A Brief History of Strahler Numbers

Javier Esparza, Michael Luttenberger, and Maximilian Schlund

Fakultat fiir Informatik, Technische Universitdt Miinchen, Germany

Abstract. The Strahler number or Horton-Strahler number of a tree,
originally introduced in geophysics, has a surprisingly rich theory. We
sketch some milestones in its history, and its connection to arithmetic ex-
pressions, graph traversing, decision problems for context-free languages,
Parikh’s theorem, and Newton’s procedure for approximating zeros of
differentiable functions.

1 The Strahler Number

In 1945, the geophysicist Robert Horton found it useful to associate a stream
order to a system of rivers (geophysicists seem to prefer the term ‘stream”) [20].

Unbranched fingertip tributaries are always designated as of order 1, trib-
utaries or streams of the 2d order receive branches or tributaries of the
1st order, but these only; a 3d order stream must receive one or more
tributaries of the 2d order but may also receive 1st order tributaries. A
Ath order stream receives branches of the 3d and usually also of lower
orders, and so on.

Several years later, Arthur N. Strahler replaced this ambiguous definition by
a simpler one, very easy to compute [26]:

The smallest, or “finger-tip”, channels constitute the first-order seg-
ments. [...]. A second-order segment is formed by the junction of any
two first-order streams; a third-order segment is formed by the joining of
any two second order streams, etc.

Streams of lower order joining a higher order stream do not change the order
of the higher stream. Thus, if a first-order stream joins a second-order stream,
it remains a second-order stream. Figure 1 shows the Strahler number for a
fragment of the course of the Elbe river with some of its tributaries. The stream
system is of order 4.

From a computer science point of view, stream systems are just trees.

Definition 1. Let t be a tree with root r. The Strahler number of t, denoted by
S(t), is inductively defined as follows.

— If r has no children (i.e., t has only one node), then S(t) = 0.

Fig. 1. Strahler numbers for a fragment of the Elbe river.

— If r has children r1,...,r,, then let t1,...,t, be the subtrees of t rooted at
T1,...,Tn, and let k = max{S(t1),...,S(tn)}: if exactly one of t1,...,t, has
Strahler number k, then S(t) = k; otherwise, S(t) = k + 1.

Note that in this formal definition the Strahler number of a simple chain (a
"finger-tip”) is zero, and not one. This allows another characterization of the
Strahler number of a tree ¢ as the height of the largest minor of ¢ that is a
perfect binary tree (i.e., a rooted tree where every inner node has two children
and all leaves have the same distance to the root): Roughly speaking, such a
binary tree is obtained by, starting at the root, following paths along which the
Strahler number never decreases by more than one unit at a time, and then
contracting all nodes with only one child. If ¢ itself is a binary tree, then this
minor is unique. We leave the details as a small exercise.

Figure 2 shows trees with Strahler number 1, 2, and 3, respectively. Each
node is labeled with the Strahler number of the subtree rooted at it.

Together with other parameters, like bifurcation ratio and mean stream
length, Horton and Strahler used stream orders to derive quantitative empir-
ical laws for stream systems. Today, geophysicists speak of the Strahler number
(or Horton-Strahler number) of a stream system. According to the excellent
Wikipedia article on the Strahler number (mainly due to David Eppstein), the
Amazon and the Mississippi have Strahler numbers of 10 and 12, respectively.

3
2/\2
/N /N
1 2 1 1 1 1
/\ / N\ /N /N /N /N

0 1 1 1 0 10 10 01 0
/\ /N /N ANV /\
0 1 0 01 0 00 0 0 0 1
/\ /\ /\
0 0 0 0 00

Fig. 2. Trees of Strahler number 1, 2, and 3.

2 Strahler Numbers and Tree Traversal

The first appearance of the Strahler number in Computer Science seems to be
due to Ershov in 1958 [8], who observed that the number of registers needed to
evaluate an arithmetic expression is given by the Strahler number of its syntax
tree. For instance, the syntax tree of (x +y - z) - t, shown on the left of Figure
3, has Strahler number 2, and indeed can be computed with just two registers
Ry, Ry by means of the code shown on the right.

x R1<—y
/ \ Ry + 2
+ w RQ(—R1><R2
/\ Ry + x
x X Ri <+ Ri+ R2
/\ RQ(—w
Yy =z R1 « R1 X Ro

Fig. 3. An arithmetic expression of Strahler number 2

The strategy for evaluating a expression e = e; op eq is easy: start with the
subexpression whose tree has lowest Strahler number, say ej; store the result in
a register, say Rq; reuse all other registers to evaluate es; store the result in Ro;
store the result of RiopRy in R;.

Ershov’s observation is recalled by Flajolet, Raoult and Vuillemin in [16],
where they add another observation of their own: the Strahler number of a
binary tree is the minimal stack size required to traverse it. Let us attach to each
node of the tree the Strahler number of the subtree rooted at it. The traversing
procedure follows again the “lowest-number-first” policy (notice that arithmetic
expressions yield binary trees). If a node with number k has two children, then

the traversing procedure moves to the child with lowest number, and pushes the
(memory address of the) other child onto the stack. If the node is a leaf, then
the procedure pops the top node of the stack and jumps to it. To prove that
the stack size never exceeds the Strahler number, we observe that, if a node of
number k£ has two children, then at least one of its children has number smaller
than k. So the procedure only pushes a node onto the stack when it moves to a
node of strictly smaller number, and we are done.

Notice, however, that the “lowest-number-first” policy requires to know the
Strahler number of the nodes. If these are unknown, all we can say is that a
nondeterministic traversing procedure always needs a stack of size at least equal
to the Strahler number, and that it may succeed in traversing the tree with a
stack of exactly that size.

2.1 Distribution of Strahler Numbers

The goal of Flajolet, Raoult and Vuillemin’s paper is to study the distribution
of Strahler numbers in the binary trees with a fixed number n of leaves. Let S,
be the random variable corresponding to the Strahler number of a binary tree
(every node has either two or 0 children) with n internal nodes chosen uniformly
at random. Since the Strahler number of ¢ is the height of the largest perfect
binary tree embeddable in ¢, we immediately have S,, < |logy(n+1)]. The paper
shows that
Ezp[S,) =~ logyn and Var[S,]) € O(1) .

In other words, when n grows the Strahler number of most trees becomes in-
creasingly closer to log, n. Independently of Flajolet, Raoult and Vuillemin, also
Kemp derives in [21] the same asymptotic behaviour of the expected Strahler
number of a random binary tree. Later, Flajolet and Prodinger extend the anal-
ysis to trees with both binary and unary inner nodes [17]. Finally, Devroye and
Kruszewski show in [5] that the probability that the Strahler number of a ran-
dom binary tree with n nodes deviates by at least k from the expected Strahler
number of log, n is bounded from above by 4%, that is, the Strahler number is
highly concentrated around its expected value.

2.2 Strahler Numbers in Language Theory: Derivation indices,
Caterpillars, and Dimensions

Deriation indices and caterpillars. The Strahler number has been rediscov-
ered (multiple times!) by the formal language community. In [19], Ginsburg and
Spanier introduce the index of a derivation S = a; = as = --- = w of a given
grammar as the maximal number of variables occurring in any of the sentential
forms «; (see also [27]). For instance, consider the grammar X — aX X | b. The
index of the derivations

X =aXX = aXaXX = abaXX = ababX = ababb
X = aXX = abaXX = abaX X = ababX = ababb

is 3 (because of aXaX X) and 2, respectively. For context-free grammars, where
we have the notion of derivation tree of a word, we define the index of a derivation
tree as the minimal index of its derivations. If the grammar is in Chomsky normal
form, then a derivation tree has index k if and only if its Strahler number is
(k—1).

A first use of the Strahler number of derivation trees can be found in [4],
where Chytil and Monien, apparently unaware of the Strahler number, introduce
k-caterpillars as follows:

A caterpillar is an ordered tree in which all vertices of outdegree greater
than one occur on a single path from the root to a leaf. A 1-caterpillar is
simply a caterpillar and for k > 1 a k-caterpillar is a tree obtained from
a caterpillar by replacing each hair by a tree which is at most (k — 1)-
caterpillar.

Clearly, a tree is a k-caterpillar if and only if its Strahler number is equal to k.

Let Li(G) be the subset of words of L(G) having a derivation tree of
Strahler number at most k (or, equivalently, being a k-caterpillar). Chytil and
Monien prove that there exists a nondeterministic Turing machine with lan-
guage L(G) that recognizes L (G) in space O(klog|G|). Assume for simplicity
that G is in Chomsky normal form. In order to nondeterministically recognize
w=ajaz...a, € Ly(G), we guess on-the-fly (i.e., while traversing it) a deriva-
tion tree of w with Strahler number at most &, using a stack of height at most
k. The traversing procedure follows the “smaller-number-first” policy. More pre-
cisely, the nodes of the tree are triples (X, 14, j) with intended meaning “X gen-
erates a tree with yield a;...a;”. We start at node (S, 1,n). At a generic node
(X,1,5), we proceed as follows. If ¢ = j, then we check that X — a; is a produc-
tion, pop a new node, and jump to it. If ¢ < j, then we guess a production, say
X —»YZ, and an index i <! < j, guess which of (Y, 1,7) and (Z,1,j) generates
the subtree of lowest number, say (Y,4,1), and jump to it, pushing (Z,1, j) onto
the stack.

The traversing procedure can also be used to check emptiness of Ly (G) in
nondeterministic logarithmic space (remember: & is not part of the input) [13].
In this case we do not even need to guess indices: if the current node is labeled
by X, then we proceed as follows. If X has no productions, then we stop. If G
has a production X — a for some terminal a, we pop the next node from the
stack and jump to it. If G has productions for X, but only of the form X — Y Z,
then we guess one of them and proceed as above. Notice that checking emptiness
of L(G) is a P-complete problem, and so unlikely to be solvable in logarithmic
space.

Tree dimension. The authors of this paper are also guilty of rediscovering the
Strahler number. In [9] we defined the dimension of a tree, which is ...nothing
but its Strahler number.! Several papers [9, 11,18, 13] have used tree dimension

! The name dimension was chosen to reflect that trees with Strahler number 1 are a
chain (with hairs), trees of dimension 2 are chains of chains (with hairs), that can be

(that is, they have used the Strahler number) to show that L,41(G), where
n is the number of variables of a grammar G in Chomsky normal form, has
interesting properties?:

(1) Every w € L(G) is a scattered subword of some w’ € L,,11(G) [13].

(2) For every wy € L(G) there exists wy € Ly41(G) such that w; and we have
the same Parikh image, where the Parikh image of a word w is the function
Y} — N that assigns to every terminal the number of times it occurs in w.
Equivalently, w and w’ have the same Parikh image if w’ can be obtained
from w by reordering its letters [9].

The first property has already found at least one interesting application in
the theory of formal verification (see [13]). The second property has been used
in [12] to provide a simple “constructive” proof of Parikh’s theorem. Parikh’s
theorem states that for every context-free language L there is a regular language
L’ such that L and L’ have the same Parikh image (i.e., the set of Parikh images
of the words of L and L’ coincide). For instance, if L = {a™b™ | n > 0}, then we
can take L' = (ab)*.

The proof describes a procedure to construct this automaton. By property
(2), it suffices to construct an automaton A such that L(A) and Ly (G) have the
same Parikh image. We construct A so that its runs “simulate” the derivations
of G of index at most k4 1. Consider for instance the context-free grammar with
variables A1, Ay (and so k = 2), terminals a, b, ¢, axiom A;, and productions

A1 — A1A2|CL AQ — bAzaA2|CA1

Figure 4 shows on the left a derivation of index 3, and on the right the run of A

simulating it. The states store the current number of occurrences of A; and As,

and the transitions keep track of the terminals generated at each derivation step.

The run of A generates bacaaca, which has the same Parikh image as abcaaca.
The complete automaton is shown in Figure 5.

3 Strahler Numbers and Newton’s method

Finally, we present a surprising connection between the Strahler number and
Newton’s method to numerically approximate a zero of a function. The con-
nection works for multivariate functions, but in this note we just consider the
univariate case.

Consider an equation of the form X = f(X), where f(X) is a polynomial with
nonnegative real coeflicients. Since the right-hand-side is a monotonic function,
by Knaster-Tarski’s or Kleene’s theorem the equation has exactly one smallest

nicely drawn in the plane, trees of dimension 3 are chains of chains of chains (with
hairs), with can be nicely displayed in 3-dimensional space, etc.

2 For an arbitrary grammar G, the same properties hold for Lnm+1(G), where m is
the maximal number of variables on the right-hand-side of a production, minus 1. If
G is in Chomsky normal form, then m < 1.

Ay (0,1)
= A4y — (L1
= A1bAsaA, Loy (1,2)
= A1bcA1aA2 —C> (2, 1)
= abcAi1aAs = 1,1
= abcaaAs = (0,1)
= abcaacA1 = (1,0)
= abcaaca - (0,0)

Fig. 4. A derivation and its “simulation”.

Fig. 5. The Parikh automaton of A; — A1 As|a, A2 — bAzaAs|cA; with axiom A;.

solution (possibly equal to co). We denote this solution by wuf. It is perhaps less
known that pf can be given a “language-theoretic” interpretation. We explain
this by means of an example (see [14] for more details).
Consider the equation
1 1 1
X=-X*+-X+ - 1

4 + 4 + 2 (1)
It is equivalent to (X — 1)(X — 2) = 0, and so its least solution is X = 1. We
introduce identifiers a, b, ¢ for the coefficients, yielding the formal equation

X=f(X)=aX?*+bX +c. 2)

We “rewrite” this equation as a context-free grammar in Greibach normal
form in the way one would expect:

G: X —aXX|bX]|c, (3)

Consider now the derivation trees of this grammar. It is convenient to rewrite the
derivation trees as shown in Figure 6: We write a terminal not at a leaf, but at
its parent node, and so we now write the derivation tree on the left of the figure
in the way shown on the right. Notice that, since each production generates a
different terminal, both representations contain exactly the same information. 3

X a
7N\ RN
a’X X b a
/1 7N\ \ / N\
b X a X X c c b

| |/ |
c c b X c
|
c

Fig. 6. New convention for writing derivation trees

We assign to each derivation tree ¢ its value V (t), defined as the product of
the coefficients labeling the nodes. So, for instance, for the tree of Figure 6 we
get the value a? - b? - ¢ = (1/4)4(1/2)3 = 1/128. Further, we define the value
V(T) of a set T of trees as), V(t) (which can be shown to be well defined,
even if T is infinite). If we denote by T the set of all derivation trees of G, then

pf=V(1g). (4)

The earliest reference for the this theorem in all its generality we are aware of
is Bozapalidis [2] (Theorem 16) to whom also [6] gives credit.

A well-known technique to approximate uf is Kleene iteration, which consists
of computing the sequence {k;};en of Kleene approxzimants given by

Ko = 0
Kit1 = f(k;) for every i > 0

It is easy to show that this corresponds to evaluating the derivation trees
(with our new convention) by height. More precisely, if H; is the set of derivation
trees of T of height less than i, we get

In other words, the Kleene approximants correspond to evaluating the deriva-
tion trees of G by increasing height.

3 This little change is necessary, because the tree of the derivation X = ¢ has Strahler
number 1 if trees are drawn in the standard way, and 0 according to our new con-
vention.

It is well known that convergence of Kleene iteration can be slow: in the worst
case, the number of correct digits grows only logarithmically in the number of
iterations. Newton iteration has much faster convergence (cf. [15, 10, 25]). Recall
that Newton iteration approximates a zero of a differentiable function ¢g(X). For
this, given an approximation v; of the zero, one geometrically computes the next
approximation as follows:

— compute the tangent to g(X) at the point (v;, g(v;));
— take for ;11 the X-components of the intersection point of the tangent and
the x-axis.

For functions of the form g(X) = f(X) — X, an elementary calculation yields
the sequence {v;};en of Newton approzimants

o fi) —vi

frwi) —1
We remark that in general choosing vy = 0 as the initial approximation may not
lead to convergence — only in the special cases of the nonnegative reals or, more
generally, w-continuous semirings, convergence is guaranteed for vy = 0.

A result of [11] (also derived independently in [23]) shows that, if S; is the set
of derivation trees of Ty of Strahler number less than ¢ (where trees are drawn
according to our new convention), then

V; = V(Sl> (6)

In other words, the Newton approximants correspond to evaluating the
derivation trees of G by increasing Strahler number!

The connection between Newton approximants and Strahler numbers has
several interesting consequences. In particular, one can use results on the con-
vergence speed of Newton iteration [3] to derive information on the distribution
of the Strahler number in randomly generated trees. Consider for instance ran-
dom trees generated according to the following rule.

A node has three children with probability 0.1, two children with prob-
ability 0.2, one child with probability 0.1, and zero children with proba-
bility 0.6.

Let G the context-free grammar
X 5 aXXX | bXX |cX|d

with valuation V(a) = 0.1,V(b) = 0.2,V (c) = 0.1, V(d) = 0.6. It is easy to see
that the probability of generating a tree t is equal to its value V(¢). For instance,
the tree t of Figure 7 satisfies Pr[t] = V(t) = a-b*-c- d°.

Therefore, the Newton approximants of the equation

X =01X>+02X%24+01X +0.6

10

b
a/ C
1IN
" d o db
/\

d d
Fig. 7. A tree with probability a - b - ¢ - d°

give the distribution of the random variable S that assigns to each tree its
Strahler number. Since f(X) = 0.1X3+0.2X2+0.1X +0.6 and f/(X) = 0.3X%+
0.4X?% 4 0.1, we get

Vg = 0.6
vi+ 202 — 9+ 6
31/i2 +4v; — 9

and so for the first approximants we easily obtain

Viy1 =V,

Z/Q = P’F[S < O]
= Pris <1] = 0 667
— Pr[S < 2] ~ 0.904
Vs — Pr|S < 3] ~ 0.985
va = Pr[S < 4] ~ 0.999

As we can see, the probability converges very rapidly towards 1. This is not a
coincidence. The function f(X) satisfies pf < 1, and a theorem of [3] shows that
for every f satisfying this property, there exist numbers ¢ > 0 and 0 < d < 1
such that

PriS>k <c-d .

4 Strahler numbers and ..

We have exhausted neither the list of properties of the Strahler number, nor the
works that have obtained them or used them. To prove the point, we mention
some more papers.

In 1978, Ehrenfeucht et al. introduced the same concept for derivation trees
w.r.t. ETOL systems in [7] where it was called tree-rank.

Meggido et al. introduced in 1981 the search number of an undirected tree
[22]: the minimal number of police officers required to capture a fugitive when
police officers may move along edges from one node to another, and the fugi-
tive can move from an edge to an incident one as long as the common vertex
is not blocked by a police officer; the fugitive is captured when he cannot move
anymore. For trees, the search number coincides with the better known path-
width (see e.g. [1]), defined for general graphs. In order to relate the pathwidth

11

to the Strahler number, we need to extend the definition of the latter to undi-
rected trees: let the Strahler number S(¢) of an undirected tree be the minimal
Strahler number of all the directed trees obtained by choosing a node as root,
and orienting all edges away from it. We can show that for any tree ¢:

pathwidth(t) — 1 < S(t) < 2 - pathwidth(t)

Currently, we are studying the Strahler number in the context of natural
language processing. Recall that the Strahler number measures the minimal
height of a stack required to traverse a tree, or, more informally, the minimal
amount of memory required to process it. We conjecture that most sentences of a
natural language should have a small Strahler number — simply not to overburden
the reader or listener. Table 1 contains the results of an examination of several
publicly available tree banks (banks of sentences that have been manually parsed
by human linguists), which seem to support this conjecture. For each language
we have computed the average and maximum Strahler number of the parse trees
in the corresponding tree bank. We are currently investigating whether this fact
can be used to improve unlexicalized parsing of natural languages.

Language Source Average Maximum
Basque SPMRLF 2.12 3
English Penn® 2.38 4
French SPMRL 2.29 4
German SPMRL 1.94 4
Cerman TueBa-D/Z* 2.13 4
Hebrew SPMRL 2.44 4
Hungarian SPMRL 2.11 4
Korean SPMRL 2.18 4
Polish SPMRL 1.68 3
Swedish SPMRL 1.83 4

Table 1. Average and maximum Strahler numbers for several treebanks of natural
languages. 1: SPMRL shared task dataset, &: 10% sample from the Penn treebank
shipped with python nltk, &: TueBa-D/Z treebank.

5 Conclusions

We have sketched the history of the Strahler number, which has been redis-
covered a surprising number of times, received a surprising number of different
names (stream order, stream rank, index, tree rank, tree dimension, k-caterpillar
...), and turns out to have a surprising number of applications and connections
(Parikh’s theorem, Newton’s method, pathwidth .. .).

12

This paper is by no means exhaustive, and we apologize in advance to the
many authors we have surely forgotten. We intend to extend this paper with
further references. If you know of further work connected to the Strahler number,
please contact us.

6 Acknowledgments

We thank Carlos Esparza for his help with some calculations.

References

1. D. Bienstock, N. Robertson, P. Seymour, and R. Thomas. Quickly excluding a
forest. Journal of Combinatorial Theory, Series B, 52(2):274 — 283, 1991.

2. S. Bozapalidis. Equational elements in additive algebras. Theory Comput. Syst.,
32(1):1-33, 1999.

3. Tomds Brézdil, Javier Esparza, Stefan Kiefer, and Michael Luttenberger. Space-
efficient scheduling of stochastically generated tasks. Inf. Comput., 210:87-110,
2012.

4. Michal Chytil and Burkhard Monien. Caterpillars and context-free languages. In
Christian Choffrut and Thomas Lengauer, editors, STACS, volume 415 of Lecture
Notes in Computer Science, pages 70-81. Springer, 1990.

5. L. Devroye and P. Kruszewski. A note on the Horton-Strahler number for random
trees. Inf. Process. Lett., 56(2):95-99, 1995.

6. M. Droste, W. Kuich, and H. Vogler. Handbook of Weighted Automata. Springer,
2009.

7. Andrzej Ehrenfeucht, Grzegorz Rozenberg, and Dirk Vermeir. On etOl systems
with finite tree-rank. SIAM J. Comput., 10(1):40-58, 1981.

8. A. P. Ershov. On programming of arithmetic operations. Comm. ACM, 1(8):3-9,
1958.

9. J. Esparza, S. Kiefer, and M. Luttenberger. On fixed point equations over com-
mutative semirings. In STACS, volume 4393 of LNCS, pages 296-307. Springer,
2007.

10. J. Esparza, S. Kiefer, and M. Luttenberger. Computing the least fixed point of
positive polynomial systems. SIAM J. Comput., 39(6):2282-2335, 2010.

11. J. Esparza, S. Kiefer, and M. Luttenberger. Newtonian program analysis. J. ACM,
57(6):33, 2010.

12. Javier Esparza, Pierre Ganty, Stefan Kiefer, and Michael Luttenberger. Parikhs
theorem: A simple and direct automaton construction. Inf. Process. Lett.,
111(12):614-619, 2011.

13. Javier Esparza, Pierre Ganty, and Rupak Majumdar. Parameterized verification of
asynchronous shared-memory systems. In Sharygina and Veith [24], pages 124-140.

14. Javier Esparza and Michael Luttenberger. Solving fixed-point equations by deriva-
tion tree analysis. In Andrea Corradini, Bartek Klin, and Corina Cirstea, edi-
tors, CALCO, volume 6859 of Lecture Notes in Computer Science, pages 19-35.
Springer, 2011.

15. K. Etessami and M. Yannakakis. Recursive markov chains, stochastic grammars,
and monotone systems of nonlinear equations. J. ACM, 56(1), 2009.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

13

P. Flajolet, J.-C. Raoult, and J. Vuillemin. The number of registers required for
evaluating arithmetic expressions. Theor. Comput. Sci., 9:99-125, 1979.

Philippe Flajolet and Helmut Prodinger. Register allocation for unary-binary trees.
SIAM J. Comput., 15(3):629-640, 1986.

Pierre Ganty, Rupak Majumdar, and Benjamin Monmege. Bounded underapprox-
imations. Formal Methods in System Design, 40(2):206-231, 2012.

S. Ginsburg and E. Spanier. Derivation-bounded languages. Journal of Computer
and System Sciences, 2:228-250, 1968.

R. E. Horton. Erosional development of streams and their drainage basins: hydro-
physical approach to quantitative morphology. Geol. Soc. Am. Bull., 56(3):275—
370, 1945.

R. Kemp. The average number of registers needed to evaluate a binary tree opti-
mally. Acta Informatica, 11:363-372, 1979.

N. Megiddo, S. Louis Hakimi, M. R. Garey, D. S. Johnson, and C. H. Papadim-
itriou. The complexity of searching a graph (preliminary version). In FOCS, pages
376-385. IEEE Computer Society, 1981.

C. Pivoteau, B. Salvy, and M. Soria. Algorithms for combinatorial structures: Well-
founded systems and newton iterations. J. Comb. Theory, Ser. A, 119(8):1711—
1773, 2012.

Natasha Sharygina and Helmut Veith, editors. Computer Aided Verification - 25th
International Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 20183.
Proceedings, volume 8044 of Lecture Notes in Computer Science. Springer, 2013.
A. Stewart, K. Etessami, and M. Yannakakis. Upper Bounds for Newton’s Method
on Monotone Polynomial Systems, and P-Time Model Checking of Probabilistic
One-Counter Automata. In Sharygina and Veith [24], pages 495-510.

A. N. Strahler. Hypsometric (area-altitude) analysis of erosional topology. Geol.
Soc. Am. Bull., 63(11):1117-1142, 1952.

M.K. Yntema. Inclusion relations among families of context-free languages. Infor-
mation and Control, 10:572-597, 1967.

