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Abstract. The Strahler number or Horton-Strahler number of a tree,
originally introduced in geophysics, has a surprisingly rich theory. We
sketch some milestones in its history, and its connection to arithmetic ex-
pressions, graph traversing, decision problems for context-free languages,
Parikh’s theorem, and Newton’s procedure for approximating zeros of
differentiable functions.

1 Preface

In 2007, two of us and Stefan Kiefer published a generalization of Newton’s
method—the well-known standard technique to approximation the roots of a
real-valued function—to functions over arbitrary ω-continuous semirings [11,
13]. One of the main results of the paper was an application to language theory,
leading in particular to a new algorithm for computing the Parikh image of
context-free languages.

Our results made heavy use of what we called the dimension of a tree. Some
time later, we learned that this notion had already been invented in a completely
different field: Hidrogeology, the sub-discipline of Geology devoted to the study
of rivers. Indeed, the notion could be traced back to two papers by Robert
E. Horton and Arthur N. Strahler, published in the 1950s, and was known as
the Strahler number of Horton-Strahler number of a tree1. During the next
weeks we dug into the literature and consulted colleagues, we found out that
the Strahler numbers had been rediscovered many times, and used in connection
with a surprisingly wide range of topics. Our work was adding some items to
this already long list.

When one of us was invited to give a talk at LATA 2014, the 8th International
Conference on Language and Automata Theory and Applications, we decided
to offer the audience a brief introduction to Strahler numbers, followed by our
results on Newton’s method. We also wrote a short note [15] with the title “A
Brief History of Strahler Numbers”, which concluded with:

This paper is by no means exhaustive, and we apologize in advance to
the many authors we have surely forgotten. We intend to extend this
paper with further references. If you know of further work connected to
the Strahler number, please contact us.

1 In this paper we choose the shorter name, without diminishing the credit due to
Robert Horton in any way
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Some months later, one of us received the following email from Maggie
McLoughlin, with the subject “Quick note from Prof. Knuth”:

Hi Javier,

In case you haven’t already learned that Strahler numbers also can be

found in The Art of Computer Programming, Volume 4A, you might

be interested in looking at pages 485 and 520; references to

Horton, Strahler, and others are on page 811.

I first learned about the connection between these numbers and

Arthur Strahler from Xavier Viennot, who published a nice writeup

on pages 265--297 of the book Mots by "M Lothaire" (1990).

It has 84 items in its bibliography, and a nice picture

of the Garonne river as well as some E. Coli....

I learned of an important generalization last year. There’s a

fairly clear connection between Strahler numbers and the notion

of kth-level refutations of unsatisfiable clauses; but Gwynne

and Kullmann showed how to extend this in a nontrivial way

to _satisfiable_ clause sets: Journal of Automated Reasoning 52

(2014), 31--65. Their subsequent paper in arXiv 1406.7398

gives further clarifications.

Thanks for taking the time to write "a brief history of

Strahler numbers" --- and thereby becoming the goto-person

when people want to know a less brief history!

Cordially, Don

It was a very nice to learn that Don Knuth had read our note, and quite
embarrassing to find out that we did not know any of the references mentioned
in his message. In particular, Viennot’s paper [28] was a big surprise for us, and
we are very grateful to Don for pointing it to us. It is a beautiful article, full
of insightful examples, and by far the most comprehensive survey on Strahler
numbers! How could it be that we had not found it in our search for previous
work, when it was even available online?

This leads to the two lessons we have learned about choosing titles in the
Internet age. Viennot’s article appeared in 1990, and so he did not write for a
world with search engines. Had he known what the future would bring, proba-
bly he would not have chosen “Trees” as title of his comprehensive survey, in
particular when it appeared in a collective book with the title “Mots” (French
for “Words”). Even today’s sophisticated search robots miss the relevance of his
paper for anyone interested in Strahler numbers.

The second lesson concerns our own paper (and we have no excuse, we wrote
it in 2014). While our goal was modest—introduce Strahler numbers to some lan-
guage theorists attending the LATA conference—because of our title the article
appeared quite high in the hit list for the query “Strahler numbers”. Without
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really intending it, we had become the goto-persons on the history of Strahler
numbers for anyone conducting a web search.

After Don’s kind note, it is of course our duty to repair our omission of
Viennot’s beautiful survey. We do so (with a long delay, for which we apologize)
by adding this preface to our paper. We hope that robots will find it soon enough.

Thanks to Don Knuth for taking the time to write to us.

2 The Strahler Number

In 1945, the geophysicist Robert Horton found it useful to associate a stream
order to a system of rivers (geophysicists seem to prefer the term ‘stream”) [21].

Unbranched fingertip tributaries are always designated as of order 1, trib-
utaries or streams of the 2d order receive branches or tributaries of the
1st order, but these only; a 3d order stream must receive one or more
tributaries of the 2d order but may also receive 1st order tributaries. A
4th order stream receives branches of the 3d and usually also of lower
orders, and so on.

Several years later, Arthur N. Strahler replaced this ambiguous definition by
a simpler one, very easy to compute [27]:

The smallest, or ”finger-tip”, channels constitute the first-order seg-
ments. [. . . ]. A second-order segment is formed by the junction of any
two first-order streams; a third
-order segment is formed by the joining of any two second order streams,
etc.

Streams of lower order joining a higher order stream do not change the order
of the higher stream. Thus, if a first-order stream joins a second-order stream,
it remains a second-order stream. Figure 1 shows the Strahler number for a
fragment of the course of the Elbe river with some of its tributaries. The stream
system is of order 4.

From a computer science point of view, stream systems are just trees.

Definition 1. Let t be a tree with root r. The Strahler number of t, denoted by
S(t), is inductively defined as follows.

– If r has no children (i.e., t has only one node), then S(t) = 0.
– If r has children r1, . . . , rn, then let t1, . . . , tn be the subtrees of t rooted at
r1, . . . , rn, and let k = max{S(t1), . . . , S(tn)}: if exactly one of t1, . . . , tn has
Strahler number k, then S(t) = k; otherwise, S(t) = k + 1.

Note that in this formal definition the Strahler number of a simple chain (a
”finger-tip”) is zero, and not one. This allows another characterization of the
Strahler number of a tree t as the height of the largest minor of t that is a
perfect binary tree (i.e., a rooted tree where every inner node has two children
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Fig. 1. Strahler numbers for a fragment of the Elbe river.

and all leaves have the same distance to the root): Roughly speaking, such a
binary tree is obtained by, starting at the root, following paths along which the
Strahler number never decreases by more than one unit at a time, and then
contracting all nodes with only one child. If t itself is a binary tree, then this
minor is unique. We leave the details as a small exercise.

Figure 2 shows trees with Strahler number 1, 2, and 3, respectively. Each
node is labeled with the Strahler number of the subtree rooted at it.

Together with other parameters, like bifurcation ratio and mean stream
length, Horton and Strahler used stream orders to derive quantitative empir-
ical laws for stream systems. Today, geophysicists speak of the Strahler number
(or Horton-Strahler number) of a stream system. According to the excellent
Wikipedia article on the Strahler number (mainly due to David Eppstein), the
Amazon and the Mississippi have Strahler numbers of 10 and 12, respectively.

3 Strahler Numbers and Tree Traversal

The first appearance of the Strahler number in Computer Science seems to be
due to Ershov in 1958 [8], who observed that the number of registers needed to
evaluate an arithmetic expression is given by the Strahler number of its syntax
tree. For instance, the syntax tree of (x + y · z) · t, shown on the left of Figure
3, has Strahler number 2, and indeed can be computed with just two registers
R1, R2 by means of the code shown on the right.
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Fig. 2. Trees of Strahler number 1, 2, and 3.

×

+

x ×

y z

w

R1 ← y
R2 ← z
R2 ← R1 ×R2

R2 ← x
R1 ← R1 + R2

R2 ← w
R1 ← R1 ×R2

Fig. 3. An arithmetic expression of Strahler number 2

The strategy for evaluating a expression e = e1 op e2 is easy: start with the
subexpression whose tree has lowest Strahler number, say e1; store the result in
a register, say R1; reuse all other registers to evaluate e2; store the result in R2;
store the result of R1opR2 in R1.

Ershov’s observation is recalled by Flajolet, Raoult and Vuillemin in [17],
where they add another observation of their own: the Strahler number of a
binary tree is the minimal stack size required to traverse it. Let us attach to each
node of the tree the Strahler number of the subtree rooted at it. The traversing
procedure follows again the “lowest-number-first” policy (notice that arithmetic
expressions yield binary trees). If a node with number k has two children, then
the traversing procedure moves to the child with lowest number, and pushes the
(memory address of the) other child onto the stack. If the node is a leaf, then
the procedure pops the top node of the stack and jumps to it. To prove that
the stack size never exceeds the Strahler number, we observe that, if a node of
number k has two children, then at least one of its children has number smaller
than k. So the procedure only pushes a node onto the stack when it moves to a
node of strictly smaller number, and we are done.

Notice, however, that the “lowest-number-first” policy requires to know the
Strahler number of the nodes. If these are unknown, all we can say is that a
nondeterministic traversing procedure always needs a stack of size at least equal
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to the Strahler number, and that it may succeed in traversing the tree with a
stack of exactly that size.

3.1 Distribution of Strahler Numbers

The goal of Flajolet, Raoult and Vuillemin’s paper is to study the distribution
of Strahler numbers in the binary trees with a fixed number n of leaves. Let Sn

be the random variable corresponding to the Strahler number of a binary tree
(every node has either two or 0 children) with n internal nodes chosen uniformly
at random. Since the Strahler number of t is the height of the largest perfect
binary tree embeddable in t, we immediately have Sn ≤ blog2(n+1)c. The paper
shows that

Exp[Sn] ≈ log4 n and Var [Sn] ∈ O(1) .

In other words, when n grows the Strahler number of most trees becomes in-
creasingly closer to log4 n. Independently of Flajolet, Raoult and Vuillemin, also
Kemp derives in [22] the same asymptotic behaviour of the expected Strahler
number of a random binary tree. Later, Flajolet and Prodinger extend the anal-
ysis to trees with both binary and unary inner nodes [18]. Finally, Devroye and
Kruszewski show in [5] that the probability that the Strahler number of a ran-
dom binary tree with n nodes deviates by at least k from the expected Strahler
number of log4 n is bounded from above by 2

4k
, that is, the Strahler number is

highly concentrated around its expected value.

3.2 Strahler Numbers in Language Theory: Derivation indices,
Caterpillars, and Dimensions

Derivation indices and caterpillars. The Strahler number has been rediscov-
ered (multiple times!) by the formal language community. In [20], Ginsburg and
Spanier introduce the index of a derivation S ⇒ α1 ⇒ α2 ⇒ · · · ⇒ w of a given
grammar as the maximal number of variables occurring in any of the sentential
forms αi (see also [29]). For instance, consider the grammar X → aXX | b. The
index of the derivations

X ⇒ aXX ⇒ aXaXX ⇒ abaXX ⇒ ababX ⇒ ababb

X ⇒ aXX ⇒ abaXX ⇒ abaXX ⇒ ababX ⇒ ababb

is 3 (because of aXaXX) and 2, respectively. For context-free grammars, where
we have the notion of derivation tree of a word, we define the index of a derivation
tree as the minimal index of its derivations. If the grammar is in Chomsky normal
form, then a derivation tree has index k if and only if its Strahler number is
(k − 1).

A first use of the Strahler number of derivation trees can be found in [4],
where Chytil and Monien, apparently unaware of the Strahler number, introduce
k-caterpillars as follows:



7

A caterpillar is an ordered tree in which all vertices of outdegree greater
than one occur on a single path from the root to a leaf. A 1-caterpillar is
simply a caterpillar and for k > 1 a k-caterpillar is a tree obtained from
a caterpillar by replacing each hair by a tree which is at most (k − 1)-
caterpillar.

Clearly, a tree is a k-caterpillar if and only if its Strahler number is equal to k.
Let Lk(G) be the subset of words of L(G) having a derivation tree of

Strahler number at most k (or, equivalently, being a k-caterpillar). Chytil and
Monien prove that there exists a nondeterministic Turing machine with lan-
guage L(G) that recognizes Lk(G) in space O(k log |G|). Assume for simplicity
that G is in Chomsky normal form. In order to nondeterministically recognize
w = a1a2 . . . an ∈ Lk(G), we guess on-the-fly (i.e., while traversing it) a deriva-
tion tree of w with Strahler number at most k, using a stack of height at most
k. The traversing procedure follows the “smaller-number-first” policy. More pre-
cisely, the nodes of the tree are triples (X, i, j) with intended meaning “X gen-
erates a tree with yield ai . . . aj”. We start at node (S, 1, n). At a generic node
(X, i, j), we proceed as follows. If i = j, then we check that X → ai is a produc-
tion, pop a new node, and jump to it. If i < j, then we guess a production, say
X → Y Z, and an index i ≤ l ≤ j, guess which of (Y, 1, i) and (Z, l, j) generates
the subtree of lowest number, say (Y, i, l), and jump to it, pushing (Z, l, j) onto
the stack.

The traversing procedure can also be used to check emptiness of Lk(G) in
nondeterministic logarithmic space (remember: k is not part of the input) [10].
In this case we do not even need to guess indices: if the current node is labeled
by X, then we proceed as follows. If X has no productions, then we stop. If G
has a production X → a for some terminal a, we pop the next node from the
stack and jump to it. If G has productions for X, but only of the form X → Y Z,
then we guess one of them and proceed as above. Notice that checking emptiness
of L(G) is a P -complete problem, and so unlikely to be solvable in logarithmic
space.

Tree dimension. The authors of this paper are also guilty of rediscovering the
Strahler number. In [11] we defined the dimension of a tree, which is . . . nothing
but its Strahler number.2 Several papers [11, 13, 19, 10] have used tree dimension
(that is, they have used the Strahler number) to show that Ln+1(G), where n is
the number of variables of a grammar G in Chomsky normal form, has interesting
properties3:

(1) Every w ∈ L(G) is a scattered subword of some w′ ∈ Ln+1(G) [10].

2 The name dimension was chosen to reflect that trees with Strahler number 1 are a
chain (with hairs), trees of dimension 2 are chains of chains (with hairs), that can be
nicely drawn in the plane, trees of dimension 3 are chains of chains of chains (with
hairs), with can be nicely displayed in 3-dimensional space, etc.

3 For an arbitrary grammar G, the same properties hold for Lnm+1(G), where m is
the maximal number of variables on the right-hand-side of a production, minus 1. If
G is in Chomsky normal form, then m ≤ 1.
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(2) For every w1 ∈ L(G) there exists w2 ∈ Ln+1(G) such that w1 and w2 have
the same Parikh image, where the Parikh image of a word w is the function
Σ → N that assigns to every terminal the number of times it occurs in w.
Equivalently, w and w′ have the same Parikh image if w′ can be obtained
from w by reordering its letters [11].

The first property has already found at least one interesting application in
the theory of formal verification (see [10]). The second property has been used
in [9] to provide a simple “constructive” proof of Parikh’s theorem. Parikh’s
theorem states that for every context-free language L there is a regular language
L′ such that L and L′ have the same Parikh image (i.e., the set of Parikh images
of the words of L and L′ coincide). For instance, if L = {anbn | n ≥ 0}, then we
can take L′ = (ab)∗.

The proof describes a procedure to construct this automaton. By property
(2), it suffices to construct an automaton A such that L(A) and Lk+1(G) have the
same Parikh image. We construct A so that its runs “simulate” the derivations
of G of index at most k+1. Consider for instance the context-free grammar with
variables A1, A2 (and so k = 2), terminals a, b, c, axiom A1, and productions

A1 → A1A2|a A2 → bA2aA2|cA1

Figure 4 shows on the left a derivation of index 3, and on the right the run of A
simulating it. The states store the current number of occurrences of A1 and A2,
and the transitions keep track of the terminals generated at each derivation step.
The run of A generates bacaaca, which has the same Parikh image as abcaaca.

A1 (0, 1)

⇒ A1A2
ε−→ (1, 1)

⇒ A1bA2aA2
ba−−→ (1, 2)

⇒ A1bcA1aA2
c−→ (2, 1)

⇒ abcA1aA2
a−→ (1, 1)

⇒ abcaaA2
a−→ (0, 1)

⇒ abcaacA1
c−→ (1, 0)

⇒ abcaaca
a−→ (0, 0)

Fig. 4. A derivation and its “simulation”.

The complete automaton is shown in Figure 5.

4 Strahler Numbers and Newton’s method

Finally, we present a surprising connection between the Strahler number and
Newton’s method to numerically approximate a zero of a function. The con-
nection works for multivariate functions, but in this note we just consider the
univariate case.
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Fig. 5. The Parikh automaton of A1 → A1A2|a, A2 → bA2aA2|cA1 with axiom A1.

Consider an equation of the formX = f(X), where f(X) is a polynomial with
nonnegative real coefficients. Since the right-hand-side is a monotonic function,
by Knaster-Tarski’s or Kleene’s theorem the equation has exactly one smallest
solution (possibly equal to ∞). We denote this solution by µf . It is perhaps less
known that µf can be given a “language-theoretic” interpretation. We explain
this by means of an example (see [14] for more details).

Consider the equation

X =
1

4
X2 +

1

4
X +

1

2
(1)

It is equivalent to (X − 1)(X − 2) = 0, and so its least solution is X = 1. We
introduce identifiers a, b, c for the coefficients, yielding the formal equation

X = f(X) := aX2 + bX + c . (2)

We “rewrite” this equation as a context-free grammar in Greibach normal
form in the way one would expect:

G : X → aXX | bX | c , (3)

Consider now the derivation trees of this grammar. It is convenient to rewrite the
derivation trees as shown in Figure 6: We write a terminal not at a leaf, but at
its parent node, and so we now write the derivation tree on the left of the figure
in the way shown on the right. Notice that, since each production generates a
different terminal, both representations contain exactly the same information. 4

4 This little change is necessary, because the tree of the derivation X ⇒ c has Strahler
number 1 if trees are drawn in the standard way, and 0 according to our new con-
vention.
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Fig. 6. New convention for writing derivation trees

We assign to each derivation tree t its value V (t), defined as the product of
the coefficients labeling the nodes. So, for instance, for the tree of Figure 6 we
get the value a2 · b2 · c3 = (1/4)4(1/2)3 = 1/128. Further, we define the value
V (T ) of a set T of trees as

∑
t∈T V (t) (which can be shown to be well defined,

even if T is infinite). If we denote by TG the set of all derivation trees of G, then

µf = V (TG). (4)

The earliest reference for the this theorem in all its generality we are aware of
is Bozapalidis [2] (Theorem 16) to whom also [6] gives credit.

A well-known technique to approximate µf is Kleene iteration, which consists
of computing the sequence {κi}i∈N of Kleene approximants given by

κ0 = 0
κi+1 = f(κi) for every i ≥ 0

It is easy to show that this corresponds to evaluating the derivation trees
(with our new convention) by height. More precisely, if Hi is the set of derivation
trees of TG of height less than i, we get

κi = V (Hi) (5)

In other words, the Kleene approximants correspond to evaluating the deriva-
tion trees of G by increasing height.

It is well known that convergence of Kleene iteration can be slow: in the worst
case, the number of correct digits grows only logarithmically in the number of
iterations. Newton iteration has much faster convergence (cf. [16, 12, 26]). Recall
that Newton iteration approximates a zero of a differentiable function g(X). For
this, given an approximation νi of the zero, one geometrically computes the next
approximation as follows:

– compute the tangent to g(X) at the point (νi, g(νi));

– take for νi+1 the X-components of the intersection point of the tangent and
the x-axis.
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For functions of the form g(X) = f(X) − X, an elementary calculation yields
the sequence {νi}i∈N of Newton approximants

ν0 = 0

νi+1 = νi −
f(νi)− νi
f ′(νi)− 1

We remark that in general choosing ν0 = 0 as the initial approximation may not
lead to convergence – only in the special cases of the nonnegative reals or, more
generally, ω-continuous semirings, convergence is guaranteed for ν0 = 0.

A result of [13] (also derived independently in [24]) shows that, if Si is the set
of derivation trees of TG of Strahler number less than i (where trees are drawn
according to our new convention), then

νi = V (Si) (6)

In other words, the Newton approximants correspond to evaluating the
derivation trees of G by increasing Strahler number!

The connection between Newton approximants and Strahler numbers has
several interesting consequences. In particular, one can use results on the con-
vergence speed of Newton iteration [3] to derive information on the distribution
of the Strahler number in randomly generated trees. Consider for instance ran-
dom trees generated according to the following rule.

A node has three children with probability 0.1, two children with prob-
ability 0.2, one child with probability 0.1, and zero children with proba-
bility 0.6.

Let G the context-free grammar

X → aXXX | bXX | cX | d

with valuation V (a) = 0.1, V (b) = 0.2, V (c) = 0.1, V (d) = 0.6. It is easy to see
that the probability of generating a tree t is equal to its value V (t). For instance,
the tree t of Figure 7 satisfies Pr [t] = V (t) = a · b2 · c · d5.

b

a

d d d

c

b

d d

Fig. 7. A tree with probability a · b2 · c · d5
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Therefore, the Newton approximants of the equation

X = 0.1X3 + 0.2X2 + 0.1X + 0.6

give the distribution of the random variable S that assigns to each tree its
Strahler number. Since f(X) = 0.1X3+0.2X2+0.1X+0.6 and f ′(X) = 0.3X2+
0.4X2 + 0.1, we get

ν0 = 0.6

νi+1 = νi −
ν3i + 2ν2i − 9νi + 6

3ν2i + 4νi − 9

and so for the first approximants we easily obtain

ν0 = Pr [S < 0] = 0
ν1 = Pr [S < 1] = 0.667
ν2 = Pr [S < 2] ≈ 0.904
ν3 = Pr [S < 3] ≈ 0.985
ν4 = Pr [S < 4] ≈ 0.999

As we can see, the probability converges very rapidly towards 1. This is not a
coincidence. The function f(X) satisfies µf < 1, and a theorem of [3] shows that
for every f satisfying this property, there exist numbers c > 0 and 0 < d < 1
such that

Pr [S ≥ k] ≤ c · d2
k

.

5 Strahler numbers and . . .

We have exhausted neither the list of properties of the Strahler number, nor the
works that have obtained them or used them. To prove the point, we mention
some more papers.

In 1978, Ehrenfeucht et al. introduced the same concept for derivation trees
w.r.t. ET0L systems in [7] where it was called tree-rank.

Meggido et al. introduced in 1981 the search number of an undirected tree
[23]: the minimal number of police officers required to capture a fugitive when
police officers may move along edges from one node to another, and the fugi-
tive can move from an edge to an incident one as long as the common vertex
is not blocked by a police officer; the fugitive is captured when he cannot move
anymore. For trees, the search number coincides with the better known path-
width (see e.g. [1]), defined for general graphs. In order to relate the pathwidth
to the Strahler number, we need to extend the definition of the latter to undi-
rected trees: let the Strahler number S(t) of an undirected tree be the minimal
Strahler number of all the directed trees obtained by choosing a node as root,
and orienting all edges away from it. We can show that for any tree t:

pathwidth(t)− 1 ≤ S(t) ≤ 2 · pathwidth(t)
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Currently, we are studying the Strahler number in the context of natural
language processing. Recall that the Strahler number measures the minimal
height of a stack required to traverse a tree, or, more informally, the minimal
amount of memory required to process it. We conjecture that most sentences of a
natural language should have a small Strahler number – simply not to overburden
the reader or listener. Table 1 contains the results of an examination of several
publicly available tree banks (banks of sentences that have been manually parsed
by human linguists), which seem to support this conjecture. For each language
we have computed the average and maximum Strahler number of the parse trees
in the corresponding tree bank. We are currently investigating whether this fact
can be used to improve unlexicalized parsing of natural languages.

Language Source Average Maximum

Basque SPMRL‡ 2.12 3

English Penn♣ 2.38 4
French SPMRL 2.29 4
German SPMRL 1.94 4

German TueBa-D/Z♠ 2.13 4
Hebrew SPMRL 2.44 4
Hungarian SPMRL 2.11 4
Korean SPMRL 2.18 4
Polish SPMRL 1.68 3
Swedish SPMRL 1.83 4

Table 1. Average and maximum Strahler numbers for several treebanks of natural
languages. ‡: SPMRL shared task dataset, ♣: 10% sample from the Penn treebank
shipped with python nltk, ♠: TueBa-D/Z treebank.

6 Conclusions

We have sketched the history of the Strahler number, which has been redis-
covered a surprising number of times, received a surprising number of different
names (stream order, stream rank, index, tree rank, tree dimension, k-caterpillar
. . . ), and turns out to have a surprising number of applications and connections
(Parikh’s theorem, Newton’s method, pathwidth . . . ).

This paper is by no means exhaustive, and we apologize in advance to the
many authors we have surely forgotten. We intend to extend this paper with
further references. If you know of further work connected to the Strahler number,
please contact us.
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