
jMoped: A Java bytecode checker based on

Moped

Dejvuth Suwimonteerabuth, Stefan Schwoon, and Javier Esparza

University of Stuttgart

Abstract. We present a tool for finding errors in Java programs that
translates Java bytecodes into symbolic pushdown systems, which are
then checked by the Moped tool [1].

1 Introduction

We present jMoped, a checker for (a large class of) Java programs. jMoped con-
sists of a translator that transforms Java bytecode into a symbolic pushdown

system (SPDS), which is then checked by the Moped tool [1]. The translator,
described in more detail in [2], supports a wide range of Java programming
features, including arithmetic operations, control statements, method calls, re-
cursion, arrays, object manipulations, inheritance, and exception handling. On
the other hand, its current implementation does not support float, double, or
string variables, dynamic arrays, non-static global arrays, dynamic method bind-
ing, calling a method of an interface, implicit exceptions, and multi-threading.
Moreover, every instance of a class must be initialized with a separate new state-
ment.

The functionality of jMoped is very simple. The user writes a Java class
satisfying the constraints above (like the one on the left of Figure 1), and adds
either a method error() which is executed if some invariant is violated, or
a method ok() signaling termination. For instance, in order to check if the
variable x may become zero at a certain program point, the user adds a line
if x = 0 then error(). In the example of Figure 1, calling “jmoped -e -n

LinkedList”, where n is a number whose precise meaning is explained later,
we obtain the answer that no execution of error() was found. However, if one
changes the call of the first isExist to return isExist(header.next, x); and
run the check again, jMoped reports that error() is executed. Calling “jmoped
-t -n LinkedList we obtain that no non-terminating execution was detected.
Witness path can also be printed in order to help finding bugs.

The main advantage of jMoped’s translator is that SPDSs, its target lan-
guage, closely matches Java bytecodes. In particular, invoke and return instruc-
tions are directly translated into push/pop SPDS-rules. No inlining of bytecodes
(which may yield an exponential blowup in size) and no artificial bound on the
maximal depth of the stack of method calls are required. The only restrictions
are on the data side: Moped requires a bound on the range of variables, and on
the maximal number of objects that can be generated.



2 The translation

We recall that a Java program is compiled into a class file containing bytecodes,
the machine language of the Java Virtual Machine (JVM). Bytecodes of the form
invokestatic <name> or invokevirtual <name> invoke the method <name>.

A pushdown system consists of a set of control states, a stack alphabet, and
a number of rules, which correspond to the well-known transition rules of push-
down automata. A SPDS is a pushdown system together with two sets of global

and local variables over a finite domain. Loosely speaking, there is one single copy
of a global variable, but each stack symbol owns a copy of each local variable.
The rules of a SPDS are best explained by means of an example. The rule

q1 <f1> --> q2 <f2 f3> (x > 3 & y’ = x’’ + 1)

where x and y are local variables, is read as follows: If the current control state is
q1, the topmost stack symbol is f1, and the value of the copy of x owned by f is
greater than 3, then move to control state q2, replace f1 by f2 f3 on the stack,
and set the copy of y owned by f2 to 1 plus the value of the copy of x owned
by f3. The stack is useful whenever the front end is a procedural language. The
local variables owned by a stack symbol correspond to the local variables of a
procedure or method. A procedure call and a return are modelled by a push and
a pop, respectively.

Our translator first fetches the bytecodes of the methods in the class, and of
the methods from other classes called by them. Then, each bytecode instruction
is directly mapped into one or more SPDS rules. The JVM uses two stacks:
a local stack for each method, whose maximal size is determined at compile
time, and the stack of method calls. The local stacks are modelled with stack

variables called (sv0,...,svk), where k is the maximum stack depth (usually
a low number) obtained from the Java compiler. sv0 represents the top of the
stack. A push of number 1 to the local stack is modeled by a rule of the form

q <f1> --> q <f2> ((sv0’=1) & (sv1’=sv0) & (sv2’=sv1) & ...).

Figure 1 shows fragments of a Java program and some corresponding byte-
codes. Method contains checks if the list contains a given value. It calls the
recursive method isExist. The methods insert and error (omitted) add a
node to the list and handle errors, respectively.

The translator produces a set of SPDS-variables and a set of rules. Roughly
speaking, the SPDS-variables are the stack variables mentioned above, local
SPDS-variables matching the variables of a method, plus SPDS-variables used
to store the values of object fields. The translator assigns an id to each object
reference created by a new bytecode. For every object field, an array of global
SPDS-variables is created with id ’s as array indices. In our example, the bytecode
of the main method creates four references (one for the list l and three for
nodes). The translator assigns id ’s 1 to 4, and creates three arrays: header[1,1],
value[2,4], next[2,4]. The numbers in brackets indicate the array bounds.

We can now explain the meaning of the -n option when calling jMoped: it
specifies the number of bits assigned by Moped to each variable, and so its range.



Figure 2 shows some SPDS rules produced by the translator. The first two
lines correspond to bytecodes 0: and 1: and should be self-explanatory. For 16:,
notice that the JVM assigns to each method a set of variables indexed by 0,1,2.
The translator creates the SPDS variable var0, which corresponds to the local
variable 0 of the method. The translation of 25: uses a variable ret to store the
result of the method call. The translation of 46: in method main uses a push to
model the method invocation and shows how the return value is evaluated.

public class ListNode { isExist(ListNode, int):

int value; 0: aload 1

ListNode next; 1: ifnonnull +5

public ListNode(int x) 4: iconst 0

{ value = x; next = null; } 5: ireturn

} 6: aload 1

7: getfield <value>

public class LinkedList { 10: iload 2

private ListNode header; 11: if cmpne +5

public LinkedList() 14: iconst 1

{ header = null; } 15: ireturn

... 16: aload 0

public boolean contains(int x) 17: aload 1

{ return isExist(header, x); } 18: getfield <next>

boolean isExist(ListNode n, int x) { 21: iload 2

if (n == null) return false; 22: invokevirtual <isExist>

if (n.value == x) return true; 25: ireturn

else return isExist(n.next, x); main(String[]):

} 0: new <LinkedList>

... 3: dup

public static void main(String[] args) { 4: invokespecial <init>

LinkedList l = new LinkedList(); 7: astore 1

l.insert(new ListNode(1)); ...

l.insert(new ListNode(2)); 44: aload 1

l.insert(new ListNode(3)); 45: iconst 1

if (!l.contains(1)) 46: invokevirtual <contains>

error(); 49: ifne +6

} 52: invokestatic <error>

} 55: return

Fig. 1. Java code (left) and some of its bytecodes (right).

3 jMoped and Alloy

We compare our approach to the one of Vaziri and Jackson [3] using the Alloy
system. There, Java code is translated into a SAT formula. This requires bounds
not only on the range of variables and the number of generated objects, but also
on the maximum depth of the call stack and on the number of times a loop can
be executed. Moreover, method calls are dealt with by inlining. Our approach
removes the last two bounds while staying within a decidable problem [4].



Some transition rules of isExist(ListNode, int):

q <f0> --> q <f1> ((sv0’=var1) & (sv1’=sv0) & (sv2’=sv1) & ...)

q <f1> --> q <f6> ((sv0!=0) & (sv0’=sv1) & (sv1’=sv2) & ...)

q <f16> --> q <f17> ((sv0’=var0) & (sv1’=sv0) & (sv2’=sv1) & ...)

q <f25> --> q <> ((ret’=sv0) & ...)

Some transition rules of main(String[]):

q <m46> --> q <c0 m49a> ((var1’=sv0) & (var0’=sv1) & (sv0’’=sv2) & ...)

q <m49a> --> q <m49> ((sv0’=ret) & (sv1’=sv0) & (sv2’=sv1) & ...)

Fig. 2. Part of the translation of the code of Figure 1.

The bounds on the range of variables mean that the tools check the presence
or absence of errors within these bounds. So, in fact, they are carrying out a sort
of extended symbolic testing, in which many different test cases (often billions)
are checked in one single symbolic computation, and in which non-termination
can be explicitly detected.

We have considered the faulty insertion algorithm in red-black trees used
in [3], and the invariant property. In [3] the property is written in Alloy, while
we added an error() method that is executed when the invariant is violated.
Vaziri and Jackson report being able to automatically find the bug when the
number of nodes and the number of iterations of a loop are both limited to five
in 18 seconds. In our case it took 10 seconds in a standard PC. While the two
numbers are not directly comparable, because different machines were used, they
indicate that our approach, while providing a more direct match to the structure
of imperative languages, does not necessarily lose efficiency.

4 Conclusion and Future Work

We have described jMoped, a tool that allows to check invariant properties and
termination of Java code by translating Java bytecodes into pushdown systems
and then applying the Moped tool. The tool covers a large fragment of Java
programs. Our ultimate goal (from which we are still far away) is to develop a
checking tool for Java programs with a very simple interface, that could be used
routinely, even by people without a background on verification.

References

1. Schwoon, S.: Model-Checking Pushdown Systems. PhD thesis, TU Munich (2002)
2. Suwimonteerabuth, D.: Verifying Java bytecode with the Moped model checker.

Master’s thesis, University of Stuttgart (2004)

3. Vaziri, M., Jackson, D.: Checking properties of heap-manipulating procedures with
a contraint solver. In: TACAS’03. LNCS 2619, Springer (2003) 505–520

4. Esparza, J., Schwoon, S.: A BDD-based model checker for recursive programs. In:
Proc. CAV’01. LNCS 2102, Springer (2001) 324–336



Appendix

Moped was released in January 2002. It is a well-established tool, with about
250 downloads in the last 12 months. Its URL is

http://www.informatik.uni-stuttgart.de/fmi/szs/tools/moped/

Moped has been used as back-end by several software model-checking projects,
like JCAVE, developed at INRIA-RENNES

http://www.sics.se/fdt/projects/vericode/jcave.html

the Boop-Toolkit

http://boop.sourceforge.net/

and a project on checking Java exceptions at Carnegie Mellon

http://www-2.cs.cmu.edu/ weigand/aro/presentations/cmu simmons.pdf

jMoped adds a Java front-end to the Moped tool, which allows to check
properties of Java programs. jMoped’s documentation and the tool itself can be
found at

http://www.informatik.uni-stuttgart.de/fmi/szs/tools/moped/jmoped

jMoped has been designed to offer an extremely simple interface. The goal
is to produce a tool that can be used by a Java programmer after 15 minutes
coaching. Accordingly, only the initial part of the presentation will be devoted
to the functionality of the tool. In fact, the presentation will have three parts:

– A small program similar to the one shown in the paper is used to show how
to use the tool to check for invariant violations and non-termination.

– Some aspects of the translation from Java bytecode to symbolic pushdown
processes are explained. We visualize the bytecodes of the example above
and discuss the problems faced by a translation (in particular modelling
standard libraries), and the solutions we found. We also explain the interac-
tion between jclasslib and jMoped.

– By means of further examples, we show how jMoped can complement and be
complemented by testing techniques, in particular how to use it to provide
coverage.


