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Abstract We survey some recent results on iterative methods for approximating the
least solution of a system of monotone fixed-point polynomial equations.

1 Introduction

Consider the following problem formulated by Francis Galton in the (politically
incorrect) 19th century [26], and quoted by Thomas Harris inhis classical text on
branching stochastic processes [20]:

Let p0, p1, p2 . . . be the respective probabilities that a man has 0, 1, 2, . . . sons, let each son
have the same probability for sons of his own, and so on. What is theprobability that the
male line is extinct afterr generations, and more generally what is the probability for any
given number of descendants in the male line in any given generation?

We are interested here in the probability that the male lineeventuallybecomes ex-
tinct. A little thought shows that this probability is a solution of the fixed-point
equation

X = ∑
n≥0

pnXn (1)

and after some more thought one concludes that it is in fact the smallest solution.
Consider now the following stochastic context-free grammar (i.e., a grammar

whose productions are annotated with probabilities) with axiom X:

X
0.4−→ XY, X

0.6−→ a

Y
0.3−→ XY, Y

0.4−→YZ, Y
0.3−→ b

Z
0.3−→ XZ, Z

0.7−→ b
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What is the probability that the grammar eventually generates a word, i.e., a string of
non-terminals? Again, it is not to difficult to show that it isequal to theX-component
of the least solution of the following system of equations.

X = 0.4XY+0.6

Y = 0.3XY+0.4YZ+0.3 (2)

Z = 0.3XZ+0.7

Notice that the vector(1,1,1) is a solution of the system. We will later investigate
whether it is the least solution or not.

Equations (1) and (2) are two examples ofmonotone systems of polynomial equa-
tions(MSPEs for short). MSPEs are systems of the form

X1 = f1(X1, . . . ,Xn)
...

Xn = fn(X1, . . . ,Xn)

where f1, . . . , fn are polynomials withpositivereal coefficients. In vector form we
denote an MSPE byX = f (X). We call the vectorf (X) of polynomials amonotone
system of polynomials, or MSP. Obviously, a solution ofX = f (X) is a fixed-point
of f (X), and vice versa. Further, any solution ofX = f (X) can be visualized as a
point of intersection of the submanifolds defined by then implicit functions fi(X)−
Xi = 0. In particular, when the polynomials off (X) are quadratic the solutions of
X = f (X) correspond to the intersection ofn quadrics. Figure 1 shows the graph of
such a quadratic MSPE withn = 2.

We call MSPEs and MSPs “monotone” becausex≤ x′ implies f (x) ≤ f (x′) for
everyx,x′ ∈ R

n
≥0. This is a bit imprecise, because not every monotone polynomial

has positive coefficients. Perhaps “positive systems” would be a better name, but
since we have used the term “monotone” in several papers we stick to it.

MSPEs appear naturally in the analysis of many stochastic models, such as
stochastic context-free grammars (with numerous applications to natural language
processing [23, 19], and computational biology [24, 5, 4, 22]), probabilistic pro-
grams with procedures [9, 2, 13, 11, 10, 12, 14], web-surfing models with back
buttons [16, 17], and branching processes [20], a topic in stochastic theory that can
be traced back to Galton’s problem.

In the last years Etessami and Yannakakis [13] and ourselves[21, 8] have stud-
ied the problem of solving MSPEs. This paper gives a succinct—and informal—
overview of our results.

2 Some Definitions and Facts

Let R[0,∞] denote the set of non-negative reals extended with∞. We extend the def-
initions of sum and product as usual:∞ + k = ∞ for every k ∈ R[0,∞], ∞ · 0 = 0,



Solving Monotone Polynomial Equations 3

X1 = f1(X1,X2)

X2 = f2(X1,X2)

µ f
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Fig. 1 Graphs of the equationsX1 = f1(X1,X2) andX2 = f2(X1,X2) with f1(X1,X2) = X1X2 + 1
4

and f2(X1,X2) = 1
6X2

1 + 1
9X1X2 + 2

9X2
2 + 3

8 . There are two real solutions inR2
[0,∞], the least one is

labelled withµ f .

and∞ ·k = ∞ for everyk∈ R[0,∞] \{0}. The resulting algebraic structure is thereal
semiring. MSPEs are systems of fixed-point equations over the real semiring.

Given two vectorsu,v∈ R
n
[0,∞], we say thatu≤ v holds ifui ≤ vi holds for every

1≤ i ≤ n, whereui ,vi are thei-th components ofu andv, respectively. This is the
pointwise order on vectors of reals. The first positive result on MSPEs is a direct
consequence of Kleene’s theorem:

Theorem 1 (Kleene’s fixed-point theorem).Every MSP f(X) has a least fixed-
point µ f in R

n
[0,∞] with respect to the pointwise order. Moreover, the sequence

(κ(k)
f )k∈N given by

κ(0)
f := 0

κ(k+1)
f := f (κ(k)

f ) = f k+1(0)

is non-decreasing with respect to≤ (i.e.,κ(k)
f ≤ κ(k+1)

f ) and converges toµ f .

We call (κ(k)
f )k∈N the Kleene sequence, and its elements theKleene approximants

of µ f .

Example 1.For the system (2) we obtain:

κ(0)
f = (0,0,0), κ(1)

f = (0.6,0.3,0.7),

κ(2)
f = (0.672,0.438,0.826), κ(3)

f = (0.718,0.533,0.867),

κ(4)
f = (0.753,0.600,0.887), κ(5)

f = (0.781,0.648,0.900), . . .
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The least solution of a system oflinear equations (monotone or not) satisfies
some good properties that no longer hold for MSPEs. It is easyto show (using for
instance Cramer’s rule) that if the coefficients are rationals, then the least solution
is also rational. However, using Galois theory one can provethat the least solution
of a polynomial system may not be expressible by radicals. For instance:

Fact 1. The least fixed-point of

X =
1
6

X6 +
1
2

X5 +
1
3

. (3)

is not expressible by radicals.

This fact also holds for quadratic systems, i.e., systems inwhich all polynomials
have at most degree 2. Given an MSPf over a setX of variables, it is easy to con-
struct a quadratic MSPg over a larger setX ∪Y such that the projection ofµg onto
X is equal toµ f . The construction is very similar to the one that brings a context-
free grammar in Chomsky normal form. For instance, it “expands” Equation (3) into
the system

X =
1
6

XX5 +
1
2

XX4 +
1
3

Xn = XXn−1 (for n = 5,4,3)

X2 = X2

Since this expansion involves only a linear blowup, we can take quadratic MSPEs
as a normal form of MSPEs.

The least solution of linear MSPEs is not only rational, but asuccinct rational.
Consider a system of dimensionn (i.e., with n equations) whose coefficients are
given as ratios ofm-bit integers. It is easy to show using Cramer’s rule that the
least solution can be written as the quotient of two natural numbers with at most
O(n2m+nlogn) bits. As a consequence, we get

Fact 2. Let X= f (X) be a linear MSPE of dimension n whose coefficients are given
as ratios of m-bit integers. For every componentµ fi of the least fixed-point of f : if
0 < µ fi < ∞ then

1

2O(n2m+nlogn)
≤ µ fi ≤ 2O(n2m+nlogn)

(where the constant of the Big-Oh notation is independent off ).

Since the least fixed-point of a MSP can be irrational, there is no bound on the
number of digits needed to write it down. However, using results of [8] we can still
give a lower and an upper bound:

Fact 3. Let f be a quadratic MSP of of dimension n whose coefficients are given
as ratios of m-bit integers. For every componentµ fi of the least fixed-point of f : if
0 < µ fi < ∞ then



Solving Monotone Polynomial Equations 5

1

2m·2O(n)
≤ µ fi ≤ 2m·2O(n)

(where the constant of the Big-Oh notation is independent off ).

So, loosely speaking, while the least fixed-point of a linearsystem is at most expo-
nential in the dimension of the system, the least solution ofa quadratic system is at
most double exponential.

It is easy to find examples of quadratic MSPs in which the leastfixed-point is
rational and double exponential. Then-th component of the least solution of system

X1 = k
X2 = X2

1
...

Xn = X2
n−1

is equal tok2(n−1)
.

3 Computational complexity

The fundamental decision problem for MSPs is whether(µ f )i ∼ a holds for a
given MSP f and a componenti, wherea is some positive rational number and
∼ ∈ {≤,=,≥}. Let us call this problemMSP-DECISION. Little is known about its
computational complexity. The problem lies in PSPACE:

Consider e.g. a two-dimensional MSPEX1 = f1(X1,X2),X2 = f2(X1,X2). To
decide whether(µ f )1 ≤ a holds one can equivalently decide if the following
formula is true:

∃x1 ∈ R,x2 ∈ R : x1 = f1(x1,x2) ∧ x2 = f2(x1,x2) ∧x1,x2 ≥ 0 ∧x1 ≤ a

Such formulas can be decided in PSPACE, because the first-order theory of
the reals is decidable, and its existential fragment is evenin PSPACE [3].

For a lower bound, we introduce the problemSQUARE-ROOT-SUM:

Givenk+1 natural numbersn1, . . . ,nk andb, determine whether∑k
i=1

√
ni ≤ b

holds.

The SQUARE-ROOT-PROBLEM is a natural subproblem of many questions in
computational geometry. For instance, the length of the boundary of a polygon
whose vertices lie inZ2 is a sum of square roots of integers. It has been a ma-
jor open problem since the 70s whether SQUARE-ROOT-SUM belongs to NP. The
problem can easily be reduced to MSP-DECISION:

Suppose we are givenn1 = 2, n2 = 3, andb = 3, and we want to decide
if
√

2+
√

3 ≤ 3. One would like to come up with an MSPf (X) such that
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(µ f )1 =
√

2,(µ f )2 =
√

3,(µ f )3 =
√

2+
√

3, so that deciding
√

2+
√

3≤ 3
is equivalent to deciding(µ f )3 ≤ 3. One has to be careful though, because for
instance the equationX1 = X2

1 +X1−2 is not an MSPE. It was shown in [13]
how to overcome this problem: Instead of encoding e.g.

√
2 directly, it suffices

to encodea+b·
√

2 for some rationalsa,b.

The least solution of the equationX = X2+(1−λ 2 ·n)/4 equals(1−λ
√

n)/2.
So, by choosing forλ a small enough rational number we get a 1-dimensional
MSP whose least solution isa+b·√n for some rationalsa,b. In our example
we can setλ = 1

max(2,3) = 1
3 which leads to the following MSPE.

X1 = X2
1 +

1− 2
9

4

X2 = X2
2 +

1− 3
9

4
X3 = X1 +X2

Its least solution is

µ f =

(

1
2
− 1

6

√
2,

1
2
− 1

6

√
3,1− 1

6

(
√

2+
√

3
)

)

.

So, the question whether
√

2+
√

3≤ 3 holds can be translated into the ques-
tion whether(µ f )3 ≥ 1− 1

6 ·3 = 1
2 holds.

It follows from this reduction that proving membership of MSP-DECISION in NP
would be a major breakthrough.

An interesting issue is the complexity of MSP-DECISION in the Blum-Shub-
Smale computational model, in which all operations on rationals take unit time in-
dependently of their size. SQUARE-ROOT-SUM can be decided in polynomial time
in this model [25], but it is open whether the result extends to MSP-DECISION.

4 Approximating the Least Fixed-Point: Newton’s Method

For most practical purposes, the main computational problem concerning MSPs is
the approximation of the least fixed-point up to a given accuracy. Kleene’s method
can be applied, and it is very robust: it always converges when started at 0, for any
MSP. On the other hand, the convergence speed of the Kleene sequence can be very
poor. Before presenting an example, we define a notion of convergence order that
differs from the one commonly used in numerical mathematics, but is particularly
natural for computer science.

Let (ak)k≥0 be a non-decreasing sequence of vectors over the real semiring such
that limk→∞ ak = a < ∞. The convergence orderof the sequence is the function
β : N → N defined as follows:β (k) is the greatest natural numberi such that
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‖a−ak‖
‖a‖ ≤ 2−i

where‖·‖ is some norm. We say that a sequence has linear, exponential,logarith-
mic, etc. convergence order if the functionβ (k) grows linearly, exponentially, or
logarithmically ink, respectively. Notice that the asymptotic behaviour ofβ (k) is
independent of the norm, because all norms are equivalent upto a constant. In the
univariate case,β (k) is the number of bits ofak that coincide with the correspond-
ing bits ofa (the formalization of this intuition requires some care, like identifying
1 and 0.999. . .). For instance, for the sequence(1−2−k)k≥0 we haveβ (k) = k, i.e.,
the firstk bits of thek-th element of the sequence coincide with the firstk bits of the
limit.

Consider now this very simple but at the same time very illustrative quadratic
MSPE in one variable:

X = 1/2+1/2X2 (4)

In Galton’s problem, the least solution of this equation gives the extinction proba-
bility of an individual’s descent line when every individual has 0 or 2 children with
probability 1/2. The least solution is 1. We have:

Fact 4. The i-th Kleene approximant of X= 1/2+1/2X2 satisfiesκ(i) ≤ 1− 1
i+1 for

every i≥ 0. So the Kleene sequence only has logarithmic convergence order.

Example 2.Here are some of the Kleene iterates.

κ(0) = 0, κ(1) = 0.5, κ(2) = 0.625
κ(3) = 0.695, κ(4) = 0.742, κ(5) = 0.775

· · ·
κ(20) = 0.920, . . . , κ(200) = 0.990, . . . , κ(2000) = 0.9990, . . .

Faster approximation techniques have been known for a long time. In particular,
Newton’s method, suggested by Isaac Newton more than 300 years ago, is a standard
efficient technique for approximating a zero of a differentiable function. Since the
least solution of a fixed-point equationX = f (X) is a zero ofg(X) = f (X)−X, the
method can be applied to search for fixed-points off (X).

We briefly recall the method for the case of one variable, see Fig. 2 for an illus-
tration. Starting at some valueν(0) “close enough” to the zero ofg(X), we proceed
iteratively: givenν(i), we compute a valueν(i+1) closer to the zero thanν(i). For
that, we compute the tangent tog(X) passing through the point(ν(i),g(ν(i))), and
takeν(i+1) as the zero of the tangent (i.e., theX-coordinate of the point at which the
tangent cuts theX-axis). A little arithmetic leads to:

ν(i+1) = ν(i) +
f (ν(i))−ν(i)

1− f ′(ν(i))

Newton’s method can be easily generalized to the multivariate case:

ν(i+1) = ν(i) +(Id− f ′(ν(i)))−1( f (ν(i))−ν(i))
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Fig. 2 Newton’s method to find a zero of a one-dimensional functiong(X)

where f ′(X) is the Jacobian off , i.e., the matrix of partial derivatives off , and Id
is the identity matrix.

Notice that Newton’s method is not restricted to the real semiring, it can be
applied to any differentiable functions over the real field.However, when applied
with this generality it is far less robust than Kleene’s method: it may converge very
slowly, converge only when started at a point very close to the zero—which must be
guessed— or even not converge at all.

However, if we apply Newton’s method tof (X) = 1/2 + 1/2X2, starting at
ν(0) = 0, we obtain:

Fact 5. The i-th Newton approximant of X= 1/2+1/2X2 satisfiesν(i) = 1− 1
2i for

every i≥ 0. The i-th approximant has i correct bits, i.e., the Newton sequence has
linear convergence.

So in this particular example the Newton sequence converges“exponentially faster”
than the Kleene sequence. The number of arithmetic operations needed to computei
correct bits of the solution grows polynomially instead of exponentially ini. (Recall,
however, that the operations have to be applied to rationalswhose length may grow
exponentially in the number of iterations.) One can ask whether the good behaviour
on this example is just a coincidence, or whether perhaps Newton’s method is robust
on the real semiring. A number of recent results have shown that (with certain ifs
and buts) the latter is the case, and we briefly survey them in the next section.
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5 Convergence Order and Thresholds for Newton’s Method

The first positive result on the convergence of Newton’s method was obtained by
Etessami and Yannakakis in [13]. They showed that the methodalways converges
to the least fixed-point starting fromν(0) = 0, and that it converges at least as fast at
the Kleene sequence.1

Inspired by this positive result, we started to study the convergence order. Given
an MSPEX = f (X) whose least solutionµ f is finite, it is well-known that the
convergence order depends critically on the Jacobian matrix at the least fixed-point,
i.e., on f ′(µ f ). Every textbook proves that the method performs brilliantly when
the matrix(Id− f ′(µ f )) is non-singular: it exhibitsexponentialconvergence order.
So we focused our attention on the singular case, of whichf (X) = 1/2+1/2X2 is
an example. By Fact 5 we can expect at most linear convergence. But perhaps the
method converges more slowly on other examples?

It is convenient to start with the special case ofstrongly connectedMSPEs.
Loosely speaking, an MSPE is strongly connected if every variable depends on any
other variable, where dependence is defined as follows. Given two variablesX and
Y, X depends on Yif eitherY appears on the right-hand-side of the equation forX,
or if there is a variableZ such thatX depends onZ andZ depends onY.

5.1 Strongly Connected MSPEs

We proved the following theorem in [21].

Theorem 2.Let f(X) be a strongly connected MSP such thatµ f is finite. There is
a number tf such that for every i≥ 0:

β (t f + i) ≥ i .

In particular, the Newton sequence has linear convergence order.

We call t f the thresholdof f (X). Loosely speaking, the theorem states that af-
ter crossing the threshold (i.e., from thet f -th approximant onwards) the Newton
sequence gains at least one bit of accuracy per iteration. The threshold itself is an
upper bound on the number of iterations needed to obtain the first bit of the least
fixed-point.

The proof of [21] was based on the following topological property of R
n: if the

infimum of the distances between points of two compact sets is0, then the two sets
have at least one common point. As a consequence, it was a purely existential proof,
and provided no information on the size of the threshold. In [7] we obtained the
following relation between the threshold and the minimal component ofµ f .

1 More precisely, Etessami and Yannakakis proved the result for a structured version of the method,
and we showed in [8] that this additional structure is not required for convergence (although it is
convenient for efficiency).
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Theorem 3.Let f(X) be a quadratic strongly connected MSP of dimension n whose
coefficients are given as ratios of m-bit integers. Letµmin be the minimal component
of µ f . The threshold tf of Theorem 2 satisfies

t f ≤ 3n2m+2n2 |logµmin| .

In particular, if fi(0) > 0 holds for every1≤ i ≤ n, then tf ≤ 5n2m.

Example 3.Consider again the following MSPE, which was given as Equation (2)
on page 2.

X = 0.4XY+0.6

Y = 0.3XY+0.4YZ+0.3

Z = 0.3XZ+0.7

Using a result from [8], slightly stronger than Theorem 3 buttechnically more
difficult to state, one can prove that the threshold of this system satisfiest f ≤ 6
for the maximum-norm (i.e., the norm of a vector is the absolute value of its
maximal component). Soβ (14) ≥ 8. After computing 14 Newton iterates we get
ν(14) = (0.983,0.974,0.993). As we have computed at leastβ (14) ≥ 8 bits, we
know thatµ f is at mostν(14) +(2−8,2−8,2−8) which is strictly less than 1 in every
component. Therefore, the stochastic context-free grammar from the introduction
produces a terminal string with probability less than 1.

Combining Theorem 3 with Fact 3 we obtain:

Corollary 1. Let X = f (X) be a quadratic strongly connected MSPE of dimension
n whose coefficients are given as ratios of m-bit integers. The threshold tf of Theo-
rem 2 satisfies tf ∈ m2O(n).

This corollary gives an exponential bound on the number of iterations needed to
compute the first bit of the least fixed-point. It is open whether this bound is tight.

5.2 General MSPEs

The following example shows that an exponential number of iterations is sometimes
needed for the first bit, if the MSPE isnot strongly connected. We give a family of
MSPEs in which the number of iterations needed to compute thefirst bit grows
exponentially in the dimension of the system.

Example 4.Consider the following family of MSPEs.
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X1 = 1/2+1/2·X2
1

X2 = 1/4·X2
1 +1/2·X1X2 +1/4·X2

2

... (5)

Xn = 1/4·X2
n−1 +1/2·Xn−1Xn +1/4·X2

n

The variableXi depends onXj if and only if j ≤ i. So the dependence graph contains
n strongly connected components, one for each variable. The least fixed-point of the

system is the vector(1,1, . . . ,1). We show in [21] thatν(2n−1)
n ≤ 1/2 holds, and so

that at least 2n−1 iterations of Newton’s method are needed to obtain the first bit
of Xn. The proof goes as follows. We consider a decomposed versionof Newton’s
method, in which for a givenk we performk iterations of the normal method on the

first equation, yielding a lower bounda(k)
1 of the first component of the least fixed-

point. Then we performk iterations on the second equationafter setting X1 := a(k)
1 ;

by monotonicity, this yields a lower bounda(k)
2 of the second component. Repeating

this procedure we finally obtain a lower bounda(k)
n of then-th component. It is easy

to see thatν(k)
i ≤ a(k)

i holds, i.e, the decomposed method converges at least as fastas

the method that performsk iterations on the whole system. Now, letδ (k)
i = 1−a(k)

i

be the error of the decomposed method. A simple analysis reveals thatδ (k)
i+1 ≥

√

δ (k)
i

holds for every 1≤ i < n. By Fact 5 we haveδ (2n−1)
1 = (1/2)2n−1

, and so we get

δ (2n−1)
n ≥ 1/2, i.e.,ν(2n−1)

n ≤ 1/2.

So, intuitively, the problem of non-strongly connected systems is that the error gets
“amplified” when we move up the graph of strongly connected components.

For MSPs that are not strongly connected, Newton’s method still has linear con-
vergence order, but a worse rate [8]:

Theorem 4.Let f(X) be aclean(see below) MSP such thatµ f is finite. There is a
number tf such that for every i≥ 0:

β (t f + i · (n+1) ·2n) ≥ i .

In particular, the Newton sequence has linear convergence order.

In order to make sure that Newton’s method stays well-defined(i.e. that the matrix
inverses exist) Theorem 4 assumes that the MSP is clean, i.e., (µ f )i > 0 for all i.
An MSP can easily be made clean in linear time by identifying and removing the
components with(µ f )i = 0: (µ f )i = 0 holds iff (κ(n))i = 0.

The rate in Theorem 4 is worse than in the strongly connected case: Newton’s
method needs (in the worst case) about 2n iterations per bit, instead of only 1 as in
the strongly connected case. This worst case is attained by the MSPE in Equation (5)
above, so the exponential rate in Theorem 4 cannot be avoided. Unfortunately, we
do not have an upper bound on the thresholdt f in this general case.
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5.3 min-max-MSPEs

Theorem 4 forms the basis for the convergence analysis of a recent extension [6] of
Newton’s method to min-max-MSPEs, i.e., MSPEs where minimum and maximum
are allowed as additional operators. Here is an example of a min-max-MSPE:

X = max{0.7Y +0.3 , 0.6XY+0.4}
Y = min{X , 0.8Y2 +0.2}

Such systems arise, for instance, inextinction games. Those games add two adver-
sarial players to Galton’s setting from the beginning: There aren species, each of
which is controlled by one of two players, theterminator and therescuer. Each
player can apply actions to the individuals controlled by her; an action transforms
an individual (probabilistically) into zero or more individuals. The terminator tries
to extinguish all individuals, whereas the rescuer tries tosave them. Natural ques-
tions are: What are optimal strategies2 for the terminator and the rescuer, and what is
the probability of extinction of all individuals, assumingthat there is a single initial
individual and the players follow optimal strategies?

The MSPE above can be thought of as an equation system for the extinction
probabilities of two speciesX andY. SpeciesX is controlled by the terminator,
whereasY is controlled by the rescuer. The terminator can apply one oftwo possible
actions to anX-individual: the first one kills theX-individual with probability 0.3,
but with probability 0.7 transforms it to aY-individual; the second action kills theX-
individual with probability 0.4, but, with probability 0.6, keeps theX-individual and
creates aY-individual. What can the rescuer do with aY-individual? She can choose
between transforming it to anX-individual and a second action which kills theY-
individual with probability 0.3 and adds anotherY-individual with probability 0.7.

It turns out that theX-component (resp.Y-component) of the least solution of the
MSPE above equals the extinction probability assuming a single initial X-individual
(resp.Y-individual) if both the terminator and the rescuer follow optimal strategies.
Such systems also arise in the analysis of recursive simple stochastic games [14, 15].

In order to approximate the least solution of a min-max-MSPE, one could use
Kleene iteration. But, as we have seen before (Fact 4), Kleene iteration may con-
verge very slowly even without minimum and maximum. Therefore, in [6] we pro-
pose two methods for approximating the least solution of a min-max-MSPE. Both
are iterative procedures based on Newton’s method.

• The first method linearizes each polynomial appearing in thesystem (possibly
inside a minimum or a maximum expression) by computing the “tangent” at the
current iterate. One obtains a min-max-MSP whose polynomials have degree at
most 1. Its least fixed-point can be computed exactly by a method from [18] that
uses strategy iteration and linear programming. The resultis the next iterate.

• The second method linearizes each max-polynomial appearing in the system
(possibly inside a minimum expression) by computing the “tangent” at the cur-

2 A strategy tells a player which action to apply to the individuals controlled by her.
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rent iterate. (A special “tie breaking” policy must be adhered to if the current
iterate is at the “edge” between two polynomials inside a maximum expression.)
One obtains a min-MSP whose polynomials have degree at most 1. Its least fixed-
point can be computed exactly by solving a single linear program. The result is
the next iterate.

Both methods have at least linear convergence order [6]:

Theorem 5.Let f(X) be a min-max-MSP such thatµ f is finite. There is a number
t f such that for every i≥ 0:

β (t f + i ·m· (n+1) ·2n) ≥ i ,

where m is the number of possible strategies of the players. In particular, the two
extensions of Newton’s method have linear convergence order.

The first method converges somewhat faster whereas a single step of the second
method is cheaper. The second method also computesε-optimal strategies for the
terminator, i.e., strategies that achieve as extinction probabilities at least the current
iterate.

We have used the second method to approximate the extinctionprobabilities as-
suming perfect strategies: A population that starts with a single X-individual (resp.
Y-individual) becomes extinct with probability 0.475 (resp. 0.250). We have ob-
tained those numbers after performing 3 iterations and thenrounding, but in this
case those numbers are already the exact solution. The optimal strategy for the ter-
minator is to apply the first action to theX-individuals. The rescuer should choose
her second action for herY-individuals.

6 Conclusions

We have shown that Newton’s method is not only efficient but also remarkably ro-
bust when applied to monotone systems of fixed-point equations (MSPEs). Unlike
for arbitrary systems, the method always converges when started at 0. For strongly
connected systems the method always reaches a point, the threshold, after which it
is guaranteed to gain at least one bit of accuracy per iteration (in favourable cases
it doublesthe number per iteration). In fewer words, after crossing the threshold
the method has linear convergence order with rate 1. If the system is not strongly
connected the method still has linear convergence, but the rate deteriorates.

The threshold of the strongly connected case is inversely proportional to the log-
arithm of the minimal component of the least fixed-point. Therefore, if some kind
of analysis can establish that the least fixed-point is not very small, then the method
quickly enters the one-bit-per-iteration zone. We still donot have any threshold for
the general, non-strongly-connected case.
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Newton’s method still works for MSPEs that are not strongly connected. We
have shown that the convergence order is still linear, albeit the rate may deteriorate
exponentially with the dimension.

Newton’s method can be extended to min-max-MSPEs, preserving its linear con-
vergence order.

MSPEs appear in a large number of stochastic systems. In [1] we have designed a
formal system for establishing the reputation of the individuals of a social network.
The reputation of the individuals (defined as the stationarydistribution of a Markov
chain) is the least solution of a MSPE. These case studies lead to very large MSPEs,
and computing their least solutions is an exciting challenge for future research.
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