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1. Introduction

We present FPsolvea, a solver for algebraic systems of equations first introduced

in [23]. These are systems of equations of the form

X1 = f1(X1, X2, . . . , Xn) · · · Xn = fn(X1, X2, . . . , Xn)

where f1, . . . , fn are polynomials in the variables X1, X2, . . . , Xn. The coefficients

of the polynomials can be elements of any semiring satisfying some weak conditions,

which ensure that there exists a unique smallest solution. FPsolve implements a

number of generic algorithms, i.e. algorithms parametric in the semiring operations

of addition and multiplication, plus possibly the Kleene star operation.

Algebraic systems naturally arise in various settings:

• The language of a context-free grammar like X → aXX | b is the least

solution of the equation X = aXX+b over the semiring whose elements are

languages, with union and concatenation of languages as sum and product.

∗This work was funded by the DFG project “Polynomial Systems on Semirings: Foundations,

Algorithms, Applications”
aFreely available from https://github.com/mschlund/FPsolve.

1

https://github.com/mschlund/FPsolve


Wednesday 14th January, 2015 17:22 WSPC/INSTRUCTION FILE main

2 Javier Esparza, Michael Luttenberger, and Maximilian Schlund

• Shortest-paths problems on finite graphs and on some infinite graphs, like

those generated by weighted pushdown automata, can be reduced to solving

fixed-point equations over a semiring having the possible edge weights as

elements [8, 22].

• Data-flow equations associated to many intra- and interprocedural dataflow

analyses are fixed-point equations over complete lattices [18], which can

often be recast as equations on semirings [22, 6].

• Authorization problems (like, for instance, the authorization problem for

the SPKI/SDSI authorization system), can be recast as a reachability prob-

lem in weighted pushdown automata [17], and thus to algebraic systems [6].

• Computing the reputation of a principal in a reputation system (a system

in which principals can recommend other principals, and rules are used

to compute reputation out of a set of direct recommendations) reduces to

solving an algebraic system [5].

• Evaluating a Datalog query can be reformulated as the problem of deciding

whether a non-terminal of a context-free grammar is productive or not, and

so it also amounts to solving a system of equations. Moreover, several prob-

lems concerning the computation of provenance information, an important

research topic in database theory, reduces to solving an associated algebraic

system over different semirings. [14]

The paper is structured as follows. Section 2 motivates by means of a scenario

the interest of generic solvers for algebraic systems. Section 3 describes the basic

algorithms and data structures used in FPsolve . Finally, Section 5 briefly describes

the implementation.

2. Scenario: A Recommendation System

We succinctly describe SDSIRec, a recommendation system inspired by the SDSI

authorization system [17], and very close to the reputation system described in [5].

SDSIRec distinguishes customers (denoted by x, y, z) and products (denoted

by p). Given a collection of individual recommendations of products by customers,

SDSIRec computes an aggregated customer rating for each product. Individual

recommendations are described in SDSIRec by means of rules of the form:

x.Rec
w−−→ p (1)

x.Trust
w−−→ y (2)

The term x.Rec denotes the fuzzy set of all products recommended by customer

x. The rule x.Rec
w−−→ p denotes that p belongs to x.Rec with weight w, i.e., that

x recommends p with “rating” w. Analogously, x.Trust denotes the fuzzy set of

all customers (whose recommendations are) trusted by x. The set of all weights,

denoted by S, contains the special weight 0, which explicitly states that p resp. y

does not belong to x.Rec resp. x.Trust; assigning a rule the weight 0 is equivalent

to removing the rule from the input.
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Besides direct recommendation and direct trust, SDSIRec also takes into ac-

count indirect recommendation of products via trust in other customers. For in-

stance, consider the following scenario:

Jesse.Trust
w1−−→Walt

Walt.Rec
w2−−→FPsolve

Since Walt recommends FPsolve with weight w2, and Jesse trusts the recom-

mendations of Walt (his former high-school teacher) with weight w1, SDSIRec

infers that Jesse indirectly recommends FPsolve with some weight w1�w2, where

� abstracts from the concrete way how the weights should be combined into a new

weight. The operator must satisfy 0 � w = 0 = w � 0, so that the interpretation

of 0 as a non-existing rule is preserved. The inference is modeled be the following

(hard coded) rules:

x.Trust
λ−→x.Trust.Trust (3)

x.Rec
µ−→x.Trust.Rec (4)

Rule (3) states that the set of customers trusted by x contains the set of cus-

tomers trusted by customers trusted by x. Analogously, rule (4) states that the set

of products recommended by x contains all products recommended by customers

trusted byx. As these rules may lead to cycles, i.e. x might trust herself, thereby

recommending to herself the products recommended by her, SDSIRec allows one

to specify discount factors λ and µ to dampen resp. penalize these effects. The spe-

cial weight 1 (required to satisfy w � 1 = w = 1 � w) can be used to disable this

discounting. SDSIRec then treats the rules (1) to (4) as rewrite rules in the sense

of a pushdown system [22]. For instance, we get

Jesse.Rec
µ−→Jesse.Trust.Rec

w1−−→Walt.Rec
w2−−→FPsolve

Jesse.Rec
µ−→Jesse.Trust.Rec

λ−→Jesse.Trust.Trust.Rec
w1−−→Walt.Trust.Rec

The first “path” with weight µ�w1�w2 captures that Jesse indirectly recommends

FPsolve. The second path is an example of a path that cannot be extended to a

recommendation of p: Since Walt trusts nobody (as specified by the input system),

SDSIRec can never rewrite Walt.Trust to Walt.

In order to compute to what extent p belongs to x.Rec SDSIRec finally aggre-

gates the weight of the (possibly infinitely many) paths leading from x.Rec to p.

We use ⊕ to denote the operator that is used to aggregate the weights of different

paths. It is well-known that if 〈S,⊕,�,0,1〉 forms an ω-continuous semiring, then

the problem of aggregating over all possible paths can be recast as computing the

least solution of an algebraic system (see below) [10, 22, 6]. Recall that 〈S,⊕,�,0,1〉
is a semiring if ⊕ and � are associative and have neutral elements 0 and 1, respec-

tively, ⊕ is commutative, � distributes over ⊕, and any product with 0 as factor

evaluates to 0. Given a, b ∈ S, we say a v b if there is c ∈ S such that a + c = b.
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A semiring is naturally ordered if the relation v is a partial order. An ω-continuous

semiring is a naturally ordered semiring such that every v-non-decreasing sequence

(ω-chain) c0 v c1 v c2 v . . . has a supremum in S, and both addition and mul-

tiplication are ω-continuous in both arguments.b In an ω-continous semiring, the

infinite sum
∑
i∈N ai is then defined as supv{

∑
0≤i≤k ai | k ∈ N}. This sum es-

sentially shares the same properties as absolutely convergent series over the reals,

in particular, summation is order independent, and multiplication also distributes

over sum [19].

Let Rxp and Txy be variables standing for the total weights with which x rec-

ommends p or trusts y, and let rxp, txy denote the weights of the direct recom-

mendation, or the direct trust of x in p and y, respectively (i.e. x.Rec
rxp−−−→ p resp.

x.Trust
txy−−−→ y).

If 〈S,⊕,�,0,1〉 is an ω-continuous semiring, then the total weights are the

unique smallest solution w.r.t. v of the following algebraic system (cf. [10, 22, 6])

Rxp = rxp ⊕
⊕
y

µ� Txy �Ryp for all consumers x, products p

Txy = txy ⊕
⊕
z

λ� Txz � Tzy for all consumers x, y

The key point of our argumentation is that in an application like the above we are

interested in solving the same set of equations over many different semirings. Even

further, users of the system may be interested in first defining their own semiring,

and then solving the system. To illustrate this, let us examine several different

interpretations of “weight”, all of them very natural:

Weights as scores. The most natural interpretation of weights is perhaps as

scores. A consumer x gives a product p or another consumer Y a score, correspond-

ing to its degree of satisfaction with p, or its degree of trust in the recommendations

of Y . If we assume that scores are real numbers in the interval [0, 1], and choose ⊕
and ⊗ as sum and product of real numbers, we obtain the probabilistic semiring.

Then Rxp represents the total weight of all recommendation paths leading from x

to p. If we choose the Viterbi semiring 〈[0, 1],max, ·, 0, 1〉 instead, then Rxp returns

the weight of the strongest recommendation path.

Weights as expire times. Direct recommendations and trust, represented by

rules of types (1) and (2,) can (and should) have an expire time. If we choose ⊕ to

be the maximum and � the minimum over the reals, then Rxp returns the earliest

time at which all recommendation paths from x to p will have expired.

Weights as provenance information. If a system user does not trust some

consumers, she may wish to compute, for each recommendation path from x to p, the

bA function f : S → S is ω-continuous if f(supvi∈N ci) = supvi∈N f(ci) for every ω-chain (ci)i∈N.
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set of consumers in the path. Or she may want to know the set of consumers visited

along the recommendation path of maximal weight. Such provenance information

can be computed within the semiring framework. For this it is convenient to treat

all non-zero parameters rxp, txy, λ, µ as formal parameters (free variables).

• To compute for each path the set of consumers involved, one can use the

Why-semiring, well-known in provenance theory. Semiring elements are sets

of sets of consumers. We set rxp = {{x}} and txy = {{x, y}} (and treat λ

as {{λ}} and µ as {{µ}}), and define:

– {X1, . . . , Xn} � {Y1, . . . , Yn} := {X1 ∪ Y1, x1 ∪ Y2, . . . , Xn ∪ Ym}, and

– {X1, . . . , Xn} ⊕ {Y1, . . . , Yn} := {X1, . . . , Xn, Y1, . . . , Ym}.

• If we wish to compute the provenance of the recommendation of maximal

weight, we can use the following semiring: as semiring elements we choose

the pairs (α,X), where α ∈ [0, 1] and X is a set of consumers. We set

txy = (w, {x, y}) with w ∈ (0, 1], and analogously for rxp. The abstract

operators are instantiated as follows:

– (α1, X1)� (α2, X2) := (α1α2, X1 ∪X2), and

– (α1, X1)⊕ (α2, X2) := (max{α1, α2}, if α1 ≥ α2 then X1 else X2)

These examples show that, instead of creating new tools for each new semiring, it

can be better to implement a generic tool, with generic algorithms applicable to

any semiring, or at least to any semiring in a broad class.

3. Algorithms and Data Structures

The two main generic schemes implemented in FPsolve for the approximation

(and sometimes exact computation) of the least solution of an algebraic system are

classical fixpoint iteration and Newton’s method. Following [21, 11], we introduce

them as procedures that “unfold” the algebraic system up to a certain depth which

allows one both to unify and at the same time simplify their presentation.

Classical fixed-point iteration. Given an algebraic system of equations X =

F (X) over an ω-continuous semiring, Kleene’s theorem states that the system has

a unique least solution µF with respect to the natural order v, and that µF is the

supremum of the sequence F (0), F 2(0), . . . , F i(0) [19]. So µF can be approximated

by computing successive elements of the sequence. If the semiring further satisfies

the ascending chain property (for every ω-chain a1 v a2 v . . . eventually ak =

ak+1 = ak+2 = . . .) then µF = F i(0) for some i ≥ 0, and so µF can be effectively

computed.

As explained in e.g. [21], an algebraic system can be associated a context-free

grammar. For instance, for the system

X = a�X �X ⊕ b (5)
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we obtain the grammar

X → aXX | b (6)

Conversely, we assign to a derivation tree of the grammar a value in the semiring,

given by the product of its leaves (the ordered product if the semiring is not com-

mutative); further, we assign to a set of derivation trees the sum of the values of its

elements. The following result can be proved by a simple induction on k:

F k(0) is the sum over the set of all derivation trees of the grammar

of height less than k.

Building on this observation, for every k we “unfold” (5) into an acyclic system

over variables X<h and X=h for every h ≤ k, such that the solutions of X<h and

X=h are the values of the derivation trees of height less than h and equal to h,

respectively. For this, we obviously have to set

X<0 = 0 X=0 = b and X<h+1 = X<h ⊕X=h for all h ∈ N (7)

In order to obtain the defining equation of X=h we observe that the trees of height

h can be partitioned into those whose left subtree has height h−1, and those whose

left subtree has height strictly smaller than h−1 and whose right subtree has height

h− 1.This leads to

X=h = a�X<h �X=h−1 ⊕ a�X=h−1 �X<h−1. (8)

We can see the unfolding up to depth k as a symbolic representation of F k(0),

which implicitly uses subterm sharing (arithmetic circuit). When the coefficients of

the algebraic system (a, b in our example) are formal parameters, we can efficiently

compute F k(0) for different values a, b, by just plugging them into the unfolded

system.

Newton’s method. Newton’s method for arbitrary ω-continuous semirings, as

described in [10], can be much faster than Kleene iteration. It is shown in [11]

that the method can also be presented as an unfolding of the algebraic system:

This time, the system is unfolded w.r.t. the Strahler number or dimension of its

associated derivation trees (see [11, 21]). The dimension of a rooted tree t is defined

as the height of the largest perfect binary tree that is a minor of t.

Consider again equation (5). We split X into a family of variables X<d and X=d

for d ∈ N. The solutions of the unfolded system for X<d and X=d will now be the

value of the derivation trees of dimension less than d, and equal to d, respectively.

Just as before, we have

X<0 = 0 X=0 = b and X<d+1 = X<d ⊕X=d for all d ∈ N. (9)

In order to derive the defining equation of X=d, observe that there are three possible

cases for a tree of dimension d: either the left subtree has dimension d, and the right

subtree has dimension at most d−1; or vice versa; or both subtrees have dimension
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exactly d−1 (this is the case in which the root of the minor coincides with the root

of the tree). So we get

X=d = a�X=d �X<d ⊕ a�X<d �X=d ⊕ a�X=d−1 �X=d−1. (10)

However, this unfolding does not represent an arithmetic circuit as it is not yet

acyclic: X=d appears on both sides of the equation. But equation (10) is linear in

X=d, and so, if multiplication is commutative, we can replace it by (with 1⊕1 = 2)

X=d = 2� a�X=d �X<d ⊕ a�X=d−1 �X=d−1 (11)

and use Kleene’s theorem [19] to replace it by

X=d =
(
2� aX<d

)∗ � a� (X=d−1)2 (12)

where the Kleene star is defined, as usual, by x∗ :=
∑
k∈N x

k (and is well defined for

any ω-continuous semiring).c The new system is acyclic, i.e. an arithmetic circuit

w.r.t. ⊕, �, and ∗, and as in the previous case, can be used as a compact symbolic

representation of the d-th Newton approximation, useful when a, b are formal pa-

rameters (see Fig. 1 for an example). In particular, every Newton approximation

can be represented by means of a rational expression.

To actually compute the solution for particular values of a and b, we can then use

straight-forward constant propagation going from bottom (X=0, X<0) to top (X<d).

However, for this the Kleene star x∗ must be effectively computable in the given

semiring representation. This is indeed the case for several important semirings.

The simplest example is the probability semiring, where for every rational number

x ∈ [0, 1) we have x∗ = 1/(1 − x). Tropical semirings are another example. For

instance, over the integers extended by least (−∞) and greatest element (+∞) , with

addition given by min and multiplication given by + (on Z), we have x∗ = 0 if x ≥ 0

and x = −∞ otherwise. A third example is the semiring of semilinear sets of vectors

with components in N∪{∞}, with X⊕Y := X∪Y , X�Y := {x+y | x ∈ X, y ∈ Y },
and X∗ :=

∑
i≥0X

i. Note that these definitions are not effective. We define all

operations on semilinear sets effectively in Section 4.

Connection to Newton’s method over the reals. Applying Newton’s method

to g(X) := f(X)−X = aX2 −X + b (interpreted over the reals) starting form the

initial approximation X = 0 we obtain the sequence:

X0 := 0 Xd+1 = Xd −
g(Xd)

g′(Xd)
= Xd −

aX2
d −Xd + b

2aXd − 1
= Xd +

aX2
d −Xd + b

1− 2aXd
.

Setting Yd := Xd+1 −Xd this can be written as

Yd = 2aXdYd + (aX2
d −Xd + b).

cIn the noncommutative case, one may resort to an instance of the semiring of contexts in order

to obtain a rational tree expression.
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Straight-forward induction now shows that over the nonnegative reals the values of

Xd and X<d resp. Yd and X=d coincide [11]. In particular, the defining equation of

X=d can be seen as the generalization of the derivative of aX2 in the noncommu-

tative case.

Multivariate case. Both unfoldings immediately generalize to the setting of mul-

tiple variables X,Y, . . .. As mentioned above, in the univariate case we use the fact

that the solution of an equation X = aX + b is given by a∗b. In the multivariate

case, when the semiring is commutative, we have to deal with systems of linear

equations X = AX + B for a matrix A and a vector B over the semiring. It is

well known that the solution is given by A∗B, where A∗ =
∑∞
i=0A

i, and matrix

multiplication is defined as for the natural or the real numbers, but replacing sum

and product by the operations of the semiring being considered. In the next section,

we describe the two algorithms for computing A∗ implemented in FPsolve.

3.1. Solving Linear Equations

As mentioned above, solving a linear equation amounts to computing A∗ for a

given square matrix A over a semiring. Given a matrix A, the algorithms returns

a matrix whose elements are semiring expressions over the semiring operations and

the Kleene star. So, intuitively, the algorithms reduce the problem of computing

the star of a matrix to computing the star of semiring elements.

FPsolve implements both the well-known Floyd-Warshall algorithm, and the

recursive divide-and-conquer approach.

3.1.1. Generalized Floyd-Warshall

The Floyd-Warshall algorithm (see Algorithm 1) for solving the all-pairs-shortest-

path problem in weighted (finite) graphs carries directly over to the setting of generic

ω-continuous semirings, even if addition ⊕ is not idempotent (cf. [8]). (In fact, it

suffices that the semiring 〈S,⊕,�,0,1〉 is closed but not necessarily ω-continuous.)

From the description of the algorithm it is easy to count that the total number of

semiring operations (i.e. +, ·,∗) needed is T (n) = 2n3 − 2n2 + n ∈ Θ(n3).

3.1.2. Divide-and-conquer

This algorithm recursively applies the formula for computing the Kleene star of a

2× 2-matrix:

M =

[
A B

C D

]
M∗ =

[
F αG∗

G∗β G∗

]
with

α = A∗B

β = CA∗

G = D + Cα

F = αG∗β + A∗

.

Given a n× n-matrix M (n > 2), the entries A,B,C,D become submatrices of M

to which the algorithm is then applied recursively; the recursion stops when either
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Algorithm 1: Generalized Floyd-Warshall algorithm over semirings.

input : Matrix A ∈ Sn×n over a semiring S.

output: Reflexive-transitive closure A∗.

B := A

for k = 1 . . . n do
Bk,k := B∗k,k
for i = 1 . . . n, i 6= k do

Bi,k = Bi,k �Bk,k
for j = 1 . . . n, j 6= k do

Bi,j := Bi,j ⊕Bi,k �Bk,j
end

end

for j = 1 . . . n,j 6= k do
Bk,j = Bk,k �Bk,j

end

end

return B

n = 2 or n = 1. A formal proof of correctness (for any Conway semiring) goes back

to Ésik and Kuich (cf. [8]).

Altogether we need two recursive calls, six matrix multiplications (the term αG∗

appears twice and thus needs to be evaluated only once), and two matrix additions.

Hence, the number of operations needed by this algorithm can be expressed by the

recurrence relation d

T (n) = 2T
(n

2

)
+ 6

[
2
(n

2

)3
−
(n

2

)2]
+ 2

(n
2

)2
= 2T

(n
2

)
+

3

2
n3 − n2

Which can be solved exactly (setting T (n) = 1 and n = 2l) resulting in T (n) =

2n3−2n2 +n ∈ Θ(n3). Hence this algorithm uses the same number of operations as

Floyd-Warshall. Both algorithms need n3−2n2+n additions, n3−n multiplications,

and n Kleene stars.

3.1.3. Symbolic solving

Recall our initial example

X = a�X �X ⊕ b

dNote that multiplying two n×n matrices requires n3−n2 operations (via the schoolbook method

– we cannot use e.g. Strassen’s algorithm as we lack a difference operator!).
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and its unfolding w.r.t. dimension for an arbitrary d ∈ N (assuming � is commuta-

tive)

X=d = 2� a�X=d �X<d ⊕ a�X=d−1 �X=d−1

As X<d = X<d−1⊕X=d−1, every iteration of Newton’s method essentially consists

of solving this linear equation after substituting for the variables X<d and X=d−1

the already computed solution. Analogously, in the multivariate setting essentially

the same linear equation system has to be solved over and over again. FPsolve

thus can first compute a symbolic solution of the linear system by treating X<d

and X=d−1 as formal parameters which allows us to obtain a succinct symbolic

representation of a Newton approximation by sharing common subexpressions. This

can be used to efficiently evaluate a Newton approximation of an algebraic system

for several different semiring interpretations.

Consider the generic linear equation system(
x

y

)
=

(
a b

c d

)
·
(
x

y

)
+

(
e

f

)
Treating a, . . . , f as formal parameters over some semiring, the (symbolic) solution

of this system is given by(
x

y

)
=

(
a∗b(ca∗b⊕ d)∗ca∗e⊕ a∗b(ca∗b⊕ d)∗f ⊕ a∗e

(ca∗b⊕ d)∗ca∗e⊕ (ca∗b⊕ d)∗f

)
where we have omitted the � for readability. The internal representation of these

terms is shown in Fig. 1: FPsolve stores the expressions as part of an “abstract

syntax DAG” (reversing the direction of the edges we obtain an arithmetic circuit

with gates for addition, multiplication, and Kleene star) similar to BDD libraries

like CUDD [24], where we have colored the x- resp. y-component in light resp. dark

grey; this representation allows one to reduce both the memory consumption, and

the re-evaluation of identical subterms.

In this simple 2× 2 case the concrete recursive approach (as stated above) com-

putes 10 semiring operations, the same if the symbolic solution is computed (using

the same recursive algorithm). This holds in general if all elements of the input

matrix are different. However, in general input matrices can have the same element

in many different positions, then even the recursive algorithm will compute some

identical subexpressions multiple times (that occur in different execution branches)

since it cannot guess them a priori. In this case, symbolic solving allows for a global

subexpression detection after the whole matrix-star has been computed.

Although the symbolic approach significantly reduces the number of semiring

operations needed, the overhead from computing and storing the symbolic solution

is not always negligible. This is particularly true for numeric semirings (like the

semiring of positive reals) that are implemented using machine precision floating

point numbers – for these the semiring operations are so fast that the overhead

outweighs the benefits of symbolic solving.
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Fig. 1. Succinctly representing all terms of the product A∗ · (e, f)T via a BDD-like sharing of

subexpressions. By reversing the direction of all edges this can be read as an arithmetic circuit

with output gates colored in grey.

We therefore give the user the freedom of choice whether to use the concrete

(i.e. in every iteration) or symbolic (i.e. solve once then plug in in every iteration)

method of solving linear equations.

3.2. Decomposition into strongly-connected components

To efficiently process large algebraic systems, FPsolve supports a decomposition

of the system into strongly connected components (SCCs). To make this precise,

recall the definition of dependency graph: Its nodes are the variables occurring in

the algebraic system and its edges are induced by the defining equations: we have

an edge from variable X to variable Y if Y occurs in the defining equation of X. We

say that X depends on Y if there is a path from X to Y in the dependency graph.

To determine the value of variable X it then suffices to determine the values of

all variables on which X depends. Using Tarjan’s algorithm we therefore partition
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the dependency graph into SCCs, and process these SCCs in reverse topological

ordering (“bottom up”). In particular when using Newton’s method this can lead

to a noticeable speed-up in the computation of the Kleene star.

4. Representing Semirings – Case Study: Semilinear sets

So far, we have described the part of FPsolve independent of the actual semiring.

FPsolve comes with support for several standard semirings e.g. the extended re-

als ([0,∞],+, ·, 0, 1), the tropical semiring (N∞,min,+,∞, 0), or the why-semiring

used in database provenance (see Section 2). In this section we will focus on the

implementation of the counting semiring, more precisely that of its subsemiring of

semilinear (also: rational) sets [13].

4.1. The counting semiring

Let X,Y ⊆ Nk for some k ∈ N, and define

X + Y := X ∪ Y and X · Y := {x+ y | x ∈ X, y ∈ Y }.

Further, set 0 := ∅, and 1 := {~0} for ~0 ∈ Nk the null vector. Then Ck =

〈2Nk

,+, ·,0,1〉 is called the counting semiring (of dimension k). This semiring is

commutative and idempotent. It is also ω-continuous, and the Kleene star is given

by X∗ =
⋃
m∈N X

m. Because of commutativity and idempotence, the Kleene star

satisfies the following two additional equalities:

(XY ∗)∗ = 1 +XX∗Y ∗ (13)

(X + Y )∗ = X∗Y ∗ (14)

The counting semiring Ck can be characterized in several ways: it is (isomorphic

to) the semiring N1[[y1, . . . , yk]] = N1〈〈{y1, . . . , yk}⊕〉〉 of formal power series in com-

muting variables {y1, . . . , yk} with coefficients in N1 = {0, 1}; it is also (isomorphic

to) the commutative and idempotent semiring freely generated by k elements.

Rational expressions on Ck are constructed as usual: the atomic terms are the

singleton sets of Nk (resp. monomials w.r.t. N1[[y1, . . . , yk]]); any further terms are

obtained using the operators +, ·, and ∗. A rational expression of the form x0x
∗
1 . . . x

∗
l

is called linear if each xi denotes a singleton set. S ⊆ Nk is called semilinear (linear)

if it is definable by a (linear) rational expression [13].

By virtue of above equalities Equations 13 and 14, any rational expression can be

rewritten to a finite sum of linear expressions by “pushing the Kleene star downward

in the term structure”. That is, any semilinear set is a finite sum (union) of linear

sets; in particular, the semilinear sets form a non-ω-continuous subsemiring of Ck
which is closed under the Kleene star.

When solving algebraic systems over the counting semiring (or any other com-

mutative and idempotent semiring) using Newton’s method, all Newton approxi-

mations are by definition always rational. Furthermore, Newton’s method computes
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the solution of the system in a finite number of steps. More precisely, n+ 1 steps of

the method suffice to compute the solution of a system of n equations [9]. Hence,

for the implementation of Newton’s method we can concentrate on the subsemiring

of semilinear sets. In the rest of the section we discuss two representations of the

semilinear sets, and their advantages and disadvantages.

4.2. Constants-periods representation

Given a finite subset P = {p1, . . . , pn} of Nk and c ∈ Nk, we use (c, P ) as a

representation for for cp∗1 . . . p
∗
n, i.e., for the set {c+

∑
p∈P np · p | ∀p ∈ P : np ∈ N}.

Accordingly, P is called the set of periods, and c the constant of the set.

This representation allows for a straightforward computation of both multipli-

cation and the Kleene star:

(c1, P1) · (c2, P2) = (c1 + c2, P1 ∪ P2)

(c, P )∗ = 1 + (c, P ∪ {c})

where the latter equation follows easily from (13). Analogously, we represent

a semilinear set S as a set of linear sets. Given two representations S1 =

{(c1, P1), . . . , (cl, Pl)} and S2 = {(c′1, P ′1), . . . , (c′m, P
′
m)} of semilinear sets we then

have, using (14):

S1 + S2 := S1 ∪ S2

S1 · S2 := {(ci + c′j , Pi ∪ P ′j) : i ∈ [l], j ∈ [m]}
S∗1 := (c1, P1)∗ · . . . · (cl, Pl)∗.

While this representation is simple and appealing, it also has several disadvantages:

• In the course of computing the Newton approximations, linear sets often

share common period vectors and semilinear sets share linear sets. However,

the representation does not profit from this to reduce the space necessary

to store a set.

• The multiplication and Kleene star operations have quadratic and exponen-

tial complexity, respectively, in the number of linear sets of the operands.

• Checking inclusion or equivalence of representations is hard (Π2
p-complete

[16]).

In [23] we mitigate the first two problems by using extensive sharing of common

(sets of) vectors and by eliminating redundant linear sets or periods after every semi-

ring operation. These optimizations enable us to solve small systems of equations in

a few milliseconds (less than 20 equations and 3–4 constant symbols). As an illus-

tration we have built a simple inequivalence-checker for context-free grammars that

computes their commutative image and checks it for equivalence. The equivalence-

check for the computed semilinear sets is performed by converting them to their

(unique) NDD representation (see the next section). The main bottleneck for this

application is the size of the set of terminals of the grammar.
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TODO: Table of runtimes here for the cfg-analyzer-benchmarks

4.3. NDD representation

In order to address the third drawback (high complexity of checking inclusion and

equivalence), FPsolve also allows one to represent semilinear sets by number de-

cision diagrams (NDDs) [7, 26]. NDDs are minimal deterministic finite automata

that recognize sets of vectors of natural numbers. A vector of Nn is coverted into a

string by first encoding each of its components in binary—using either a least sig-

nificant or a most significant bit first encoding—and then converting the resulting

n binary strings into one single string, for which there are also several possibili-

ties. NDDs have numerous applications, e.g. in decision procedures for Presburger

arithmetic and MSO, or analysis of infinite state systems, and there exist several

libraries available for their manipulation, like Genepi, Mona, and Lash [15, 12].

In the encodings used by these libraries, semilinear sets of vectors is converted

into regular languages, and so a semilinear set can be canonically represented by its

unique NDD. Canonicity follows immediately from the uniqueness of the minimal

deterministic automaton for a regular language.

Although the NDD representation can be just as prohibitively space consuming

as the constants-periods representation, NDDs often have smaller size; further, all

operations and queries such as equivalence of two semilinear sets, membership of a

vector in a set, intersection of sets, etc. can be performed in polynomial time in the

size of the NDD.

While there are algorithms to extract an explicit representation of a semilinear

set from an NDD (under the promise that the NDD indeed represents a semilinear

set, since NDDs can represent a larger class of sets), they are rather complicated

and mostly of theoretical interest [20]. Conversions between representations should

therefore be avoided, and so we define the semiring operations on NDDs directly.

For this, let A1,A2 be two NDDs representing the semilinear sets S1, S2 ⊆ Nk.

Computing S1 + S2 simply translates to applying the standard product con-

struction to A1 and A2, followed by minimization of the result.

The algorithm for computing S1 · S2 is as follows:

• build an intermediate NDD I recognizing the semilinear set {(u, v, u+ v) ∈
N3k | u, v ∈ Nk};
(actually,I does not have to be explicitely constructed, it can be kept im-

plicit)

• build NDDs A′1,A′2 for the sets S1 × N2k and Nk × S2 × Nk, respectively;

• build an NDD A for the intersection of I,A′1,A′2;

• build an NDD for the projection of the vectors recognized by A onto their

last k components, followed by determinization and minimization.

Computing the Kleene star of a semilinear set represented as an NDD is more

challenging, since it is not obvious how to define it by a Presburger formula. We
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propose a novel algorithm. To get the idea of our construction it is useful to look

at the representation of semilinear sets by rational expressions. For example, the

semilinear set

S =
{(

(2, 1),
{

(2, 0), (1, 1)
})
,
(

(1, 3),
{

(0, 3), (2, 3)
})}

can be equivalently represented as

r = (y21y2)(y21)∗(y1y2)∗ + (y1y
3
2)(y32)∗(y21y

3
2)∗.

Suppose a semilinear set S is described by an expression r = c1p
∗
1 + c2p

∗
2. Then S∗

can be expressed (modulo commutativity and idempotence) as

r∗ = (c1p
∗
1 + c2p

∗
2)∗

= (c1p
∗
1)∗ · (c2p∗2)∗

= (1 + c1c
∗
1p
∗
1)(1 + c2c

∗
2p
∗
2)

= 1 + c1p
∗
1c
∗
1 + c2p

∗
2c
∗
2 + c1c2p

∗
2p
∗
1(c∗1c

∗
2)

= 1 + (r + r2)(c∗1c
∗
2)

where the last equality holds because of idempotence and since c1 ∈ S implies

c∗1 ∈ S∗. Note that the constants of the semilinear set are simply added to the

set of periods. For a semilinear set S consisting of n linear sets with constants

C = {c1, . . . , cn} we obtain by induction

S∗ = 1 +

n∑
i=1

Si · C∗

which, by idempotence, can be rewritten to

S∗ = 1 + S · (1 + S)n−1 · C∗ (15)

so that only dlog2 ne many multiplications are required to compute S∗.

Equation 15 immediately translate into an NDD-based algorithm, as long as

we know the cset C of constants C. However, for the implementation of Newton’s

method this is not a problem: Since all NDDs required to compute the Newton

approximations are built from smaller ones, we keep track of the set of constants

C for every semilinear set. More precisely, we represent a semilinear set by two

NDDs: a first NDD recognizing the set itself, and a second NDD recognizing its set

of constants. At first this seems very inefficient, but since any set B of constants

satisfying B∗ = C∗ suffices to compute the Kleene star, in fact it suffices to store

an NDD recognizing a minimal set B.

Despite these improvements, the practical performance of the NDD representa-

tion is still rather poor. Currently, the main bottleneck is the multiplication of two

NDDs, and future work will focus on it. But even this implementation is already

very useful for checking membership or inclusion. We implemented a translation

from the constant-period representation to the NDD representation, which we use

whenever equivalence or inclusion must be checked.
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5. Implementation

Currently, FPsolve comprises roughly 8, 000 lines of C++. The code can be ob-

tained freely from https://github.com/mschlund/FPsolve. We use several existing

frameworks and libraries:

• CPPUnit for writing unit-tests.

• boost for IO-tasks (parsing, command-line arguments).

• Genepi, Mona, and Lash for representing semilinear sets via NDDs.

• libfa for representing elements of “lossy” semirings (i.e. semirings satisfy-

ing 1 v a for any semiring element a 6= 0 – this generalizes the downward

closure of languages) as finite automata.

FPsolve features data structures for commutative as well as non-commutative

polynomials, different solvers (semi-naive fixpoint iteration, Newton’s method), and

several predefined semirings (semilinear sets, real numbers, tropical and boolean

semiring) as well as some generic constructions (via C++ templates) to build new

semirings from existing ones, like the direct product of two semirings, or the semiring

of matrices over some semiring.

The focus of our library is to provide generic algorithms and to be easily exten-

sible. One of our goals was to make it easy for users to write their own semiring-

constructions or tailor the generic solving algorithms to their needs.

The library consists of three main parts:

• Data structures (polynomials, matrices, BDD-like DAG-structure to sup-

port subterm sharing)

• Semirings (semilinear sets, positive real numbers, why semiring, generic

product semiring, . . . )

• Solvers (Kleene solver, Newton solver)

Figure 2 shows a simplified view of the main structure of our library. First, ob-

serve that many classes are templated (e.g. Commutative_Polynomial depends

on an abstract Semiring given as template parameter). This produces efficient

code due to compile-time polymorphism. The heart of the library is the generic

NewtonSolver which depends on a Semiring, a Polynomial (either commutative,

or non-commutative), and an algorithm to solve linear equations. All these are again

given as template parameters to the NewtonSolver.

5.1. Invocation of the Standalone Solver

FPsolve also includes a callable solver and a parser for equation systems that

demonstrates the use of the library.

To apply the standalone solver, one has to describe the algebraic system as

a BNF-style context-free grammar. Variables of the system are enclosed in angle

brackets, multiplication is not explicitly written, the addition x + y is written as

https://github.com/mschlund/FPsolve
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Commutative Polynomial

SR:Semiring

Non commutative Polynomial

SR:Semiring

Semiring

Float Tuple

T1:Semiring
T2:Semiring

Free SemilinSet

NewtonSolver

SR:Semiring
LinSolver:LSType
Poly:Polynomial

LSType

SymbolicLinSolver ConcreteLinSolver

Fig. 2. A (simplified) part of our architecture.

x | y. To solve the following system over the reals

X = 0.5XY + 0.5 Y = 0.3Y + 0.7X

we would create a text file test.g containing:

<X> ::= 0.5 <X> <Y> | 0.5;

<Y> ::= 0.3 <Y> | 0.7 <X>;

The simplest invocation of the tool is then

$ ./fpsolve -f test.g --float

This minimal set of parameters specifies

(1) the input file containing the algebraic system (-f test.g).

(2) the semiring over which the system and its constants (like 0.3) are to be

interpreted (here --float ).

The tool outputs:

$ ./fpsolve -f test.g --float

Newton Concrete

Iterations: 3

Solving time: 0 ms (196 us)

X == 0.875

Y == 0.875

By default, the number of Newton iterations for a system of n equations is n+ 1 –

for commutative, idempotent semirings this suffices to compute the exact solution

[9].

A more sophisticated use of the tool’s options would be the following:
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$ ./fpsolve -f test.g --float -i 10 -s newtonSymb

Newton Symbolic

Iterations: 10

Solving time: 0 ms (536 us)

X == 0.999023

Y == 0.999023

Here, we select

(1) the number of iterations (-i 10)

(2) the solving algorithm to use (switch -s), possible choices are newtonSymb,

newtonConc, kleene.

For larger equation systems there is the possibility to decompose the system into

SCCs and solve them bottom-up (switch --scc).

5.2. Custom Semirings and Extensions

It is very easy and straightforward to extend our library with new semirings, it

merely requires three steps:

• Implement all semiring operations (addition ⊕, multiplication �, star ∗)
• Define a constructor that takes a string-argument (effectively a small

parser)

• Add a new command-line switch to the main-method together with a call

to the solving function.

The second point delegates the IO/parsing task for semiring-elements to the imple-

menter. This enables us to parse equation systems into the most general intermedi-

ate format (non-commutative polynomials over the free semiring) and then to map

these to the user-defined semiring. Since our input-parser takes quite some time to

compile (due to boost::spirit and templates), by this approach we avoid to touch

the parser and the need for recompilation.

The semiring operations ⊕,� (+ and *) are implemented in the abstract base-

class Semiring using += and *=. Any new semiring should be derived from the

abstract class StarableSemiring and has to implement the three operations *=, +=,

star(). Take for instance the “MaxProvenance” semiring from the end of Section

2 consisting of pairs (α,X) of real numbers and sets of variables with

(α1, X1)� (α2, X2) := (α1α2, X1 ∪X2)

(α1, X1)⊕ (α2, X2) := (max{α1, α2}, if α1 ≥ α2 then X1 else X2)

(α,X)∗ := (1, ∅)

To implement this simple semiring, we derive from StarableSemiring the new class

MaxProvSR with members weight and prov storing α (e.g. as a float) and X (e.g.

as a set<>), respectively. What remains is then to implement the three operators

*=, +=, star(). For instance, the += operator could be implemented as
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MaxProvSR MaxProvSR::operator+=(const MaxProvSR& elem)

{

if(this->weight < elem.weight) {

this->weight = elem.weight;

this->prov = elem.prov;

}

return *this;

}

Inheritance then takes care of the implementation of the addition operator. Im-

plementing the remaining two operators is just as straight-forward. To make the

semiring available in the command line tool, a corresponding command line switch

has to be defined. Also, since we parse the input into the most general intermediate

representation (non-commutative polynomials over the free semiring) it remains to

map this representation to the concrete semiring (which requires only one line of

code essentially).

To check our claim of “easy extendability”, we made a rather naive implementa-

tion of the Why-semiring for this paper which took about two hours (until all bugs

were eliminatede). Once a new semiring is defined and the main-method is adapted,

all solvers just work out-of-the-box to solve algebraic systems like the following (file

test/grammars/bintrees.g):

<X> ::= a<X><X> | c;

$ ./fpsolve --why -f ../test/grammars/bintrees.g

Newton Concrete

Iterations: 2

Solving time: 0 ms (214 us)

X == {{a,c},{c}}

$ ./fpsolve --why -f ../test/grammars/bintrees.g -s kleene -i 2

Kleene solver

Iterations: 2

Solving time: 0 ms (281 us)

X == {{a,c},{c}}

6. Conclusions and Related Tools

We have introduced FPsolve, an implementation of generic algorithms for solving

fixpoint equations on semirings. The algorithms are parametric on the semiring. New

semirings can be easily added by defining implementations of the sum, product and

(possibly) Kleene star operations.

eWe developed a small collection of unit-tests (also generic tests that can be instantiated with any
semiring) and encourage any user who implements new semirings to use and adapt them during
development.
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As mentioned in the introduction, many program analysis problems can be re-

duced to solving fixpoint equations on semirings. This has lead to a number of

implementations and tools. An early effort is the Fixpoint-Analysis Machine for

solving systems of boolean fixpoint equations [25]. The tool can deal with hier-

archical and alternating fixpoints, but is not parametric on the equation domain.

The Weighted Pushdown Systems Library and Weighted Automata Library (see

[22, 3, 2]), and Goblint (see [4, 1] implement many sophisticated algorithms for

semirings satisfying the ascending chain condition.

While FPsolve is currently an academic tool, we have illustrated its potential

interest outside theoretical computer science by means of an application scenario,

namely a recommendation system. Genericity allows the users of the system to

aggregate the information given by individual recommendations in different, per-

sonalized ways, by defining their own semiring.
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