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1.1. Introduction

The automatic verification of systems has made immense progress in the last two

decades, in particular thanks to the efforts of the model-checking, program-analysis,

and theorem-proving communities. Systems with finitely many states can be auto-

matically verified is, at least in principle, by exhaustively exploring their state space.

Symbolic search procedures which use special data structures to compactly store

large sets of states have made this a technique with many important applications,

especially in the hardware area. However, most software systems have an infinite

number of reachable states due to unbounded data structures, timing information,

or other factors (see below). While many properties can be decided by analyzing

a suitable finite-state abstraction of the system, these abstractions are difficult to

find, and may lead to finite state systems far too large for the existing tools. For

this reason, since the early 90s much effort has been devoted to identifying classes

of infinite-state systems with decidable verification problems.

Infinite state-spaces are often caused by the system exhibiting one or more of

the following features:

• Variables with unbounded data domains such as integers or dynamic

data types such as lists, trees, and DAGs. While the physical constraints

of a machine impose a bound on the domain, the bound is too large to be

of any practical use.

• Control structures like procedure calls and thread creation. Both can

generate an unbounded number of processes whose execution has not ter-

minated, and whose local states become part of the global state of the

system.

• Time. In real-time systems, the current time – be it discrete or continuous

– becomes part of the state.
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• Communication mechanisms based on buffers or queues. Like vari-

ables, the physical implementation of a buffer or a queue always has a

finite capacity, but the capacity may heavily depend of the details of the

implementation, and the bounds are usually too large to be of any use for

finite-state verifiers. For these reasons, mathematical models often assume

unbounded capacity.

• Parameters. A system may contain parameters whose values are left

undefined, like for instance the number of processes in a leader election

protocol. When these parameters have an infinite domain of possible values,

the system becomes in fact an infinite family of systems. For most purposes

the family is equivalent to the infinite system consisting of all members of

the family running independently of each other.

Each of these five “sources of infinity” has been studied in the literature using

a variety of formal models: timed automata, channel systems, extensions of Petri

nets, pushdown processes, broadcast protocols, counter automata, different process

algebras, and rewrite systems to name but a few. This makes it difficult to perceive

research on infinite-state systems as a field on its own. Moreover, due to the space

constraints of conferences and to their intended audience, papers on infinite state

systems usually follow a “horizontal” approach: a paper in a theoretical conference

may present a decidability result, leaving an efficient algorithm for further research,

or describe an efficient algorithm, leaving its implementation for further research;

a paper in a more applied conference may describe an implementation and report

on experimental results, without presenting the underlying theory, and without

explaining the steps conducting from the system to a formal model.

This paper is a modest attempt at describing the underlying connections between

many of the models and techniques used in the field. It does so by introducing the

key concept of symbolic search in a very general framework (Section 1.2), along

with the conditions for turning it into an effective algorithm. It then presents three

case studies (Sections 1.3, 1.4, and 1.5) following a “vertical” approach: first, a

(very small) verification challenge, consisting of a system and a desirable property,

is informally described; then, a formal model of the system is presented; then, the

theory of symbolic search for an adequate class of models is developed, leading to an

effective algorithm for deciding the property; finally, the algorithm is executed on

the formal model. The concrete case studies are: a small mutex protocol modeled

as timed automaton (Section 1.3), a cache-coherence protocol modeled as a linear

automaton (Section 1.4), and a skyline plotter modeled as a pushdown automaton

(Section 1.5).

The paper does not contain any novel technical material, and in fact it

unashamedly draws from several excellent papers by different colleagues; in par-

ticular we mention [1–3]. We hope that it may help researchers from other fields to

understand some of the principles of automatic verification in the infinite case, and

also provide useful material for undergraduate and graduate courses. In fact, the
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paper is based on a course given by the first author at the Marktoberdorf Summer

School in 2005.

1.2. Symbolic Search for Extended Automata

We introduce symbolic search for extended automata, automata whose transitions

depend on and update a finite set of variables. In Sections 1.3, 1.4, and 1.5 we will

consider three different classes of extended automata.

1.2.1. Extended Automata

Loosely speaking, an extended automaton is an automaton whose transitions are

guarded by and operate on a set of variables. The variables may have arbitrary

types: integers, reals, stacks, queues, etc. More formally, let X = {x1, . . . , xn} be

a finite set of variables over sets V1, . . . , Vn of values, and let V = V1 × . . .× Vn be

the set of all possible valuations of X .

An extended automaton over X is a pair E = (Q,R) where

• Q is a finite set of control states, and

• R is a set of transition rules or just rules. A rule is a tuple r = (q, g, a, q′),

where

– q, q′ ∈ Q are the source and the target state of r, respectively;

– g ⊆ V is the guard of r; and

– a ⊆ V × V is the action of r.

We often use predicates over the set X to describe guards, and predicates over

X and a copy X ′ to describe actions. The variables in X and X ′ denote valuations

before and after executing the action, respectively. For instance, ifX = {x1, x2} and

V1 = V2 = N then we write x1 +x2 > 5 for the guard {(n1, n2) ∈ N×N | n1 +n2 >

5}, and x′1 = x2+3∧x′2 = 1 for the action {((n1, n2), (n
′
1, n

′
2)) | n

′
1 = n2+3∧n′

2 = 1}

An extended automaton is finite if V is finite; otherwise it is infinite.

The semantics of extended automata is what one would expect. A configuration

is a pair 〈q, ν〉, where q is a control state and ν is a valuation. If ν = (v1, . . . , vn),

we also write 〈q, v1, . . . , vn〉. The set of all configurations of an extended automaton

E is written CE or C, if E is clear from the context. The transition system TE of

an extended automaton E has: all elements of CE as nodes, and an edge 〈q, ν〉 =⇒

〈q′, ν′〉 whenever E has a rule r = (q, g, a, q′) such that ν ∈ g (we say that ν

satisfies the guard g, or that 〈q, ν〉 enables r) and (ν, ν′) ∈ a. So, loosely speaking,

a rule is enabled if the extended automaton is in the source state, and the current

valuation satisfies the guard; an enabled rule can occur, and its occurrence leads the

automaton to the target state and to a new valuation determined by the execution

of the action; note that the action can be nondeterministic.

If 〈q, ν〉 =⇒ 〈q′, ν′〉 then 〈q′, ν′〉 is an immediate r-successor of 〈q, ν〉, and 〈q, ν〉 is

an immediate r-predecessor of 〈q′, ν′〉. We say that a configuration is an immediate
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successor (predecessor) of another if there exist a rule r in the extended automaton

such that the configuration is an immediate r-successor (predecessor) of the other

one.

1.2.2. The Safety Problem

Given an extended automaton E and a rule r of E, we define the immediate suc-

cessor functions postEr , post
E : 2CE → 2CE as follows: c belongs to postEr (C) if some

immediate r-predecessor of c belongs to C, and c belongs to postE(C) if some im-

mediate predecessor of c belongs to C. Usually E is clear from the context and

we write postr(C) and post(C). Clearly, if R is the set of rules of E we have

post(C) =
⋃

r∈R postr(C). The reflexive and transitive closure of post is denoted

by post∗, and so we have post∗(C) = {c′ ∈ C | ∃c ∈ C. c ⇒∗ c′}. Similarly, we

define pre(C) as the set of immediate predecessors of elements in C and pre∗ as the

reflexive and transitive closure of pre. Given two configurations c, c′ of an extended

automaton E, we say that c′ is reachable from c, or that c is backward reachable

from c′ if c′ ∈ post∗({c}) or, equivalently, if c ∈ pre∗({c′}).

We are interested in the safety problem for extended automata, defined as fol-

lows: Given an extended automaton E over a set X of variables, a set I of initial

configurations, and a set D of “dangerous’ configurations, are there c ∈ I and c′ ∈ D

such that c′ is reachable from c in E? Notice that we do not require the sets I and

D to be finite.

The safety problem is undecidable even for very simple extended automata (no-

tice that the sets I and D might be non-recursive), or for sets I and D containing

only one element (Turing machines are a special class of extended automata). In

this paper we consider constrained safety problems that impose restrictions on

(i) the type and/or the number of variables in the set X ,

(ii) the possible combinations of guards and actions,

(iii) the possible sets of initial configurations,

(iv) the possible sets of dangerous configurations.

Some combinations of restrictions correspond to the reachability problem for

well-known models of computation. Let us consider two examples.

Example 1.1. Counter machines are extended automata over nonnegative integer

variables, i.e., X = {x1, . . . , xn} and V1 = . . . = Vn = N. There are only two kinds

of rules, with the following two combinations of guards and actions: true/x′i = xi+1

(where true is the empty guard, i.e., the guard indicating that the rule is enabled at

any valuation) and xi > 0/x′i = xi − 1 (i.e., decrement xi by 1, but only if xi > 0).

Example 1.2. Pushdown systems are extended automata with a single variable

over words, i.e., X = {x1} and V1 = Γ∗ for some finite alphabet Γ. There is a single

combination of guard and action, which can be represented as γ/w for γ ∈ Γ and
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w ∈ Γ∗: the guard γ indicates that the rule is only enabled when x = γw′ for some

word w′; the action consists of substituting γ by the word w, that is, x becomes

ww′ after the action.

1.2.3. Symbolic Search

When the set of valuations of an extended automaton is finite, the safety problem

can be solved by a forward or a backward search. In forward search, we start at

the set I of initial configurations and explore the space of reachable configurations

moving “forward”, i.e., moving from a configuration to its immediate successors.

The search terminates when a dangerous configuration is reached, or when all the

reachable configurations have been explored. Backward search starts at the set D,

moves from configurations to their immediate predecessors, and terminates when an

initial configuration is reached, or when all configurations that can be reached back-

wards have been explored. Notice that backward search may explore configurations

that are not reachable from I.

In conventional search techniques a set of configurations is stored by explicitly

storing each of its elements at a different memory address. For large configuration

spaces this can be very costly, and for infinite configuration spaces impossible. The

idea of symbolic search is to directly manipulate possibly infinite sets of configu-

rations by means of adequate data structures. For instance, a linear inequation

like x > 5 can be used as a data structure representing the infinite set of integers

{6, 7, 8, ...}; a regular expression like (ab)∗ (or its corresponding finite automaton)

can be used to represent the infinite set {ǫ, ab, abab, . . .} of words. We say that a

linear inequation is a symbolic representation of its set of solutions and that a finite

automaton is a symbolic representation of the language it accepts.

The abstract structure of symbolic search is very simple. The forward case is

shown in Figure 1.1.

Forward symbolic search

Initialize C := I

Iterate C := C ∪ post(C) until

C ∩D 6= ∅; return “reachable”, or

a fixed point is reached; return “non-reachable”

Fig. 1.1. The abstract structure of symbolic forward search.

In order to make symbolic search effective for a constrained safety problem, it

suffices to find a family F of sets of configurations satisfying Conditions (1)-(6)

below. We call the elements of F symbolic configurations:



February 23, 2010 12:56 World Scientific Review Volume - 9.75in x 6.5in main

6 J. Esparza and J. Kreiker

• Condition (1). Every symbolic configuration has a (not necessarily

unique) finite symbolic representation.

• Condition (2). The set I of initial configurations is a symbolic configura-

tion, i.e., I ∈ F .

• Condition (3). If C ∈ F , then C ∪ post(C) ∈ F . Moreover, the symbolic

representation of C ∪ post(C) is effectively computable from the symbolic

representation of C.

• Condition (4). For every C ∈ F , the emptiness of C∩D is decidable (i.e.,

there is an algorithm that takes the symbolic representations of C and D

as input, and decides whether the set C ∩D is empty).

• Condition (5). Equality of symbolic configurations is decidable, i.e., there

is an algorithm that takes the symbolic representations of two sets of F as

input and decides whether they represent the same set. This is needed in

order to check if a fixed point has already been reached: If after executing

C := C ∪post(C) the old and new values of C coincide, then the search can

stop.

• Condition (6). If post∗(I) ∩D = ∅, then the chain C0 ⊆ C1 ⊆ C2 . . . of

symbolic configurations, where C0 = I and Ci+1 = Ci ∪ post(Ci), reaches

a fixed point after finitely many steps, i.e. there is an index i such that

Ci = Ci+j for every j ≥ 0.

Conditions (1)-(5) are needed so that the algorithm can run. Condition (6)

guarantees termination. Notice that Condition (5) can be relaxed. It suffices to

have an algorithm satisfying the following properties for every i ≥ 0: if Ci 6= Ci+1

then the algorithm answers “not equal”; if Ci = Ci+1 (and so Ci = Ci+j for every

j ≥ 0), then there is a k ≥ i such that for input Ck, Ck+1 the algorithm answers

“equal”. In other words, if two symbolic configurations are not equal, then the

algorithm immediately answers “not equal”. If they are equal, then the algorithm

may not immediately recognize it, but it eventually answers “equal”.

The algorithm and the effectivity conditions for symbolic backward search are

obtained from those for forward search by exchanging I and D and pre and post.

Forward and backward search look deceptively symmetric, but in practice they

are not. In Section 1.4 we will find a case study in which the set D of dangerous

configurations has a certain property not enjoyed by the set I of initial configura-

tions. This property will make backward search from D effective, while forward

search from I may not terminate.

1.2.4. The Powerset Case

Often the sets belonging to F are finite unions of sets belonging to another family B.

That is, for every C ∈ F there are sets B1, . . . , Bm ∈ B such that C = B1∪. . .∪Bm.

In this case one can symbolically represent C by the set of the symbolic represen-

tations of the Bi’s (we assume that they have one), and conditions (3) and (4)
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can be simplified a bit. Since post(C) =
⋃

r∈R postr(C) =
⋃

r∈R

⋃
1≤i≤m postr(Bi),

Condition (3) can be replaced by: if B ∈ B, then postr(B) ∈ F for every rule r (this

holds in particular if postr(B) ∈ B). Condition (4) can be replaced by: for every

B ∈ B, it is decidable whether B ∩D = ∅.

1.2.5. Making Symbolic Search Terminate

In the next sections we present three concrete verification challenges that can be

solved using symbolic search. They are examples of three different, and increasingly

sophisticated, ways of making Condition (6) hold:

• Finite F . If we manage to find a family F containing only finitely many

sets, say k, then Condition (6) is guaranteed to hold, since necessarily

Ck = Ck+i for every i ≥ 0. This method will be applied to timed automata

in Section 1.3.

• Finite ascending chains. If the family F is infinite but only contains

finite ascending chains with respect to set inclusion, then the chain C0 ⊆

C1 ⊆ C2 . . . of Condition (6) contains a set Cj such that Cj = Cj+k for

every k ≥ 0, and so the condition holds. We will use this reasoning in the

case of linear automata in Section 1.4.

• Accelerations. This is a special case of the well-known widening technique

of abstract interpretation [4]. Assume that F has infinite ascending chains,

but we manage to find an operator ∇ : F ×F → F satisfying the following

properties:

(a) C ∇ post(C) ⊇ C ∪ post(C) for every C ∈ F , and

(b) the chain (Ĉi)i≥0, where Ĉ0 = C0 and Ĉi+1 = Ĉi ∇ post(Ci), reaches

a fixed point after finitely many steps.

We call such an operator ∇ a widening operator. Consider the modified

forward search algorithm in which the line C := C ∪ post(C) is replaced by

C := C ∇ post(C). The modified algorithm clearly terminates. However,

after termination only C ⊇ post∗(I) is guaranteed, and not C = post∗(I),

because at some step of the algorithm we can have C ⊆ post∗(I) but

Ci ∇ post(Ci) 6⊆ post∗(I), i.e., the application of ∇ may produce non-

reachable states. But assume that ∇ further satisfies

(c) for every C ∈ F : C ∇ post(C) ⊆ post∗(C)

In this case we know that Condition (6) holds for the modified algorithm.

We call a modified forward search algorithm with a widening operator sat-

isfying (a), (b) and (c), an acceleration of forward search. An instance of

this acceleration will be applied to pushdown automata in Section 1.5.
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1.3. Timed Automata

As outlined in the Introduction, this section and the next two follow a vertical ap-

proach. First we introduce a small but natural verification challenge in an informal

way. Then we introduce a class of extended automata and use it to produce a

formal model. After that, we define a family of symbolic configurations and show

that it satisfies Conditions (1)-(6) of symbolic search. The crucial part is mostly

Condition (6), and we shall use increasingly sophisticated techniques to establish

it, as described in Section 1.2.5.

1.3.1. The Case Study: A Small Mutex Algorithm

Consider the following simple version of the well-known mutual exclusion problem.

Two processes wish to access a shared resource, and access is granted by entering a

critical section. It must be ensured that exactly one process is granted access (we

say that this process “wins” and the other “loses”). There is no central process

guarding access to the resource, and the processes can only communicate through

one single shared boolean variable v.
If the variable can be tested and set to a new value in a single atomic action

then there is a simple solution:

The initial value of v is set to 1. Both processes execute the following
algorithm: if v = 0, give up (the process loses); otherwise, and in the

same atomic action, set v to 0; then enter the critical section (the process
wins).

Clearly, the first process to access the variable wins, and the other loses.

If an atomic action can either test the value of v or set it to a new value,

but not both, then it is well-known that there is no solution within the limits of a

conventional programming language: more variables are needed. However, Michael

Fischer observed that there is a very simple solution if one assumes that processes

also have access to a clock:

The initial value of v is arbitrary. The i-th process, with i ∈ {1, 2},
executes the following algorithm: at any time before a time unit passes
(strictly before), the process sets v to i; then it waits for any amount
of time exceeding one time unit (str ictly exceeding), and then it tests
whether v = i holds: if v = i, then the process enters the critical section
(and wins), otherwise it gives up (and loses).

Notice that time is not assumed to be discrete; how much less or more than one

time unit the process waits should be irrelevant for the correctness of the algorithm.

We give a formal model of Fischer’s protocol as a timed automaton, and au-

tomatically check that exactly one process accesses the critical section. Timed

automata (TA) were introduced in Alur and Dill’s seminal paper [5]. Most of the

ideas and illustrating examples (except for the worked out case study) are based on
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the excellent survey paper by Bengtsson and Yi [1], with a number of changes and

additions to make the description fit the framework presented in Section 1.2.3.

1.3.2. Timed Automata

Timed automata are a special class of extended automata over variables called

clocks, and with two kinds of rules, called time-delay and state-switch rules. The

formal definition requires some preliminaries.

We call a variable ranging over the non-negative reals a clock. Throughout the

section we assume a set X = {x1, . . . , xk} of clocks. Consequently, a valuation is a

vector of k nonnegative real numbers.

A clock constraint is defined by the following BNF, where ∼ ∈ {<,≤,=,≥, >},

x, y ∈ X , and n is a non-negative integer:

g ::= true | x ∼ n | x− y ∼ n | g ∧ g

A constraint is pure if it does not contain any atomic formulas of the form x−y ∼ n.

A clock valuation ν may satisfy a clock constraint g, written ν |= g. The satisfaction

relation is defined as follows:

• ν |= true for every valuation ν

• ν |= x ∼ n iff ν(x) ∼ n

• ν |= x− y ∼ n iff ν(x) − ν(y) ∼ n

• ν |= g1 ∧ g2 iff ν |= g1 and ν |= g2

Given a valuation ν of a set {x1, . . . , xn} of clocks and a real number δ, we denote

by ν + δ the valuation given by (ν + δ)(i) = ν(i) + δ for every i ∈ {1, . . . , k}.

The time-delay action is the relation TD = {(ν, ν + δ) | ν ∈ V , δ > 0}. Given a

subset Y ⊆ X of clocks and a valuation ν, we denote by νY the valuation given by

νY (i) = 0 for every xi ∈ Y and νY (i) = ν(i) for every xi /∈ Y . The Y -reset action

is the relation RY = {(ν, νY ) | ν ∈ V}.

A timed automaton is an extended automaton over X whose rules satisfy the

following conditions:

• For each control state q there is a rule (q, 2V ,TD , q), i.e., a rule that is

enabled at every clock valuation, does not change the state, and whose

action advances all clocks by a nondeterministically chosen lapse of time δ.

• All other rules are of the form (q, g, RY , q
′) for some pure clock constraint

g and some Y ⊆ X ; i.e., the action consists of resetting the clocks in Y ,

while keeping the values of those in X \ Y .

Rules of the first and second kind are called time-delay and state-switch rules,

respectively. Notice that since the time-delay rules are completely determined by the

set of states one does not need to mention them explicitly. For this reason, they are

omitted in the usual syntax for timed automata and in the graphical representation.
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x2 > 1

〈wait1,wait2, 2〉

〈wait1.cs2, 2〉

x′
1

= 0

x1 < 1 x2 < 1

x′
2

= 0

x2 < 1

x′
2

= 0

〈wait1,wait2, 1〉 〈cs1.req2, 1〉

x1 > 1 x2 > 1

x1 > 1

〈req1, req2, 1〉

〈wait1, req2, 1〉

〈wait1.cs2, 1〉

〈cs1, cs2, 1〉

〈req1.cs2, 2〉

x2 > 1

〈req1, req2, 2〉

〈req1,wait2, 2〉

〈cs1, cs2, 2〉

〈cs1.wait2, 2〉

x1 < 1
x′

1
= 0x′

2
= 0

〈cs1.wait2, 1〉

x1 < 1

x′
1

= 0

x1 > 1
x1 < 1 ; x′

1
= 0

x2 < 1

x2 < 1 ; x′
2

= 0

Fig. 1.2. A small mutex algorithm modeled as a timed automaton. Control locations are triples
representing the local state of the first process, the second process, and the value of a local variable,
which can be either 1 or 2.

We can now model our simplified version of Fischer’s mutex algorithm as the

timed automaton shown in Figure 1.2. A more conventional way of depicting the

protocol in terms of a network of two automata is given in Figure 1.3.a The au-

tomaton has two clocks, x1 and x2, one for each process; we denote the action of

resetting clock xi by x′i = 0. We assume that the i-th process (i = 1, 2) can be in

three states: reqi, previous to setting v to i; waiti, where the process waits before

testing if v = i holds, and csi, in which the process has reached the critical section.

A state of the automaton is a triple (q1, q2, v) where q1 and q2 are the current states

of processes 1 and 2, and v is the current value of the shared variable. A configu-

ration of the automaton consists thus of a state of the automaton and the values

of the two clocks. We write it as a five-tuple; for example, (req1, req2, 1, 0.3, 0.3)

denotes the configuration where process 1 is in state req1, process 2 is in state req2,

the shared variable has value 1 and both clocks, x1 and x2, currently show 0.3 time

units. Here are two sample runs of the automaton, where a number on top of a

transition indicates the time elapsed.

aLoosely speaking, the network consists of two timed automata working in parallel with common
clocks. We refrain from giving a formal semantics here.
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req1

x1 < 1
wait1 cs1

x1 > 1 ∧ v = 1

req2

x2 < 1
wait2

x2 > 1 ∧ v = 2
cs2

v′ = 1, x′
1

= 0

v′ = 2, x′
2

= 0

Fig. 1.3. The case study specified more compactly as a network of two automata. The full version
of Figure 1.2 results from this one by a product construction.

Sample Run 1:

(req1, req2, 1, 0, 0) =⇒ (wait1, req2, 1, 0, 0)
2.1
=⇒ (wait1, req2, 1, 2.1, 2.1)

=⇒ (cs1, req2, 1, 2.1, 2.1)

Sample Run 2:

(req1, req2, 1, 0, 0)
0.7
=⇒ (req1, req2, 1, 0.7, 0.7)

=⇒ (wait1, req2, q, 0, 0.7)
0.2
=⇒ (wait1, req2, 1, 0.2, 0.9)

=⇒ (wait1,wait2, 2, 0.2, 0)
1.8
=⇒ (wait1,wait2, 2, 2, 1.8)

=⇒ (wait1, cs2, 2, 2, 1.8)

1.3.3. Zones and Symbolic Search

In this section we introduce a family F of symbolic configurations for timed au-

tomata, and show that both forward and backward search satisfy Conditions (1) to

(6) (actually, we only present the case of forward search and leave backward search,

which is analogous, to the reader).

For the rest of the section we fix a timed automaton A with a set Q of states

over a set X of clocks, where k = |X |.

Let max be the maximum integer appearing in the guards of the state-switch

rules of A. A clock constraint has max as ceiling if all the integers appearing in it are

smaller than or equal to max . A set of valuations is a zone of A if it is the set of all

valuations satisfying a clock constraint (pure or not) with ceiling max . We denote

the set of all zones by Z. Notice that, while a clock constraint uniquely determines

a zone, the same zone may correspond to many clock constraints. Observe further

that Z is finite: while there are infinitely many clock constraints with ceiling max ,

only finitely many of them are non-equivalent. We call the elements of the set Q×Z

indexed zones. We identify an indexed zone (q, Z) and the set of configurations

{〈q, z〉 | z ∈ Z},
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We choose the family F of symbolic configurations as follows: a set of con-

figurations C is an element of F if there are indexed zones (q1, Z1), . . . , (qm, Zm)

such that C =
⋃m

i=1(qi, Zi). We say that C is a union of indexed zones, and write

F = P(Q×Z), i.e., we choose F as the powerset of the set of indexed zones.

In the remainder of this section we check that this family satisfies Conditions (1)

to (6) for forward search. Since Condition (1) requires the elements of F to have a

finite symbolic representation, we first introduce Difference Bound Matrices [6] to

represent zones, and describe some of their properties.

Difference Bound Matrices (DBMs) In order to define DBMs, we add an

additional reference variable 0 with constant value 0 to the set of clocks, and write

X0 = X ∪ {0}. Any clock constraint g, can then be rewritten as a conjunction

of constraints of the form x − y � n for x, y ∈ X0, �∈ {<,≤}, and n ∈ Z.

First, every constraint involving only one variable, say x < 20, can be rewritten

as x − 0 < 20. Second, teh conjunction of two constraints on the same pair of

variables (e.g. x1 − x2 ≤ 3 and x1 − x2 ≤ 4), can be replaced by the intersection of

both (x1 − x2 ≤ 3 in our case). Therefore, every constraint is equivalent to another

one with one atomic constraint for each pair of clocks from X0, and so g can be

represented as a (k + 1) × (k + 1) matrix, where each element corresponds to an

atomic constraint.

Example 1.3. Consider the zone

g0 = x < 20 ∧ y ≤ 20 ∧ y − x ≤ 10 ∧ y − x ≥ 5 ∧ z > 5

over clocks {x, y, z}. It can be rewritten using 0 and <,≤ only:

g′0 = x− 0 < 20 ∧ y − 0 ≤ 20 ∧ y − x ≤ 10 ∧ x− y ≤ −5 ∧ 0− z < −5

The DBM of g′0 is a 4×4 matrix, whose entries are elements of (Z× {<,≤}) ∪ {∞}.

Assuming 0 has index 0 and x, y, z have indices 1, 2, and 3, respectively, entry

(−5,≤) in row 2, column 3 denotes x − y ≤ −5, and entry ∞ in row 4, column 1,

means “z − 0 ≤ ∞”, that is, z has no upper bound. Entries on the diagonal will

always be (0,≤) to include trivial constraints like x − x ≤ 0. The matrix, M(g′0),

corresponding to g′0 is then:





(0,≤) (0,≤) (0,≤) (−5, <)

(20, <) (0,≤) (−5,≤) ∞

(20,≤) (10,≤) (0,≤) ∞

∞ ∞ ∞ (0,≤)



 = M(g′0)

Closing a DBM. Different DBMs can represent the same zone. Consider for

instance the DBM above, and the one in which the constraint x−0 < 20 is replaced

by x − 0 ≤ 15. Clearly, the zone of the new DBM is included in the zone of the

DBM above. But the contrary also holds: every clock assignment of the DBM above



February 23, 2010 12:56 World Scientific Review Volume - 9.75in x 6.5in main

Verification of Infinite-State Systems 13

satisfies x − y ≤ −5 and y − 0 ≤ 20, and so it also satisfies x − 0 ≤ 15; in other

words, the constraint x − 0 < 20 of the original DBM can be tightened without

changing the zone.

Fortunately, each nonempty zone has a unique DBM that cannot be further

tightened. The process of finding it is called closing a DBM and it yields a canonical

DBM.

For the purpose of this presentation, it shall suffice to say that the canonical form

of a DBM can be computed by a graph interpretation of a DBM, where each clock

is a node, and a constraint between two clocks is a edge labeled by the constraint.

Then closing a DBM amounts to computing all pairs-shortest paths, for example

by using an algorithm like Floyd-Warshall [7].

For instance, in the graph representation of M(g′0) there is an edge labeled

(20, <) from x to 0. However, there is also an edge from x to y labeled (−5,≤) and

an edge1 from y to 0 labeled (20,≤). Going from x to 0 via y adds up to (15,≤)

and is in fact a shorter path than the direct one.

We will mostly write down zones as clock constraints or graphically. In particu-

lar, for two zones, we will draw some illustrating diagrams as the ones in Figure 1.4.

In the rest of the section we sketch the proof of the following theorem:

Theorem 1.1. Let A be a timed automaton, and let I and D be elements of P(Q×

Z). Forward search satisfies Conditions (1)-(6).

Condition (1). Since a zone is finitely represented by its associated clock

constraint (or DBM), each element of P(Q×Z) has a finite representation as a set

of pairs (q, g), where q is a state, and g is a clock constraint.

Condition (2). The set I of initial configurations is an element of P(Q× Z)

by hypothesis. In the case of Fischer’s mutex algorithm the singleton set of clock

assignments {(0, 0)} is a zone, because it is the set of solutions of the clock constraint

x1 = 0 ∧ x2 = 0. Since I = {(req1, req2, 1, 0, 0), (req1, req2, 2, 0, 0)}, we have I ∈

P(Q×Z).

Condition (3). We have to show that if C is an element of P(Q×Z), then so

is C ∪ post(C). Since the set of symbolic configurations is the powerset of another

set, we can apply the observation to Condition (3) in Section 1.2.4; so it suffices to

show that for every indexed zone (q, g) and for every rule r of the timed automaton

the set postr({(q, g)}) is the union of indexed zones. In fact, we can show a stronger

result: either postr({(q, g)}) is empty (and so the union of the empty set of zones),

or a zone (q′, g′) (and so the union of a set of zones containing only one element).

We consider separately the case in which r is a time-delay and a state-switch rule.

• Time-delay rules: Consider an indexed zone (q, g). Notice that if g

implies a constraint x−y ≤ n, then so do all clock valuations reachable from

g by a time delay (because a delay increases the values of all clocks by the

same amount). Furthermore, the valuations reachable through time delays

can reach arbitrarily large values for each clock. From this observation it is



February 23, 2010 12:56 World Scientific Review Volume - 9.75in x 6.5in main

14 J. Esparza and J. Kreiker

easy to see that if g is given as a DBM M(g), then the valuations reachable

from those satisfying g by means of time delays are represented by the

DBM obtained by setting all entries of M(g) in column 0 to ∞. Recall

that column 0 contains entries representing x − 0 ≤ n, that is, just upper

bounds on individual clocks. From this DBM we can easily get a constraint

g′ for the set of reachable valuations, and we have postr({(q, g)}) = (q, g′).

• State-switch rules: Consider an indexed zone (q, g) and a state-switch

rule r = (q, g′′, RY , q
′). If g ∧ g′′ is unsatisfiable, then postr({(q, g)}) is

empty. If g∧g′′ is satisfiable, letM(g∧g′′) be a closed DBM for g∧g′′ (which

can be computed because clock constraints are closed under conjunction).

We compute another closed DBM corresponding to resetting the clocks of

Y in all clock valuations satisfying g ∧ g′′. This DBM is obtained from

M(g∧ g′′) as follows: for every clock xi ∈ Y , replace the constraints in row

i, column 0, and row 0, column i of M(g) by (0,≤), and remove all other

bounds on xi (i.e., replace all other constants in row i or column i by ∞ or

−∞); finally, close the result. From this DBM we extract a clock constraint

g′, and we have postr({(q, g)}) = (q′, g′).

Notice that the operations on DBMs do not introduce any constant larger than the

ceiling of the automaton under consideration, and so the result is indeed a zone as

we defined it.

Condition (4). We have to show that if C,D ∈ P(Q×Z), then it is decidable

whether C ∩ D = ∅. Clearly, it suffices to show that if g and g′ are zones, then

we can decide whether g ∧ g′ is empty. For this, notice that since clock constraints

are closed under conjunction we can get a DBM for g ∧ g′. For a zone to be empty

there must be a pair of clocks such that the upper bound on their difference is

smaller than the lower bound. This corresponds to a negative cycle in the graph

interpretation, of the DBM, which can be detected using well-known techniques.

Condition (5). The strong version of the condition states that given two sym-

bolic configurations C1, C2, it is decidable whether C1 = C2 holds. While equality

of symbolic configurations is in fact decidable, the weaker condition explained in

Section 1.2.3 is much easier to prove (and leads to a more efficient search algorithm).

Recall the condition: given the chain C0 ⊆ C1 ⊆ C2 . . . of symbolic configurations,

where C0 = I and Ci+1 = Ci ∪ post(Ci), there is an algorithm satisfying the follow-

ing properties: if two sets are not equal, then the algorithm answers “not equal”;

if there is an index i such that Ci = Ci+j for every j ≥ 0, then there is also k ≥ i

such that for input Ck, Ck+1 the algorithm answers “equal”. We provide such an

algorithm. Let γi denote the symbolic representation of Ci as a set of pairs (q,M),

where q is a state and M is a closed DBM. Since post((q,M)) is a set of zones, we

have γ0 ⊆ γ1 ⊆ γ2 . . .. Since the set of indexed zones is finite, there is a γk such

that γk = γk+1, i.e., γk and γk+1 contain exactly the same pairs (q,M). So the

algorithm just compares the symbolic representations, and answers ‘equal’ if they
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are syntactically equal.

Condition (6). The chain C0 ⊆ C1 ⊆ C2 . . . necessarily reaches a fixed point

after finitely many steps, because the set P(Q × Z) of symbolic configurations is

finite. This is an instance of the finite case of Section 1.2.5.

1.3.4. Zone Graph of Fischer’s Mutex Algorithm

We have shown in Condition (3) above that if C is an indexed zone, then for every

rule r the set postr(C) is also an indexed zone. One can then define the zone

graph of a timed automaton: the nodes of the graph are the indexed zones, and

there is an edge from (q, g) to (q′, g′) if {(q′, g′)} = postr({(q, g)}) for some rule r.

The reachable part of the zone graph of the timed automaton modelling Fischer’s

algorithm is shown in Figure 1.5. More precisely, the figure only shows one half of

the graph, the other half is completely symmetric with the roles of the processes

swapped. We use clock constraints to represent zones. All zones occurring in the

zone graph are also given as a two-dimensional point set in Figure 1.4, and it is

advisable to digest both figures in parallel.

From the zone graph one can easily see how the symbolic forward search proce-

dure works. The set I is the indexed zone at the top of the figure. After k iterations

the set C contains all the indexed zones that can be reached from i in k steps. Since

the zone graph does not contain any node in which both processes are in the critical

section, mutual exclusion holds.

We shall now symbolically follow Sample Run 2 presented at the end of Section

1.3.2. The initial symbolic configuration is a pair of state 〈req1, req2, 1〉 and zone

x1 = 0∧ x2 = 0, where both processes are requesting access to the shared resource.

The point set representation of this zone consists of a single point in the two-

dimensional space and is depicted in Figure 1.4 (b).

• From this configuration, we can either let time elapse, as indicated by the

dashed arrow, or we could let process 1 move to state wait1, as indicated

by the solid arrow. The latter transition does not change the zone part of

the symbolic configuration, while the first one results in the zone shown in

(c). Graphically, a time-delay action amounts to constructing the shadow

of a light source at (−∞,−∞). Note that the origin is excluded since at

least an arbitrarily small amount of time must elapse. Point exclusion is

depicted as a circle.

• While x1 is still smaller than 1, process 1 may enter the wait1 state, while

process 2 remains unaffected. The effect to the zone part of the symbolic

configuration, resets x1 to zero. Note that we apply the reset to the con-

junction of zone (c) and the guard x1 < 1. So the resulting zone is (d),

where x2 is known to be strictly between 0 and 1.

• From here we let time elapse again and, according to the shadow intuition,

end up in a zone that resembles (a) and (g), but is not shown in Figure 1.4.
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It is obtained by extending (g) to the x2 axis.

• Now process 2 moves to wait2 thereby setting the value of v to 2. Together

with the guard x2 < 1, the previous zone has x2 reset yielding zone (e).

• Faithful to our behavior so far, we let time elapse again, that is, apply the

shadow operation to (e), which results in zone (a).

• As the final transition of this run we let process 2 move to the critical

section. The guard x2 > 1 ensures that the shadow only starts at values

greater than 1.

1.3.5. Conclusion and Further Reading

We have introduced timed automata, and shown that by taking zones as symbolic

configurations forward search becomes effective. A slight modification of the argu-

ments shows that backward search is effective as well.

Much of the content of this section is taken from [1], where Bengtsson and

Yi describe the efficient implementation of forward and backward search used in

UPPAAL, the leading tool for the analysis of timed automata. A survey by Alur

and Madhusudan on the decidability and complexity of decision problems for timed

automata can be found in [8].
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(a)

x2

x1

x1, x2 > 0, 0 < x1 − x2 < 1

(b)

x2

x1

x1 = x2 = 0

(c)

x2

x1

x1, x2 > 0, x1 − x2 = 0

(d)

x2

x1

x1 = 0, 0 < x2 < 1

(e)

x2

x1

0 < x1 < 1, x2 = 0

(f)

x2

x1

x1, x2 > 1, x1 − x2 = 0

(g)

x2

x1

x1, x2 > 1, 0 < x2 − x1 < 1

(h)

x2

x1

x1, x2 > 1, 0 < x1 − x2 < 1

Fig. 1.4. Some zones of the zone graph shown as point sets.
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x1 = x2 = 0

〈req1, req2, 1〉

0 < x1 < 1, x2 = 0

〈wait1,wait2, 2〉

〈wait1,wait2, 2〉
x1, x2 > 0, 0 < x1 − x2 < 1

〈wait1, cs2, 2〉

x1, x2 > 1, 0 < x1 − x2 < 1

〈req1, req2, 1〉
x1, x2 > 0, x1 − x2 = 0

〈wait1, req2, 1〉
x1 = 0, 0 < x2 < 1

〈cs1, req2, 1〉
x1, x2 > 1, 0 < x2 − x1 < 1

x1 = x2 = 0

〈wait1,wait2, 2〉

〈wait1,wait2, 2〉
x1, x2 > 0, x1 − x2 = 0

〈wait1, cs2, 2〉
x1, x2 > 1, x1 − x2 = 0

〈wait1, req2, 1〉
x1 = x2 = 0

〈wait1, req2, 1〉
x1, x2 > 0, x1 − x2 = 0

〈cs1, req2, 1〉
x1, x2 > 1, x1 − x2 = 0

〈wait1, req2, 1〉
x1, x2 > 0, 0 < x2 − x1 < 1

Fig. 1.5. One half of the zone graph of our case study.
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1.4. Linear Automata

In this section we model a cache coherence protocol as a linear automaton, an

extended automaton over non-negative integer variables whose guards and actions

are linear expressions, and verify that it satisfies a property by means of a symbolic

backward search. We prove that this search always terminates by showing the

absence of infinite ascending chains in our family of symbolic configurations.

1.4.1. The Case Study: A Cache Coherence Protocol

Our case study is a simple cache coherence protocol for a multiprocessor system in

which each processor has a local cache connected to main memory by a bus.

Recall that a cache memory provides a processor with a copy of a part of the

current main memory for fast access during program execution. Local caches on

multiprocessor machines improve performance, but introduce the cache coherence

problem: multiple cached copies of the same block of memory must be kept consis-

tent. The following scenario must be avoided: processor A writes a memory block

for which processor B has a local copy in cache; before the cache is updated, pro-

cessor B reads it; processor B believes it is getting the updated value of the block,

while in fact it only gets the old value. We say that a memory block (in main

memory or in a cache) is valid if it has been updated with the value of the last write

access by any processor, and invalid otherwise. A cache management protocol is

called coherent if a read access always provides a valid block.

Coherence is usually guaranteed by means of write-invalidate protocols: when-

ever a processor modifies a cache memory block (a cache line), the block address and

a bus invalidation signal is sent to all other caches. Receiving this signal invalidates

the corresponding cache line and an updated copy of the block must be fetched from

main memory. (Write protocols send a copy of the new data to all caches sharing

the old data). Snoopy caches continuously “listen” to the block addresses sent over

the bus by other processors, and react when the addresses match their own cache

lines (bus snooping).

We describe the MESI protocol, a write-invalidate, snoopy protocol [9]. For

simplicity, we assume that each processor has one single cache-line, i.e., only one

memory block is copied in the cache, and so we speak of a cache instead of a cache

line. We model each processor as logically divided into a CPU that sends read and

write requests to a cache-management unit (CMU), which is also connected to the

bus.

In the MESI protocol a CMU is always in one out of four possible states: modified

(M), exclusive (E), shared (S), and invalid (I), with the following intended meaning:

in I, the cache is invalid; in S, the cache is valid, and there maybe other valid caches;

in E, the last write access was performed by the CMU’s own CPU, and so it is valid;

moreover, the value has already been transferred to main memory, i.e., the value in

main memory is also valid, but no other cache is valid; finally, in state M the last
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n most recent writes, with n > 1, have been performed by the cache’s own CPU;

however, the last write has not been transferred to main memory yet; so the cache

is valid, but main memory is not, and no other cache is valid.

The CMU can receive read or write requests. A read/write request to a valid

cache is a read/write hit, otherwise a read/write miss. The reactions of the CMU

are as follows:

• Read Hit. Only possible from states other than invalid. The CMU returns

the local value of the cache, no coherence action is required.

• Read Miss. Only possible in state invalid. The CMU goes from invalid

to shared, all caches in states exclusive or modified go to shared.

• Write Hit. Only possible in states other than invalid. If the CMU is in

state shared, it goes to exclusive after invalidating the contents of all other

caches; if it is in exclusive or modified it goes to modified, no bus transition

is required.

• Write Miss. Only possible in state invalid. The CMU goes from invalid

to exclusive after invalidating all other caches.

The actual property we are interested in is cache coherence. However, proving

cache coherence for a protocol is too complex to achieve within the limits of this

chapter. So we shall establish and formally prove an important necessary condition

for cache coherence: A cache in state M (modified) should be the only valid cache.

1.4.2. Linear Automata

Linear automata are extended automata over non-negative integer variables, with

guards and actions given by linear expressions. The formal definition requires some

preliminaries.

Let x = (x1, . . . , xn) be a tuple of non-negative integer variables. A valuation

of x is therefore an element of Nn. A linear constraint over x is inductively defined

as follows:

• a linear inequation over x1, . . . , xn with rational coefficients is a linear con-

straint;

• a boolean combination of linear constraints is a linear constraint.

A solution of a linear constraint is a tuple k = (k1, . . . , kn) ∈ N
n such that si-

multaneously substituting k1, . . . , kn for x1, . . . , xn yields a true expression. The

set of solutions of a linear constraint φ is denoted by [[φ]]. An example of a linear

constraint over the variables x, y, z is φ = (x ≥ y + 1 ∧ y = 3z), and we have

[[φ]] = {(3k + 1 + l, 3k, k) | k, l ∈ N}. We often identify a constraint and its set of

solutions.

A linear transformation is a system of linear equations over two tuples x =
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(x1, . . . , xn) and x′ = (x′1, . . . , x
′
n) of variables of the form

x′1 = f1(x1, . . . , xn)

. . .

x′n = fn(x1, . . . , xn)

We sometimes denote a linear transformation by x′ = τ(x, and write ττ(x =

(f1(x, . . . , fn(x)) As for linear constraints, a solution of a linear transformation is

a pair ((k1, . . . , kn), (k′1, . . . , k
′
n)) ∈ N

n ×N
n satisfying all equations.

We are now ready to formally define linear automata. A linear automaton is an

extended automaton over a tuple x of non-negative integer variables that satisfies

the following two conditions: the guards of the rules are linear constraints over x,

and the actions of the rules are linear transformations over x and x′.

Let us now see how the MESI protocol can be formalized as a linear automaton.

The automaton has only one state q, and acts on a four-tuple (m, e, s, i) of variables.

A configuration 〈q, (km, ke, ks, ki)〉 indicates that the number of CMUs in states M ,

E, S, and I, is km, ke, ks and ki, respectively. Notice that km + ke + ks + ki is the

total number of CMUs, and does not change during the execution of the protocol.

Guards are linear constraints over the tuple (m, e, s, i) of variables, and actions are

linear transformations over the tuples (m, e, s, i), (m′, e′, s′, i′). The dynamics of the

protocol is modelled by the rules of Table 1.1, which correspond to the intended

behavior of the protocol after a Read Hit, Read Miss, Write Hit, and Write Miss.

For instance, a Write Hit can take place if some cache is in state S, i.e., if s ≥ 1,

and it changes the state of this cache to E, and the state of all other caches to I,

i.e., e′ = 1 and i′ = m + e + s + i − 1. Notice that, since the automaton only has

one state, it is not necessary to indicate the source and the target state of a rule.

Table 1.1. Rules of the MESI protocol.
Event Guard Action Rule Name

Read Hit m + e + s ≥ 1
m′ = m e′ = e

s′ = s i′ = i
r1

Read Miss i ≥ 1
m′ = 0 e′ = 0
s′ = m + e + s + 1 i′ = i − 1

r2

m ≥ 1
m′ = m e′ = e

s′ = s i′ = i
r3

Write Hit e ≥ 1
m′ = m + 1 e′ = e − 1
s′ = s i′ = i

r4

s ≥ 1
m′ = 0 e′ = 1
s′ = 0 i′ = m + e + s + i − 1

r5

Write Miss i ≥ 1
m′ = 0 e′ = 1
s′ = 0 i′ = m + e + s + i − 1

r6

The initial configurations of the protocol are those satisfying the constraint

(m = 0 ∧ e = 0 ∧ s = 0), i.e., initially all CMUs are in the state invalid.

An n-configuration is a configuration whose valuation satisfies the constraint

m + e + s + i = n. For instance, 〈q, (2, 0, 2, 0)〉 is a 4-configuration. Since the
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number of CMUs does not change during the execution of the protocol a transition

leaving a n-configuration always leads to another n-configuration. Therefore, for

each fixed value of n the set of reachable states of the protocol is finite and can be

exhaustively explored. However, this only allows to verify properties of the protocol

for one particular instance of the protocol, the one with n participating CMUs. The

challenge is to automatically verify that a property holds for any number of CMUs.

We can formally state our example property – a cache in state modified should be

the only valid cache – in terms of linear constraints as follows: The MESI protocol

should never reach any configuration satisfying the linear constraint (m ≥ 1∧e+s ≥

1) ∨m ≥ 2. We automatically check that this is the case.

1.4.3. Lc-sets and Backward Search

In this section we introduce a family F such that backward search satisfying con-

ditions (1) to (5), but not condition (6). This means that, while we can apply this

version of backward search to linear automata, there are instances for which the

algorithm does not terminate. In Section 1.4.4 we will first apply the algorithm to

the MESI protocol, and observe that in this case it does terminate. In Section 1.4.5

we will show that this is not a coincidence: we prove that the algorithm always ter-

minates for the subclass of monotonic linear automata, of which the MESI protocol

is an instance, when the set D of dangerous configurations is upward closed, which

will also be the case.

All linear automata modeling cache-coherence protocols have only one control

state. In what follows, for the sake of simplicity, we only consider this special case,

but the reader will have no difficulty in extending the results to the case of several

states.

When the automaton has one state, a configuration is completely determined

by its valuation. So we write ν instead of 〈q, ν〉 and speak of “the configuration ν”.

Also, instead of 〈q, ν〉 =⇒ 〈q, ν〉 we just write ν =⇒ ν′.

A set of configurations C is linearly constrained, or an lc-set for short, if there

is a linear constraint φ such that C = [[φ]]. We choose the lc-sets as symbolic

configurations, i.e., F contains all lc-sets. In the rest of this section we prove the

following result:

Theorem 1.2. Let A be a linear automaton, and let I and D be lc-sets. Symbolic

backward search with lc-sets satisfies conditions (1)-(5), but not condition (6).

Condition (1). An lc-set C is finitely represented by the linear constraint φ

such that C = [[φ]].

Condition (2). The set D is an lc-set by hypothesis. Notice that in the case

of the MESI protocol we have D = (m ≥ 1 ∧ e + s ≥ 1) ∨m ≥ 2, and so D is an

lc-set.

Condition (3). We have to show that if C is an lc-set, then C ∪ pre(C) is also

an lc-set. Since linear constraints are closed under disjunction, the union of two
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lc-sets is also an lc-set. So it suffices to show that prer(C) is an lc-set for every rule

r. We need a bit of notation.

Let φ be a linear constraint over a tuple x = (x1, . . . , xn) of variables, and let

x′ = τ(x) be a linear transformation . We write φ[x/τ(x)] to denote the constraint

obtained by syntactically replacing every occurrence of xi in φ by the expression

fi(x1, . . . , xn) of τ (i.e., the right-hand-side of the equation for x′i in τ).

For example, let φ0 = (e ≤ m+ 1 ∧ s = 3m+ 2i), and let τ(x) be the transfor-

mation of rule r4 of Table 1.1. Then

φ0[x/τ(x)] = (e ≤ m+ 1 ∧ s = 3m+ 2i)[e/e− 1,m/m+ 1]

= (e− 1 ≤ m+ 1 + 1 ∧ s = 3(m+ 1) + 2i)

which can be simplified to (e ≤ m+ 3 ∧ s = 3m+ 2i+ 3).

We can now prove the following lemma, which shows how to compute a linear

constraint for prer(C) given a linear constraint for C.

Lemma 1.1. Let φ and τ be the linear constraint and the linear transformation cor-

responding to the guard and the action of a rule r. Let ψ be a constraint representing

an lc-set C (i.e., C = [[ψ]]). We have:

prer(C) = [[φ ∧ ψ[x/τ(x)]]] .

Proof. Observe first that [[ψ[x/τ(x]] is the weakest precondition of [[ψ]] under the

simultaneous assignment x := τ(x). This follows immediately from the well-known

weakest-precondition rule for simultaneous assignment. So [[ψ[x/τ(x)]]] contains all

states that are transformed into states of C by τ . However, for such a state to

belong to prer(C) it must also satisfy the guard φ, and the lemma follows. �

For example, consider rule r4 of the MESI-protocol of Table 1.1, and let C = [[φ0]]

with φ0 as above. We have

prer4
(C) = prer3

(e ≤ m+ 1 ∧ s = 3m+ 1/2i)

= e ≥ 1 ∧ e ≤ m+ 3 ∧ s = 3m+ 1/2i+ 3

With the help of this lemma we can easily establish Condition (3): if C is an

lc-set of configurations, then so is C ∪ pre(C). Since linear constraints are closed

under disjunction, it suffices to show that prer(C) is an lc-set for every rule r. By

Lemma 1.1, it suffices to show that φ∧φ[x/τ(x)] is a linear constraint, where φ and

τ are the guard and the transformation of the rule r, respectively. Since φ is linear,

we only have to show that φ[x/τ(x)] is linear. This follows from the fact that τ

is a linear transformation. Let x′i = fi(x) the the i-th inequation of τ . For every

1 ≤ i ≤ n, we have to replace every occurrence of xi in φ by fi(x). Since fi(x) is

linear, the result of the substitution is again a linear constraint.

Condition (4) For every lc-set C the emptiness of C ∩ I is decidable. Since we

assume that both C and I are lc-sets represented by linear constraints, say φC and

φI , we have C ∩ I = [[φC ∧ φI ]], and so it suffices to prove the decidability of the
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satisfiability problem for linear constraints. This follows easily from the following

observations:

• Every linear constraint is equivalent (has the same solutions) to a linear

constraint without negations.

To prove this, observe first that negations can be pushed inwards through

conjunctions and disjunctions. Then, observe that the negation of a linear

(in)equation is equivalent to a disjunction of linear (in)equations. For in-

stance ¬(x ≤ y) is equivalent to (x > y′), and ¬(x = y) is equivalent to

(x < y) ∨ (y < x).

• Every constraint is equivalent to a constraint in disjunctive normal form

without negations.

• Every disjunct of a constraint in disjunctive normal form without negations

is a system of Diophantine equations and inequations.

So the satisfiability problem reduces to deciding if a system of linear Diophan-

tine equations and inequations has a solution. In turn, this problem can be reduced

to Integer Linear Programming, which is known to be solvable in nondeterministic

polynomial time (see for instance [10]). Specific algorithms for Diophantine equa-

tions and inequations also exist, see for instance [11]. The algorithm corresponding

to this sketch of a decidability proof is not efficient, but the issue of efficiency is

beyond the scope of this paper, and we refer the reader to the literature.

Condition (5) The equality of lc-sets is decidable. Given two constraints φ1, φ2,

we have [[φ1]] = [[φ2]] if and only if [[(φ1 ∧ ¬φ2) ∨ (¬φ2 ∧ φ1)]] = ∅, which we have

shown to be decidable when proving that Condition (4) holds.

It remains to show that Condition (6) fails. Consider the linear automaton

acting on two variables x, y, and having one single rule with x ≤ 1 as guard and

x′ = x − 1, y′ = y + 1 as action. Let D = (x = 0). Then pre∗(D) = true, but

prei(D) = (x ≤ i), and so backward search does not terminate.

1.4.4. Backward Search for the MESI Protocol

We apply backward search with lc-sets to the MESI protocol. We start with:

D = (m ≥ 1 ∧ e+ s ≥ 1) ∨m ≥ 2 .

We compute pre(D) using the procedure sketched in the proof of Condition

(3). Notice that for our reachability problem it is not necessary to consider rules

r1 and r3 of Table 1.1, because their actions are the identity transformation.
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pre(D)

= prer2
(D) ∪ prer4

(D) ∪ prer5
(D) ∪ prer6

(D)

= (i ≥ 1 ∧D[m/0, e/0, s/m+ e+ s+ 1, i/i− 1])

∨ (e ≥ 1 ∧D[m/m+ 1, e/e− 1])

∨ (s ≥ 1 ∧D[m/0, e/1, s/0, i/m+ e+ s+ i− 1])

∨ (i ≥ 1 ∧D[m/0, e/1, s/0, i/m+ e+ s+ i− 1])

= i ≥ 1 ∧ ((0 ≥ 1) ∧ 0 +m+ e+ s+ 1 ≥ 1) ∨ 0 ≥ 2)

∨ e ≥ 1 ∧ ((m+ 1 ≥ 1 ∧ e− 1 + s ≥ 1) ∨m+ 1 ≥ 2)

∨ s ≥ 1 ∧ ((0 ≥ 1) ∧ 1 + 0 ≥ 1) ∨ 0 ≥ 2)

∨ i ≥ 1 ∧ ((0 ≥ 1) ∧ 1 + 0 ≥ 1) ∨ 0 ≥ 2)

= e ≥ 1 ∧ (e+ s ≥ 2 ∨m ≥ 1)

= (e ≥ 1 ∧ e+ s ≥ 2) ∨ (e ≥ 1 ∧m ≥ 1)

(Note that, since we are reasoning about non-negative integers only, it is always

possible to drop constraints of the form x ≥ 0.)

We can simplify D ∪ pre(D) by getting rid of e ≥ 1 ∧m ≥ 1, which is implied

by the first disjunct of D, to obtain

D ∪ pre(D) = (m ≥ 1 ∧ e+ s ≥ 1) ∨m ≥ 2 ∨ (e ≥ 1 ∧ e+ s ≥ 2) .

It is easy to see that D ⊂ D∪pre(D) holds – for instance because the configura-

tion (0, 1, 1, 0) ∈ pre(D) \D. So we proceed with the search by computing pre2(D),

this time without so much detail as in the previous case:

pre2(D)

= prer4
(pre(D))

= e ≥ 1 ∧ (e− 1 ≥ 1 ∧ (m+ 1 ≥ 1 ∨ e− 1 + s ≥ 2))

= e ≥ 2 ∧ (m ≥ 0 ∨ e+ s ≥ 3)

= e ≥ 2

Since [[e ≥ 2]] ⊂ [[e ≥ 1 ∧ e + s ≥ 2]], we obtain pre2(D) ⊂ pre(D), which implies

D∪ pre(D) = D∪ pre(D)∪ pre2(D). So backward search has reached a fixed point,

and we can conclude

pre∗(D) = D ∪ pre(D) = (m ≥ 1 ∧ e+ s ≥ 1) ∨m ≥ 2 ∨ (e ≥ 1 ∧ e+ s ≥ 2) .

Recall that the set I of initial configurations of the MESI protocol is given by

I = (m = 0∧ e = 0∧ s = 0). So I ∩pre∗(D) = ∅, and so the MESI protocol satisfies

that a cache in state modified is the only valid cache.

1.4.5. Monotonic Linear Automata and Upward-Closed Sets

Termination of the algorithm for the MESI protocol is not just luck. We show that

backward search always terminates for monotonic linear automata, of which the

MESI protocol is an instance, when the set of dangerous configurations is upward

closed, which is also the case.
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A linear automaton is monotonic if the following condition holds: for all config-

urations ν1, ν
′
1, ν2 ∈ N

n, if ν2 ≥ ν1 and ν1 =⇒ ν′1 (i.e., ν′1 is reachable from ν1 in

one step), then there exists ν′2 ≥ ν′1 such that ν2 =⇒ ν′2.

The automaton of the MESI protocol is monotonic: Assume ν2 ≥ ν1 and

ν1 =⇒ ν′1. Then there exists a rule r of the automaton with a guard φ and a

linear transformation τ such that ν1 ∈ [[φ]] and ν′1 = τ(ν1). Since ν2 ≥ ν1 and φ is

of the form q ≥ 1 for some q ∈ {m, e, s, i} (see Table 1.1), we have ν2 ∈ [[φ]]. So

ν2 =⇒ ν′2 for ν′2 = τ(ν2). Since ν2 = ν1 + δ for some non-negative vector δ and τ

is linear, we have ν′2 = τ(ν1 + δ) = τ(ν1) + τ(δ). For the linear transformations of

Table 1.1 the vector τ(δ) is also non-negative, and so ν′2 ≥ ν′1.

We study symbolic backward on monotonic linear automata with a new class of

symbolic configurations, the upward-closed sets.

Given ν, ν′ ∈ N
n, we say ν ≤ ν′ if ν(i) ≤ ν′(i), for every i ∈ [1..n], where ν(i)

and ν′(i) denote the i-th component of ν and ν′, respectively; we say ν � ν′ if

ν ≤ ν′ and ν(i) < ν′(i) for some i ∈ [1..n]. A set of configurations C of a linear

automaton is upward-closed if ν ∈ C and ν′ ≥ ν implies ν′ ∈ C. A linear constraint

φ is upward closed if [[φ]] is upward closed.

Observe that the linear constraint φ = (m ≥ 1 ∧ s + e ≥ 1) ∨m ≥ 2 is upward

closed, and so the set D = [[φ]] of dangerous configurations of the MESI protocol is

upward closed.

At first glance, the relation between the upward-closed and the lc-sets is not

clear. We show that upward-closed sets are a special class of lc-sets. For this we

need the following well-known result, a variant of Dickson’s lemma. For the sake of

completeness, we sketch a proof.

Lemma 1.2. Any set C ⊆ N
n has finitely many minimal elements with respect to

the partial order ≤.

Proof. Assume there exists C ⊆ N
n such that the setM ⊆ C of minimal elements

of C is infinite. We prove by induction on n that M contains two elements ν, ν′ such

that ν � ν′, contradicting the assumption that ν′ is a minimal element of C. In

fact, we prove a stronger statement: M contains an infinite chain ν1 � ν2 � ν3 . . ..

For the base case n = 1, let ν1 be a minimal element of M , ν2 a minimal element

of M \ {ν1}, ν3 a minimal element of M \ {ν1, ν2} etc. Since for n = 1 the order

≤ is total, we have ν1 � ν2 � ν3 . . .. For the induction step, assume n ≥ 1. Given

a configuration ν ∈ N
n, let ν′ ∈ N

(n−1) denote the projection of ν onto the first

(n − 1) components, and let l ∈ N denote the value of ν’s last component, i.e.,

ν is obtained by adding l to ν′ as last component. By induction hypothesis, M

contains configurations ν1, ν2, ν3, . . . whose projections satisfy ν′1 � ν′2 � ν′3 . . ..

Choose an index i1 such that li1 ≤ lj for every j ∈ N; then an index i2 such

that li2 ≤ lj for every j ∈ N \ {1, 2, . . . , i1}; then an index i3 such that li3 ≤ lj
for every j ∈ N \ {1, 2, . . . , i2}etc. This produces an infinite sequence of indices

i1 < i2 < i3 . . . such that li1 ≤ li2 ≤ li3 . . .. Since ν′i1 � ν′i2 � ν′i3 . . . also holds, we
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get νi1 � νi2 � νi3 . . .. �

Now, let C be an arbitrary upward-closed set. By Lemma 1.2, C has finitely

many minimal elements ν1, . . . , νk. Let νi = (k1
i , . . . , k

n
i ); then C = [[φ1 ∨ . . . ∨ φk]],

where φi = x1 ≥ k1
i ∧ . . . ∧ xn ≥ kn

i . So C is an lc-set.

In the rest of this section we sketch the proof of the following result:

Theorem 1.3. Backward search satisfies Conditions (1)-(6) for each monotonic

linear automaton A, upward closed set D, and lc-set I.

Condition (1). Since upward-closed sets are linearly constrained, they have a

finite symbolic representation as the set of solutions of a constraint. Moreover, since

an upward-closed set is completely determined by its set of minimal elements, and

by Lemma 1.2 this set is finite, an upward-closed set can also be finitely represented

by its set of minimal elements.

Condition (2) holds by hypothesis. In the case of the MESI protocol we have

D = (m ≥ 1 ∧ e + s ≥ 1) ∨m ≥ 2, which is equal to the upward-closed set with

{(1, 1, 0, 0), (1, 0, 1, 0), (2, 0, 0, 0)} as set of minimal elements.

For Condition (3) we have to show that, if C is an upward-closed set of con-

figurations of a monotonic linear automaton, then pre(C) is also upward closed.

This amounts to proving that ν1 ∈ pre(C) and ν2 ≥ ν1 imply ν2 ∈ pre(C). Since

ν1 ∈ pre(C), there exists ν′1 ∈ C such that ν1 =⇒ ν′1 and ν′1 ∈ C. Since the automa-

ton is monotonic and ν2 ≥ ν1, there exists ν′2 ≥ ν′1 such that ν2 =⇒ ν′2. Since C

is upward-closed, ν′1 ∈ C, and ν′2 ≥ ν′1, we have ν′2 ∈ C, and so ν2 ∈ pre(C). Note

that the union of two upwards closed sets is upwards closed, and so C ∪ pre(C) is

upwards closed if C is.

We have not yet shown that a symbolic representation of pre(C) can be ef-

fectively computed from the symbolic representation of C, but this holds for the

representation as linear constraint because of Lemma 1.1. It is not difficult to see

that it also holds for the representation by the set of minimal elements. We leave

the design of an algorithm that, given the minimal elements of C as input, yields

the minimal elements of pre(C) as output, as an exercise for the reader.

Conditions (4) and (5) follow immediately from Lemma 1.2 and the fact that

the same conditions hold for lc-sets.

Finally, we prove that Condition (6) also holds, namely that every infinite

chain U1 ⊆ U2 ⊆ U3 . . . of upward-closed sets contains an element Uk such that

Uk =
⋃

i≥1 Ui. By Lemma 1.2, the set M of minimal elements of
⋃

i≥1 Ui is finite,

and so there exists an index k such that M ⊆ Uk. Let Mk denote the set of

minimal elements of Uk. Since Uk is upward-closed and M ⊆ Uk, we necessarily

have M = Mk. It follows Uk =
⋃

i≥i Ui, which concludes the proof of Theorem 1.3.

Therefore, the fact that our backward search computation terminated for the

MESI protocol was not a stroke of luck: for monotonic protocols, and if the set D

is upward-closed, the computation is guaranteed to terminate.
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1.4.6. Conclusion and Further Reading

Delzanno has used backward search to automatically prove properties of other cache-

coherence protocols [2]. Some of them can be modelled by monotonic automata,

others cannot. Remarkably, backward search terminates in all cases

The termination of backward search has been shown by proving that the domain

of symbolic configurations satisfies the ascending chain condition. In turn, this

result is based on the existence of an order ≤ on the set V of valuations (Nn in our

case) satisfying the following two fundamental properties:

• the extended automaton is monotonic w.r.t. ≤, and

• every subset of V has finitely many minimal elements w.r.t. ≤; an order

satisfying this property is called a well-order.

These properties turn out to hold not only for monotonic linear automata, but

for other classes of extended automata working on other data structures, like lossy

channel systems, a class of automata working on tuples of words, or timed Petri nets.

Historically, the approach was first applied by Abdulla and Jonsson to lossy channel

systems [12]. In a series of papers, with different co-authors, Abdulla and Jonsson

have vastly generalized and extended the original idea (see for instance [13]); Finkel

and Schnoebelen have also contributed very substantially [14].

1.5. Pushdown Automata

In this section we model a small recursive sequential program as a pushdown au-

tomaton. Pushdown automata were already shown to be an instance of extended

automata in Example 1.2. We prove a simple property of the program by means of

an accelerated forward symbolic search.

1.5.1. The Case Study: Skylines

Consider the C-program of Figure 1.6, taken from [3]. The question marks in the

conditionals mean nondeterministic choice, which is not a primitive in C but could

be easily simulated. The program may be understood as a controller for a plotter

or for printing on the screen. The procedures up, right, and down are supposed to

draw a line of unit length, starting at the current position of the pen or the cursor,

in the direction indicated by the name of the procedure; the code for this is omitted,

for our purposes we can just assume that they return immediately.

The program is supposed to draw skylines like the one shown on the left of

Figure 1.7. In the course of this section we will prove that the program never draws

degenerate skylines like the one on the right of Figure 1.7. A skyline is degenerate

if at some point the program draws a line going up, and immediately after a line

going down. In a non-degenerate skyline, the program always moves right at least

once between any pair of up and down moves.
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main() {

0: s();

1: }

void s() {

0: if (?) {

1: up();

2: m();

3: down();

}

4: }

void m() {

0: if (?) {

1: s();

2: right();

3: if (?)

4: m();

} else {

5: up();

6: m();

7: down();

}

8: }

Fig. 1.6. A C program drawing skylines. Procedures for actual drawing – up, right, and down –
are left unspecified.

Fig. 1.7. A skyline and a degenerate skyline

1.5.2. Pushdown Automata

We model sequential programs with possibly recursive procedures as pushdown au-

tomata. Recall that, as explained in Example 1.2, we define a pushdown automaton

as an extended automaton over a single variable, the stack, whose values are words

over an alphabet Γ of stack symbols. The words are also called stack contents. A

configuration of a PDA is therefore a pair 〈q, v〉, where q is a state and v ∈ Γ∗. The

guards of the rules check if the topmost symbol of the current stack content is equal

to a fixed symbol; the actions replace the topmost symbol by a fixed word. So a

rule is determined by its source and target states, the fixed symbol that the guard

compares with the topmost stack symbol, and the word that the action replaces the

top symbol with.

We formally define a PDA using a notation that slightly differs from the one

we have used for extended automata. The reason is that we wish the notation to

resemble the classical one for pushdown automata. A PDA is a triple (Q,Γ,∆),

where Q is the set of states, often called control states, Γ is the stack alphabet,
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and ∆ ⊆ (Q × Γ) × (Q × Γ∗) is the set of rules. We write 〈q, γ〉 −→ 〈q′, v〉, if

(q, γ, q′, v) ∈ ∆. Without loss of generality we assume |v| ≤ 2 for all 〈q, γ〉 −→ 〈q′, v〉

in ∆.

A configuration of a PDA is a pair of a control state and the current stack

content (the current value of the stack variable in terms of extended automata).

The PDA can move from configuration 〈q, γw〉 to configuration 〈q′, vw〉 by means

of a rule 〈q, γ〉 −→ 〈q′, v〉 that replaces the topmost stack symbol γ with v. Formally,

〈q, γw〉 =⇒ 〈q′, vw〉 if there exists a rule 〈q, γ〉 −→ 〈q′, v〉 such that w = γv′ and

w′ = vv′.

Sequential Programs as PDA We shall now discuss how a sequential, proce-

dural program may be encoded as a PDA. Such programs are mainly determined

by

• control flow: assignments, conditionals, loops, and procedure calls, possibly

with parameters and return values;

• local variables of each procedure; and

• global variables.

Consequently, any given runtime state encountered during a program execution is

determined by

• the program pointer indicating, where the flow of control has currently

arrived;

• the values of global variables; and

• the values of local variables of the each procedure that has not yet returned.

Note that there is a tight correspondence between the stack of activation records

and the stack of a PDA. Indeed, we shall interpret a configuration 〈q, γv〉 such

that γ encodes the current activation record and v encodes the pending records.

Following these lines, γ represents the program pointer within the active procedure

as well as the content of the local variables of this procedure. Pending procedures,

pending return address and pending local variable contents are saved in v. Control

state q has a more global flavor and will be used to hold global variables. Since we

are dealing with finite sets of stack symbols, we must restrict ourselves to values of

finite domain data types when saving variable contents.

The correspondence between program statements and PDA rules is as follows:

• A simple statement, like an assignment, only influences the topmost activa-

tion record and, potentially, the value of global variables. So it is encoded

by rules of the form 〈q, γ〉 −→ 〈q′, γ′〉.

• Procedure calls push a new record on top of the call stack. The global

variables and the current activation record do not change. So procedure

calls can be modeled by rules of the form 〈q, γ〉 −→ 〈q, γ′γ〉.
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• When a procedure returns, it simply pops the topmost record from the

stack. This can be modeled by a rule of the form 〈q, γ〉 −→ 〈q, ǫ〉.

Skylines – Formally. We model the skyline program as a PDA. Since the pro-

gram does not have any global variables, the PDA will only needs a single control

state, which we call qs. Also since there are not any local variables either, the stack

symbols correspond to the possible program points. We denote the program points

belonging to procedure p by p0, p1, . . ., with p0 as the initial point. Note that the

actual drawing procedures, which are not explicitly modeled, only have a single

program point each: up0, down0, and right0, respectively. So we can model the

skyline program by a PDA

As = ({qs}, Γs, ∆s)

over the set Γs of stack symbols given by

Γs = {main0,main1, s0, . . . , s5,m0, . . . ,m8, up0, down0, right0}

Notice how there is exactly one stack symbol for each control point of the skyline

program in Figure 1.6. The set ∆s of rules is shown in Figure 1.8. For instance, the

rule 〈qs,m2〉 −→ 〈qs, right0m3〉 models the call to procedure right() at program

point 2 of procedure main(). The rules marked with if (true) and if (false)

model the conditionals. The marks (*) and (**) are used later.

Non-degenerate skylines. Recall that we are interested in proving the absence

of a call to up immediately followed by a call to down. In terms of our encoding we

like to prove the absence of transitions like

〈qs, v〉 =⇒ 〈qs, up0v
′〉 =⇒ 〈qs, v

′〉 =⇒ 〈qs, down0v
′′〉

Our property is thus a property of a sequence of configurations instead of a property

of a single configuration. For this reason symbolic reachability of configurations

cannot directly prove this property. However, there is a generally useful trick to

circumvent this problem: monitors. A monitor is a finite automaton running in

parallel with the pushdown system. Our monitor has two states, qup and qup. The

monitor will be in state qup if the most recent drawing action (up, down, or right)

encountered has been up. So the monitor moves to state qup whenever up0 is pushed

onto the stack, stays there during all subsequent up calls, and moves to qup when

it sees a call to down or right.

Running the monitor in parallel with the skyline PDA is achieved by constructing

the product of the monitor and the PDA, which is simply the product of a finite

automaton and a PDA. So we consider the “monitored” skyline PDA

A′
s = ({qup, qup}, Γs, ∆′

s)

where ∆′
s is obtained from ∆s by
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Procedure main

〈qs,main0〉 −→ 〈qs, s0main1〉

〈qs,main1〉 −→ 〈qs, ǫ〉

Procedure up

〈qs, up0〉 −→ 〈qs, ǫ〉

Procedure down

〈qs, down0〉 −→ 〈qs, ǫ〉

Procedure right

〈qs, right0〉 −→ 〈qs, ǫ〉

Procedure s
〈qs, s0〉 −→ 〈qs, s1〉 if (true)

〈qs, s0〉 −→ 〈qs, s4〉 if (false)

〈qs, s1〉 −→ 〈qs, up0s2〉 (⋆)

〈qs, s2〉 −→ 〈qs,m0s3〉

〈qs, s3〉 −→ 〈qs, down0s4〉 (⋆⋆)

〈qs, s4〉 −→ 〈qs, ǫ〉

Procedure m

〈qs,m0〉 −→ 〈qs,m1〉 if (true)

〈qs,m0〉 −→ 〈qs,m5〉 if (false)

〈qs,m1〉 −→ 〈qs, s0m2〉

〈qs,m2〉 −→ 〈qs, right0m3〉 (⋆⋆)

〈qs,m3〉 −→ 〈qs,m4〉 if (true)

〈qs,m3〉 −→ 〈qs,m8〉 if (false)

〈qs,m4〉 −→ 〈qs,m0m8〉

〈qs,m5〉 −→ 〈qs, up0m6〉 (⋆)

〈qs,m6〉 −→ 〈qs,m0m7〉

〈qs,m7〉 −→ 〈qs, down0m8〉 (⋆⋆)

〈qs,m8〉 −→ 〈qs, ǫ〉

Fig. 1.8. The encoding of the skyline program as a PDA. Program points belonging to procedure

p are written pi for naturals i. They correspond to the program labels of the C program of
Figure 1.6.

• replacing each rule 〈qs, γ〉 −→ 〈qs, up0γ
′〉 marked by (⋆) in Figure 1.8 by

two rules 〈qup, γ〉 −→ 〈qup, up0γ
′〉 and 〈qup, γ〉 −→ 〈qup, up0γ

′〉;

• replacing each rule 〈qs, γ〉 −→ 〈qs, γ′γ′′〉 marked (⋆⋆) in Figure 1.8 by two

rules 〈qup, γ〉 −→ 〈qup, γ′γ′′〉 and 〈qup, γ〉 −→ 〈qup, γ′γ′′〉; and

• replacing each unmarked rule 〈qs, γ〉 −→ 〈qs, w〉 in Figure 1.8 by two rules

〈qup, γ〉 −→ 〈qup, w〉 and 〈qup, γ〉 −→ 〈qup, w〉.

We assume that the skyline program starts with a call to main in control location

qup; that is, no drawing action, and in particular no upwards drawing action, has

yet been observed. Our set Is of initial configurations can thus be written as:

Is = {〈qup,main0〉}

Now, the skyline program produces degenerate configurations if A′
s can reach any

of the configurations of the set

Ds = {〈qup, down0w〉 | w ∈ Γ∗
s}

a configuration in Ds is reached if an up drawing action is immediately followed

by a down drawing action, regardless of the history represented by w in the defini-

tion of Ds. We can automatically check whether the program produces degenerate
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configurations by answering the question

post∗A′

s

(Is) ∩ DS
?
= ∅

In Section 1.5.3, we introduce regular configurations as our set of symbolic configura-

tions, and show that they satisfy Conditions (1)-(6). The symbolic representation

of the set post∗A′

s

(Is) is computed and discussed in Section 1.5.4.

1.5.3. Regular Configurations

The number of reachable configurations of a PDA may be infinite, due to the pos-

sibility of unbounded stacks. In particular, the skyline program may go up forever,

stacking more and more unfinished calls to procedure s. So we must find a finite

symbolic representation of possibly infinite sets of configurations.

We fix a PDA A = (Q,Γ,∆). Since stack contents are words, sets of stack

contents are languages over the alphabet Γ. Since regular languages can be finitely

represented by finite automata, we choose as our family F of symbolic configurations

the regular sets of configurations. A set C of configurations of A is regular if the

set {w ∈ Γ∗ | 〈q, w〉 ∈ C} is regular for all q ∈ Q.

We show that regular configurations satisfy Conditions (1)-(5) for forward

search, but not Condition (6). We then show that it is possible to accelerate the

search so that it terminates.

Theorem 1.4. Let I and D be regular sets of configurations. Symbolic forward

search with regular sets satisfies conditions (1)-(5), but not condition (6).

Condition (1). We need to show that every regular set of configurations has

a finite symbolic representation. As the possible stack contents for each control

location are known to be regular languages, one can compactly represent regular

sets of configurations as a non-deterministic finite automaton with ǫ-transitions

(NFAs). Accepting a configuration is achieved by making all control locations of

a given PDA, A, initial states of the NFA. A configuration 〈q, w〉 is accepted by

the NFA if it accepts w starting in state q. It is straightforward that every regular

set of configurations of A has such a finite symbolic representation as an NFA.

Formally, we shall call an NFA for accepting regular sets of configurations of A an

A-automaton. It is defined as follows:

Let A = (Q,Γ,∆) be a PDA. An A-automaton is a finite automaton B =

(P,Γ, Q, F, δ), where P is a set of states containing Q, i.e., P ⊇ Q holds, Γ is

an alphabet, Q is a set of initial states, F ⊆ P is a set of final states, and δ ⊆

P × (Γ∪{ǫ})× (P \Q) is a transition relation. B accepts a configuration 〈q, w〉 of A

if some path of B leading from q to some final state q′ is labeled by w; in this case

we write q
w
 

∗
q′. Notice that δ denotes the transition relation of an A-automaton,

while ∆ denotes the set of rules of the PDA.

Our definition of δ forbids transitions in B leading into some initial state. This

is important for the correctness of the forward search algorithm presented below.
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Observe that every regular language is accepted by some NFA satisfying this con-

dition.

Example 1.4. Figure 1.9 shows two A′
s-automata. The one on the left accepts the

set Is, and the one on the right the set Ds.

qup

qup main0

qup

qup

Γ

down0

(a) (b)

Fig. 1.9. Automata accepting the initial and dangerous configurations of the skyline PDA. Initial
states are marked by big arrows, final states by double circles. If a set of stack symbols is attached
to an arc, it denotes a set of transitions, one for each element of the set.

Condition (2). The set Is is regular by hypothesis. The set Is = {〈qup,main0〉}

of our case study is accepted by the automaton on the left of Figure 1.9.

Condition (3) We have to show that if C is a regular set of configurations

of PDA A, then also C ∪ postA(C) is regular and efficiently computable from C’s

symbolic representation.

Let B be an A-automaton accepting a regular set C of configurations of A. We

construct an A-automaton accepting C ∪ postA(C). First, as we are interested in

computing the union C∪postA(C), we can safely keep all states and transitions of B.

We add more states and transitions to also accept the configurations of postA(C).

The configurations of postA(C) are obtained by applying a rule to the configura-

tions of C. The PDA A can have three types of rules: rules removing the topmost

stack symbol, rules replacing it with one other symbol, and rules replacing it with

a word of length 2. Figure 1.10 illustrates how to add new states and transitions to

deal with each of these three cases. The second row of the Figure shows the three

kinds of rules, and the third the transitions and states added. If in B we can go

from q to a state p by reading the symbol γ (possibly together with an arbitrary

number of ǫ’s), and we have a rule 〈q, γ〉 −→ 〈q′, ǫ〉 in ∆, then postA(C) must accept

any configuration 〈q′, w〉 such that 〈p, γw〉 is accepted by B. Therefore, we add an

ǫ-transition (q′, ǫ, p) to the transition relation δ of B. This will exactly achieve this

goal. The other two kinds of actions are treated similarly .

We obtain the whole of C ∪ postA(C) by applying this construction to all rules

in ∆ and to all matchings of q
γ
 

∗
p in B. Note that we must indeed require initial

states in B not to have incoming transitions. The reason is essentially the same

as the reason for introducing a new initial state in the union construction of two
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q

q′

γ γ0

〈q, γ〉 −→ 〈q′, ǫ〉 〈q, γ〉 −→ 〈q′, γ′〉 〈q, γ〉 −→ 〈q′, γ′γ′′〉

q

q′

γ

ǫ

γ0 q

q′

γ

γ′

γ0

q′

γ0

γ′

q
γ

γ′′

Fig. 1.10. Construction of C ∪ postA(C). The first row shows part of an automaton accepting C.
The second row shows the three possible type of PDA rules. The third row shows an automaton
accepting C ∪ postr(C) for each rule r.

NFAs. If, for instance, q′ in Figure 1.10 had a self-loop, it would be easy to see that

this may add non-reachable configurations to C ∪ post(C).

Having defined the notion of A-automata makes the proof of Condition (4).

The emptiness of C ∩D can be easily checked using standard automata-theoretic

techniques.

Condition (5). Checking C1 = C2 is decidable, because equality of languages

accepted by NFA is decidable. Checking equality is known to be computationally

expensive, but once we present the acceleration in the next section it will become

clear that in our special case the procedure can be extremely simplified.

To check that Condition (6) does not hold, consider the PDAwith only one

rule shown on the left of Figure 1.11 and the A-automaton shown on the right

(ignore the black states for the moment), accepting only the configurations 〈q, γ〉.

Each application of the procedure described in the proof of Condition (3) adds a

new state to the automaton, and so forward search computes an infinite sequence

of A-automata, each of them accepting exactly one word more than the previous

one. So we have C0 ⊂ C1 ⊂ C2 . . ., and forward search does not terminate. This

concludes the proof of Theorem 1.4.

If we look at the example of Figure 1.11 in more detail, we observe that

post∗(〈q, γ〉) = 〈p, γγ′∗〉 is a regular set. This set is recognized by an automa-

ton where we keep only the first black state in Figure 1.11, and add a self-loop to it,

labeled by γ′. So, while the fixed point is a member of the family F , forward search

never reaches it, it keeps constructing better and better approximations to it, but

never getting there. In the next section we show how to deal with this problem.
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q
γ

γ

γ′

γ

γ

γ′

γ′〈q, γ〉 −→ 〈q, γγ′〉

Fig. 1.11. An infinite ascending chain in the family of regular sets of configurations. Application of
post for the rule to the left keeps on generating a new state (a black one). However, post∗ = 〈p, γγ′∗〉
is regular.

Termination by Acceleration. Figure 1.11 shows that forward search can com-

pute an infinite ascending chain of regular sets of configurations. We resort to an

acceleration ∇, as defined in Section 1.2.5.

Instead of computing C ∪ postA(C) we will compute C ∇ postA(C) such that

post∗A(C) ⊇ C ∇ postA(C) ⊇ C∪postA(C). The key to defining ∇ is to re-use states.

As hinted above, we only introduce one of the black states in Figure 1.11. More

generally, we only introduce one state for each pair 〈q′, γ′〉 such that ∆ contains at

least one rule of the form 〈q, γ〉 −→ 〈q′, γ′γ′′〉 (we also call the state 〈q′, γ′〉). These

states will then be “re-used”.

Below we present the algorithm for computing an A-automaton accepting

C∇postA(C) from an A-automaton B accepting C. Again, we assume that B has no

initial states with incoming transitions. The algorithm adds states and transitions

to B according to the following saturation rules:

(1) If A has a rule 〈q, γ〉 −→ 〈q′, ǫ〉 and B has a transition (q, γ, p), then add a

transition (q′, ǫ, p) to B.

(2) If A has a rule 〈q, γ〉 −→ 〈q′, γ′〉 and B has a transition (q, γ, p), then add a

transition (q′, γ′, p) to B.

(3) If A has a rule 〈q, γ〉 −→ 〈q′, γ′γ′′〉 and B has a transition (q, γ, p), then

• if B does not yet contain a state 〈q′, γ′〉, then add such a state to B; and

• add transitions (q′, γ′, 〈q′, γ′〉) and (〈q′, γ′〉, γ′′, p) to B.

The accelerated forward search replaces the line C := C ∪ postA(C) by

C := C ∇ postA(C), where the automaton for C ∇ postA(C) is computing using

the algorithm we have just sketched. Let us apply the accelerated search to the ex-

ample of Figure 1.11. The first iteration adds a new state 〈q, γ〉, which corresponds

to the first black state in the Figure, and a transition (q, γ, 〈q, γ〉). In the second
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iteration, because of this transition and the third saturation rule, the algorithm

adds no new states (the state 〈q, γ〉 has already been added), but a new transition

(〈q′, γ′〉, γ′, 〈q′, γ′〉): this is the self-loop mentioned above. In the third iteration, the

algorithm does not add any new state or transition, and so the accelerated forward

search terminates. The search has “jumped” to the limit post∗(〈q, γ〉) in only two

steps.

The accelerated search always terminates. The number of states that can be

added is bounded, for instance by the number of rules of the PDA, and so the

number of transitions is also bounded. So the search eventually reaches a point at

which the saturation rules cannot add any new state or transition.

The accelerated search must also satisfy post∗A(C) ⊇ C ∇ postA(C) and

C ∇ postA(C) ⊇ C ∪ postA(C). The second of this conditions is easy to prove:

each word accepted by the A-automaton for C ∪ postA(C) is also accepted by the

A-automaton for C ∇ postA(C). The other condition is non-trivial, but not diffi-

cult. We refer the reader to the correctness proof in [3].b In the same reference,

a detailed complexity analysis of the accelerated search is carried out. The search

needs polynomial time in both the size of PDA and the size of the A-automaton

accepting the set I of initial configurations.

1.5.4. Forward Search for the Skyline Program

Initial and Dangerous Configurations. The symbolic representations of Is
and Ds as A′

s-automata are shown in Figure 1.9, which proves both sets regular.

Actually, initial configurations are typically quite simple and regular, and the same

holds for many interesting sets of dangerous configurations, applying the monitor

trick if necessary. However, we must mention that there are interesting properties

that cannot be tested by a monitor, if the monitor has to be a finite automaton.

For instance, the skyline program satisfies that in any execution the number of up

and down moves is equal. However, no finite automaton can monitor this property,

because, loosely speaking, it would then be an automaton accepting the language

{upndownn | n ≥ 0}. If we allow general PDAs as monitors, then the approach

cannot be applied, because the intersection of two PDAs may not be equivalent to

a PDA.

Let us now illustrate the first few iterations of the accelerated search, starting

from the symbolic representation of Is in Figure 1.9. The only rule “matching” Is
is 〈qup,main0〉 −→ 〈qup, s0main1〉, because in Is we have qup  

∗ q reading main0.

Therefore, according to saturation rule (3) we add the transitions (qup, s0, 〈qup, s0〉)

and (〈qup, s0〉,main1, q) to Is and obtain (an automaton for) I1
s depicted in Fig-

ure 1.12.

I1
s accepts all configurations reachable within one step: 〈qup,main0〉 and

〈qup, s0main1〉.

bFor presentation reasons our notation differs; in particular, we use Q and P for the states of A

and B, respectively, while in [3] it is the other way round.



February 23, 2010 12:56 World Scientific Review Volume - 9.75in x 6.5in main

38 J. Esparza and J. Kreiker

qup q

〈qup, s0〉

qup q

〈qup, s0〉I1

s
I2

s

main1main1s0 s0, s1, s4

ǫ,main0main0

Fig. 1.12. Automata representing the set I1
s and I2

s of skyline configurations reachable within
one, respectively two, steps from the initial configuration.

Now, two further rules match in I1
s : 〈qup, s0〉 −→ 〈qup, s1〉 and 〈qup, s0〉 −→

〈qup, s4〉. Applying saturation rule (2) we introduce s1 and s4 labeled transitions in

parallel to s0 to arrive at I2
s also shown in Figure 1.12. New reachable configurations

are thus 〈qup, s1main1〉 and 〈qup, s4main1〉. The first is reached when the non-

deterministic choice in s evaluates to true, and the second when the same choice

yields false.

Before we comment on the final outcome of the post∗A′

s

(Is) computation de-

picted in Figures 1.13 and 1.14, note that we will add (qup, ǫ, 〈qup, s0〉) due to rule

〈qup, s4〉 −→ 〈qup, ǫ〉, that is, procedure s returning. Thanks to this new transition

the configuration 〈qup,main1〉 becomes reachable. This, in turn, allows us to add

an ǫ-transition from qup to q indicating program termination.

Finally, observe that rule 〈qup, s1〉 −→ 〈qup, up0s2〉 matches in I2
s . Using satura-

tion rule (2) we add (qup, s0, 〈qup, s0〉) and (〈qup, s0〉, s2, 〈qup, s2〉) to I2
s . We hereby

obtain the first reachable configuration with control location qup: 〈qup, up0s2main1〉,

which corresponds to entering s, taking the true branch of the choice, and calling

up.

The automaton accepting post∗A′

s

(Is) is computed as delineated above. It does

not fit in one figure, and so it is shown in Figures 1.13 and 1.14. Figure 1.13 shows

the reachable configurations of the form 〈qup, ·〉 and Figure 1.13 those of the form

〈qup, ·〉. The complete automaton obtained by merging the vertical “backbones” of

the two automata.

In order to decide post∗A′

s

(Is) ∩ DS
?
= ∅ one can construct the product of the

automata for Ds and post∗A′

s

(Is), and check for emptiness. But in our case this is

not necessary. It suffices to check whether post∗A′

s

(Is) accepts anything starting in

qup with a subsequent down0 labeled transition. To the skyline programmer’s luck,

it is easy to see that this is not the case, which means that a plotter driven by this

program will not draw degenerate skylines.

We conclude this section by inviting the interested reader to undertake the

instructive exercise of picking a reachable configuration from Figures 1.13 and 1.14

and finding an execution of A′
s that reaches it. As an example, Figure 1.15 shows

an execution leading to the configuration 〈qup, up0m6m8s3main1〉. Each plotter

move–that is, each line segment–is annotated with the configuration at which it

was drawn. One can also check that all these configurations are accepted by one of
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s
3

m7

m8

〈qup, up0〉
qup

〈qup, s0〉

〈qup, m0〉

〈qup, m0〉

〈qup, s0〉

q

ǫ, up0

m
a
in

1

s2 s2

m6 m6

m6m0, m1, m2

m5, m6

s2ǫ, s0, s1, s2, s4

m
7

m
2

m
2 s

3
m

8

Fig. 1.13. An automaton representing the configurations of post∗
A′

s

(Is) that are of the form 〈qup, ·〉.

Note that none of the dangerous configurations can be accepted by this automaton, because there
is no accepting path starting with down0.

the automata in Figures 1.13 and 1.14.

1.5.5. Conclusion and Further Reading

Modelling sequential procedural programs by pushdown automata is the basis of

the Moped model checker developed by Schwoon [3, 15]. Suwimonteerabuth et

al. have implemented a Java front end for this model checker, called jMoped [16,

17]. Recursive state machines are a model of computation equivalent to pushdown

systems; model-checking algorithms for them have been proposed by several authors

(see for instance [18, 19]).

Backward search with regular sets of configurations can also be accelerated to

guarantee termination, and the algorithm is even slightly simpler. The saturation

algorithms were presented in [20]. Efficient algorithms for both forward and back-

ward search can be found in [21].
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s
3

m7

m8

〈qup, right0〉

qup 〈qup, down0〉〈qup, s0〉

〈qup, m0〉

〈qup, m0〉

〈qup, s0〉

q

m
a
in

1

m
7

m
2

m
2 s

3
m

8

ǫ, down0

ǫ,main0,main1

m8

s4

m3

m3

s4

ǫ, right0

ǫ, s3, s4

ǫ, s0, s1, s3, s4

ǫ, m2−4, m7,8

ǫ, m0−5

m7, m8

Fig. 1.14. An automaton representing the configurations of post∗
A′

s

(Is) that are of the form 〈qup, ·〉.

〈qup, down0s4m2s3main1〉

〈qup, up0m6m8s3main1〉

〈qup, right0m3s3main1〉

〈qup, right0m3s3m2s3main1〉

〈qup, up0s2main1〉

〈qup, up0s2m2s3main1〉

Fig. 1.15. A sample skyline and potential program configurations after each drawing step. By
checking how the automata in Figures 1.13 and 1.14 accept the respective configurations, one gains
quite some insight into how the program works.
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1.6. Conclusion

We have presented an introduction to the verification of systems with an infinite

state space. We have argued that many different sources of infinity can be mod-

elled within the framework of extended automata and symbolic search, and have

considered three different case studies involving real-time, parametric systems, and

control structures. The key issue of symbolic search is finding an adequate class of

symbolic configurations, or, in other words, an adequate data structure for repre-

senting infinite sets. We have presented several data structures: constraints, sets

of minimal elements, and finite automata. We have also addressed the problem of

guaranteeing termination of the search, and introduced three different strategies for

achieving the goal.
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