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Abstract. We show that the problem whether a given Petri net has
a home state (a marking reachable from every reachable marking) is
decidable, and at least as hard as the reachability problem.

Keywords: Home states, Petri nets, reachability, semilinear sets.

1 Introduction

Frequently, dynamic systems must have “home states”, which are defined as
states that can be reached from whichever state the system might be in. In various
electronic devices, home states may be entered automatically after periods of
inactivity, or may be forced to be reached by pushing a “reset” button. In
self-stabilising systems [3], failure states can be recovered from automatically,
preferably ending up in regular, non-erroneous home states. In Markov chain
theory, home states are called “essential” states [2] a particularly important class
being that of the “recurrent” states.

The main two decision problems concerning home states are (1) given a dynamic
system S and a state q, is q a home state of S ? and (2) given a system S, does
it have a home state? We call them the home state problem (HSP) and the home
state existence problem (HSEP), respectively.

For finite-state systems, both HSP and HSEP are trivially decidable, but this is
no longer true for models which may have an infinite state space, like Petri nets.
For Petri net models, HSP (and, in fact, a more general problem) was shown
decidable in [5, 6], but our knowledge about HSEP is more limited: the only result
was obtained in [1], where it was shown that all live and bounded free-choice
nets have home states, while live and bounded asymmetric-choice nets may not.
HSEP is explicitly mentioned as an open problem in Wimmel’s compilation of
open problems in Petri net theory [12].
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In the first part of the paper we show that HSEP is decidable, and provide an
algorithm that constructs a home state whenever there is one. The algorithm
combines the decision procedure for HSP described in [5] with a more recent
result showing that the mutual reachability relation for Petri nets (the relation
containing the pairs of markings of a net that are reachable from each other)
is effectively semilinear [10]. In the second part of the paper we show that the
reachability problem of Petri nets can be reduced polynomially to HSEP. This
underlines the hardness of HSEP. In the concluding section of the paper, we
mention some related problems whose decidability remains open.

2 Basic concepts

We assume familiarity with elementary notions of Petri nets [11], such as the
notation N = (P, T, F ) for a net with places P , transitions T , and arcs F . The set
of N ’s markings is NP , and its initial marking (if one exists) is usually denoted
by M0. A marking M ′ ∈ NP is reachable from a marking M ∈ NP by a firing
sequence τ ∈ T ∗, also denoted by M

τ−→M ′, if τ leads from M to M ′. The set
of all markings reachable from M is denoted by [M〉. We assume Petri nets to
be finite. Observe that an initially marked finite net (N,M0) can be unbounded,
thus generating an infinite state space (i.e., an infinite set [M0〉).

Definition 1. Let (N,M0) be an initially marked net. A set of markings M of
N is a home space of (N,M0) if for every marking M which is reachable from
M0, some marking in M is reachable from M . A marking M is called a home
state of (N,M0) if {M} is a home space of (N,M0).

Observe that a set of markings can be a home space of (N,M0), without necessarily
containing a home state of (N,M0). Also observe that ∅ is never a home space
while [M0〉 always is.

Definition 2. Let N be a net. Two markings M,M ′ of N are mutually reachable
if M ′ is reachable from M and vice versa. The mutual reachability relation of N
is the set containing the pairs (M,M ′) of markings of N such that M and M ′

are mutually reachable.

Note that this defines an equivalence on NP which does not depend on any initial
marking, but only on the structure of N .

Definition 3. Let N be a net. A marking M of N is a bottom marking of N if
for every marking M ′ reachable from M , the markings M and M ′ are mutually
reachable.

Note that a dead marking (enabling no transition) is automatically a bottom
marking. Also, observe that bottom markings of N are related to home states of
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a marked net (N,M0), with the same underlying net N . If M is a home state of
a marked Petri net (N,M0), then M is reachable from M0, and it is a bottom
marking of N . In that case, any other bottom marking reachable from [M0〉 is
also a home state. However, a marking M can be reachable from M0 and also be
a bottom marking of N , without there necessarily being a home state of (N,M0).

The bottom markings of N are computationally more amenable than the home
states of (N,M0) because (as it will turn out) they are semilinear in the following
sense.

Definition 4. Let k ∈ N. A set M ⊆ Nk is linear if there exists a root vector
ρ ∈ Nk and a finite set of periods Π = {π1, . . . , πn} ⊆ Nk such that

M =
⋃

λ1, . . . , λn∈N

{M ∈ Nk |M = ρ+

n∑
i=1

λiπi}

and semilinear if M =M1 ∪ . . . ∪Mm for m linear sets M1, . . . ,Mm.

We denote (ρ;Π) the linear set with root vector ρ and period set Π.

A subset of Nk (for some k ∈ N) is semilinear if and only if it is Presburger
definable [8]. Semilinearity and Presburger definability extend to subsets of
Nk × Nk using Nk × Nk = N2k.

A set M of markings of a net N with k places is effectively semilinear if there is
an algorithm that on input N returns root vectors ρ1, . . . , ρm ∈ Nk and period
sets Π1, . . . ,Πm ⊆ Nk such that M =

⋃n
i=1(ρi;Πi). Similarly, M is effectively

definable in Presburger arithmetic if there is an algorithm that on input N
returns a formula of Presburger arithemtic defining M. Effectively semilinear
and Presburger definable relations on the markings of N are defined analogously,
by identifying Nk × Nk with N2k. By [8], effective semilinearity and effective
definability in Presburger arithmetic coincide.

The home state existence problem is defined as follows:

HSEP:

{
Given: An initially marked Petri net (N,M0).
Decide: Is there a home state M of (N,M0) ?

3 Decidability of HSEP

To commence the proof of the decidability of HSEP, we recall the following strong
result by Leroux:

Theorem 1 ([10]). For every Petri net N , the mutual reachability relation is
effectively definable in Presburger arithmetic1.

1 Observe the emphasis on effective definability. Definability in Presburger arithmetic
follows from a result by Eilenberg and Sch́’utzenberger on commutative monoids [7].
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So, by [8], the mutual reachability relation is semilinear. This easily leads to
the following result, already described in [4]. Since the proof is short, we give a
sketch.

Theorem 2 ([4]). Let N be a net. The set of bottom markings of N is effectively
semilinear.

Proof. We show that the predicate B(M) associated to the set of bottom markings
is effectively definable in Presburger arithmetic, and so semilinear. By Theorem 1,
we can compute a Presburger predicate MR(M,M ′) associated to the mutual
reachability relation. Now, we observe – using induction on the length of a firing
sequence – that M is a bottom marking iff for every marking M ′ such that M
and M ′ are mutually reachable, and for every M ′′ such that there is some t ∈ T
with M ′

t−→M ′′, the markings M and M ′′ are also mutually reachable. Hence

B(M) ⇐⇒ ∀M ′ ∀M ′′ : (MR(M,M ′) ∧ (∃t ∈ T : M ′
t−→M ′′))⇒ MR(M,M ′′)

and we are done, since the single-step reachability relation can be expressed
semilinearly, and Presburger formulas are stable over conjunction, disjunction,
implication, and universal quantification [8]. ut

Now consider an initially marked Petri net (N,M0). If its home states coincide
with the set of bottom markings reachable from [M0〉, then Theorem 2 already
leads to an algorithm, because semilinear set reachability is decidable [9]. However,
the set of home states of (N,M0) could be a proper subset of the set of reachable
bottom states. Hence we need a further step in the development of an algorithm,
which utilises the decidability result of [5].

Theorem 3 ([5]). Let (N,M0) be a Petri net and let M be a linear set of
markings of N . It is decidable if M is a home space of (N,M0).

This theorem allows us to define the algorithm of Figure 1. We prove that it
indeed solves HSEP.

Theorem 4. The algorithm of Figure 1 decides if a Petri net (N,M0) has a
home state.

Proof. We first show that the algorithm is indeed an algorithm. The sets B, B1,
. . ., Bn are effectively computable by Theorem 2 and the fact that semilinear sets
are finite unions of linear sets. Since Bj and {M ′0} are linear sets, the function calls
homespace(Bj) and homespace({M ′0}) in lines 3 and 5 are effectively computable
by Theorem 3. Finally, the marking M ′0 at line 4 can be found by executing all
the firing sequences of (N,M0) of length 0, 1, 2, etc., until one of them leads to a
marking of Bj . Observe that the procedure terminates because, by line 3, the set
Bj is a home space of (N,M0), and so some marking of Bj is indeed reachable
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/* Algorithm to decide if (N,M0) has a home state. */
/* The function homespace(M) returns true if M */
/* is a home space of (N,M0), and false otherwise. */

1: compute the semilinear set B of bottom markings of N , and
linear sets B1, . . . , Bm such that B = B1 ∪ . . . ∪Bm

2: for j = 1, . . . ,m do
3: if homespace(Bj) then
4: pick a marking M ′

0 ∈ [M0〉 ∩Bj

5: if homespace({M ′
0}) then

6: output “ M ′
0 is a home state of (N,M0) ” and halt

7: else
8: output “ (N,M0) has no home state ” and halt
9: end if

10: end if
11: end for
12: output “ (N,M0) has no home state ”

Fig. 1. Algorithm to check the existence of home states.

from M0. To check that the marking reached by a firing sequence belongs to Bj
reduces to solving a set of diophantine equations: indeed, if the marking is M ,
the root of Bj is ρj , and the periods of Bj are π1j , . . . , πnjj , then the problem
reduces to deciding if the equation M = ρj +

∑nj

i=1 λiπij has a solution over the
natural numbers.

We now prove that the algorithm is correct. Termination is clear. Partial correct-
ness is a consequence of the following three claims:

Claim 1: If the algorithm terminates at line 12, then (N,M0) has no home state.

We prove the contrapositive. Assume (N,M0) has a home state M . By the
definition of a home state, M is a bottom marking of N , and so it belongs to at
least one of B1, . . . , Bm, say Bj . It follows that Bj is a home space of N . Since
the guard at line 3 evaluates to true for Bj , the algorithm does not terminate at
line 12.

Claim 2: If the algorithm terminates at line 8, then (N,M0) has no home state.

If the algorithm terminates at line 8, then, because of lines 3 and 5, the marking
M ′0 ∈ [M0〉 ∩Bj is not a home state of (N,M0). Since M ′0 is not a home state,
there is some marking M1 ∈ [M0〉 such that M ′0 /∈ [M1〉. Since M ′0 ∈ Bj , M ′0 is
a bottom marking. This, together with M ′0 /∈ [M1〉, implies M1 /∈ [M ′0〉. Hence
M ′0 and M1 are not reachable from each other, but both are reachable from M0.
Altogether, this implies that (N,M0) has no home state.

Claim 3: If the algorithm terminates at line 6, then M ′0 is a home state of (N,M0).

If the algorithm terminates at line 6 then {M ′0} is a home space of (N,M0) which,
by the definition of a home space, is the same as M ′0 being a home state of
(N,M0). ut
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4 Hardness of HSEP

We show that the existence of home states is computationally at least as hard
as the reachability problem for Petri nets. Recall that the reachability problem
can be reduced in polynomial time to the single-place zero-marking reachability
problem SPZR [9], which is defined as follows:

SPZR:

{
Given: An initially marked Petri net (N,M0), a place p of N .
Decide: Is there a reachable marking M such that M(p) = 0 ?

So it suffices to exhibit a polynomial reduction from SPZR to the existence of
home states. Given a Petri net (N,M0) and a place p of N , we construct in
polynomial time a Petri net (Ñ , M̃0) in two steps as follows (see Figure 2):

q′

q

p p′

p1

pm

qa

qb

h

h′

h′′

fqb

fqa

fp1

fp

g

fp
′

fpm

fp1a

fp1b
ga

gb
fpma

fpmb

N ′

• • •

• • •

Fig. 2. The Petri net (Ñ , M̃0).

Step 1: Construct (N ′,M ′0) from (N,M0) by adding a single new place p′ with
the same input and output transitions as p, but with one more token, i.e.,
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M ′0(p′) = M0(p) + 1. Clearly, we have:

(∃M ∈ [M0〉 : M(p) = 0 in (N,M0))

⇐⇒ (∃M ′ ∈ [M ′0〉 : M ′(p) = 0 ∧M ′(p′) = 1 in (N ′,M ′0))

Step 2: Construct (Ñ , M̃0) from (N ′,M ′0) in the following way:

• Add three new places q, qa, qb carrying no tokens in the initial marking, and
three new “goto” transitions g, ga, gb.

• Add arcs (p, g), (g, q), (p′, ga), (ga, qa) and (p′, gb), (gb, qb).
Observe: tokens in p can move to q at any time, and tokens in p′ can move
to qa or qb at any time.

• Add three families of “flush” transitions, fr, fsa , f
s
b , for r ∈ P ′ ∪ {qa, qb}

and s ∈ P ′ \ {p, p′}, where P ′ denotes the set of places of N ′ (in Figure 2
P ′ = {p1, . . . , pm}, including p and p′).

• Add an arc from every place r in P ′ ∪ {qa, qb} to fr, and arcs (q, fr), (fr, q).
Observe: from any marking with at least one token in q, the fr transitions
can “flush” all other tokens in P ′∪{qa, qb} and lead to a marking with tokens
only in place q.

• Add an arc from every place s in P ′ \ {p, p′} to fsa , and to fsb , and arcs
(qa, f

s
a), (fsa , qa) and (qb, f

s
b ), (fsb , qb).

Observe: from any marking with at least one token in qa or qb, the fsa or
fsb transitions can “flush” tokens, leading to a marking with tokens only
(possibly) in p, p′, q, qa, and qb.
• Add a place q′, three transitions h, h′, h′′, and arcs (q, h), (h, q′), (q′, h′),

(h′, q), (q, h′′), (h′′, q), (q′, h′′).
Observe: from any marking with tokens only in q we can fire the transitions
h, h′, h′′ to reach a marking with exactly one token in q and no token on q′.

Proposition 1. Let (N,M0) be a Petri net with a place p, and let (Ñ , M̃0) be
the Petri net defined above. Then:

(∃M ∈ [M0〉 : M(p) = 0) ⇐⇒ (Ñ , M̃0) has no home state.

Proof. By the property of the net (N ′,M ′0) obtained after Step 1 it suffices to
show:

(∃M ′ ∈ [M ′0〉 : M ′(p) = 0 ∧M ′(p′) = 1 in (N ′,M ′0))

⇐⇒ (Ñ , M̃0) has no home state

(⇒): Suppose M ′ is reachable in (N ′,M ′0) and puts 1 token on p′ and 0 tokens
on p. Let M̃ be the marking of Ñ that coincides with M ′ on N ′, and puts zero
tokens on the additional places q, q′, qa, qb. Then M̃ is reachable from M̃0 in Ñ ,
and it enables both ga and gb. Let M̃ [ga〉M̃a and M̃ [gb〉M̃b; then M̃a puts one
token in qa, and no tokens in qb, q, q

′, p, p′, and M̃b puts one token in qb, and no
tokens in qa, q, q

′, p, p′. From M̃a (or from M̃b), we can now exhaustively fire the
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flush transitions fsa (or fsb ). This leads to two distinct deadlock markings having

exactly one token on qa or on qb, and no tokens elsewhere; thus (Ñ , M̃0) has no
home state.

(⇐): Suppose that no reachable marking of (N ′,M ′0) puts 1 token on p′ and
0 tokens on p. Since, by construction of N ′, every reachable marking M ′ of
(N ′,M ′0) satisfies M ′(p′) = M ′(p) + 1, we deduce that no reachable marking
of (N ′,M ′0) puts 0 tokens on p. We claim that every reachable marking M̃ of
(Ñ , M̃0) satisfies M̃(p) + M̃(q) + M̃(q′) ≥ 1. Let σ be an occurrence sequence

such that M̃0
σ→ M̃ . Then σ = σ1t1σ2t2 . . . σntnσn+1, where σ1, . . . , σn+1 are

(possibly empty) sequences of transitions of N ′, and t1, . . . , tn are occurrences
of g, ga, gb, or of “flush” transitions. If ti = g for some i ∈ {1, . . . , n}, then the
marking reached after firing ti puts at least one token in q. Since, by construction,
every output transition of {q, q′} is also an input transition of {q, q′}, the sum
of the number of tokens in q and q′ cannot become 0 in any later marking, and
so M̃(q) + M̃(q′) ≥ 1. If ti 6= g for every i ∈ {1, . . . , n}, then, since t1, . . . , tn
can only remove tokens from the places of P ′ ∪ {p, p′}, never adding any, σ′ =

σ1σ2 . . . σnσn+1 is also an occurrence sequence of (N ′,M ′0). Let M̃0
σ′→ M̃ ′. Since

M̃ ′ is a reachable marking of (N ′,M ′0), we have M̃ ′(p) > 0, and, since the
transitions ta, . . . , tn do not remove tokens from p, we also have M̃(p) > 0, and
the claim is proved.

Since every reachable marking M̃ of (Ñ , M̃0) satisfies M̃(p)+M̃(q)+M̃(q′) ≥ 1,
from any reachable marking we can fire the flush transitions to reach a marking
putting only tokens in q (observe that the family fs also contains transitions
to remove tokens from qa and qb). From any such marking we can then fire the
transitions h, h′ to reach the marking that puts only a single token remains on
q, and no tokens elsewhere. So this marking is a home state. ut

5 Concluding remarks

This paper has answered, in the positive, one of several still open decidability
questions in Petri net theory. Amongst the unknown ones, the structural liveness
problem is defined as follows:

STLP:

{
Given: A Petri net N .
Decide: Is there a marking M0 of N such that (N,M0) is live ?

and the partial home state existence problem is defined as follows:

pHSEP:


Given: A Petri net (P, T, F ), a set P̃ ⊆ P , a marking M̃ ∈ NP̃ .

Decide: ∃M ∈ NP , M̃ ′ ∈ NP̃ such that M |P̃ = M̃

and ∀M ′′ ∈ [M〉 ∃M ′ ∈ [M ′′〉 : M ′|P̃ = M̃ ′ ?

A polynomial reduction from STLP to pHSEP is given in [12], but it is not
entirely strict. Also, it is not known whether these two problems are decidable or

8



not. It remains to be investigated whether the algorithm described in the present
paper can be extended to pHSEP, and if so, whether all of this could be used in
order to resolve the decidability status of STLP.
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