
Reachability Analysis of Synchronized PA Systems

Ahmed Bouajjani1, Javier Esparza2, and Tayssir Touili3

1 LIAFA, University of Paris 7, 2 place Jussieu, 75251 Paris cedex 5, France.
2 University of Stuttgart, Universitätstr. 38, 70569 Stuttgart, Germany.

3 School of Comput. Sci., Carnegie Mellon University, Pittsburgh, PA 15213, USA.

Abstract. We present a generic approach for the analysis of concurrent programs with (un-
bounded) dynamic creation of threads and recursive procedure calls. We define a model for such
programs based on a set of term rewrite rules where terms represent control configurations. The
reachability problem for this model is undecidable. Therefore, we propose a method for analyzing
such models based on computing abstractions of their sets of computation paths. Our approach
allows to compute such abstractions as least solutions of a system of (path language) constraints.
More precisely, given a program and two regular sets of configurations (process terms) T and T

�
,

we provide (1) a construction of a system of constraints which characterizes precisely the set of
computation paths leading from T to T

�
, and (2) a generic framework, based on abstract interpre-

tation, allowing to solve this system in various abstract domains leading to abstract analysis with
different precision and cost.

1 Introduction

Analyzing and verifying multithreaded programs is nowadays one of the most important problems in
program analysis and computer-aided verification. This problem is especially challenging in the case
where the programming language allows (1) dynamic creation of concurrent threads, and (2) recursive
calls of procedures. It is well known that as soon as synchronization and procedure calls are taken into
account, the reachability problem (even of control points) is undecidable (see [Ram00]). Therefore,
any analysis or verification algorithm for such programs must consider upper-approximations of the
set of possible computation paths.

In a previous work [BET03], we have introduced a generic framework for computing abstractions
of the set of paths for a class of multithreaded programs. We have shown that instantiations of this
framework lead to several analysis procedures with different precision and cost. In that work, we
considered programs without dynamic creation of threads, i.e., programs with recursive procedures
but with only a fixed number of communicating threads.

In this paper, we extend our work to the more general case where threads may be created dynam-
ically. For that we consider the approach advocated in [EP00] for modeling and analyzing parallel
programs. In [EP00], a framework based on term rewrite systems and automata techniques is used for
analyzing parallel programs without synchronization. In this paper, we model similarly programs by
sets of term rewrite rules, but we take into account synchronizations. More precisely, in our model,
the set of terms (defining configurations of the program) is defined by means of (1) process constants
corresponding to control points, and composition operators corresponding to (2) sequential composi-
tion and (3) CCS-like parallel composition. (A restriction operator is also needed at the top level in
order to forbid interleavings between synchronization actions.)

Then, the basic problem we consider is, given two sets of configurations (sets of terms) T1 and T2,
compute a representation of the set Paths

�
T1 � T2 � of computation paths leading from a configuration in

T1 to some configuration in T2. (This allows in particular, but not only, to solve reachability problems
by checking the emptiness of this set.) Due to the undecidability result mentioned above, this set
cannot be computed precisely, in general. Therefore, our aim is to define a generic method (in the spirit

of our previous work [BET03] mentioned above) for effectively computing abstractions A
�
T1 � T2 �

(upper-approximations) of the set of paths Paths
�
T1 � T2 � .

The method we propose in this paper consists in (1) characterizing the set Paths
�
T1 � T2 � as the

least solution of a system of constraints (on path languages), and (2) defining a uniform framework
(based on abstract interpretation [CC77]) for computing (in a generic way) abstractions of the least
solution of this system of constraints. In the appendix, we give examples of abstractions (with different
precision) which can be naturally used in program analysis, and which can be defined as instances
of our framework. Moreover, we illustrate the applicability of our techniques and the use of these
abstractions on an example of parallel algorithm which computes minimum values of streams of
inputs.

Related work: There are several works on static analysis of concurrent programs (see [Rin01] for a
survey).

In [BCR01,DBR02], analysis techniques are defined for multithreaded programs without proce-
dure calls (threads are finite-state communicating systems). These techniques are based on solving the
coverability problem of Petri nets. This approach is generalized to programs with broadcast commu-
nications in [FRSB02] using Petri nets with transfer transitions.

The automata approach for program analysis has been used in [EK99,EHRS00] for programs with
procedures (without concurrency). These works are based on computing reachable configurations in
pushdown automata [BEM97,FWW97]. This approach has been extended in [LS02,EP00] to parallel
programs with dynamic creation of processes, but without synchronization, using as models process
rewrite systems called PA processes. In [BT03], we extend this approach to a larger class of processes
allowing return values of procedures.

In [BET03], we use path abstractions to analyze parallel recursive programs (with synchroniza-
tion). In that paper we use communicating pushdown automata as formal model of programs and
build abstractions of context-free path languages based on our automata-based procedures for reacha-
bility analysis of pushdown automata [BEM97,EHRS00]. A different approach for analyzing parallel
programs with procedures using path language abstractions is presented in [FQ03].

In [SS00,MO02], similar approaches to the one we propose here are defined. In both papers, the
authors define sets of constraints characterizing sets of computation paths. However, these character-
izations are technically different from ours, and consider a more restricted setting. (1) These works
consider the problem of computing abstractions of the set of paths starting from one single initial
configuration to the set of all reachable configurations, whereas in our approach, the set of initial con-
figurations and target configurations can be any regular sets of configurations. This allows us to deal
in a uniform way with the analysis problem of various properties (as it can be seen for instance in
the example of Section B.2). (2) The work in [SS00] (like the one in [EP00]) does not consider syn-
chronizations, whereas the aim of our work is to consider synchronizations in presence of dynamic
creation of processes and procedure calls. Finally,(3) the work in [MO02] is focused on a particular
dataflow analysis problem (constant detection), whereas our approach intends to deal uniformly with
safety properties. It must also be said that we pay a price for our more general setting, namely the
higher complexity of some of our abstractions.

Another work which considers the abstract analysis of concurrent programs in presence of dy-
namic creation of threads and procedures is [DS91]. The paper provides an (ad-hoc) approximate
analysis for determining which statements can be concurrently executed. We think that the approx-
imation used in that work could be phrased in our framework, but a careful comparison of our two
approaches needs to be done.

Finally, in [QRR04], procedure summaries are used to represent the effect of executing a proce-
dure. The approach works on the concrete multithreaded program (no abstraction is required). The
analysis algorithm is only guaranteed to terminate in some specific cases.

2 Synchronized PA systems

We introduce hereafter a process algebra-based model for multithreaded programs with recursive
calls. It consists in extending PA processes [BW90] with synchronization actions.

2.1 Syntax

Let Lab � �
a � b � c ��������� be a set of visible actions. Let Sync and Async be two disjoint sets such that

Lab � Sync � Async. We assume that to each action a � Sync corresponds a co-action ā in Sync such
that ¯̄a � a. Intuitively, Sync is the set of all synchronization actions, i.e., actions which must be per-
formed simultaneously with their corresponding co-actions in a “handshake” between two parallel
processes. Let Act � Lab � �

τ � be the set of all the actions, where τ is a special internal action (as we
shall see, this special action will represent the handshakes). Let Var � �

X � Y �������	� be a set of process
constants. Then, we define T to be the set of process terms t given by:

t :: � 0
 X
 t � t
 t � t
Intuitively, 0 is the idle or terminated process (also called null process), and “ � ” (resp. “ � ”) corresponds
to the sequential composition (resp. parallel composition).

The set of restricted process terms is defined as Tr � �
t Sync
 t � T � . The term “t Sync” corre-

sponds to the restriction of the behavior of t to the non-synchronizing actions. Given a set of process
terms T , we denote by T Sync the set

�
t Sync
 t � T � .

Definition 1. A Synchronized PA system (SPA for short) is is a finite set R of rules of the form X
a� � t,

where t � T and a � Lab.

2.2 Semantics

Structural equivalences on terms: Terms are considered modulo structural equivalences correpond-
ing to the following properties: neutrality of the null process “0” w.r.t. “ � ” and “ � ”, the associativity of
“ � ” and “ � ”, and the commutativity of “ � ”. We consider the equivalence relation � 0 on T defined by:

A1: t � 0 � 0 0 � t � 0 t � 0 � 0 0 � t � 0 t

We also consider the structural equivalence � generated by (A1) and:

A2:
�
t � t � � � t � ��� t � �

t ��� t � � � : associativity of “.”,
A3: t � t ��� t ��� t : commutativity of “ � ”,
A4:

�
t � t � � � t � ��� t � �

t ��� t � � � : associativity of “ � ”.

The equivalences above are extended to terms of Tr by considering that t Sync � t � Sync iff t � t � .
Let � be an equivalence from the set

� � � � � , where � stands for the identity between terms. Let
t � Tr, we denote by � t ��� the equivalence class modulo � of the process term t, i.e., � t ����� �

t ��� Tr

t � t � � . A set of terms L is said to be compatible with the equivalence � if �L � � � L. We say that L � is
a � -representative of L if � L ��� � � L.

Transition relations and computations: An SPA R induces a transition relation
a� over T � Tr

defined by the following inference rules:

θ1 :
X

a� � t2 � R

X
a� t2

; θ2 :
t1

a� t �1
t1 � t2 a� t �1 � t2

; θ3 :
t1 � 0 0 � t2

a� t �2
t1 � t2 a� t1 � t �2

θ4 :
t1

a� t �1
t1 � t2 a� t �1 � t2

; θ5 :
t1

a� t �1 ; t2
ā� t �2 ; a � Sync

t1 � t2 τ� t �1 � t �2
; θ6 :

t1
a� t2 ; a �� Sync

t1 Sync
a� t2 Sync

Each equivalence � � � � � � � induces a transition relation
a� � over T � Tr defined as follows:

�
t � t � � t a� � t � iff � u � u � such that t � u � u a� u � � and u � � t �

The relation
a� � is extended to sequences of actions in the usual way. For every term t � T � Tr, let

Post �� � w � �
t � � �

t � � T � Tr
 t w� � t � � and let Post �� �
t � ��� w � Act � Post �� � w � �

t � . These two definitions
are extended to sets of terms as usual.

Now, we consider also a weak transition relation � a over T defined by the inference rules θ1, θ2,
θ3, and θ4 (i.e., synchronization and restriction rules are ignored). This relation defines a semantics
for SPA processes which is precisely the one of PA processes. As above, we consider also the relations
a� � induced by the equivalences � defined in the obvious way, and we define for every term t � T ,

WPost �� � w � �
t � � �

t � � T
 t w� � t � � and WPost �� �
t � �	� w � Act � WPost �� � w � �

t � .
Given two sets of terms T � T ��
 T � Tr, the set of computation paths leading from T to T � is

defined by PathsR
�
T � T � � � �

w � Act �
�� t � T � � t � � T � � t � � Post � �w � �
t � � . We define similarly the set

WPathsR
�
T � T � � , when T � T ��
 T , by considering the WPost � relation instead of Post � .

2.3 SPA as a model of multithreaded programs

From programs to SPA systems: Programs represented by parallel flow graph systems (see e.g.,
[EP00,SS00,MO02]) can be translated straightforwardly to SPA systems. (We assume as usual that
infinite data types have been abstracted into finite types using standard techniques of abstract inter-
pretation.) Nodes of the flow graphs (corresponding to control points in the programs, coupled with
abstract values of local variables) are represented by process constants, and actions of the programs

are modeled by means of process term rewrite rule. Rules of the form X
a� � X1 � X2 correspond to pro-

cedure calls, and rules of the form X
a� � X1 � X2 correspond to dynamic creation of parallel processes.

Complementary actions a, ā are used to model synchronizations between parallel processes (they cor-
respond to send (a!) and receive (a?) statements). Therefore, we consider that the set of synchronizing
actions Sync is the set

�
a � ā
 a is a communication channel � .

The initial configurations of a program are represented by a set T of process terms in T . The
behavior of the program corresponds to the set of computation paths of its SPA model R, starting from
the set of restricted terms T Sync, i.e., PathsR

�
T Sync � Tr � .

Well formed systems: A quite natural requirement on programs is that complementary synchroniza-
tion actions can only appear in parallel processes (they can never be executed sequentially by the
same thread). This requirement is easy to guarantee for programs with a fixed number of parallel pro-
cesses. It suffices to consider that each pair of processes communicate through distinguished directed
channels. However, this requirement becomes hard to guarantee in the case of programs with dynamic
creation of processes. We introduce hereafter a syntactical condition on SPA systems which ensures
this property.

Let R be an SPA modeling a program as described above. We associate with R a dependency graph
GR defined as follows. Vertices are either process constants, or intermediate vertices (one for each rule

in R). There is an edge X
a� Y for every rule X

a� � Y . For every rule X
a� � X1opX2, where op � � � � � � ,

there are three edges X
a� v, v

op� X1, and v
op� X2, where v is a fresh vertex.

We say that an SPA is well formed if it satisfies the following condition: For every two transitions

u1
a� u2 and v1

ā� v2 in GR, every simple path in the undirected graph corresponding to GR relating
u1 and v1 must contain an edge labelled by � . It is easy to check that well formed systems satisfy the

property that complementary synchronization actions can never be executed by the same sequential
process. We can then show that:

Lemma 1. If R is a well formed SPA, then for every terms t and t � in T , we have:

t
τ� � t � iff � a � Sync � t a ā� � t �

Example We consider in Appendix B an example of a parallel algorithm which computes minimum
values of streams of inputs, and show how it can be translated into a well-formed SPA model.

3 The Reachability Problem for SPA systems

Let R be an SPA system. The problem we consider is, given two regular (finite tree-automata definable,
see definition later), potentially infinite, sets of process terms T � T��
 T , check whether:

PathsR
�
T Sync � T � Sync � ?� /0 (1)

Unfortunately, we can show that the halting problem of a two counter machine can be reduced to
this problem.

Theorem 1. The reachability problem of SPA systems is undecidable.

To tackle the problem (1), we adopt an abstraction-based approach consisting as usual in checking
stronger conditions, i.e., checking the emptiness of larger sets than PathsR

�
T Sync � T � Sync � . The

originality of our approach is that it allows to consider in a generic way several kinds of abstractions.
To explain our approach, we need to reformulate the problem (1) above. It is easy to see that

PathsR
�
T Sync � T � Sync � � PathsR

�
T � T � ��� �

Async � �
τ � � � and therefore, solving (1) is equivalent to

checking whether

PathsR
�
T � T � ��� �

Async � �
τ � � � ?� /0 (2)

Moreover, for the class of well formed SPA systems, Lemma 1 implies that (2) is equivalent to
checking whether

W PathsR
�
T � T � ��� �

Async � ∑
a � Sync

a ā �� ?� /0 (3)

Due to the undecidability result above, both PathsR
�
T � T � � and WPathsR

�
T � T � � cannot be ef-

fectively computed as objects of any decidable class of word automata or grammars. Therefore,
the question we address is how to compute abstractions of the path languages PathsR

�
T � T � � and

WPathsR
�
T � T � � , i.e., upper-approximations A

�
T � T � � of the set PathsR

�
T � T � � (resp. WPathsR

�
T � T � �),

such that the emptiness of the set A
�
T � T � ��� �

Async � �
τ � � � (resp. A

�
T � T � ��� �

Async � ∑a � Sync a ā ��)
can be decided.

We define a generic approach for computing abstractions of the sets PathsR
�
T � T � � and WPathsR

�
T � T � �

based on (i) characterizing each of PathsR
�
T � T � � and WPathsR

�
T � T � � as the least solution of a sys-

tem of constraints on word languages (this solution cannot be computed in general as said before),
and (ii) computing the least solution of the system of constraints in an abstract domain to obtain an
upper-approximation of PathsR

�
T � T � � or W PathsR

�
T � T � � .

Remark 1. We will see later that the two formulations (2) and (3) above lead to complementary anal-
ysis approaches. Indeed, they allow to consider different abstractions with uncomparable precisions.

In the sequel, we assume that T � is a � -compatible set. In that case, it is possible to show that the
sets PathsR

�
T � T � � and WPathsR

�
T � T � � can be precisely characterized without taking into account the

structural equivalences on terms:

Proposition 1. For every T � T �
 T , if T � is a � -compatible set, then
�
W � PathsR

�
T � T � � � �

w � Act �
�
W � Post �� �w � �

T ��� T � �� /0 � .

Based on the proposition above, we provide a characterization of
�
W � PathsR

�
T � T � � as the least

solution of a set of constraints (on sets of finite words). This set of constraints is built from finite
tree-automata representations of the two given sets of terms T and T � . The next section shows this
characterization in detail.

4 Characterizing Path Languages

We start by introducing some preliminary definitions concerning the automata representations we use,
and establish some links between operations on term processes and operations on computation paths.

4.1 Process tree automata

Terms in T can be seen as binary trees where the leaves are labeled with process constants, and the
inner nodes with the binary operators “ � ” and “ � ”. Therefore, regular sets of process terms in T can be
represented by means of a kind of finite bottom-tree automata, called process tree automata, defined
as follows:

Definition 2. A process tree automaton is a tuple A � �
Q � Var� F � δ � where Q is a finite set of states,

Var is a set of process constants, F
 Q is a set of final states, and δ is a set of rules of the form (a)
f

�
q1 � q2 � �

δ q, (b) X �
δ q, or (c) q �

δ q � , where X � Var, f � � � � � � , and q1 � q2 � q � q � � Q.

In the sequel, a term of the form t1 � t2 (resp. t1 � t2) will also be represented by � �
t1 � t2 � (resp.

� �
t1 � t2 �). Let t be a process term. A run of A on t is defined in a bottom-up manner as follows: first,

the automaton annotates the leaves according to the rules (b), then it continues the annotation of the
term t according to the rules (a) and (c): if the subterms t1 and t2 are annotated by the states q1 and
q2, respectively, and if the rule f

�
q1 � q2 � �

δ q is in δ then the term f
�
t1 � t2 � is annotated by q, where

f � � � � � � . A term t is accepted by a state q � Q if A reaches the root of t in q. Let Lq be the set of
terms accepted by q. The language accepted by the automaton A is L

�
A � � � �

Lq
 q � F � . A set of
process terms is regular if it is accepted by a process tree automaton.

Proposition 2. [CDG � 97] The class of regular process tree languages is closed under boolean op-
erations. Moreover, it can be decided in linear time whether the language accepted by a process tree
automaton is empty.

4.2 Process Composition vs. Computation Path Composition

In order to characterize the set of computation paths, we need to associate with the operators “ � ” and
“ � ” on processes corresponding operators on computation paths. The following lemma shows the link
between the sequential composition of processes and the concatenation of computation paths.

Lemma 2. For every s1 � s2 � t1 � t2 � T , and every w � Act � , s1 � s2 � Post � � w � �
t1 � t2 � iff � w1 � w2 � Act �

such that w � w1w2 and, s1 � Post � � w1 � �
t1 � , s2 � Post � � w2 � �

t2 � , and either s1 � 0, or w2 � ε.

Depending on which semantics we associate with the parallel operator, we must consider two
different operators on paths. For the “strong” semantics, we introduce an operator “

 ” defined induc-
tively as follows:

ε

 w � w

 ε � w

aw1

 āw2 � a
�
w1

 āw2 ��� ā

�
aw1

 w2 ��� τ

�
w1

 w2 �

aw1

 bw2 � a
�
w1

 bw2 ��� b

�
aw1

 w2 � if b

�� ā

The proof of the following lemma can be found in the appendix:

Lemma 3. For every s1 � s2 � t1 � t2 � T , and every w � Act � , s1 � s2 � Post �R � w � �
t1 � t2 � iff � w1 � w2 � Act �

such that w � w1

 w2, s1 � Post �R � w1 � �
t1 � , and s2 � Post � � w2 � �

t2 � .

In the case of the weak semantics (where � corresponds to pure interleaving without synchroniza-
tion), the associated operation is the shuffle operation ��� on words. The lemma above holds when
Post � is replaced by WPost � , and

 is replaced by ��� .

4.3 Fixpoint Characterization of
�
W � PathsR

�
T � T � � :

Let R be a SPA system, let T and T � be two regular sets of process terms, and let A � �
Q � Σ � F � δ �

and A � � �
Q � � Σ � F � � δ � � be two process tree automata such that L

�
A � � T and L

�
A � � � T � . We assume

w.l.o.g. that for every s � Q � , there is a state s
� � Q � such that Ls � � Ls �

�
t � T
 t � 0 0 � . (We consider

that s
� � is the same state as s

�
.) 1

Then, let us consider the problem of characterizing PathsR
�
T � T � � . The characterization of WPathsR

�
T � T � �

can be done exactly in the same manner, by replacing everywhere Post with WPost, and the operator

 with ��� .

We introduce slight extensions of the automata A and A � by adding states and rules corresponding
to the terms appearing in R. For that, let us consider the set QR � �

qt
 t is a subterm of a term appearing
in some rule of R � and let us define δR to be the set of rules:

– X � qX if qX � QR, for X � Var,
– � �

qt1 � qt2 � � qt if t � � �
t1 � t2 � and qt � QR,

– � �
qt1 � qt2 � � qt if t � � �

t1 � t2 � and qt � QR.

It is easy to see that, for every subterm t appearing in R, we have Lqt � �
t � . Now, let Q � Q � QR,

∆ � δ � δR, Q � � Q � � QR, and ∆ � � δ � � δR. Then, given two states q � Q and s � Q � , we define the
set of paths:

λ
�
q � s � � �

w � Act �
 Post �� � w � �
Lq ��� Ls

�� /0 � �
Clearly, the computation of the sets λ

�
q � s � allows to define the set PathsR

�
T � T � � since, due to Propo-

sition 1, this set is simply the union of all λ
�
q � s � such that q � F and s � F � .

A Set of Constraints: We give hereafter a set of constraints on sets of words (path languages) and
prove that these constraints define precisely the sets λ

�
q � s � . For that, we consider a set of variables

representing sets of words defined as follows: For every state q � Q and every state s � Q � , we consider
a variable V

�
q � s � . Then, we define the following set of constraints:

(β1) If Lq � Ls
�� /0, then

ε � V
�
q � s �

(β2) If q1
� q2 is a rule of ∆ and s1

� s2 is a rule of ∆ � , then

V
�
q1 � s1 �
 V

�
q2 � s2 �

(β3) If � �
q1 � q2 � � q is a rule of ∆ and � �

s1 � s2 � � s is a rule of ∆ � , then

V
�
q1 � s

�
1 � V �

q2 � s2 �
 V
�
q � s �

and, if Lq2 � Ls2

�� /0, then
V

�
q1 � s1 �
 V

�
q � s �

1 Such states can be obtained by taking a product of A
�

with an automaton which recognizes the set of terms�
0-equivalent to 0. The rule of this automaton are: 0 � q � , �
	 q ��� q ���� q � , and ��	 q ��� q ���� q � , where q �

is the only state of the automaton, considered as an accepting state. The state s
� corresponds to 	 s � q �� in the

product automaton.

(β4) If � �
q1 � q2 � � q is a rule of ∆ and � �

s1 � s2 � � s is a rule of ∆ � , then

V
�
q1 � s1 �

V �

q2 � s2 �
 V
�
q � s �

(β5) If X
a� � t � R, then

V
�
q � qX � aV

�
qt � s �
 V

�
q � s �

Let us explain the meaning of the constraints above. Remember that the variables V
�
q � s � are meant

to represent the sets λ
�
q � s � . The rule (β1) says that if there is a term which belongs to both the source

set Lq and the target set Ls, then the empty sequence ε must be in the set of paths λ
�
q � s � . The rules

(β2) express the fact that if Lq1
 Lq2 and Ls1
 Ls2 , then λ
�
q1 � s1 �
 λ

�
q2 � s2 � . The rule (β3) says that:

(1) for every u1 � Ls1 such that u1 is equivalent to 0 (accepted at s
�
1), and which is reachable from

some v1 � Lq1 by some computation path w1, and for every u2 � Ls2 which is reachable from some
v2 � Lq2 by some computation path w2, the term � �

u1 � u2 � (accepted at s due to the rule � �
s1 � s2 � � s) is

reachable from the term � �
v1 � v2 � (accepted at q due to the rule � �

q1 � q2 � � q) by the computation path
w1w2. Moreover, (2) for every u1 � Ls1 which is not equivalent to 0, and which is reachable from some
v1 � Lq1 by some computation path w, and for every term u2 which belongs to both Lq2 and Ls2 , the
term � �

u1 � u2 � (accepted at s) is reachable from the term � �
v1 � u2 � (accepted at q) by the computation

path w. (This corresponds to the case where no rewriting step can be performed at the right of the
“ � ” operator since its left operand is not reduced to the terminated process). The rule (β4) is similar
to (β3), but concerns parallel terms. It is simpler because parallel composition is commutative, and
hence, rewriting steps can be performed on both sides of the “ � ” operator. Finally, the rule (β5) says
that, if the constant X is reachable from some term v in Lq by some path w1 (i.e., w1 � λ

�
q � qX �), and

if there is a path w2 from the term t to some term u � Ls (i.e., w2 � λ
�
qt � s �), then u is reachable by the

path w1aw2 from v.

Correctness: We show that (i) the least solution of the previous set of constraints exists, and (ii) that
this solution corresponds precisely to the definition of the sets λ

�
q � s � .

Proposition 3. The least solution of the set of constraints
�
β1 � –

�
β5 � exists.

Indeed, let x1 ������� � xm be an arbitrary numbering of the variables V
�
q � s � for q � Q and s � Q � . Then,

the system
�
β1 � –

�
β5 � is a set of inclusion constraints of the form

fi
�
x1 ������� � xm �
 xi � 1 � i � m (4)

where the fi
�
x1 ������� � xm � ’s are functions built up from the variables xi’s, and the operators of word

concatenation,

 , and � . (Observe that two different inclusions of the form e1
 xi and e2
 xi can be
replaced by the inclusion e1 � e2
 xi.)

Let then X � �
x1 ������� � xm � , and F be the function

F
�
X � ��� f1

�
x1 ������� � xm � ������� � fm

�
x1 ������� � xm �����

The least solution of (4) is the least pre-fixpoint of F . Let L be the complete lattice of languages over
Act, i.e., L � �

2Act � �
 � � � � � /0 � Act � � . It can be shown that the operators � and

 are � -continuous. It
follows that F is monotonic and � -continuous. Therefore, by Tarski’s theorem, the least pre-fixpoint
of F exists and is equal to its least fixpoint, and by Kleene’s theorem this fixpoint is equal to:�

i � 0

F i �
/0 ������� � /0 � � (5)

Let � L �
q � s ��� q � Q � s � Q 	 be the least solution of the system

�
β1 � –

�
β5 � . The proof of this theorem is

in the appendix:

Theorem 2. For every q � Q and every s � Q � , we have L
�
q � s � � λ

�
q � s � .

5 Abstracting Path Languages

The iterative computation (5) of the least solution of the system (4) does not terminate in general
(since the reachability problem is undecidable for SPAs). As explained before, instead of computing
the exact languages λ

�
q � s � , our approach consists in computing abstractions of them. To describe

these abstractions, we define a formal framework based on abstract interpretation [CC77].

5.1 A Generic Framework

Let L be the complete lattice of languages over Act, i.e., L � �
2Act � �
 � � � � � /0 � Act � � . Formally, an

abstraction requires an abstract lattice D � �
D ��� � � ��� ��� ��� � , where D is some abstract domain, and

a Galois connection
�
α � γ � between L and D, i.e., a pair of mappings α : 2Act � � D and γ : D � 2Act �

such that �
x � 2Act � � � y � D � α �

x ��� y � � x
 γ
�
y � �

In our framework, � is associative, commutative, and idempotent. We assume also that this oper-
ator can be extended to countably infinite sets (i.e., countably infinite joins are also elements of D).
Moreover, we consider two abstract operations 	 and
 , and one element 1̄ such that: 	 is associative
and commutative,
 is associative, 1̄ is the neutral element of
 , and
 and 	 are � -continuous.
Notice, that the requirements above imply that

�
D � � �
 ��� � 1̄ � is an idempotent closed semiring.

Intuitively, the abstract operations � ,
 , and 	 of D correspond to union, concatenation, and
word parallel composition (

 or ��� , depending on the adopted semantics) in the lattice L . � and
1̄ are the abstract objects corresponding to the empty language and to

�
ε � , respectively. Moreover,

the top element � � D and the meet operation � correspond in the lattice L to Act � and to language
intersection, respectively.

We consider abstractions where the domain D is generated by � , 1̄ and an element va for each
a � Act. We always take vτ � 1̄. Intuitively, the element va corresponds to the language

�
a � if a

�� τ.
To define a Galois connection between the concrete and the abstract domains, we consider a map-

ping α that satisfies the following: α
�
ε � � 1̄, and for every word languages L1 � L2, we have: α

�
L1 �

L2 � � α
�
L1 �
 α

�
L2 � , α

�
L1 � L2 � � α

�
L1 � � α

�
L2 � , and α

�
L1

 L2 � � α

�
L1 � 	 α

�
L2 � (or α

�
L1 ��� L2 � �

α
�
L1 � 	 α

�
L2 � if we are in the weak semantics case). It follows that

α
�
L � � �

a1 � � � an � L

va1
 �����
 van �

Furthermore, we define the concretization function γ by

γ
�
x � � �

a1 ����� an � 2Act �
 va1
 �����
 van � x � �
It can be checked that

�
α � γ � is indeed a Galois connection between L and D.

The fact that α
�
/0 � � � and γ

� � � � /0, implies that

�
L1 � L2 � α �

L1 ��� α
�
L2 � � � � L1 � L2 � /0 �

This property is necessary for our approach: To solve the problems (2) and (3) we are interested in, it
suffices to check, respectively, whether

α � PathsR
�
T � T � � � � α � �

Async � �
τ � � � � ?� � (6)

or
α � WPathsR

�
T � T � � � � α � �

Async � ∑
a � Sync

a ā �� � ?� � (7)

where α � PathsR
�
T � T � � � (resp. α � WPathsR

�
T � T � � �) is the least solution of the abstract system of

constraints:
f α
i

�
x1 ������� � xm � � xi � 1 � i � m � (8)

obtained from the “concrete” system
�
β1 � –

�
β5 � , where f α

i

�
x1 ������� � xm � is an expression obtained by

substituting in fi
�
x1 ������� � xm � of (4) word concatenation with
 , the operator

 (resp. ���) with 	 , and

the operator � with � .

5.2 Computing the abstractions

To be able to solve the system (8), we consider two types of abstractions. We give in the appendix
instances of these types of abstractions, and show how they can be used in the analysis of a practical
example.

Finite-chain abstractions: A Finite-chain abstraction is an abstraction such that the semilattice�
D � � � has no infinite ascending chains. Particular cases of such abstractions are finite abstractions

where the abstract domain D is finite. In this case, the iterative computation of the least fixpoint of the
system (8)always terminates.

Finite abstractions can be used for both strong and weak semantics of parallel composition to
compute upper approximations of the sets PathsR

�
T � T � � or WPathsR

�
T � T � � .

Commutative Kleene algebraic abstractions: We introduce now a particular class of abstractions
which can be used in the weak semantics case, i.e., in order to abstract the set WPathsR

�
T � T � � .

We consider abstractions defined as above, but satisfying (i)
 � 	 , and (ii)
 is commutative.
Intuitively, this means that both sequential word composition and the ��� operator are abstracted by

(see remark below).

In this case, the structure
�
D � � �
 ��� � 1̄ � is a commutative idempotent closed semiring. As usual,

we define a0 � 1̄, an � 1 � a
 an, and a
� � �

n � 0 an. Adding the � -operation transforms the structure
above into a commutative Kleene algebra K � �

D � � �
 � � ��� � 1̄ � . Then, the system (8) can be solved
using the algorithm of Hopkins and Kozen [HK99] for solving systems of polynomial constraints in
commutative Kleene algebras (see also [BET03]).

Remark 2. Notice that to be able to use the framework of commutative Kleene algebras, we need
to consider that
 , i.e., the abstract sequential composition, is commutative. It can be seen that if
sequential composition is considered as commutative, it coincides precisely with the shuffle operator
��� . However, in Kleene algebras we cannot have an additional operator 	 in addition to
 . So, the
only case we can deal with is when this operator of parallel composition concides with
 , which
means that it should represent ��� . This is the reason why this approach based on commutative Kleene
algebras can only be applied in the case of the weak semantics.

6 Conclusion

We have presented a generic approach for the static analysis of concurrent programs with (unbounded)
dynamic creation of threads and recursive procedure calls. We use a formal model for such systems
called SPA where program configurations are defined as process terms in an adequate process algebra,
and program actions are modeled by means of term rewrite rules. Then, our methodology allows to
compute effectively abstractions of the set of computation paths of a program as the least solution of
a system of constraints.

An interesting issue we plan to investigate in the future is the extension of our approach (based on
a combination of automata-theoretic techniques and path language abstractions) to models with dif-
ferent/richer communication policies such as communication through shared variables and broadcast
communication.

References

[BCR01] T. Ball, S. Chaki, and S. K. Rajamani. Parameterized verification of multithreaded software libraries.
In TACAS’01. LNCS 2031, 2001.

[BEH95] A. Bouajjani, R. Echahed, and P. Habermehl. On the Verification Problem of Nonregular Properties
for Nonregular Processes. In LICS’95. IEEE, 1995.

[BEM97] A. Bouajjani, J. Esparza, and O. Maler. Reachability Analysis of Pushdown Automata: Application
to Model Checking. In CONCUR’97. LNCS 1243, 1997.

[BET03] A. Bouajjani, J. Esparza, and T. Touili. A generic approach to the static analysis of concurrent pro-
grams with procedures. In POPL’03. ACM, 2003.

[BT03] Ahmed Bouajjani and Tayssir Touili. Reachability Analysis of Process Rewrite Systems. In
FSTTCS’03. LNCS, 2003.

[BW90] J.C.M. Baeten and W.P. Weijland. Process algebra. In Cambridge Tracts in Theoretical Computer
Science, volume 18, 1990.

[CC77] P. Cousot and R. Cousot. Static Determination of Dynamic Properties of Recursive Procedures. In
IFIP Conf. on Formal Description of Programming Concepts, 1977.

[CDG � 97] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and M. Tommasi. Tree
automata techniques and applications. Available on: http://www.grappa.univ-lille3.fr/tata, 1997.

[CLR90] Th. Cormen, Ch. Leiserson, and R. Rivest. Introduction to Algorithms. MIT Press, 1990.
[DBR02] G. Delzanno, L. Van Begin, and J.-F. Raskin. Toward the automated verification of multithreaded java

programs. In TACAS’02. LNCS, 2002.
[DS91] E. Duesterwald and M.L. Soffa. Concurrency analysis in the presence of of procedures using a data-

flow framework. In Proc. of the Symposium on Testing, Analysis, and Verification, Victoria, Canada,
pages 36–48. ACM Press, 1991.

[EHRS00] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithm for model checking
pushdown systems. In CAV’00, volume 1885 of LNCS, 2000.

[EK99] J. Esparza and J. Knoop. An automata-theoretic approach to interprocedural data-flow analysis. In
Wolfgang Thomas, editor, FoSSaCS’99, LNCS. Springer, 1999.

[EP00] J. Esparza and A. Podelski. Efficient algorithms for pre* and post* on interprocedural parallel flow
graphs. In POPL’00, pages 1–11. ACM Press, 2000.

[FQ03] Cormac Flanagan and Shaz Qadeer. Assume-Guarantee Model Checking. Technical report, Microsoft
Research, January 2003.

[FRSB02] A. Finkel, J.-F. Raskin, M. Samuelides, and L. Van Begin. Monotonic extensions of petri nets: For-
ward and backward search revisited. In INFINITY’2002, 2002.

[FWW97] A. Finkel, B. Willems, and P. Wolper. A Direct Symbolic Approach to Model Checking Pushdown
Systems. ENTCS, 9, 1997.

[HK99] M.W. Hopkins and D.C. Kozen. Parikh’s Theorem in Commutative Kleene Algebra. In Proc. IEEE
Conf. Logic in Computer Science (LICS’99). IEEE, 1999.

[LS02] D. Lugiez and P. Schnoebelen. The Regular Viewpoint on PA-processes. In TCS, volume 274(1-2),
2002.

[MO02] Markus Müller-Olm. Variations on Constants. Habilitation Thesis. University of Dortmund, 2002.
[QRR04] S. Qadeer, S.K. Rajamani, and J. Rehof. Procedure Summaries for Model Checking Multithreaded

Software. In POPL’04, 2004.
[Ram00] G. Ramalingam. Context-sensitive synchronization-sensitive analysis is undecidable. ACM TOPLAS,

22:416–430, 2000.
[Rin01] M. Rinard. Analysis of multithreaded programs. In Patrick Cousot, editor, SAS’01, volume 2126 of

LNCS, 2001.
[SS00] H. Seidl and B. Steffen. Constraint-based inter-procedural analysis of parallel programs. Nordic

Journal of Computing, 7(4):375–400, 2000.

A Instances of our Abstraction Framework

Finite-chain abstractions: We give hereafter examples of finite-chain abstractions. We illustrate on
one of these abstractions the fact that they can be defined as instances of our generic framework. The
expression of the two others in the framework is not difficult.

Forbidden and required sets: The abstract object is a pair � F � R � , where F � R
 Lab. F , the forbidden
set, contains the labels a that do not occur in any sequence of PathsR

�
T � T � � . R, the required set,

contains the labels a that appear in all sequences of PathsR
�
T � T � � . � F � R � represents the language of all

sequences containing no occurrence of letters in F and at least one occurrence of each letter in R.
This abstraction is defined in our framework as follows:

– D � � � � � � � F � R � � 2Lab � 2Lab
 F � R � /0 � , i.e., the set of all pairs of sets of actions generated
by the elements va for each a � Lab, where va

�
a � � � Lab �

a � � � a � � , augmented with a special
element � ,

– � F1 � R1 � � � F2 � R2 � iff F1
�

F2 and R1
�

R2,
– � F1 � R1 � ��� F2 � R2 � � � F1 � F2 � R1 � R2 � ,
– � F1 � R1 �
 � F2 � R2 � � � F1 � F2 � R1 � R2 � ,
– � F1 � R1 � 	 � F2 � R2 � �

� F1 � F2 � � �
R1 � R2 ��� Async � � �

a � R1
 ā � F2 � � �
a � R2
 ā � F1 � �

– 1 � � Lab � /0 � .
The abstract lattice is obtained by taking � � � /0 � /0 � , and defining � by:

– � F1 � R1 � � � F2 � R2 � � � F1 � F2 � R1 � R2 � if
�
F1 � R2 � � �

F2 � R1 � � /0,
– � F1 � R1 � � � F2 � R2 � � � otherwise,
– � � x � x � � � � .

Label bitvectors: The abstract object is now a set S of bitvectors Lab ��� . A bitvector b belongs to
S if there is a sequence in PathsR

�
T � T � � such that b

�
a � � 1 if a occurs in the sequence and b

�
a � � 0

otherwise.

First occurrence ordering: This is the most precise finite-chain abstraction we consider here. The
abstract object is a set S of words w such that for every a � Lab,
w
 a � 1 (
 w
 a denotes the number of
occurrences of the letter a in w). A word w � a1 ����� an belongs to S if there is a path in PathsR

�
T � T � �

such that the set of letters occurring in this path is precisely
�
a1 ������� � an � , and moreover, the first

occurrences of these letters in the path occur in the ordering defined by w (i.e., for every i � j, ai

occurs for the first time before the first occurrence of aj).

Remark 3. Finer abstractions can be obtained by considering the k first occurrences, for a fixed natural
number k.

Commutative abstractions: Examples of commutative abstractions are the forbidden/required sets
and the label bitvector sets abstractions defined above.

An interesting (more precise) abstraction in this class is the Parikh image abstraction. Intuitively,
in this abstraction a path is abstracted to its Parikh image, a vector that counts for each letter the
number of times it occurs in the word. Formally, abstract elements are semilinear sets of integer
vectors in � Lab ��� � . We recall that semilinear sets are finite unions of sets of the form

�
u � k1v1 �

����� knvn
 k1 ����� kn � � � , where u � v1 ������� � vn � � Lab ��� � (u is the basis, and the vi’s are the periods).
It is easy to define this abstraction in our framework (see [BET03]).

Remark 4. Notice that none of the classes of finite-chain and commutative abstractions is included in
the other. Indeed, the first-occurrence abstraction is not commutative whereas the Parikh image ab-
straction is not finite-chain. We can now explain why we have introduced two different formulations
of the reachability problem, namely the expressions (2) and (3). Formulation (2) does not lead to a
generic procedure for computing arbitrary commutative abstractions: the reason is that the

 operator
corresponding to the Paths semantics does not lead to a commutative Kleene algebra, and the algo-
rithms of [HK99] only work for commutative Kleene algebras. On the other hand, formulation (3)
does allow to consider arbitrary commutative abstractions, like the Parikh images, however only for
well-formed SPA systems.

B Example: Parallel minimum computation

B.1 The application and its SPA model

We describe an SPA model of a system that accepts a stream of inputs x1 ����� xn (in some data domain),
and returns Minn

i � 1 f
�
xi � , where f is some function (defined for all values in the domain of inputs),

and Min computes the minimum value w.r.t. a total ordering on the data domain of inputs. The system
computes the Min value of the input stream in parallel. It dynamically generates threads for this
parallel computation.

Initially, the system consists of an input-output interface IO, an input stack to store the inputs,
a result stack to store intermediate results, and a process, the distributor, that distributes inputs and
results to new processes. Here by a stack we mean a recursive procedure which accepts a value and
calls itself, or delivers the value and terminates. The parallel composition of these processes is defined
by the process term:

IO � Dist � Input stack � Result stack

The input and result stacks have very similar behaviours:

Input stack i1?x����� � I � x � � Input stack

I � x � i1?y����� � I � y � � I � x �
I � x � i2!x����� � 0

Result stack r1?x����� � R � x � � Result stack

R � x � r1?y����� � R � y � � R � x �
R � x � r2!x����� � 0

Here, we think of an expression I � x � as a process constant. Since an SPA system must have finitely
many constants, we are restricting ourselves to finitely many different inputs. Notice, however, that
this is not a problem once one assumes that f and Min are computed correctly: under this assumption,
it is easy to see that if the system works correctly for all streams with two different inputs 0 and 1,
then it works correctly for all streams of inputs. The justification of this fact is based on the so-called
0-1-principle for sorting networks (see e.g., [CLR90]).

The distributor creates for each input x a new process Comp f that computes f
�
x � . Since for n

inputs, n � 1 Min operations are required, the distributor also creates a Comp Min process for each
input, but starting from the second one.

Dist i2?x����� � Dist1 � Comp f � x �
Dist1

i2?x����� � Dist1 � Comp f � x � � Comp Min

The Comp f � x � process just returns f
�
x � :

Comp f � x � r1! f
�
x ���������� � 0

The Comp Min processes get their two inputs x � y from the result stack, and return Min
�
x � y � .

Before computing, they send a report signal to indicate that they have already received their two
inputs. The purpose of this will be clear in a moment.

Comp Min r2?x����� � Comp Min � x �
Comp Min � x � r2?y����� � Comp Min � x � y �

Comp Min � x � y � report!� ����� � Comp Min1 � x � y �
Comp Min1 � x � y � r1!Min

�
x � y �� ����������� � 0

The IO process is in charge of sending inputs to the input stack, and collecting the final result from
the result stack. However, how does it know that the result has been computed? For this, it counts the
number of inputs minus the number of Min operations that the system has already initiated. When the
number of inputs exceeds the number of operations by one, it knows that only the final result is in the
result stack, and it picks it up. Let us give the rules defining this process. The first two rules just read
the first input and put it in the input stack

IO in x� ��� � IO � x �
IO � x � i1!x����� � IO1

The next two rules do the same, but the process now also creates a Get Result process at the
bottom of the stack.

IO1
in x� ��� � IO1 � x �

IO1 � x � i1!x����� � IO2 � Get Result

The next two rules add one IO2 process to the stack for each new input, and remove one for each
Min computation:

IO2
in x� ��� � IO2 � x �

IO2 � x � i1!x����� � IO2 � IO2

IO2
report?� ����� � 0

Finally, the Get Result process just gets a value from the output stack, sends it, and terminates.

Get Result r2?x����� � Output Result � x �
Output Result � x � out x� ��� � Terminated

Now, the behavior of the system is defined by the set of computation paths starting from the
restricted process term:

�
IO � Dist � Input stack � Result stack � Sync

where Sync is the set of all synchronization actions appearing in the rules above. It can be checked
that the SPA system defined above is well formed.

B.2 Analysis of the example

We now show how our analysis technique can be applied to derive some useful information about the
system described above. For this, we take T as the singleton set containing the SPA term IO � Dist �
Input stack � Result stack. Notice that we have Async � �

in 0 � in 1 � out 0 � out 1 � .

Correctness: First of all, we wish to know if the system computes the right output. For that, we
take for T � the set of all terms containing Terminated, and we use the label bitvector abstraction:
We consider that a wrong output corresponds to a bitvector indicating that in 0 is present in the path
(meaning that at least one of the inputs was 0) and that out 1 is also present in the same path (meaning
that the computed minimum value is 1). It is not difficult to show that for this abstaction the question
(6) has a positive answer.

Deadlock freeness: We would also like to check that the system cannot have the following kind of
deadlock: the input and result stacks are empty, all the Comp f processes have terminated, and there
is at least one Comp Min � x � around, which has no possibility to terminate. For this, we consider all
the processes exhibiting this situation. This is the regular set of process terms T � given by:

�
IO2 � Get Result � Get Result � � Input stack � Result stack � Dist1

� � Comp Min � x � � �
(We abuse notation here by giving a “regular expression”-like description of this set of terms. The
interpretation, however, should be straightforward.)

We use now the Parikh image abstraction: the paths leading to T � must perform some extra non
synchronizing transitions i2?x creating more Comp Min processes than necessary. These paths are
discarded by taking the intersection with the Parikh image of

�
Async � ∑a � Sync a ā �� , as indicated in

(7), which is precisely the set of all paths with the same number of a and ā for each synchronization
action.

It can be seen that to check the deadlock property, we really need to count, and all the other
abstractions described above are too imprecise.

Remark 5. These two examples show the relevance of (1) having a generic framework where different
kinds of abstractions can be defined and computed, and of (2) having a general procedure for reach-
ability analysis allowing to define the source and target sets of configurations. Indeed, to deal with
the two properties above, we consider different abstractions as well as two different regular sets T � of
target configurations.

C Proof of Theorem 1

Theorem 1. The reachability problem of SPAs is undecidable.

Proof:
We encode the halting problem of a two-counter machine. The reduction is similar to the one

presented in [BEH95] used to prove the undecidability of Model checking LTL for PA systems.
Let M be a two-counter machine with m instructions. Let

– Var � �
X � Y � X1

1 � X1
2 � X2

1 � X2
2 � � �

Xc
i
 1 � i � m � ,

– Sync � �
i1 � i2 � ī1 � ī2 � d1 � d2 � d̄1 � d̄2 � z1 � z2 � z̄1 � z̄2 � ,

– Async � �
halt � a � .

Let R be the SPA having the following rules, where j � �
1 � 2 � and k � �

1 ������� � m � :

1. X
a� � X1

1

X2
1

Xc

1 ,

2. X j
1

z j� � X j
1 ,

3. X j
1

i j� � X j
2 � X j

1 ,

4. X j
2

i j� � X j
2 � X j

2 ,

5. X j
2

d j� � 0,

6. X c
k

ī j� � Xc
h , if

�
sk : c j : � c j � 1; goto sh � is an instruction,

7. X c
k

z̄j� � Xc
h1

and X c
k

d̄ j� � Xc
h2

if the following instruction exists:

�
sk : if c j � 0 then go to sh1 else c j : � c j

� 1; goto sh2 �

8. Xm
halt� � Y .

Intuitively, the process variable X j
1 represents the value 0 of the counter j, and the term X j

2 ����� X j
2 �

X j
1 with n X j

2 ’s represents the value n of the counter j. The second rules simulate the test of equality
of the counter c j to 0, the third and the fourth rules to the incrementation of c j, whereas the fifth rules
simulate the decrementation of c j. The three last rules simulate the finite control of the machine. The
last rule simulates the halt of the machine. The actions i j and ī j represent the incrementation of c j.
The synchronization between these two co-actions imposes that the counters can be incremented only
if the controller allows it. The same intuition holds for the other actions where d j and d̄ j represent the
decrementation of c j, and z j and z̄j the test to zero of c j.

Then it is clear that M halts iff

Post � �
X Sync ��� L Sync

�� /0 �
where L is the set of terms of the form t1

 t2
	
Y , where t j is a term of the form X j

2 ����� X j
2 � X j

1 that
represents the value of the counter j.

�

D Proof of Lemma 3

Lemma 3.
For every s1 � s2 � t1 � t2 � T , and every w � Act � , s1 � s2 � Post � � w � �

t1 � t2 � iff � w1 � w2 � Act � such that
w � w1

w2 and, s1 � Post � � w1 � �

t1 � , and s2 � Post � � w2 � �
t2 � .

Proof: Let us consider the direction � first. Let u1 � u2 � v1 � v2 � T , and w � Act � s.t.

	
 �
u1 � u2 � � Post �� � w � �

 �

v1 � v2 � � �
We proceed by induction on
 w
 :

–
 w
�� 0. Then w � ε, and the property holds with w1 � w2 � ε � u1 � v1 � and u2 � v2.
–
 w
�� 0, i.e., w � bw � for b � Act. Let then u �1 � u �2 � T s.t.

 �

u �1 � u �2 � � Post �� � b � �

 �
v1 � v2 � � , and

	
 �
u1 � u2 � � Post �� � w ��� �

 �

u �1 � u �2 � � . It follows by induction that it exist two sequences w �1 and w �2 s.t.
w � � w �1

w �2, u1 � Post �� � w �1 �

�
u �1 � , and u2 � Post �� � w �2 �

�
u �2 � . There are two cases depending on the

nature of b:
1. b

�� τ. Let then v1 � u �1 and v2
b� � u �2, let v2 � u �2 and v1

b� � u �1. The two cases are symmetri-
cal. Suppose for example the first case. Let then w1 � w �1 and w2 � bw �2. It is easy to see that
w � w1

 w2, u1 � Post �� � w1 � �

v1 � , and u2 � Post �� � w2 � �
v2 � .

2. b � τ. Let then a � Sync s.t. v1
a� � u �1 and v2

ā� � u �2. Consider w1 � aw �1 and w2 � āw�2. It is
easy to see that w � w1

 w2, u1 � Post �� � w1 � �

v1 � , and u2 � Post �� � w2 � �
v2 � .

We show now the other direction. Let then w � w1 � w2 � Act � and u1 � u2 � v1 � v2 � T s.t. w � w1

 w2,
u1 � Post �� � w1 � �

v1 � , and u2 � Post �� � w2 � �
v2 � . We show by induction on
 w1
 �
 w2
 that
	
 �

u1 � u2 � �
Post �� � w � �
	
 �

v1 � v2 � � :

–
 w1
 �
 w2
�� 0. Then w � w1 � w2 � ε, and the property holds.
–
 w1
 �
 w2
 � 0. Let w � w1

 w2, we will show that

 �
u1 � u2 � � Post �� �w � �
	
 �

v1 � v2 � �
Let then w �1, w �2, b, and b � s.t. w1 � bw �1 and w2 � b � w �2. The case where w1 � ε (or w2 � ε)

is direct since in this case w1

 w2 � w2 (w1

w2 � w1). Let u �1 and u �2 s.t. v1
b� � u �1, v2

b 	� � u �2,
u1 � Post �� �w �1 �

�
u �1 � , and u2 � Post �� �w �2 �

�
u �2 � . There are two cases depending on the natures of b

and b � :
1. b � �� b̄. In this case we have w1

 w2 � b

�
w �1

 w2 ��� b � �

w1

 w �2 � . Let then w ��� w �1

 w2 s.t. w �
bw � (the case where w � b � w � for a w � in w1

w �2 is symmetrical). Since u1 � Post �� � w �1 �

�
u �1 � ,

u2 � Post �� �w2 � �
u2 � , and
 w �1
 �
 w2
 �
w1
 �
 w2
 , we obtain by induction that

 �

u1 � u2 � �
Post �� � w ��� �

 �

u �1 � v2 � � , which infers that

 �
u1 � u2 � � Post �� � w � �
	
 �

v1 � v2 � � .
2. b � � b̄. In this case, we have w1

 w2 � b

�
w �1

 w2 � � b̄

�
w1

 w �2 � � τ

�
w �1

 w �2 � Let then w � �

w �1

 w �2 s.t. w � τw � (the other cases are handled as previously). By induction, it follows that

 �
u1 � u2 � � Post �� � w � � �
	
 �

u �1 � u �2 � �
Therefore, we obtain that

 �

u1 � u2 � � Post �� � w � �

 �
v1 � v2 � � by applying the rules θ5 since

v1
b� � u �1 and v2

b̄� � u �2.

�

E Proof of Theorem 2

Theorem 2.
For every q � Q and every s � Q � , we have L

�
q � s � � λ

�
q � s � .

Proof: We show that for every q � Q and every s � Q � ,
Post �� � w � �

Lq ��� Ls
�� /0 � w � L

�
q � s � �

We start with the implication � . Let q � Q , s � Q � , w � Act � , and u � Post �� �w � �
Lq ��� Ls. Let then

v � Lq s.t. u � Post �� � w � �
v � . We proceed by induction on
 w
 .

–
 w
�� 0, then w � ε, and u � Lq � Ls, which means that ε � L
�
q � s � (from (β1)).

–
 w
 � 0. There are two cases:

1. The root of v has been rewritten. Let then X
a� � t � R, w1 � w2 � Act � s.t.

X � Post �� � w1 � �
v � � u � Post �� � w2 � �

t � �
and w � w1aw2. Since
 w1
 �
 w
 and
 w2
 �
 w
 , the induction hypothesis implies that w1 �
L

�
q � qX � , and w2 � L

�
qt � s � . Therefore, we obtain from

�
β5 � that

w � w1 � a � w2 � L
�
q � qX � � a � L �

qt � s �
 L
�
q � s �

2. The root of v was not rewritten. We proceed by structural induction on u:
� v � � �

v1 � v2 � and u � � �
u1 � u2 � s.t. v1 � Lq1 , v2 � Lq2 , u1 � Ls1 , u2 � Ls2 , where � �

q1 � q2 � � q
is a rule of ∆ and � �

s1 � s2 � � s is a rule of ∆ � s.t.:

� u1 is equivalent to 0, i.e., u1 � Ls �1 . Let then w1, w2 s.t. w � w1 � w2, u1 � Post �� � w1 � �
v1 � ,

and u2 � Post � � w2 � �
v2 � . By structural induction, we have w1 � L

�
q1 � s

�
1 � and w2 �

L
�
q2 � s2 � . We obtain then by

�
β3 � that

w � w1 � w2 � L
�
q1 � s

�
1 � � L �

q2 � s2 �
 L
�
q � s � �

� u1 is not equivalent to 0, in this case u2 � v2 � Ls2 � Lq2 and u1 � Post �� � w � �
v1 � . By

structural induction, we obtain w � L
�
q1 � s1 � , and by

�
β3 � , we obtain that

w � L
�
q1 � s1 �
 L

�
q � s � �

� v �

 �
v1 � v2 � and u �

 �

u1 � u2 � . Lemma 3 infers that there exists w1 � w2 s.t. w � w1

 w2,
u1 � Post �� �w1 � �

v1 � , and u2 � Post �� � w2 � �
v2 � . Let q1 � q2 � Q s.t.

 �

q1 � q2 � � q is a rule
of ∆, v1 � Lq1 , and v2 � Lq2 . Moreover, let s1 � s2 � Q � s.t.

 �

s1 � s2 � � s is a rule of ∆ �
s.t. u1 � Ls1 and u2 � Ls2 . Then, by structural induction we infer that w1 � L

�
q1 � s1 � and

w2 � L
�
q2 � s2 � , and thanks to

�
β4 � , it follows that

w � w1

 w2
 L
�
q1 � s1 �

 L �

q2 � s2 �
 L
�
q � s � �

Consider the other direction. Let w � L
�
q � s � , we show that Post �� � w � �

Lq ��� Ls
�� /0. Since the la-

bels L
�
q � s � are built using a saturation procedure, we consider the seqences � Li

�
q � s � � 0 � i � n where

L0
�
q � s � � /0, Ln

�
q � s � � L

�
q � s � , and Li

�
q � s � is the label obtained after the ith iteration. We prove by

induction on i that if w � Li
�
q � s � , then Post �� � w � �

Lq � � Ls
�� /0. The case where i � 0 is direct. The

same for the case where i � 1, since in this case, it’s the rule β1 which is applied. Let then i � 1. Let
w � Li

�
q � s � , then :

– Either there exists
�
q � � s � � s.t. w � Li � 1

�
q � � s � � , and Li � 1

�
q � � s � �
 Li

�
q � s � (rules β2). In this case, we

have necessarily q � � q � ∆ and s � � s � ∆ � , and hence Lq 	
 Lq, and Ls 	
 Ls. By induction, we
have

Post �� � w � �
Lq 	 ��� Ls 	 �� /0 �

It follows that Post �� � w � �
Lq ��� Ls

�� /0 since Lq 	
 Lq and Ls 	
 Ls.
– Either there exist w1 � w2 s.t. w � w1w2, and there exist q1 � s1 � q2 � s2 s.t. � �

q1 � q2 � � q � ∆, � �
s1 � s2 � �

s � ∆ � , w1 � Li � 1
�
q1 � s

�
1 � , w2 � Li � 1

�
q2 � s2 � , w � Li

�
q � s � (rules β3). By induction, we obtain that

Post �� � w1 � �
Lq1 ��� Ls �1

�� /0

and
Post �� � w2 � �

Lq2 ��� Ls2

�� /0 �
Let then u1 and u2 s.t.

u1 � Post �� � w1 � �
Lq1 ��� Ls �1

and
u2 � Post �� �w2 � �

Lq2 ��� Ls2 �
It is then clear that (since u1 � 0 0)

� �
u1 � u2 � � Post �� � w � �

Lq ��� Ls

– Either there exist q1 � s1 � q2 � s2 s.t. � �
q1 � q2 � � q � ∆, � �

s1 � s2 � � s � ∆ � , w � Li � 1
�
q1 � s1 � , and Lq2 �

Ls2

�� /0 (rules β3). Let then u2 � Lq2 � Ls2 . Since w � Li � 1
�
q1 � s1 � , it follows by induction that

there exists u1 � Post �� � w � �
Lq1 ��� Ls1 . It is then clear that

� �
u1 � u2 � � Post �� � w � �

Lq ��� Ls �

– Either there exist w1 � w2 s.t. w � w1

 w2, and there exist q1 � s1 � q2 � s2 s.t.
	
 �
q1 � q2 � � q � ∆,

	
 �
s1 � s2 � � s � ∆ � , w1 � Li � 1

�
q1 � s1 � , and w2 � Li � 1

�
q2 � s2 � (rules β4). By induction, we obtain

that
Post �� � w1 � �

Lq1 ��� Ls1

�� /0

and
Post �� � w2 � �

Lq2 ��� Ls2

�� /0 �
Let then u1 and u2 s.t. u1 � Post �� � w1 � �

Lq1 ��� Ls1 and u2 � Post �� �w2 � �
Lq2 ��� Ls2 � We obtain from

Lemma 3 that

 �

u1 � u2 � � Post �� � w � �
Lq ��� Ls

– Either there exist a rule X
a� � t � R, w1 � w2 s.t. w � w1aw2, w1 � Li � 1

�
q � qX � , w2 � Li � 1

�
qt � s �

(rules β5). By induction, we obtain that

X � Post �� � w1 � �
Lq �

and there exists u � Ls s.t.
u � Post �� �w2 � �

t � �
It is then clear that

u � Post �� � w1aw2 � �
Lq � �

�

