤,≥, =} and % ∈ Q, is in EXPTIME.
In the special case when % ∈ {0, 1} the problem belongs to
PSPACE.

Theorem 6.2 shows that the probability P(ML=ω) is ex-
pressible. We can easily show that also P(ML=%) and
P(ML≤%) are expressible for every % ∈ Q by apply-
ing results about the quantitative model-checking problem
for LTL properties [11, 6, 12]. Computing the expectation
E(ML) seems to be a harder problem which is left for fu-
ture work.

7. Conclusions and future work

The results about expected gain for simple reward functions
indicate that our proof techniques might also be used for
analysis of long-run average behavior of probabilistic sys-
tems in the style of [9]. In certain situations, properties of
individual runs are more relevant than ensemble averages
computed over all runs. For example, one can ask what is
the probability of all runs where the average reward per

transition stays within certain bounds. In fact, using our re-
sults we can answer even this question, at least for simple
reward functions (see Remark 4.8). Hence, an interesting
open problem is whether one can extend our results to an-
swer more complicated quantitative questions of this kind.

Acknowledgments We thank Olivier Serre for drawing our
attention to the stack length problem, and Tom áš Br ázdil for
reading a preliminary draft of this paper.

References

[1] R. Alur, K. Etessami, and P. Madhusudan. A temporal logic
of nested calls and returns. In Proc. TACAS 2004, LNCS
2988, p. 467–481. Springer, 2004.

[2] R. Alur, K. Etessami, and M. Yannakakis. Analysis of re-
cursive state machines. In Proc. CAV 2001, LNCS 2102, p.
207–220. Springer, 2001.

[3] R. Alur and P. Madhusudan. Visibly pushdown languages.
In Proc. STOC 2004, p. 202–211. ACM Press, 2004.

[4] M. Benedikt, P. Godefroid, and T.W. Reps. Model check-
ing of unrestricted hierarchical state machines. In Proc.
ICALP’2001, LNCS 2076, p. 652–666. Springer, 2001.

[5] A. Bouajjani, J. Esparza, and O. Maler. Reachability analy-
sis of pushdown automata: application to model checking. In
Proc. CONCUR’97, LNCS 1243, 135–150. Springer, 1997.

[6] T. Br ázdil, A. Kučera, and O. Stražovsk ý. On the decidability
of temporal properties of probabilistic pushdown automata.
In Proc. STACS’2005, LNCS 3404, p. 145–157. Springer,
2005.

[7] J. Canny. Some algebraic and geometric computations in
PSPACE. In Proc. STOC’88, p. 460–467. ACM Press, 1988.

[8] S. Chaudhuri, R. Alur, K. Etessami, and P. Madhusudan. On-
the-fly reachability and cycle detection for recursive state
machines. In Proc. TACAS 2005, LNCS 3440. Springer,
2005.

[9] L. de Alfaro. How to specify and verify the long-run average
behavior of probabilistic systems. In Proc. LICS’98, p. 454–
465. IEEE, 1998.

[10] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Effi-
cient algorithms for model checking pushdown systems. In
Proc. CAV 2000, LNCS 1855, p. 232–247. Springer, 2000.

[11] J. Esparza, A. Kučera, and R. Mayr. Model-checking prob-
abilistic pushdown automata. In Proc. LICS 2004, p. 12–21.
IEEE, 2004.

[12] K. Etessami and M. Yannakakis. Algorithmic verification of
recursive probabilistic systems. In Proc. TACAS 2005, LNCS
3440, p. 253–270. Springer, 2005.

[13] K. Etessami and M. Yannakakis. Recursive Markov chains,
stochastic grammars, and monotone systems of non-linear
equations. In Proc. STACS’2005, LNCS 3404, p. 340–352.
Springer, 2005.

[14] D. Grigoriev. Complexity of deciding Tarski algebra. Jour-
nal of Symbolic Computation, 5(1–2):65–108, 1988.

[15] A. Tarski. A Decision Method for Elementary Algebra and
Geometry. Univ. of California Press, Berkeley, 1951.

