Solving Monotone Polynomial Equations

Javier Esparza, Stefan Kiefer, and Michael Luttenberger

Abstract We survey some recent results on iterative methods for appading the
least solution of a system of monotone fixed-point polyndmimiations.

1 Introduction

Consider the following problem formulated by Francis Galto the (politically
incorrect) 19th century [26], and quoted by Thomas Harrikignclassical text on
branching stochastic processes [20]:
Let po, p1, p2. .. be the respective probabilities that a man has 0, 1, 2, ... sdresdh son
have the same probability for sons of his own, and so on. What iprthteability that the

male line is extinct after generations, and more generally what is the probability fgr an
given number of descendants in the male line in any given geoePat

We are interested here in the probability that the male éwventuallypbecomes ex-
tinct. A little thought shows that this probability is a sttin of the fixed-point

equation
X="73 pnX" 1)

and after some more thought one concludes that it is in facstiallest solution.
Consider now the following stochastic context-free gramfa., a grammar
whose productions are annotated with probabilities) wiibra X:

x 2% xy, x2%%a
Yy 2.xy, v2yz v2%yp
z%xz, z%p
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What is the probability that the grammar eventually gensrateord, i.e., a string of
non-terminals? Again, itis not to difficult to show that ieiqual to thex-component
of the least solution of the following system of equations.

X = 0.4XY + 0.6
Y = 0.3XY+0.4YZ+0.3 )
Z =0.3XZ+0.7

Notice that the vectofl,1,1) is a solution of the system. We will later investigate
whether it is the least solution or not.

Equations (1) and (2) are two examplesmainotone systems of polynomial equa-
tions(MSPEs for short). MSPEs are systems of the form

X1 = f1(Xg,..., Xn)

xn : fn(xla"'axn)

wherefy,..., fy are polynomials wittpositivereal coefficients. In vector form we
denote an MSPE b} = f(X). We call the vectoif (X) of polynomials anonotone
system of polynomialer MSP. Obviously, a solution of = f(X) is a fixed-point
of f(X), and vice versa. Further, any solutionXf= f(X) can be visualized as a
point of intersection of the submanifolds defined bytheplicit functions f; (X) —

Xi = 0. In particular, when the polynomials é{X) are quadratic the solutions of
X = f(X) correspond to the intersectionmfjuadrics. Figure 1 shows the graph of
such a quadratic MSPE with= 2.

We call MSPEs and MSPs “monotone” becawse X' implies f(x) < f(X') for
everyx, X € R,. This is a bit imprecise, because not every monotone polyalom
has positive coefficients. Perhaps “positive systems” didnd a better name, but
since we have used the term “monotone” in several papersigketstit.

MSPEs appear naturally in the analysis of many stochastidelap such as
stochastic context-free grammars (with numerous appicatto natural language
processing [23, 19], and computational biology [24, 5, 4),22robabilistic pro-
grams with procedures [9, 2, 13, 11, 10, 12, 14], web-surfirglets with back
buttons [16, 17], and branching processes [20], a topicoarststic theory that can
be traced back to Galton’s problem.

In the last years Etessami and Yannakakis [13] and oursghles] have stud-
ied the problem of solving MSPESs. This paper gives a sucehactd informal—
overview of our results.

2 Some Definitions and Facts

LetR|p denote the set of non-negative reals extended wittVe extend the def-
initions of sum and product as usua:+k = c for everyk € Rjge), ©-0=0,
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Fig. 1 Graphs of the equation$ = f1(X1,X2) andXy = f2(Xq,X2) with f1(Xq,X2) = X1 X2 Jr;l1
and fo(X1, Xo) = X2 + $X1 X + 5X2 + 2. There are two real solutions ]&[20 .» the least one is
labelled withu f.

andeo - k = oo for everyk € Rg . \ {0}. The resulting algebraic structure is tieal
semiring MSPEs are systems of fixed-point equations over the redtisgm
Given two vectorsl, v € RFvoo]v we say thati < v holds ifu; < v; holds for every

1 <i < n, whereu;,Vv; are thei-th components ofi andv, respectively. This is the
pointwise order on vectors of reals. The first positive reenl MSPEs is a direct
consequence of Kleene’s theorem:

Theorem 1 (Kleene’s fixed-point theorem).Every MSP {X) has a least fixed-
point uf in RFO‘M] with respect to the pointwise order. Moreover, the sequence
(k) '

(K¢ Jken given by
kD= £ (k) = k()

is non-decreasing with respectto(i.e., ng) < K§k+1)) and converges tpi f.

We call (KEk))keN the Kleene sequencand its elements thi€leene approximants
of uf.
Example 1For the system (2) we obtain:

k\% = (0,0,0), kY = (0.6,0.3,0.7),

Kk\? = (0.672,0.4380.826), «|> = (0.7180.5330.867),
K\ = (0.7530.6000.887), !> = (0.781,0.648 0.900),
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The least solution of a system bifiear equations (monotone or not) satisfies
some good properties that no longer hold for MSPEs. It is éaspow (using for
instance Cramer’s rule) that if the coefficients are ratigrien the least solution
is also rational. However, using Galois theory one can ptbaéthe least solution
of a polynomial system may not be expressible by radicalsiriatance:

Fact 1. The least fixed-point of

1o 1,5 1
X=X+ x5+ 3

6" 27 "3 ®)

is not expressible by radicals.

This fact also holds for quadratic systems, i.e., systemshiich all polynomials
have at most degree 2. Given an M§Bver a setZ” of variables, it is easy to con-
struct a quadratic MSBover a larger se2” U% such that the projection gfg onto
2 is equal tou f. The construction is very similar to the one that brings aext
free grammar in Chomsky normal form. For instance, it “exgsEquation (3) into
the system

1 1 1
X = 20+ XX+ 3

Xn =X X1 (forn=5,4,3)
Xo = X?

Since this expansion involves only a linear blowup, we c#e guadratic MSPEs
as a normal form of MSPEs.

The least solution of linear MSPEs is not only rational, bsuacinct rational.
Consider a system of dimension(i.e., with n equations) whose coefficients are
given as ratios ofn-bit integers. It is easy to show using Cramer’s rule that the
least solution can be written as the quotient of two natucahiners with at most
O(n’m-+nlogn) bits. As a consequence, we get

Fact 2. Let X= f(X) be a linear MSPE of dimension n whose coefficients are given
as ratios of m-bit integers. For every compongrft of the least fixed-point of f: if
0 < ufi <oothen

- : O(n’m-+nlogn)
20(n?m+-nlogn) sufi<2

(where the constant of the Big-Oh notation is independeffi.of

Since the least fixed-point of a MSP can be irrational, therad bound on the
number of digits needed to write it down. However, using ltssaf [8] we can still
give a lower and an upper bound:

Fact 3.Let f be a quadratic MSP of of dimension n whose coefficierggyaen
as ratios of m-bit integers. For every compongrft of the least fixed-point of f: if
0 < ufi < oothen
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O
e < Hfi <2

(where the constant of the Big-Oh notation is independeff).of

So, loosely speaking, while the least fixed-point of a lirgatem is at most expo-
nential in the dimension of the system, the least solutioam @fiadratic system is at
most double exponential.

It is easy to find examples of quadratic MSPs in which the l&gst-point is
rational and double exponential. Theéh component of the least solution of system

X1 =k
Xo = X2
Xn:xril

. —1
is equal tak®" .

3 Computational complexity

The fundamental decision problem for MSPs is whetfief ); ~ a holds for a
given MSPf and a component wherea is some positive rational number and
~ € {<,=,>}. Let us call this problenMSP-DECISIONLittle is known about its
computational complexity. The problem lies in PSPACE:

Consider e.g. a two-dimensional MSPE = f1(X1,Xz), X = f2(X1,X2). To
decide whethefu f)1 < a holds one can equivalently decide if the following
formula is true:

I eER, X ER X = fl(Xl,Xz) N Xo = f2(X1,X2) AX1,% >0 Axp <a

Such formulas can be decided in PSPACE, because the first-tiréory of
the reals is decidable, and its existential fragment is @v&SPACE [3].

For a lower bound, we introduce the probl@QUARE-ROOT-SUM

Givenk+ 1 natural numbers,, ..., ng andb, determine whethez}‘zl\/n’i <b
holds.

The SQUARE-ROOT-PROBLEM is a natural subproblem of manystjaas in
computational geometry. For instance, the length of thenaty of a polygon
whose vertices lie irZZ? is a sum of square roots of integers. It has been a ma-
jor open problem since the 70s whether SQUARE-ROOT-SUMrigddo NP. The
problem can easily be reduced to MSP-DECISION:

Suppose we are givem = 2, n, = 3, andb = 3, and we want to decide
if v/24 /3 < 3. One would like to come up with an MSRX) such that
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(uf)1=v2,(uf)2 =3, (uf)s=v2++/3, so that deciding/2++/3 < 3

is equivalent to decidingu f )3 < 3. One has to be careful though, because for
instance the equatiof, = X12 + X1 — 2 is not an MSPE. It was shown in [13]
how to overcome this problem: Instead of encoding €2 directly, it suffices

to encodea+ b- /2 for some rationals, b.

The least solution of the equatidh= X2+ (1—A2.n)/4 equal§1—A/n)/2.
So, by choosing foA a small enough rational number we get a 1-dimensional
MSP whose least solution &+ b- /n for some rationals, b. In our example

we can sed = ﬁ = £ which leads to the following MSPE.

2
X = X¢+ 5t
3
X = X§+17g
X3 =X1+Xz

Its least solution is

11 1 1 1
uf = (26\@,26@,16@”5)) .
So, the question wheth&f2 + /3 < 3 holds can be translated into the ques-
tion whether(pf)s > 1— £ -3= 1 holds.

It follows from this reduction that proving membership of RFDECISION in NP
would be a major breakthrough.

An interesting issue is the complexity of MSP-DECISION ir tBlum-Shub-
Smale computational model, in which all operations on retie take unit time in-
dependently of their size. SQUARE-ROOT-SUM can be decidgmblynomial time
in this model [25], but it is open whether the result exterods!SP-DECISION.

4 Approximating the Least Fixed-Point: Newton’s Method

For most practical purposes, the main computational proldencerning MSPs is
the approximation of the least fixed-point up to a given aacurKleene’s method
can be applied, and it is very robust: it always convergeswdtarted at 0, for any
MSP. On the other hand, the convergence speed of the Klequersee can be very
poor. Before presenting an example, we define a notion ofexgewice order that
differs from the one commonly used in numerical mathemabias is particularly
natural for computer science.

Let (ax)k>0 be a non-decreasing sequence of vectors over the real sgrairch
that lim . ax = a < . The convergence ordeof the sequence is the function
B: N — N defined as followsB (k) is the greatest natural numbesuch that
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lla—al <o
all

where||-|| is some norm. We say that a sequence has linear, expondéodgiatith-
mic, etc. convergence order if the functiik) grows linearly, exponentially, or
logarithmically ink, respectively. Notice that the asymptotic behaviouB k) is
independent of the norm, because all norms are equivalettt agonstant. In the
univariate case3 (k) is the number of bits ofy that coincide with the correspond-
ing bits ofa (the formalization of this intuition requires some carkelidentifying
1 and 0999...). For instance, for the sequence— 2¥),~o we haveB (k) =Kk, i.e.,
the firstk bits of thek-th element of the sequence coincide with the firsits of the
limit.

Consider now this very simple but at the same time very ilaiste quadratic
MSPE in one variable:

X =1/2+1/2X? (4)

In Galton’s problem, the least solution of this equationegithe extinction proba-
bility of an individual's descent line when every individdeas O or 2 children with
probability 1/2. The least solution is 1. We have:

Fact 4. The i-th Kleene approximant of % 1/2+ 1/2X? satisfiesc!) < 1— 1; for
every i> 0. So the Kleene sequence only has logarithmic convergeues or

Example 2Here are some of the Kleene iterates.

k© =0, k(D = 0.5, k(@ =0.625
k® =0.695 k@ =0.742 «k® =0.775

k29 =0.920, ..., k(290 =0.990, ..., k(2000 — 0.999Q ...

Faster approximation techniques have been known for a liomg tn particular,
Newton’s method, suggested by Isaac Newton more than 306 sge, is a standard
efficient technique for approximating a zero of a differahte function. Since the
least solution of a fixed-point equatidh= f(X) is a zero ofg(X) = f(X) — X, the
method can be applied to search for fixed-point$ ©f).

We briefly recall the method for the case of one variable, sge2Hor an illus-
tration. Starting at some valug® “close enough” to the zero @f{X), we proceed
iteratively: givenv(), we compute a value*1 closer to the zero than). For
that, we compute the tangent@6X) passing through the poiriv(),g(v())), and
takev(*1) as the zero of the tangent (i.e., tecoordinate of the point at which the
tangent cuts thX-axis). A little arithmetic leads to:

f(v)y—vl
1 f/(v)
Newton’s method can be easily generalized to the multitedase:

Y+ )

v — v 4 (1d— £/ (v @) 2 (F vy — vy
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Jo 02 0.4 ) 06 @ 08 1
X

Fig. 2 Newton’s method to find a zero of a one-dimensional functjox)

where f’(X) is the Jacobian of, i.e., the matrix of partial derivatives df, and Id
is the identity matrix.

Notice that Newton’s method is not restricted to the realigeq it can be
applied to any differentiable functions over the real figtwever, when applied
with this generality it is far less robust than Kleene’s noethit may converge very
slowly, converge only when started at a point very close éatiro—which must be
guessed— or even not converge at all.

However, if we apply Newton's method tb(X) = 1/2 + 1/2X?, starting at
v(@ =0, we obtain:

Fact 5. The i-th Newton approximant of % 1/2+ 1/2X? satisfiesyV) = 1— 1 for
every i> 0. The i-th approximant has i correct bits, i.e., the Newtogusnce has
linear convergence.

So in this particular example the Newton sequence convéegesnentially faster”
than the Kleene sequence. The number of arithmetic opasatieeded to compute
correct bits of the solution grows polynomially instead xpenentially ini. (Recall,
however, that the operations have to be applied to ratiama¢se length may grow
exponentially in the number of iterations.) One can ask twrethe good behaviour
on this example is just a coincidence, or whether perhapsdessmethod is robust
on the real semiring. A number of recent results have shoan(thith certain ifs
and buts) the latter is the case, and we briefly survey theheiméxt section.



Solving Monotone Polynomial Equations 9

5 Convergence Order and Thresholds for Newton’s Method

The first positive result on the convergence of Newton’s metivas obtained by
Etessami and Yannakakis in [13]. They showed that the medheays converges
to the least fixed-point starting fromi® = 0, and that it converges at least as fast at
the Kleene sequende.

Inspired by this positive result, we started to study theveogence order. Given
an MSPEX = f(X) whose least solutiopf is finite, it is well-known that the
convergence order depends critically on the Jacobian xrettthe least fixed-point,
i.e.,, onf/(uf). Every textbook proves that the method performs brilliamthen
the matrix(ld — f/(uf)) is non-singular: it exhibitexponentiatonvergence order.
So we focused our attention on the singular case, of whigt) = 1/241/2X? is
an example. By Fact 5 we can expect at most linear convergButgerhaps the
method converges more slowly on other examples?

It is convenient to start with the special casestiongly connectedMSPEs.
Loosely speaking, an MSPE is strongly connected if everialée depends on any
other variable, where dependence is defined as follows.nGwe variables and
Y, X depends on ¥f eitherY appears on the right-hand-side of the equationfor
or if there is a variabl& such thafX depends oZ andZ depends olY.

5.1 Strongly Connected MSPEs

We proved the following theorem in [21].

Theorem 2.Let f(X) be a strongly connected MSP such tht is finite. There is
a number t such that for every ¥ O:

B(ts+i)>i.

In particular, the Newton sequence has linear convergemdero

We callts the thresholdof f(X). Loosely speaking, the theorem states that af-
ter crossing the threshold (i.e., from theth approximant onwards) the Newton
sequence gains at least one bit of accuracy per iteratiom tireshold itself is an
upper bound on the number of iterations needed to obtain ribtebit of the least
fixed-point.

The proof of [21] was based on the following topological pedy of R": if the
infimum of the distances between points of two compact sélstten the two sets
have at least one common point. As a consequence, it waslg pyigtential proof,
and provided no information on the size of the threshold.7lnwe obtained the
following relation between the threshold and the minimahponent ofu f.

1 More precisely, Etessami and Yannakakis proved the result fonetsted version of the method,
and we showed in [8] that this additional structure is not negifor convergence (although it is
convenient for efficiency).
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Theorem 3. Let f(X) be a quadratic strongly connected MSP of dimension n whose
coefficients are given as ratios of m-bit integers. ligf, be the minimal component
of uf. The thresholdit of Theorem 2 satisfies

t < 3n°m+ 2n? (109 tmin| -
In particular, if f;(0) > 0 holds for everyl <i < n, then§ < 5n°m.

Example 3Consider again the following MSPE, which was given as EquafR)
on page 2.

X = 0.4XY+0.6
Y = 0.3XY+0.4YZ+0.3
Z = 0.3XZ+0.7

Using a result from [8], slightly stronger than Theorem 3 tethnically more
difficult to state, one can prove that the threshold of thistesy satisfies; < 6
for the maximum-norm (i.e., the norm of a vector is the absokalue of its
maximal component). SB(14) > 8. After computing 14 Newton iterates we get
vl = (0.9830.9740.993). As we have computed at leg8{14) > 8 bits, we
know thaty f is at mostv(1¥ + (2-8,2-8 2-8) which is strictly less than 1 in every
component. Therefore, the stochastic context-free granfime the introduction
produces a terminal string with probability less than 1.

Combining Theorem 3 with Fact 3 we obtain:

Corollary 1. Let X= f(X) be a quadratic strongly connected MSPE of dimension
n whose coefficients are given as ratios of m-bit integers.tireshold ¢ of Theo-

rem 2 satisfiesite m2°(" |

This corollary gives an exponential bound on the numbereshittons needed to
compute the first bit of the least fixed-point. It is open wieetthis bound is tight.

5.2 General MSPEs

The following example shows that an exponential numberesétions is sometimes
needed for the first bit, if the MSPE it strongly connectedVe give a family of
MSPEs in which the number of iterations needed to computditiebit grows
exponentially in the dimension of the system.

Example 4Consider the following family of MSPEs.



Solving Monotone Polynomial Equations 11

X1 =1/2+1/2-X2
Xo = 1/4-XZ4+1/2- X Xo +1/4-X2

: ©)
Xo = 1/4-XZ 1 +1/2- Y10 +1/4- X2

The variableX; depends oiX; if and only if j <i. So the dependence graph contains
n strongly connected components, one for each variable.eldst fixed-point of the
n—1
system is the vectafd, 1,...,1). We show in [21] thalv,ﬁ2 ) < 1/2 holds, and so
that at least 21 iterations of Newton’s method are needed to obtain the fitst b
of X,. The proof goes as follows. We consider a decomposed veo$ibiewton’s
method, in which for a givek we performk iterations of the normal method on the
first equation, yielding a lower boumﬁk) of the first component of the least fixed-
point. Then we perfornk iterations on the second equatiafter setting X := a(lk);
by monotonicity, this yields a lower bourﬁ() of the second component. Repeating
this procedure we finally obtain a lower boua&i) of then-th component. Itis easy
to see that/i<k) < ai<k) holds, i.e, the decomposed method converges at least asfast

the method that perfornisiterations on the whole system. Now, ké(p =1- aka
be the error of the decomposed method. A simple analysis;tlstet!m’rc5|(+k>l >4/ 6|<k)

holds for every 1< i < n. By Fact 5 we haveS{znfl) = (1/2)2”71, and so we get
6,§2n_1) >1/2, i.e.,vr(,zn_l> <1/2.

So, intuitively, the problem of non-strongly connectedtsyss is that the error gets
“amplified” when we move up the graph of strongly connectethgonents.

For MSPs that are not strongly connected, Newton’s metlibb¢has linear con-
vergence order, but a worse rate [8]:

Theorem 4.Let f(X) be aclean(see below) MSP such thatf is finite. There is a
number t such that for every ® O:

B(ti+i-(n+1)-2") >i.
In particular, the Newton sequence has linear convergemdero

In order to make sure that Newton’s method stays well-def(nedthat the matrix
inverses exist) Theorem 4 assumes that the MSP is clegn(.i.B; > 0 for all i.
An MSP can easily be made clean in linear time by identifyind eemoving the
components withiu f); = 0: (uf); = 0 holds iff (k("); = 0.

The rate in Theorem 4 is worse than in the strongly connectsd:dNewton’s
method needs (in the worst case) abduit@rations per bit, instead of only 1 as in
the strongly connected case. This worst case is attaindtelMEPE in Equation (5)
above, so the exponential rate in Theorem 4 cannot be avdittédrtunately, we
do not have an upper bound on the threshplid this general case.
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5.3 min-max-M SPEs

Theorem 4 forms the basis for the convergence analysis a@emtextension [6] of
Newton’s method to min-max-MSPEs, i.e., MSPEs where mininamd maximum
are allowed as additional operators. Here is an example ohamax-MSPE:

X =max{0.7Y +0.3, 0.6XY+ 0.4}
Y =min{X, 0.8Y240.2}

Such systems arise, for instancegitinction gamesrhose games add two adver-
sarial players to Galton’s setting from the beginning: Eharen species, each of
which is controlled by one of two players, therminatorand therescuer Each
player can apply actions to the individuals controlled by, la@ action transforms
an individual (probabilistically) into zero or more indiials. The terminator tries
to extinguish all individuals, whereas the rescuer triesaiee them. Natural ques-
tions are: What are optimal strategidsr the terminator and the rescuer, and what is
the probability of extinction of all individuals, assumititat there is a single initial
individual and the players follow optimal strategies?

The MSPE above can be thought of as an equation system foixtimet@on
probabilities of two specieX andY. SpeciesX is controlled by the terminator,
wherea® is controlled by the rescuer. The terminator can apply oneopossible
actions to arX-individual: the first one kills th&X-individual with probability 03,
but with probability 07 transforms it to & -individual; the second action kills th&
individual with probability 04, but, with probability 06, keeps th&-individual and
creates & -individual. What can the rescuer do wittyandividual? She can choose
between transforming it to ad-individual and a second action which Kills the
individual with probability 03 and adds anothaft-individual with probability 07.

It turns out that the&X-component (respx-component) of the least solution of the
MSPE above equals the extinction probability assuming@lsinitial X-individual
(resp.Y-individual) if both the terminator and the rescuer folloptinal strategies.
Such systems also arise in the analysis of recursive sirtgbastic games [14, 15].

In order to approximate the least solution of a min-max-MS@&te could use
Kleene iteration. But, as we have seen before (Fact 4), I€léenation may con-
verge very slowly even without minimum and maximum. Therefan [6] we pro-
pose two methods for approximating the least solution of @-max-MSPE. Both
are iterative procedures based on Newton’s method.

e The first method linearizes each polynomial appearing insgfsgem (possibly
inside a minimum or a maximum expression) by computing thagent” at the
current iterate. One obtains a min-max-MSP whose polynisrhiave degree at
most 1. Its least fixed-point can be computed exactly by a ousftom [18] that
uses strategy iteration and linear programming. The résthe next iterate.

e The second method linearizes each max-polynomial apmeanithe system
(possibly inside a minimum expression) by computing thedent” at the cur-

2 A strategy tells a player which action to apply to the indidtiucontrolled by her.
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rent iterate. (A special “tie breaking” policy must be adieeto if the current
iterate is at the “edge” between two polynomials inside aimarn expression.)
One obtains a min-MSP whose polynomials have degree at mibsidast fixed-
point can be computed exactly by solving a single linear mog The result is
the next iterate.

Both methods have at least linear convergence order [6]:

Theorem 5. Let f(X) be a min-max-MSP such thatf is finite. There is a number
t¢ such that for every ¥ 0O:

Bt +i-m-(n+1)-2") >1i,

where m is the number of possible strategies of the playerpaiticular, the two
extensions of Newton’s method have linear convergence. orde

The first method converges somewhat faster whereas a sitgleothe second
method is cheaper. The second method also computgdimal strategies for the
terminator, i.e., strategies that achieve as extinctiobgbilities at least the current
iterate.

We have used the second method to approximate the extirptidoabilities as-
suming perfect strategies: A population that starts witmgle X-individual (resp.
Y-individual) becomes extinct with probability.475 (resp. ®50). We have ob-
tained those numbers after performing 3 iterations and tbhanding, but in this
case those numbers are already the exact solution. Theasirategy for the ter-
minator is to apply the first action to thé&individuals. The rescuer should choose
her second action for h&t-individuals.

6 Conclusions

We have shown that Newton’s method is not only efficient bsio aémarkably ro-

bust when applied to monotone systems of fixed-point equaiiMSPES). Unlike

for arbitrary systems, the method always converges whetedtat 0. For strongly
connected systems the method always reaches a point, gshthd, after which it

is guaranteed to gain at least one bit of accuracy per iterdin favourable cases
it doublesthe number per iteration). In fewer words, after crossirg ttireshold

the method has linear convergence order with rate 1. If tigeayis not strongly
connected the method still has linear convergence, buttieedeteriorates.

The threshold of the strongly connected case is inverselygtional to the log-
arithm of the minimal component of the least fixed-point. iEfiere, if some kind
of analysis can establish that the least fixed-point is not small, then the method
quickly enters the one-bit-per-iteration zone. We stillndit have any threshold for
the general, non-strongly-connected case.
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Newton’s method still works for MSPEs that are not stronghnrected. We
have shown that the convergence order is still linear, atheirate may deteriorate
exponentially with the dimension.

Newton’s method can be extended to min-max-MSPEs, presgitgi linear con-
vergence order.

MSPEs appear in a large number of stochastic systems. Ind hpwe designed a
formal system for establishing the reputation of the irdlixls of a social network.
The reputation of the individuals (defined as the stationigstribution of a Markov
chain) is the least solution of a MSPE. These case studidddesery large MSPEs,
and computing their least solutions is an exciting chakefoy future research.
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