Petri Nets and Regular Processes

Petr Jancar

Department of Computer Science, Technical University of Ostrava

17. listopadu 15, CZ-708 33 Ostrava-Poruba, Czech Republic

Javier Esparza

Institut fur Informatik, Technische Universitat Munchen
Arcisstrasse 21, D-80290 Minchen, Germany

Faron Moller

Computing Science Department, Uppsala University

P.O. Box 311, S-751 05 Uppsala, Sweden

Abstract

We consider the following problems: (a) Given a labelled Petri net and a finite
automaton, are they equivalent? (b) Given a labelled Petri net, is it equivalent
to some (unspecified) finite automaton? These questions are studied within the
framework of trace and bisimulation equivalences, in both their strong and the
weak versions. (In the weak version a special 7 action — similar to a A-transition
in automata theory — is considered to be non-observable.) We demonstrate that
(a) is decidable for strong and weak trace equivalence and for strong bisimulation
equivalence, but undecidable for weak bisimulation equivalence. On the other hand,
we show that (b) is decidable for strong bisimulation equivalence, and undecidable
for strong and weak trace equivalence, and for weak bisimulation equivalence.

1 Introduction

In the specification and verification of distributed systems, it is typically the case that one
considers a specific mathematical model for the description of processes, along with some
equivalence relating processes which demonstrate the same semantic behaviour. One of
the first questions to ask then for the purpose of (automatic) verification is that of (the
extent of) the decidability of the equivalence.

In this paper we consider the class of processes generated by labelled place/transition
Petri nets, called just Petri nets in the sequel. Petri nets constitute a popular and im-
portant formalism for modelling distributed systems, as exemplified by the widely-used
textbooks by Peterson [20] and Olderog [19]. We consider trace equivalence and bisimu-

lation equivalence — two equivalences in the forefront of the study of these systems — and

study both their strong and weak versions.!

Unfortunately, already the strong versions (along with the strong versions of all ‘rea-
sonable’ behavioural equivalences) are undecidable for general Petri nets [10, 11], in fact
even for Petri nets having at most two unbounded places. Faced with such a negative re-
sult, a natural step then is to restrict the problem in some way. For example, for the class
of Petri nets in which every transition has a single input place—the so-called Basic Paral-
lel Processes— strong bisimulation equivalence is decidable [1], whereas all other standard
equivalences (such as trace equivalence) are undecidable, even in the strong case [6, 8]. If
on the other hand we compare two bounded Petri nets, then these equivalences all become
decidable, as such nets describe behaviours depicted by finite automata.

We consider here the problem of restricting just one of the two Petri nets to be
bounded, thus comparing general Petri nets against finite automata Within this frame-
work, we consider both the equivalence problem, as well as the question concerning the
finiteness of a given net, i.e., the question as to whether or not there is some (unspeci-
fied) finite automaton which is equivalent to the Petri net. We address these questions
for both trace and bisimulation equivalence. ? We show that the strong and weak trace
equivalence problems are decidable, while the finiteness question for the traces of a net
is undecidable, even in the strong case. In the bisimulation case, both the equivalence
and regularity questions are decidable for strong bisimilarity, yet undecidable for weak
bisimilarity.

Our results extend and complement previous results by Valk and Vidal-Naquet [21]
on the finiteness question for trace equivalence, called the regularity question in [21].
They showed that the regularity of the terminal language of a net — i.e. the set of traces
corresponding to the firing sequences leading to a fixed set of markings — is undecidable,
whereas the regularity of the set of all traces of a net in which each transition carries a

different label is decidable.

The paper is structured as follows. In Section 2 we define the concepts which we use,
in particular the notion of a Petri net, as well as of the equivalences which we shall study.
We also present several technical results—both old and new—which we shall exploit in our
decision procedures and undecidability proofs. Of particular importance are results based
on the decidability of the reachability problem for Petri nets, and relevant variations of
Higman’s Theorem.

In Section 3 we consider trace equivalence, and demonstrate first the decidability of the
equivalence problem (in both the strong and weak cases) by demonstrating that the trace
inclusion problem in each direction is decidable. We follow this by demonstrating the
undecidability of the finiteness problem in the strong case. We show this by a reduction
from the halting problem for Minsky machines.

'In the strong versions, all the labels carried by the transitions of the net are assumed to be visible
actions. In the weak versions, some transitions may be labelled with a special silent action 7, which
plays a similar role to A-transitions in finite automata. The firing of these transitions is assumed to be
unobservable.

2The finiteness problem has been called the regularity problem in the literature. This name is very
adequate for trace equivalence for obvious reasons, but not so adequate for bisimulation equivalence.

In Section 4 we turn our attention to bisimulation equivalence, and demonstrate that
both problems are decidable in the strong case, yet both problems are undecidable in
general. The first undecidability result follows from a reduction from the containment
problem for Petri nets, while the second relies on a special form of the containment
problem to which the halting problem for Minsky machines can be reduced.

The results presented here elaborate on those presented by the authors in [13] and [15].

2 Preliminaries

Here we define some basic notions and introduce various results which will prove useful.

By IN we denote the set of nonnegative integers IN = {0,1,2,...}. For a set A, A*
denotes the set of finite sequences of elements of A; the empty sequence is denoted by
A€ A*. For u € A* and k € IN, we denote by u* the k-fold catenation of wu.

2.1 Labelled Transition Systems and Equivalences

We shall define an automaton to be a labelled transition system (LTS), which is a tuple
L= (53,{-}iex) where S is a set of states, Y. is a finite set of actions, and each — is
a binary transition relation on S, i.e. — C S x S; we shall write £ — F for (K, F') €
3. By B — F we mean that £ -2+ F for some a; and —* denotes the reflexive and
transitive closure of the relation —. We shall write £ — F for v = ajas - - a, € ¥* to
mean that there are states Fy, E,, ..., E,_; such that £ 25 B, 22 ... iy LN
We write £ — to mean that £ — F for some F. In particular, F 25 E for every F,

and £ 5 F only if £ = F. (Note the difference between £ — F and E 2 F.)

We say that a set of states S’ is reachable from E, written £ —* S’ iff £ —* F for
some F' € S'. The reachability set for a state E is defined by R(E) ={F : £ —* F}.

An LTS £ = (5,2, {5 }eex) is finite-state iff S is finite. L is image finite iff
succ,(E) = {F : E — F} is finite for every £ € S and every a € X.

By a process E we refer to a state in a transition system; when necessary, we shall
denote the underlying transition system by L(E). By referring to a finite-state process
E, we mean that £(FE) is finite; a similar convention holds for an image finite process.
We shall use the symbols R, R, ... to denote finite-state LTSs, and the symbols r,r/, ...
to denote states in finite-state systems, that is, finite-state processes.

A binary relation B between processes is a strong bisimulation provided that whenever

(E,F) € B, for each a € 3,

o if ¥+ E' then F -+ F' for some F' such that (£/, F') € B; and
o if F—=5 F' then E — E’ for some £’ such that (£/, F') € B.

Two processes E and F' are strongly bisimulation equivalent or strongly bisimilar, written
E ~ F_ iff there is a strong bisimulation B relating them.

A decreasing chain ~g O ~; D ~3 D .- DO ~ of equivalence relations between
processes 1s defined inductively as follows.

1. £ ~g F' for all processes F and F’
2. B ~, FOiff for each a € X,

o if F % E' then F -2 F' for some F' such that E' ~, I'; and
o if F—25 F' then F - E’ for some E’ such that F' ~, F'.

The fact that these relations do form a decreasing chain of equivalences all containing ~
is easily confirmed. The next two Propositions are also easily-confirmed folklore.

Proposition 2.1 For image finite processes, FE ~ F iff E ~, F for alln > 0.

Let us call £ = (5,3, {—}.ex) an admissible system iff the state set S is finite or
countably infinite (identified with a set of sequences over a finite alphabet), £ is image
finite, and all of the successor functions succ, : § — 2% are effectively computable.
(Recall that ¥ is finite, so there are only finitely many of these.) With this restriction in
place, the following result is immediate.

Proposition 2.2 Considering only admissible systems, all of the relations FE ~, F are
decidable. Therefore the nonequivalence problem E ot F is semidecidable.

We now describe the background for a decision procedure which we shall employ later.
Given a transition system £ = (S, %, {—=},ex), we define the class of all n-incompatible
processes (taken from other transition systems) as INCE = {E : VF € S: E «, F}.

Proposition 2.3 For any n, £ ~ F implies that £ ~, F and F /=" INCS(F). In
addition, the reverse implication holds under the further proviso that ~,_, coincides with

~, (and hence with ~) over L(F).

Proof: The left-to-right implication is obvious. For the right-to-left implication, it is
straightforward to verify that, assuming ~,_1 = ~,, on L(F'), the set

[(E.F) : B'€ L(E), F' € L(F), E' ~, F', B' /=" INncE®) }

is a bisimulation. The crucial point to observe is that whenever we have that £ ~,_; "
and E" ¢ INC*) we must have that E” ~, F". 0

Corollary 2.4 For any two states r and r' of an n-state LTS R, v ~p,_q r" iff r ~, 1" (iff
r ~r'). Therefore, for any process E and any state r of R,

E~r iff E~,r and E /—*INcE

Proof: As ~;; 1 C ~;, and ~; = ~; 4 implies ~; = ~;,; for any k& > 0, these equivalence
relations must stabilize within the first n-steps over any n-state LTS. O

Corollary 2.5 To demonstrate the decidability of E ~ r for any specified class of pro-
cesses I for which E ~,, r is decidable, it suffices to demonstrate the decidability of the
(non-)reachability problem E /—* INCE.

Further development and applications of this technique are presented in [14].

We have as yet dealt only with definitions and results concerning automata without
silent transitions. To introduce these transitions, we interpret a distinguished symbol
7 € ¥ as asilent action, and modify our definitions accordingly. (We follow this framework
adopted from process theory rather than the automata theoretic technique of directly
allowing A transitions as we want to be able to distinguish, for example, between — and
—%; whereas \a = a, Ta # a.)

For any action ¢ € X, by £ = F we mean that £ — F for some u = 7Far’

(k,£ > 0); in the case where a = 7, we also allow u = A, recalling that F 2 F implies
E = F, so for example £ == FE for all E. 3 The relations £ = F, E =, where
u € X*, are then the obvious generalizations.

The relation of weak bisimulation equivalence, denoted by =, as well as the relations
~, (n=0,1,2,...), are defined in the same way as for the strong relations ~, ~, but
with — replaced everywhere by ==-.

The strong trace set of a state E of an LTS L is defined by ST(F) = {w € (¥)* :
E —}. Two processes F and F are strongly trace equivalent iff ST(E) = ST(F). The
weak trace set, or just trace set of a state F is defined by T(E) = {w € (¥ \ {7})* :
FE =7}. Two processes FE and F are weakly trace equivalent, or just trace equvalent, iff

T(E)="T(F).

Notice that two 7-free transition systems are weakly trace equivalent iff they are
strongly trace equivalent, and they are weakly bisimilar iff they are strongly bisimilar. As
an easy consequence, decidability of a problem in the weak case implies decidability of
the strong case. Moreover, undecidability of a problem in the strong case can be shown
by proving undecidability in the weak case for T-free systems. We shall make free use of
these facts.

2.2 Petri Nets

A (finite, labelled, place/transition Petri) net is a tuple N = (P,T, F,%,() where

e P, T and X are finite disjoint sets of places, transitions and actions, respectively;

~

3This is somewhat nonstandard in process theory; our relations = should be written as == in order
to fit into the process theory framework [17], but in our presentation we omit the extra decoration.

o F:(PxTYU(TxP)— {0,1} defines the set of ares; (x,y) isan arciff F(z,y) = 1;

o [:T — ¥ is a labelling, which associates an action from ¥ to each transition.

In the Petri net literature, multiple arcs are often allowed (in which case the range of F
is given as IN). For technical convenience, we treat only ordinary nets; nevertheless all of
our arguments can be easily modified to hold for these more general nets.

A marking of a net is a mapping M : P — IN associating a number of tokens to
each place. A transition ¢ is enabled at a marking M, written M[t), iff M(p) > F(p,1)
for every p € P. If a transition ¢ is enabled at a marking M it may fire or occur yielding

the marking M’, denoted M[t)M’, where M'(p) = M(p) — F(p,t) + F(t,p) for all p € P.

We shall display nets graphically using circles for places and boxes for transitions.
A marking for a place (the number of tokens) will be shown by a number (variable) or
by black dots inside the circle. When labels of transitions are important, we write them
inside the boxes.

We shall interpret a net N = (P, T, F, %, () as an LTS where markings play the role of
states. The transition relations —— are provided by the firings of the enabled transitions
of the net: M — M’ iff M[t)M' for some t with £(t) = a. We also say M —s M' if
M — M’ for some a. Notions like M == M', T (M), M, ~ M, are then inherited from

the respective notions given in the general setting.

We now recall some known results from Petri net theory, in particular the decidability
of the reachability problem:.

Theorem 2.6 [16] Given two markings M and M' of a Petri net N, it is decidable
whether or not M —* M', that is, whether or not M' € R(M).

We shall also use the notion of an w-marking; it extends the notion of marking by
allowing an infinite number of tokens to be associated to the places. Formally we set
N, = IN U {w} where we suppose w satisfies n < w and w+n = w—-n = w for
all n € IN. An w-marking, for which we reserve symbols M M’ ., i1s then simply a
mapping M : P — IN,. Notions such as M —%» M’ and T(M) are then naturally
defined as extensions of the previous definitions.

Taking the pointwise ordering < on (w-)markings, we observe the trivial monotonicity
fact, which we shall use implicitly.

Lemma 2.7]f]\? = then M' =% for any M' > M.

Note that every increasing chain of w-markings has a unique w-marking as the least
upper bound. For a set M of w-markings we define its closure Cl(M) to be M enriched
by such least upper bounds.

We shall also make use of the next easily derived lemma.

Lemma 2.8 7'(]\7’) - I(M) for any w-markings M' < M. For a chain My < My < - -

with least upper bound M, we have
U T (M) = T(M).

i>1

An important observation is that there can only be finitely many maximal elements
in any set of w-markings. This follows from the next easily derived lemma, known as
Dickson’s Lemma [2].

Lemma 2.9 Given an infinite sequence of w-markings Z\Afl, Mg, M\g, ..., there are indices
1 < i < iy < --- such that My, < My, < M;, <---.

Proof: Viewing the w-markings as mappings from the finite set P to IV, the result can
be established by a straightforward induction on the cardinality of P. a

Given a marking M of a net N, we can effectively find the maximal elements of
CI(R(M)). This can be achieved by the technique of coverability trees [20]; similarly we
can get the following.

Lemma 2.10 Given an w-marking M and an action symbol a € ¥, we can effectively
construct the mazimal elements of CI({M' : M = M'}).

We also need an extension of Lemma 2.9 based on Higman’s Theorem [5]. Firstly we
say that a partially-ordered set (A, <) has the finite basis property (fop) iff every infinite
sequence of elements of A has an infinite (not necessarily strictly) ascending subsequence.

Theorem 2.11 If (A, <) has the fbop then so does (A*, <), where

§ = {<a1a2 Tt lp, 'UObIVUIbQ te "Un—lbnvn> : aivbi € A7 v; € A*J a; S bz }

Corollary 2.12 The set Pﬁn(l/\ff) of all finite sets of w-markings for a place set P has
the fbp with respect to the following ordering:

MM dff forall M e M there exists M' € M’ such that M < M.

Proof: By Lemma 2.9, (INT, <) has the fbp. Hence ((INT)*, <) also has the fbp. The
corollary is then clear from the fact that any finite set M can be viewed as a string of its
elements. O

We also need an additional technical result. Let us call a set of markings M C IN”
simple iff there is a disjoint partition P = P; U P,, a fixed mapping fixz : P, — IN and a
constant n s.t. M ={ M |Vpe P, : M(p) = fiz(p),Vp € P : M(p) > n }. The next
result shows that it is semidecidable if a simple set My is reachable via markings from a
simple set M; whose nonfixed values can be arbitrarily large. (In fact, the result can be
easily generalized to semilinear sets.)

Lemma 2.13 Let My be a marking of a net N, and let My, My be simple sets of markings
of N; let Py, Py be the partition relevant to M. It is semidecidable if for any m there s
Me My s.t. ¥Ype Py: M(p) >m and My —* M —* M,.

Proof: Semidecidability can be established by another appeal to Theorem 2.11. It is
similar to the proof of Theorem 6.5 in [9], therefore we shall just state here that the
answer to the question is ‘yes’ iff there are sequences of transitions

ul U us UL Ug41 Uk 42 Uk 4t
My — My — My — -+ — My — Mpyy — -+ — My
and
u w u w u w
M ulwl\ , ugwg\ , ’U43’LU3\..‘ ukwk\ , k+1 k-lcl , k42 k-l;2 k+¢ k-l;[’
0 7 1 4 2 7 4 k 7 k-l—l 7 7 k-}-f

such that M; < M; for all + = 1,2,...,k +{, My, M}, € My, Myyo, Mi,, € M, and
My (p) < Mj(p) for all p € P,. (Note that wq,w,,..., wkee can be ‘pumped’ making M
larger and larger on P;.)

The described condition is obviously semidecidable. a

3 Trace equivalence

3.1 Decidability of (strong and weak) trace equivalence

Here we demonstrate the decidability of the following problem:

Given a marking My of a net N labelled by action set ¥, and a state rg of a
finite-state LTS R defined over the same action set ¥, is T (Mg) = T (ro)?

To do this, we show decidability for the trace inclusion problem in both directions:
T (M) C T (ro) and T(ro) € T(Mp). Without loss of generality we shall suppose that R
has no 7 labels and is deterministic, i.e., for each state r and each label a there is at most
one 1’ such that » —= r'; this can be achieved using the standard powerset construction
for nondeterministic finite automata (cf. e.g. [7]).

We begin with the first inclusion. In fact, here even the problem T (My) C T (M)
where M/ is a marking of a deterministic net N’ is decidable. This can be shown by a
reduction to the Petri net reachability problem. Nevertheless we provide an alternative
simple proof which does not rely on the decidability of reachability.

Proposition 3.1 7 (My) C T (rq) is decidable.

Proof: Firstly we can observe the semidecidability of the complementary problem

T(My) € T(ro). For this, it suffices to generate all sequences from (X \ {7})* and to

8

stop when some w € T (M) \ T(ro) is found. Decidability of the last condition can
be established, for example, by the coverability graph technique; but for our purpose,
semidecidability of the problem w € T (M) suffices, and this is obvious.

Now define the binary relation S = {(M, r) T(M) - T(r)} between w-markings
of the net and states of the LTS. Recalling Lemma 2.8, we can see that S is in fact

the downwards closure of the subset of its (finitely many) maximal elements (we put
(M,r)y < (M',r")iff M < M'"and r =r'). Now observe the following simple fact.

If a set X of pairs <Z\A4, r) satisfies the condition

(x) For any <Z\7,r> € X and any a, M' such that M —2s M’ there is 1’
such that r — v and (M',7') € X (we put v’ = r when a = 7).

then X C S.

It is also clear that if X is downwards closed then it suffices to verify (x) only for its
maximal elements.

Since S satisfies (x) (recall that for each r and a there is at most one r’ such that
r — r'), to demonstrate T(My) C T (ro) it suffices to generate a (finite) set S’ of
pairwise incomparable elements (Z\AL r) such that its downwards closure satisfies () and
contains (Mg, rg); this last condition is obviously decidable.

Thus we have demonstrated the semidecidability, and therefore the decidability, of the
trace inclusion problem T (My) C T (ro). O

Proposition 3.2 7(rg) C T(My) is decidable.

Proof: We describe a terminating algorithm for constructing a tree of the following
description. All nodes of the tree are labelled by pairs (r, M) where r is a state of R and
M is a set of pairwise incomparable w-markings of N (and hence is finite); a node label
(r, M) is intended to mean =
T(r) € |J T(M).
MeMm

Observe that if (r, M) is incorrect with respect to the intended meaning then (r, M") is
surely incorrect whenever M’ < M. The arcs in the tree are labelled from ¥\ {7}.

The tree is defined inductively as follows.

e The root node is labelled by (rg, {Mo}).

e From the node (r, M), we construct its (finitely many) successors as follows. For
each a € ¥\ {7} and 7’ such that r — ' (' is unique with respect to a due to the
determinism of R), we add the successor (1, M') via an arc labelled by a, where
M is the set of all maximal w-markings M’ for which there is M € M such that
M =% M (by Lemma 2.10, we can construct the maximal a-successors for each
M e M, and then take the maximal among all of them);

9

e Any node (r, M) will be considered as a leaf if

— either M = () (in which case the leaf is deemed to be unsuccessful); or

— either r is a dead state (has no successors) in R, or there is an ancestor (r, M")
such that M’ < M (in which case the leaf is deemed to be successful).

By Corollary 2.12, this tree must be finite, and therefore our algorithm is guaranteed to
terminate.

Having constructed the tree, the relevant question can be answered as follows: if there
is an unsuccessful leaf (r,(}) then T (rq) € T(Mpy); otherwise T (rq) C T (My). For the
verification of the correctness, first note that for any node (r, M) reached from the root
by a path labelled by w we have ry — r, M being the set of all maximal w-markings M
such that M, = M; therefore M = () means w ¢ T (Mjy). Hence the correctness in case
of an unsuccessful leaf is clear.

Suppose then that all leaves are successful, and in spite of this 7 (ro) € T (Mp). Choose
some w € T (rg)\ T (Mp) of minimal length. It can be written w = wv where u corresponds
to a branch in our tree finishing in some leaf (r, M); then it must hold that v € 7(r) but
v & 7'(]\7) for each M € M. This node must have an ancestor (r,M") with M' < M;
hence we must also have that v ¢ 7'(]\7) for each M € M'’. This implies that we can
write w = ujuav (where uy is nonempty) in such a way that wyv € 7 (rg) \ T(My), which
contradicts the minimality of the length of w. O

3.2 Undecidability of strong trace finiteness

In this subsection we demonstrate that it is undecidable whether or not a given 7-free net
is trace-equivalent to some (unspecified) finite automaton. In fact, our construction shows
that the undecidability result holds for any equivalence which refines the trace equivalence
and is refined by simulation equivalence; the construction can also be easily modified to
extend the undecidability to ready-simulation equivalence (see, e.g., [3] for definitions;
the modification is described in [12]). However, trace equivalence is our only concern
here. This undecidability result contrasts with the decidability result for bisimilarity
presented in the next section; it also contrasts with the decidability result of Valk and
Vidal-Naquet [21] for the regularity of the trace set in the case where the transitions are
uniquely labelled.

To demonstrate this result, we rely on the undecidability of the halting problem for
Minsky counter machines. To a counter machine C' (zero input values are supposed), we
construct a net N¢ with initial marking My (inspired by [10] as modified in [6]) for which
we can demonstrate the following:

1. If the counter machine C halts, then M is trace equivalent to some finite-state
process r;

2. If the machine C' does not halt, then M is not trace equivalent to any finite-state
process 7.

10

Remark. The above mentioned extension of the undecidability result consists in the
fact that ‘trace equivalence’ can be replaced by ‘simulation equivalence’ (or even ‘ready-
simulation equivalence’ for the modified construction) in case 1 above.

Formally, a Minsky machine can be defined as a sequence of labelled instructions

Xy : comiy
X, T comimy
X,-1 : comm,_i
X, : halt
representing a simple program which uses counters ¢y, c,, ..., c,,, where each of the first

n—1 instructions is either of the form
X : cji=cj+1l; goto X'
or of the form

X : 1if ¢;=0 then goto X'
else c;j:=c;-1; goto X"

Here we suppose that a Minsky machine C' starts executing with the value 0 in each of
the counters and the control at label X;. When the control is at label X, (1 <k < n), the
machine executes instruction commy, modifying the contents of the counters and trans-
ferring the control to the appropriate label mentioned in the instruction. The machine
halts if and when the control reaches the halt instruction at label X,,.

We recall now the well-known fact that the halting problem for Minsky Machines is
undecidable [18]: there is no algorithm which decides whether or not a given Minsky
machine halts. This is true even when restricting attention to two-counter machines only;
nevertheless it is technically convenient to consider the general case here.

Given a Minsky machine C', we define the net No = (P, T, F, ¥, () as follows.

e Theset of placesis P ={¢1,¢a,...,¢m, X1, X2,..., X;,, U }. (The initial marking My
will consist of just one token, located on the place X;; and in general, a marking will
have a token on some place X; representing the Minsky machine at that particular
instruction label, and some number of tokens on each of the places ¢; representing
those particular values for the counters.)

e The set of actions labelling the transitions is ¥ = {i,d, z}, denoting the machine
events increment, decrement, and zero, respectively.

e For every instruction of the form

X @ cji=cj+1; goto X'

11

X X

/

7 z

J—O—)
JD 00 O

() (i) (i)

Figure 1: Constructions for N¢

the net has a transition labelled by ¢ with the single input place X and the two
output places X’ and ¢;; see Figure 1(i).

e For every instruction of the form

X : 1if ¢;=0 then goto X’
else c;:=c;-1; goto X"

the net has a transition labelled by d with the two input places X and ¢;, and the
single output place X”; and two transitions labelled by z, the first with the single
input place X and the single output place X', and the second with the two input
places X and ¢;, and the single output place U; see Figure 1(ii).

e there are three further transitions associated with the place U (for ‘universal’). They
each have U as both their single input place and their single output place, and they
are labelled by i, d, and z, respectively; see Figure 1(iii).

The net Ng simulates the Minsky machine C' in a weak sense: there is a unique com-
putation of the net corresponding to the computation of the machine, but there can be
‘invalid’ transition sequences; these arise due to z-transitions being performed when the
relevant counter place ¢; is not empty (and the appropriate d-transition is in fact the
‘valid’ transition); note that invalid z-transitions can lead equally to the universal state
from which any action is possible forevermore.

Lemma 3.3 [If C halts then My is trace equivalent to some finite-state process ry.

Proof: The backbone of the LTS R containing rq will be a (finite) path corresponding
to the (valid) computation of C' (which halts by assumption); see Figure 2. The initial
state of this path will be rq. Outside of this path there will be one further state u with
three ‘loops’ labelled by 1, d and z. From any state on the path which has an outgoing
arc labelled by d, we shall have a further arc labelled z leading to the state w.

It is obvious then that 7 (My) = T (ro). O

12

A

Figure 2: Construction for R

For the opposite direction, we can assume without loss of generality that in any infinite
computation of C' we can find for any ¢ € IV a subcomputation during which some counter
is decreased ¢ times in succession. This is possible, for example, by including three extra
counters ay, a; and a3, and replacing each original instruction

X; : comimn

by the sequence of eight instructions

X; ¢ aj:=a;+1; goto V! * ncrement a,
Y!: if ¢;=0 then goto Y * while a; > 0 do
else a;:=a;-1; goto YZ-2 * decrement aq
Y:? az:=ay+l; goto V! * mcrement ay
Y? : if ay=0 then goto Y° x while ay > 0 do
else ay:=ay-1; goto YZ»4 * decrement a
\ % ap:=a;+1; goto Y’ * mcrement ay
Y? : az:=az+l; goto Y * mcrement as
Y if a3=0 then goto Y/ x while az > 0 do
else az:=a3z-1; goto YZ-G * decrement as
Y7 : comm;

The effect of this transformation is to maintain in counter a; the number of commands exe-
cuted by the Minsky machine, and before executing each command to cause the counter as
to be set to this value and then to be repeatedly decremented down to 0; this clearly leads
to longer and longer sequences of decrement actions, without changing the (non-)halting
behaviour of the original program.

Lemma 3.4 [f C does not halt then T (My) is different from the trace set of any finite-
state process rg.

Proof: Suppose that T(My) = T (ro) for some finite-state process ro taken from a ¢-
state LTS R. Then r¢ also must allow the prefix of a ‘valid’ computation sequence which
includes a contiguous sequence of ¢ decrement actions. Using the Pumping Lemma for

13

finite-state machines [7], this means that ro must be able to reach a state by following a
valid computation sequence from which it can follow an arbitrary number of decrement
actions, which clearly is not possible for My. Hence T(My) # T (ro) which contradicts
our assumption. a

Based on the two lemmas and the undecidability of the halting problem for Minsky
machines, we can derive our undecidability result.

Theorem 3.5 [t is undecidable whether or not a given T-free net is trace equivalent to
some (unspecified) finite-state LTS.

4 Bisimulation equivalence

4.1 Decidability of strong bisimulation equivalence

The proof is based on the general method described in Section 2. Given a marking
My of a 7-free net N and a state rg of an n-state LTS R, the question My ~, rq is
obviously decidable (cf. Proposition 2.2). Therefore by Corollary 2.5, it suffices to show
the decidability of the question as to whether the set

INc = INcE N {M : M is a marking of N}

is reachable from Mj.

We say that a marking L of a net N is n-bounded iff L(p) < n for each place p.
For every n-bounded marking L, we define LZ™ as the set of all markings M such that
L(p) = min (n, M(p)) for each place p. Note that for every marking M there is a unique

n-bounded marking Lj; such that M € Lﬁn; that is, M € L2" iff L = Ly;. Also, there
are only finitely many n-bounded markings; and M ~,, Lj;, so M € INC iff L]ﬂn C Inc.
Hence, INC is an effectively constructible union

INc = LE* UL U .- U LZ"
for some n-bounded markings Ly, Lo, ..., L.

Theorem 4.1 The problem My ~ rq is decidable.

Proof: From the above considerations it follows that it suffices to show decidability of
the following problem:

Given an n-bounded marking L, is the set L2" reachable; that is, is there some

M € L2" such that My —* M?
But this problem is easily reducible to the reachability problem: for each place p such

that L(p) = n we can add an extra transition which just removes a token from p, and
then ask if L is reachable. O

14

4.2 Decidability of strong bisimulation finiteness

We now prove that it is decidable whether or not a given marking M, of a given 7-free net
N is bisimilar to some (unspecified) finite-state process. We shall refer to this problem as
the strong bisimulation finiteness problem, called strong b-finiteness problem for short.

A marking M is infinite with respect to strong bisimilarity (b-infinite for short) iff there
exist infinitely many markings My, My, M3, ... reachable from M such that M; + M; for
© # j. Since the strong equivalence problem is decidable, the strong b-finiteness problem
is obviously semidecidable; it suffices to generate all finite-state processes rg and to check
if My ~ rg. Therefore, it suffices to show that b-infiniteness is semidecidable.

This semidecidability can be informally explained as follows. A sufficient condition for
the existence of infinitely many nonbisimilar reachable states is that there are infinitely
many reachable states with different ‘distances’ to a certain ‘(n-step) behaviour’. It turns
out that in our case it is also a necessary condition and, in addition, it is semidecidable.
This imprecise idea is formalized in the following.

We fix a labelled Petri net N = (P, T,F,¥,¢) and introduce some notation. Let
P = P, U P, where P, P, are disjoint and P, # (). For mappings M; : P, — IN and
My : Py — IN, (My, M) denotes the marking of N whose projection onto P; is M; while
the projection onto P, is My. We say ‘a marking (My, My) of N7 instead of ‘a partition Py,
Py # () of P and mappings My : P, — IN, M, : P, — IN’. In addition, by (M, —) we
mean that there is a partition P = P; U P; as above but (M, —) is considered as a marking
(M : P, — IN) of the subnet of N obtained by removing all places from P,, together
with their adjacent arcs (which is behaviourally equivalent to putting w’s on places from

P;). Observe that, for any ¢ > 0, if M'(p) > i for each place p then (M, M') ~; (M, —).

Lemma 4.2 [f (M, M;) ~ (M, M3) ~ (M, M3) ~ -+ and My < My < M3 < --- (where
< is defined pointwise) then (M, My) ~ (M, —).

Proof: Foreveryi > 0 there surely exists an index j such that M;(p) > i for each p. Then
(M, —) ~; (M, M;) holds and, since (M, My) ~ (M, M;), we also have (M, —) ~; (M, My).
Therefore, (M, —) ~; (M, M;) for every 1 > 0, and so (M, —) ~ (M, M). O

Lemma 4.3 A marking My is b-infinite iff there exists a marking (M, —) satisfying one
of the following two conditions:

(1) (M,—) is b-infinite and there exists a chain My < My < M3 < --- such that
(M, M;) € R(My) for every 1> 1; or

(2) (M, —) is b-finite and there exists a chain My < My < M3 < --- such that (M, M;) €

(
R(My) and (M, M;) A (M, —) for everyi > 1.

Proof: (=): If My is b-infinite, then there exists an infinite set of pairwise non-
bisimilar reachable markings. Consider any infinite sequence of such markings. By

15

Lemma 2.9, there is (a certain partition P = Py U Py, P, # (), and) an infinite sub-
sequence (M, My), (M, M), (M, Ms), ... such that M; < My < M3 < ---. So either (1)
or (2) holds, according to whether (M, —) is b-finite or b-infinite.

(<) Let M ={(M,M;) : ¢ > 1}. If M contains infinitely many pairwise non-
bisimilar markings, then M is b-infinite, and we are done. So assume that M contains
infinitely many pairwise bisimilar markings. By Lemma 4.2, all of these markings must
be bisimilar to (M, —), and so (2) cannot hold. Thus (1) must hold, meaning that (M, —)
is b-infinite. Therefore My must itself be b-infinite. O

Theorem 4.4 [t is decidable whether or not a marking My of a net N is b-finite.

Proof: We proceed by induction on the number of places of N. If N has no places,
then My = (), and is clearly b-finite. Assume now that N has some places. As already
mentioned, it suffices to show semidecidability of the b-infiniteness problem. To this aim,
it obviously suffices to show semidecidability of conditions (1) and (2) of Lemma 4.3.

For this purpose, we enumerate all markings (M, —) of N for all partitions Py, P such
that P # (). Given a marking (M, —), we can decide by the induction hypothesis if it is
b-finite or b-infinite; moreover:

(1) The existence of a chain My < My < M3 < --- such that (M, M;) € R(M,) for every
i > 1 is surely semidecidable: just put M; = My = { (M, M') | M’ is arbitrary }
and apply Lemma 2.13.

(2) If (M, —) is b-finite, then the existence of a chain M; < My < M3 < --- such that
(M, M;) € R(My) and (M, M;) + (M, —) for every ¢ > 1 is also semidecidable: if
(M, —) is b-finite then (M, —) ~ r for a state r of a finite-state LTS R; we can

suppose a concrete R (in fact, in our method we already have it when establishing
that (M, —) is b-finite); let n denote the number of states of R.

We say that a chain My < M, < M3 < ---is adequate if it satisfies the conditions
of (2).

Claitm. There exists an adequate chain iff there exists an n-bounded marking L of
N satisfying the following two conditions

(a) L € INC; and

(b) there exists a chain M; < My < M3 < --- and markings M|, M}, M}, ... € L=
such that My — (M, M;) — M/ for every 1 > 1. (Recall that the domain of
My and M/ is P while it is P, for M and P, for M;.)

Proof of the Claim.

(=): Let My < My < M3 < --- be an adequate chain. There exists an index ig
such that M; > (n,n,...,n) for every ¢ > ig. For ¢ > iy we have (M, M;)
(M, —) by assumption (and so (M, M;) + r), but (M, M;) ~, (M,—) (and
so (M, M;) ~, r). Recalling Section 4.1, there exists an n-bounded marking
L; € INC such that (M, M;) —* LZ-Z”.

16

By the pigeonhole principle there exists an n-bounded marking I and infinitely
many indices 11 < i3 < 13 < --- such that L = L;, = L;, = L;, = Clearly,
L satisfies (a) and the subchain M;, < M,, < M;, < --- satisfies (b).

(«<): Let M; be an arbitrary marking of the chain given by (b). We prove (M, M;)
(M, —), which shows that the chain is adequate. Since My — (M, M;) — M
for some marking M! € L2", we have (M, M;) —* L2". By (a) and Section
4.1 we have (M, M;) + r, which together with (M, —) ~ r implies (M, M;) +
(M, —).

It remains to prove the semidecidability of conditions (a) and (b) for a given n-
bounded marking L. Condition (a) is clearly decidable. For condition (b), put
My ={ (M, M')| M'is arbitrary }, My = L2" and apply Lemma 2.13. O

4.3 Undecidability of weak bisimulation equivalence

We next show that the question My =~ rg is undecidable. In fact, we prove that neither
of the problems My & ro and My % rq is semidecidable. From the proof of this result, we
actually get a fixed 7-state transition system Rg, with a distinguished state rgy such that
My =~ rgx is undecidable. In fact, even My =4 rgy is undecidable.

As the basis for our reduction, we use the following undecidable problem from Petri
net theory:

Containment problem: Given two Petri nets N; and N, defined over the
same set of places and initial marking M, is Ry, (M) C Ry, (M)?

(To avoid the obvious confusion, we write Ry, (M) and Ry, (M) rather than R(M) so as
to indicate the underlying net.) The undecidability of this problem was first demonstrated
by Rabin (see [4]) by means of a reduction from Hilbert’s 10th problem. A reduction from
the halting problem for Minsky machines can be found in [10]. In the next section we
shall need to describe the latter reduction in more detail.

Let two Petri nets Ny = (P, X, T1, F1,¢1) and Ny = (P, X, Ty, F5,{3) be given, along
with a common initial marking M. Without loss of generality, we shall assume that
|Rn,(M)| > 2 and that 0 ¢ Ry, (M) U Rn,(M). (By 0, we mean the marking which
associates the value 0 to each place.) We shall describe a construction of a new net N
with initial marking My such that

L. if Ryy(M) € Rn,(M) then My &~ ry, where rq is taken from the finite transition
system R shown in Figure 3; and

2. if Ry, (M) C Rn,(M) then My = rs, where r5 is again taken from R.

(The state ro of R is used in the next section.)

17

Figure 3: The Finite-state system R

M

Qg

a2 a3 qs3
o »T a T b
!

=

Figure 4: Constructing the net N from N; and N

When defining N we use the following notion. A place p is a run-place of a set T' of
transitions if (p,t) and (¢,p) are both arcs for every ¢t € T'. In particular, the transitions
of T' can occur only when p holds at least one token.

Figure 4 shows a schema of the net N. To construct it, we first take the disjoint
union of Ny and N,, relabelling all transitions by 7. We assume that the places of N; (for
i =1,2) are given by P, = {p; : p € P}. As a part of the initial marking My, we put M
on N; and on Ns.

We then add further places and transitions as indicated. The place ¢ is a run-place
of Ty (graphically represented by a double pointed white arrow), and contains initially
one token. This token can be moved by a T-transition to a place ¢}, and then by an
a-transition to ¢y, which is a run-place of T3. From ¢,, the token can be moved by another
T-transition to ¢} and by a b-transition to ¢s, which is a run-place of an additional set of

18

transitions. This set contains:

e a 7-transition for every pair (pi,p2) (p € P); the transition has p; and py as input
places, and no output place; when it occurs, it simultaneously decreases the marking
of p; and py,; and

e a c-transition for each place p; of Ny and N;; the transition has p; as the unique
input and output place.

We denote a marking of N as a vector with three components: the first and third
components are the projections of the marking onto N; and N;, respectively, while the
second indicates which place of the set {q1,q], g2, 45, g3} currently holds a token. The
initial marking Mo of N is (M, ¢, M).

From this initial marking My, the net N can execute 7-transitions corresponding to
the transitions of Ny. If at some moment the 7-transition occurs taking the ¢; token to ¢,
then a marking (M, ¢}, M) is reached, the submarking M; becomes ‘frozen’, and the only
available transition is the a-transition leading to the marking (M, g2, M). From here, N
can then execute 7-transitions corresponding to the transitions of Ny. Again, if at some
moment the 7-transition occurs taking the g, token to ¢, then a marking (M, ¢, M3) is
reached, and the submarking M, becomes ‘frozen’ as well.

The following Proposition is then easy to prove.

Proposition 4.5

L. If Ry, (M) C Rn,(M) then My~ rs.
2. If Rn,(M) L Rn,(M) then My~ ry.

Proof: A bisimulation containing the pair (Mg, rs) if Ry, (M) C Ry, (M) and the
pair (Mg,ry) if Ry, (M) € Rn,(M) consists of the following pairs:

19

((My,q, M), r1) where Ry, (M1)€ Rn,(M;), Rn,(My1) N R, (M) # 0
<(M1,C]1, Mg) , r2> where RNl(M1) N RN2(M2) — @;
<(M17Q1,M2) , r5> where RNl(M1) C RNQ(MQ);

<(M17Qi7M2) 5 T'2> where M1 QRNQ(MQ),
<(M17QQ7M2)) T'5> where M1 - RNQ(MQ);

<(M1,(]2, Mg) 5 T3> Where M1 € RNQ(MQ),
<(M1,(]2,M2) 5 T6> Where M1 € RNQ(MQ) # {Ml},
((Mq,q2, M), r7) where Rn,(My) ={M};

((My,q3, My) , r3) where M; # My;
<(M1,qé,M1), T‘7>;

<(M17937 MQ)) T4> where M1 # MQ,
((Mi,q3, My), rg) where M; # 0;
<(07q370)) T‘9>.

This is readily seen to be a bisimulation. a

Theorem 4.6 Neither the weak equivalence problem M = r nor the weak non-equivalence
problem M % r are semidecidable.

Proof: This follows from the undecidability of the containment problem, using Propo-
sition 4.5 and the fact that ry & rs. O

Thus the problem N = r5 is undecidable. More than this, however, we may observe in
the above proof that ry 544 rs; hence also NV =4 r5 is undecidable. The 7-state transition
system Rgy promised at the beginning of the section is obtained by removing rg,r; and
ro from R, together with their adjacent arcs.

4.4 Undecidability of weak bisimulation finiteness

In this section we demonstrate the undecidability of the weak b-finiteness problem, i.e.,
given My, for some labelled N, is there a state ry of a finite-state LTS R such that
My ~ rq? To do this, we again use the halting problem for Minsky counter machines;
now it is convenient to recall that it is undecidable even when restricted to 2 counters
and zero inputs.

As already mentioned, we rely on a reduction from [10]. For our aims here, it is
sufficient to recall that there is an algorithm specified as follows:

Input: a 2-counter machine C.

20

Figure 5: Constructing the net N’ from N

Qutput: two nets Ny and N, defined over the same set of places P including two dis-
tinguished places p” and pY, and initial marking M. (In fact, Ny, N are almost
identical, differing only in that N; has an additional transition which is not present
in N3.) These two nets satisfy the following property: if M*¥ denotes the marking
which differs from M only in the places p® and pY where the values are x and v,
respectively, then for every =,y > 0:

C halts on the input (z,y) iff Ry, (M™Y) L Rn,(M™Y).

Now let €' be an arbitrary 2-counter machine. We construct another 2-counter machine
C' which for input (z,0) runs as follows: first, it checks if # = 2* for some k > 0; if this is
the case, then it sets the counters to 0 and simulates (', otherwise it halts. We thus have:

e if C halts on input (0,0), then C’ halts on every input (z,0), > 0;

e if C does not halt on input (0,0) then C” halts on input (z,0) iff z is not a power
of 2.

For C', we can construct the above described nets N; and N,. To these, we apply
the prior construction depicted in Figure 4; thus we get a net N with a predefined initial
marking My. We modify this net in the following way (depicted in Figure 5). First, we
remove the token from ¢;. Second, we add the following new places and transitions:

e a place qq, initially marked with one token;

e a d-transition with ¢o as the only input place, and g, p{ and pj as the output places
(i.e., o is a run-place for this transition);

21

e an e-transition, with ¢p as input place and ¢; as output place.

Let N’ be the result of this final modification. From its initial marking M/}, N’ can
repeatedly execute the d-transition, through which it puts an arbitrary number of tokens
x on the places pi and p5. Then, it may execute the e-transition. After that, the place ¢,
holds a token, and N’ behaves like the net we would obtain by applying the construction
of the last section to the nets N, and N, with initial marking M*°.

Proposition 4.7 M| is weakly b-finite iff the counter machine C halts on input (0,0).

Proof: (=): If C does not halt on input (0,0), then C” halts on input (z,0) iff is not
a power of 2. Therefore, Ry, (M*°%) C Ry, (M%) iff = = 2* for some k > 0.

Let R be the finite-state transition system of Figure 3. For any z, given the unique
marking M reached after executing the d-transition z times in N’, we have the following:

(1) if is not a power of 2, then M = M’ for some M’ ~ r;

(2) if x is a power of 2, then there is no such M.

We prove by contradiction that M} is weakly b-infinite. Assume that M} ~ rj where r{
is a state in some n-state LTS R’. Let r’ be a state such that r, — r’, where u is a
sequence of actions whose projection onto the set of observable actions is d*". By the

vw'e

pumping lemma, r;, —— r’ for sequences v, w,z and for every ¢ > 0, where u = vwz
and the projection of w onto the set of observable actions is a nonempty sequence of d’s.
By (1) and (2) we have that there is r” in R’ such that r’ = r” and r” &~ ry, and at the
same time there is no such r”—a contradiction.

(«): If C halts on input (0,0), then C’ halts for every input (z,0), > 0. Therefore
after the occurrence of the e-transition we always have Ry, (M*°) € Ry,(M*°), regard-
less of the value of x. Hence it is clear that M} & rq, so M/ is weakly b-finite. O

Theorem 4.8 Neither the weak b-finiteness problem nor the weak b-infiniteness problem
is semidecidable.

Proof: By Proposition 4.7, C' does not halt on input (0,0) iff M| is weakly b-infinite.
So the weak b-infiniteness problem is not semidecidable. We can also change C’ in the
following way: if x is not a power of 2, then C’ enters an infinite loop. In this case, C'
does not halt on input (0,0) iff the net M] is weakly b-finite. So the weak b-finiteness
problem is not semidecidable either. a

22

References

[1]

[10]

[11]

[12]

[13]

Christensen, S., Y. Hirshfeld and F. Moller. Bisimulation is decidable for basic parallel
processes. In E. Best (editor), Proceedings of CONCUR’93: Concurrency Theory,
Lecture Notes in Computer Science T715:143-157, Springer-Verlag, 1993.

Dickson, L.E. Finiteness of the odd perfect and primitive abundant numbers with
distinct factors. American Journal of Mathematics 35:413-422, 1913.

van Glabbeek, R.J. The linear time — branching time spectrum. In J.C.M. Baeten and
JW. Klop (editors), Proceedings of CONCUR’90: Concurrency Theory, Lecture
Notes in Computer Science 458, pp278-297, Springer-Verlag, 1990.

Hack, M. The equality problem for vector addition systems is undecidable, Theoretical
Computer Science 2:77-95, 1976.

Higman, H. Ordering by divisibility in abstract algebras. Proceedings of the London
Mathematical Society 3(2), pp326-336, 1952.

Hirshfeld, Y. Petri nets and the equivalence problem. In E. Borger, Y. Gurevich and
K. Meinke (editors), Proceedings of CSL’93: Computer Science Logic, Lecture Notes
in Computer Science 832:165-174, Springer-Verlag, 1994.

Hopcroft, J.E. and J.D. Ullman. Introduction to Automata Theory, Lan-
guages, and Computation. Addison Wesley, 1979.

Huttel, H. Undecidable equivalences for basic parallel processes. In R.K. Shyamasun-
dar (editor), Proceedings of FSTTCS’93: Foundations of Software Technology and
Theoretical Computer Science, Lecture Notes in Computer Science 761, Springer-

Verlag, 1993.

Jancar, P. Decidability of a temporal logic problem for Petri nets, Theoretical Com-

puter Science 74 (1990) 71-93.

Jancar, P. Undecidability of bisimilarity for Petri nets and some related problems.
Journal of Theoretical Computer Science 148, pp281-301, 1995.

Jancar, P. All action based behavioural equivalences are undecidable for labelled

Petri nets. Bulletin of the FATCS 56:86-88, 1995.

Jancar, P. Decidability questions for equivalences on Petri nets. Habilitation Thesis.

Masaryk University, Brno, Czech Republic (1995)

Jancar, P. and J. Esparza. Deciding finiteness of Petri nets up to bisimulation. In
F. Meyer auf der Heide and B. Monien (editors), Proceedings of ICALP’96: Au-
tomata, Languages and Programming, Lecture Notes in Computer Science 1099:478—
489, Springer-Verlag, 1996.

23

[14]

Jancar, P. and A. Kucera. Bisimilarity of processes with finite-state systems. In
F. Moller (editor), Proceedings of Infinity’97: the 2nd International Workshop on
Verification of Infinite State Systems, Electronic Notes in Theoretical Computer Sci-
ence 9, URL: http://www.elsevier.nl/locate/entcs/volume9.html, 1997.

Jancar, P. and F. Moller. Checking regular properties of Petri nets. In 1. Lee and
S.A. Smolka (editors), Proceedings of CONCUR’95: Concurrency Theory, Lecture
Notes in Computer Science 962:348-362, Springer-Verlag, 1995.

Mayr, E. An algorithm for the general Petri net reachability problem. SIAM Journal
of Computing 13, pp441-460, 1984.

Milner, R. Communication and Concurrency. Prentice Hall, 1989.
Minsky, M. Computation: Finite and Infinite Machines. Prentice Hall, 1967.
Olderog, E.-R. Nets, Terms and Formulas. Cambridge University Press, 1991.

Peterson, J.L. Petri Net Theory and the Modeling of Systems. Prentice Hall,
1981.

Valk, R. and G. Vidal-Naquet. Petri nets and regular languages. Journal of Computer
and System Sciences 23(3), pp299-325, 1981.

24

