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Abstract. Workflow mining is the task of automatically producing a
workflow model from a set of event logs recording sequences of workflow
events; each sequence corresponds to a use case or workflow instance. For-
mal approaches to workflow mining assume that the event log is complete
(contains enough information to infer the workflow) which is often not
the case. We present a learning approach that relaxes this assumption:
if the event log is incomplete, our learning algorithm automatically de-
rives queries about the executability of some event sequences. If a teacher
answers these queries, the algorithm is guaranteed to terminate with a
correct model. We provide matching upper and lower bounds on the num-
ber of queries required by the algorithm, and report on the application
of an implementation to some examples.

1 Introduction

Modern workflow management systems offer modelling capabilities to support
business processes [vdAvH04]. However, constructing a formal or semi-formal
workflow model of an existing business process is a non-trivial task, and for this
reason workflow mining has been extensively studied (see [vdAvDH+03] for a
survey). In this approach, information about the business processes is gathered
in the form of logs recording sequences of workflow events, where each sequence
corresponds to a use case. The logs are then used to extract a formal model.
Workflow mining techniques have been implemented in several systems, most
prominently in the ProM tool [vdAvDG+07], and successfully applied.

Most approaches to process mining use a combination of heuristics and formal
techniques, like machine learning or neural networks, and do not offer any kind
of guarantee about the relationship between the business process and the mined
model. Formal approaches have been studied using workflow graphs [AGL98] and
workflow nets [vdA98, BDLM07] as formalisms. These approaches assume that
the logs provide enough information to infer the model, i.e., that there is one
single model compatible with them. In this case we the call the logs complete.
This is a strong assumption, which often fails to hold, for two reasons: first,
the number of use cases may grow exponentially in the number of tasks of the
process, and so may the size of a complete set of logs. Second, many processes
have “corner cases”: unusual process instances that rarely happen. A complete
set of logs must contain at least one instance of each corner case.

In this paper we propose a learning technique to relax the completeness as-
sumption on the set of logs. In this approach the model is produced by a Learner



that may ask questions to a Teacher. The Learner can have initial knowledge in
the form of an initial set of logs; if the log contains enough information to infer
the model, the Learner produces it. If not, it iteratively produces membership
queries of the form: Does the business process have an instance (a use case)
starting with a given sequence of tasks? For instance, in the standard example
of complaint processing (see Figure 1 and [vdA98]), a membership query could
have the form “Is there a use case in which first the complaint is registered
and then immediately rejected?” The Teacher would answer no, because a deci-
sion on acceptance or rejection is made only after the customer has been sent a
questionnaire.

Notice that the Learner does not guess the queries, they are automatically
constructed by the learning algorithm. Under the assumption that the Teacher
provides correct answers, the learning process is guaranteed to terminate with
a correct model: a model whose executions coincide with the possible event
sequences of the business process. In other words, we provide a formal framework
with a correctness and completeness guarantee which only assumes the existence
of the Teacher.

It could be objected that if a Teacher exists, then a workflow model must
already exist, and there is no need to produce it. To see the flaw in this argument,
observe that the Teachers can be employees, databases of client records, etc,
that have knowledge about the process, but usually lack the modelling expertise
required to produce a formal model. Our learning algorithm only requires from
the Teacher the low-level ability to recognize a given sequence of process actions
as the initial sequence of process actions of some use case.

It is useful to draw an analogy. Witnesses of a crime can usually answer
questions about the physical appearance of the criminal, but they are very rarely
able to draw the criminal’s portrait: this requires interaction with a police expert.
This interaction can be seen as a learning process: the Teacher is the witness, and
the Learner is the police expert. The teacher has knowledge about the criminal,
but is unable to express it in the form of a portrait. The Learner has the expertise
required to produce a portrait, but needs input from the Teacher. In the context
of business processes,

Like [vdA98, KRS06, BDLM07, RGvdA+07], we use workflow nets, intro-
duced by van der Aalst, as formal model of business processes. Loosely speaking,
a workflow net is a Petri net with a distinguished initial and final marking. Van
der Aalst convincingly argues that well-formed business processes (an informal
notion) correspond to sound workflow nets (a formal concept). A workflow net is
sound [vdA98] if it is live and bounded. In this paper we follow van der Aalst’s
ideas. Given a Teacher, we wish to learn a sound workflow net for the business
process. It is easy to come up with a naive correct learning algorithm. However,
a first naive complexity analysis yields that the number of queries necessary to
learn a workflow net can be triple exponential in the number of tasks of the
business process in the worst case. This seems to indicate that the approach is
useless. However, we show how the special properties of sound workflow nets, to-
gether with a finer complexity analysis, lead to WNL, a new learning algorithm
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requiring a single exponential number of queries in the worst case. We also pro-
vide an exponential lower bound, showing that WNL is asymptotically optimal.
Finally, in a number of experiments we show that despite the exponential worst-
case complexity the algorithm is able to synthesize interesting workflows. Notice
also that the complexity is analysed for the case in which no initial event log is
provided, that is, the case in which all knowledge has to be extracted from the
Teacher by asking membership queries.

Technically, the triple exponential complexity of the naive algorithm is a
consequence of the following three facts:

(a) the size of a deterministic finite automaton (DFA) recognizing the language
of a net with n transitions can be a priori double exponential in n;

(b) learning such a DFA using only membership queries requires exponentially
many queries in the size of the DFA (follows from [Ang87] and [Vas73,
Cho78]); and

(c) the algorithms of Darondeau et al. for synthesis of Petri nets from regular
languages [BBD95] are exponential in the size of the DFA.

In the paper we solve (a) by proving that the size of the DFA is only single
exponential; we solve (b) by exhibiting a better learning algorithm for sound
workflow nets requiring only polynomially many queries; finally, we solve (c)
by showing that for sound workflow nets the algorithms for synthesis of Petri
nets from regular languages can be replaced by the algorithms for synthesis of
bounded nets from minimal DFA, which are of polynomial complexity. Notice
that our solution very much profits from the restriction to sound workflow nets,
but that this restriction is given by the application domain: that sound workflow
nets are an adequate formalization of well-formed business processes has been
proved by the large success of the model in both the workflow modelling and
Petri net communities.

Outline In the next section, we fix the notation of automata, recall the notion
of Petri nets and workflow nets, and cite results on synthesis of Petri nets from
automata. Our learning algorithm WNL is elaborated in Section 3. Section 4
reports on our implementation and experimental results. Finally, we sum up our
contribution in the conclusion.

2 Preliminaries

We assume that the reader is familiar with elementary notions of graphs, au-
tomata and net theory. In this section we fix some notations and define some
less common notions.

Automata and Languages A deterministic finite automaton (DFA) is a 5-
tuple A = (Q,Σ, δ, q0, F ) where Q is a finite set of states, Σ is a finite alphabet,
q0 ∈ Q is the initial state, δ : Q×Σ → Q is the (partial) transition function and
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F ⊆ Q is the set of final states. We denote by δ̂ the function δ̂ : Q × Σ∗ → Q
inductively defined by δ̂(q, ε) = q and δ̂(q, wa) = δ(δ̂(q, w), a). The language
L(q) of some state q ∈ Q is the set of words w ∈ Σ∗ such that δ̂(q, w) ∈ F .
The language recognized by a DFA A is defined as L(A) := L(q0). A language
is regular if it is accepted by some DFA.

Myhill-Nerode’s theorem and minimal DFAs Given a language L ⊆ Σ∗, we say
two words w,w′ ∈ Σ∗ are L-equivalent, denoted by w ∼L w′, if wv ∈ L ⇔ w′v ∈
L for every v ∈ Σ∗. The language L is regular iff L-equivalence partitions Σ∗

into a finite number of equivalence classes. Given a regular language L, there
exists a unique DFA A up to isomorphism with a minimal number of states such
that L(A) = L; this automaton A is called the minimal DFA for L. The number
of states of this automaton recognizing is equal to the number of equivalence
classes.

Given a DFA A = (Q,Σ, δ, q0, F ), we say two states q, q′ ∈ Q are A-equivalent
if L(q) = L(q′). We can quotient A with respect to this equivalence relation. The
states of the quotient DFA are the equivalence classes of ∼A. The transitions
are defined by “lifting” the transitions of A: for every transition q

a−→ q′, add
[q] a−→ [q′] to the transitions of the quotient DFA, where [q] and [q′] denote as
the equivalence classes of q and q′. The initial state is [q0], and the final states
are {[q] | q ∈ F}. The quotient DFA recognizes the same language as A, and is
isomorphic to the minimal DFA recognizing L.

It is easy to see that the minimal automaton for a prefix-closed regular lan-
guage has a unique non-final state (a trap state). For simplicity, we sometimes
identify this automaton with the one obtained by removing the trap state to-
gether with its ingoing and outgoing transitions.

Petri Nets A (marked) Petri net is a 5-tuple N = (P, T, F, W, m0) where P is
a set of places, T is a set of transitions with P ∩ T = ∅, F ⊆ (P × T ) ∪ (T × P )
is a flow relation, W : (P × T ) ∪ (T × P ) → N is a weight function satisfying
W (x, y) > 0 iff (x, y) ∈ F , and m0 : P → N is a mapping called the initial
marking.

For each transition or place x we call the set •x := {y ∈ P ∪ T : (y, x) ∈ F}
the preset of x. Analogously we call x• := {y ∈ P ∪ T : (x, y) ∈ F} the postset
of x. A net is pure if no transition belongs to both the pre- and postsets of some
place.

Given an arbitrary but fixed numbering of P and T , the incidence matrix of
N is the |P | × |T |-matrix C given by: C(pi, tj) = W (tj , pi)−W (pi, tj).

A transition t ∈ T is enabled at a marking m, if ∀p ∈ •t : m(p) ≥ W (p, t). If
a transition t is enabled it can fire to produce the new marking m′, written as
m

t−→ m′.
m′(p) := m(p) +

∑
p′∈P

C(p′, t)

Given w = t1 · · · tn ∈ T ∗ (i.e. ti ∈ T ), we write m0
w−→ m if there exist markings

m1, . . . ,mn−1 such that m0
t1−→ m1

t2−→ m2 . . .mn−1
tn−→ m. Then, we say
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that m is reachable. The set of reachable markings of N is denoted by M(N)
and defined by M(N) = {m : ∃w ∈ T ∗. m0

w−→ m}. It is well-known that if
m0

w−→ m, then m = m0 + C ·P (w), where P (w), the Parikh vector of w, is the
vector of dimension |T | having as i-th component the number of times that ti
occurs in w. We call this equality the marking equation.

A net N is k-bounded if m(p) ≤ k for every reachable marking m and every
place p of N , and bounded if it is k-bounded for some k ≥ 0. A 1-bounded net is
also called safe. A net is reversible if for every firing sequence m0

w−→ m there is
a sequence vw leading back to the initial state, i.e. m

vw−→ m0. N is live if every
transition can fire eventually at every marking, i.e. ∀m ∈ M(N)∃wm.m

wmt−→ m′

for some m′.
The reachability graph of a net N = (P, T, F, W, m0) is the directed graph

G = (V,E) with V = M(N) and (x, y) ∈ E iff x
t−→ y for some t ∈ T . If

G is finite, then the five-tuple A(N) = (Q,Σ, δ, q0, F ) given by Q = M(N),
Σ = T , q0 = m0, F = Q and δ(m, t) := m′ if m t−→ m′ is a DFA, and undefined
otherwise. (Note that δ is well-defined, because if m

t−→ m′ and m
t−→ m′′ then

m′ = m′′.) We call it the marking-DFA of N . The language of N , denoted by
L(N), is defined as the language of A(N).

Workflow nets Loosely speaking, a workflow net is a Petri net with two dis-
tinguished input and output places without input and output transitions respec-
tively, and such that the addition of a “reset” transition leading back from the
output to the input place makes the net strongly connected (see Figure 1, for
example). Formally, a net N = (P, T, F, W, m0) is a workflow net if there exist
places i, o ∈ P such that •i = ∅ = o•, m0(p) = 1 for p = i and m0(p) = 0, oth-
erwise, and the net Ñ = (P, T ∪ {r}, F ∪ {(o, r), (r, i)},W ∪ {(o, r) 7→ 1, (r, i) 7→
1},m0), where r /∈ T , is strongly connected.

A firing sequence w of a workflow net N is a run if m0
wr−→ m0 in Ñ . The

runs of N are the formalization of the use cases of the business process modelled
by the workflow net. A workflow net N is sound if Ñ is live and bounded. It
is argued in [vdA98] that a well-formed business process can be modelled by
a sound workflow net (at a certain level of abstraction). The workflow net in
Figure 1 is a very simple model for processing complaints (a slightly altered
example, taken from [vdAvH04])

The following lemma characterizes soundness. In the paper we work with this
characterization as definition.

Lemma 1. A workflow net N is sound iff Ñ is bounded, reversible, and for
every transition t there is a reachable marking m such that m enables t.

Proof. Let N = (P, T, F, W, m0) be workflow net.
(⇒): Assume N is sound. Then Ñ is bounded and live. We show Ñ is reversible.
Let m be an arbitrary reachable marking of Ñ . Then m0

w−→ m for some w ∈
(T ∪ {r})∗. Since Ñ is live, there is a firing sequence w such that m

wr−→ m′ for
some marking m′. We claim m′ = m0. Assume m′ 6= m0. Then, since m′(i) > 0,
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register

contact customer

contact department

collect

accept

reject

pay refund

send rejection

archive

need more info

acquire info

Fig. 1. An example for a sound workflow net (drawn without the reset transition r)

we have m′(p) ≥ m0(p) for every place p, and m′(p) > m0(p) for some p. So m′

strictly covers m0, and so N is not bounded.
(⇐): Assume Ñ is bounded, reversible and every transition is enabled at

some reachable marking. We show that Ñ is live, which implies that N is sound.
Let m be an arbitrary reachable marking of Ñ , and let t ∈ T ∪ {r}. Since Ñ is
reversible, m

w−→ m0 for some w ∈ (T ∪ {r})∗, and since t occurs in some firing
sequence m0

vt−→ m′ for some v ∈ (T ∪ {r})∗ and some m′. So Ñ is live (and
bounded by assumption) and therefore N is sound.

Synthesis of Petri nets from Languages and from Automata In [BBD95],
Darondeau et al. address two synthesis problems of Petri nets from a minimal
DFA A over an alphabet T :

(S1) Decide if there is a bounded net N with T as set of transitions such that
L(N) = L(A), and if so return one. We call this problem synthesis up to
language equivalence.

(S2) Decide if there is a bounded net N with T as set of transitions such that
the reachability graph of N is isomorphic to A, and if so return one. We call
this problem synthesis up to isomorphism.

The algorithm of [BBD95] for synthesis up to language equivalence works
in two phases: firstly, A is transformed into an equivalent automaton A′ in a
certain normal form. In the worst case, A′ can be exponentially larger than A.
The second phase constructs the net N , if it exists, in polynomial time in A′. The
algorithm requires exponential time in A. The algorithm of [BBD95] for synthesis
up to isomorphism, on the contrary, needs only polynomial time in A. Notice
that, in general, if one knows the language L(N) of a net, one does not know yet
its reachability graph. In particular, the minimal automaton recognizing L(N)
may not be the reachability graph of any net. The basic algorithm in [BBD95]
can only handle pure nets, but there is also a generalization to non-pure nets to
be found in [BDBM96].

Hints on how to obtain nets that are more “visually appealing” (i.e. have few
arcs, no redundant places, etc.) than those generated by standard synthesis al-
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gorithms can be found in [BDKM08], where net synthesis was applied to process
mining from event logs.

3 A Learning Algorithm for Sound Workflow Nets

Our goal is to develop a learning algorithm for sound workflow nets which is
guaranteed to terminate, and in which a teacher only needs to answer member-
ship queries.

The precise learning setting is as follows. We have a Leaner and a Teacher.
The Learner is given a set T of transitions, where each transition corresponds to
a dedicated task (in the sense of [vdA98]) of the business process. The Learner
repeatedly asks the Teacher workflow membership queries. A query is a sequence
σ ∈ T ∗, and is answered by the Teacher as follows: if σ can be extended to a
use case (i.e., a sequence corresponding to a complete instance of the business
process), then the Teacher returns this use case in the form of a transition se-
quence στr, where τ ∈ T ∗. Otherwise, the Teacher answers “no”. In our running
example the Learner is given the set of transitions of the net of Figure 1, and
the Teacher’s answers are compatible with this net, i.e., acts as if it knew the
net. Note that in practice, this only means that the Teacher can either extend
the query to a use case of the net to learn or can reject the query. Two possible
queries are

register contact customer contact department
register contact customer collect

A possible answer to the first query is the run

register contact customer contact department collect accept pay refund archive

while the answer to the second query is “no”.
Assuming that the Teacher’s answers are compatible with a k-bounded and

reversible net N , the goal of the Learner is to produce a net N ′ such that
L(N) = L(N ′). It is easy to see that a (very inefficient) learning algorithm
exists:

(1) A net with n transitions has at most c1 := 2(n+1) places, because a place is
determined by its pre- and post-sets of transitions.

(2) By (1), N has at most c2 := (k + 1)c1 reachable markings. Therefore, there
exists a minimal DFA A with at most c2 states such that L(N) = L(A).

(3) Since any two prefix-closed minimal DFAs with c2 states differ in some word
of length c2, the automaton A can be learned by querying all words over T
of length 2c2, i.e., after at most c3 := n2c2 queries.
This follows easily from Myhill-Nerode’s theorem. The DFA A can be con-
structed from the answers to the queries as follows. The states of A are the
equivalence classes of words of L(N) of length up to c2, where two words
w, v are equivalent if for every word u of length up to c2 either wu and vu
belong to L(N), or none of them does [Vas73, Cho78].) The initial state is
the equivalence class of the empty word, and all states are final. There is a
transition [w] a−→ [wa] for every word w of length at most c2.

7



(4) The net N is obtained from A by means of the algorithm of [BBD95] for
synthesis up to language equivalence (see problem (S1) in Section 2). The
algorithm runs in 2O(p(c2)) time for some polynomial p.

The query complexity of this naive algorithm, i.e. the number of queries it
needs to ask, is triple exponential in the number n of transitions. In this section
we prove a series of results ending in an improved algorithm with single exponen-
tial query and time complexity (notice that single exponential time complexity
implies single exponential query complexity, but not vice versa).

3.1 An Upper Bound on the Number of Reachable Markings

We show that the naive bound on the number of states of A obtained in (2)
above, which is double exponential in n, can be improved to a single exponential
bound.

Given a net N = (P, T, F, W, m0) with incidence matrix C, we denote by
C(p) the vector (C(p, t1), . . . , C(p, t|T |). We say that a place p is a linear com-
bination of the places p1, . . . , pk if there are real numbers λ1, . . . , λk such that
C(p) =

∑k
i=1 λi · C(pi).

The following lemma is well known.

Lemma 2. Let N = (P, T, F, W, m0) be a net with incidence matrix C, and let
C(p) =

∑k
i=1 λiC(pi). Then for every reachable marking m: ∀p ∈ P. m(p) =

m0(p) +
∑k

i=1 λi(m(pi)−m0(pi)) .

Proof. Since m is reachable, there is w ∈ T ∗ such that m0
w−→ m. By the marking

equation m = m0 + C · P (w), and so in particular m(p) = m0(p) + C(p) · P (w),
and m(pi) = m0(pi) + C(pi) · P (w) for every 1 ≤ i ≤ k. So m(p) = m0(p) +∑k

i=1 λiC(pi) · P (w) = m0(p) +
∑k

i=1 λi(m(pi)−m0(pi))

Theorem 1. Let N = (P, T, F, W, m0) be a k-bounded net with n transitions.
Then N has at most (k + 1)n reachable markings.

Proof. The incidence matrix C has |P | rows and n columns, and so it has rank
at most n. So there are l places p1, . . . , pl, l ≤ n, such that C(p1), . . . , C(pl) are
linearly independent. So every place p is a linear combination of p1, . . . , pl. It
follows from Lemma 2 that for every two reachable markings m,m′, if m(pi) =
m′(pi) for every 1 ≤ i ≤ l, then m(p) = m′(p) for every place p. In other words,
if two markings coincide on all of p1, . . . , pl, they are equal. Since for every
reachable marking m we have 0 ≤ m(pi) ≤ k, the number of projections of the
reachable markings onto the places p1, . . . , pl is at most (k + 1)l ≤ (k + 1)n. So
N has at most (k + 1)n reachable markings.

3.2 Minimality of the marking-DFA

We show that the marking-DFA of a bounded and reversible net is minimal.
Since our goal is to construct a bounded and reversible net model N of the
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business process, after we learn the minimal DFA A with L(A) = L(N) in step
(3), we can can synthesize N by applying the algorithm of [BBD95] for synthesis
up to isomorphism (Problem (S2)), instead of the algorithm for synthesis up to
language equivalence (Problem (S1)). This eliminates one exponential from step
(4) of the naive algorithm.

The proof is based on Lemma 3 below. Readers familiar with Myhill-Nerode’s
theorem (see also Section 2) will probably need no proof, but we include one for
completeness. Recall that we identify a DFA with a single trap state with the
one obtained by removing the trap state together with its ingoing and outgoing
transitions.

Lemma 3. A DFA A = (Q,Σ, δ, q0, F ) is minimal iff the following two condi-
tions hold:

(1) every state lies in a path leading from q0 to some state of F , and
(2) L(q) 6= L(q′) for every two distinct states q, q′ ∈ Q.

Proof. (⇒): We prove the contrapositive. For (1), if some state q does not lie in
any path from q0 to some final state, then it can be removed without changing
the language, and so A is not minimal. For (2), if two distinct states q, q′ of A
satisfy L(q) = L(q′), then [q] = [q′], and so the quotient automaton has fewer
states than A. So A is not minimal.

(⇐): Assume (1) and (2) hold. We prove that for every state q the language
of the words w such that δ(q0, w) = q is an equivalence class of L-equivalence.
It follows that the number of states of A is at most as large as the number of
equivalence classes of L-equivalence, which implies that A is the minimal DFA
for L.

It suffices to show:

– If δ̂(q0, w) = q = δ̂(q0, v), then w ∼L v.
This follows immediately from the definition of L-equivalence.

– If δ̂(q0, w) = q and δ̂(q0, v) = q′ for some q′ 6= q, then w 6∼L v.
Since L(q) 6= L(q′), w.l.o.g. there is a word u ∈ L(q) \ L(q′). So wu ∈ L and
vu /∈ L, which implies w 6∼L v.

Theorem 2. Let N = (P, T, F, W, m0) be a bounded and reversible Petri net.
The marking-DFA A(N) of N is a minimal DFA.

Proof. Assume that A(N) is not minimal. Since every state of A(N) is fi-
nal, by Lemma 3 there are two states of A(N), i.e., two reachable markings
m1 6= m2 of N , such that L(m1) = L(m2). As m1 6= m2 there exists p ∈ P
with m1(p) 6= m2(p). Assume w.l.o.g. m1(p) < m2(p). Let m be a reachable
marking such that m(p) is minimal, i.e. there is no other reachable marking m′

s.t. m′(p) < m(p). Since m is reachable and N is reversible, there is w ∈ T ∗ such
that m2

w−→ m. Since L(m1) = L(m2), there is a reachable marking m′ such
that m1

w−→ m′. It follows

m′(p) = m1(p) + C(p) · P (w) < m2(p) + C(p) · P (w) = m(p)

contradicting the minimality of m(p).
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3.3 Learning the reachability graph by Exploration

The final step towards a single exponential learning algorithm consists of im-
proving the naive algorithm of step (3) for learning the minimal DFA A. Recall
that we assume that the Teacher’s answers are compatible with a k-bounded
and reversible net N . If n and r are the number of transitions and reachable
markings of N , then the naive algorithm requires nr membership queries. We
present a new algorithm that requires only O(n · r2) queries.

Recall the standard search approach for constructing the reachability graph
of a net if the net is known. We maintain a queue of markings, initially con-
taining the initial marking, and two sets of already visited markings and tran-
sitions (transitions between markings). While the queue is non-empty, we take
the marking m at the top of the queue, and check for each transition a whether
a is enabled at m. If so, we compute the marking m′ such that m

a−→ m′, and
proceed as follows: if m′ has been already visited, we add m

a−→ m′ to the set of
visited transitions; if m′ had not been visited yet, we add m′ to the set of visited
markings and to the queue, and add m

a−→ m′ to the set of visited transitions.
Our learning algorithm closely mimics this behaviour, but works with firing

sequences of N instead of reachable markings (the Learner does not know the
markings of the net, it does not even know its places). We maintain a queue of
firing sequences, initially containing the empty sequence, and two sets of already
visited firing sequences and transitions. While the queue is non-empty, we take
the firing sequence w ∈ (T ∪ {r})∗ at the top of the queue, and ask the Teacher
for each transition a whether wa is also a firing sequence of N . If so, we proceed
as follows. We first determine whether each already visited firing sequence u
leads to the same marking as wa. Notice that it is not obvious how to do this—
this is the key of the learning algorithm. If some firing sequence u leads to the
same marking as wa, then we add w

a−→ u to the set of visited transitions;
otherwise, we add wa to the set of visited firing sequences and to the queue,
and add w

a−→ wa to the set of visited transitions. The algorithm in pseudo
code can be found below (Algorithm 1), where Equiv(u, v) denotes that there is
a marking m such that m0

u−→ m and m0
v−→ m.

The correctness of the algorithm is immediate: we just simulate a search
algorithm for the construction of the reachability graph, using a firing sequence
u to represent the marking m such that m0

u−→ m. The check Equiv(u, wa)
guarantees that each marking gets exactly one representative.

The problem is to implement Equiv(u, wa) using only membership queries.
In general this is no easy task, but in the case of reversible nets it can be easily
done as follows. When checking Equiv(u, wa) the word u has been already added
to V , and so the Learner has established that u ∈ L(N). So in particular the
Teacher has answered positively a query about u and, due to the structure of
workflow membership queries, it has returned a run uuc, where ucr is a transition
sequence leading back to the initial marking.

We prove that Equiv(x, y) holds if and only if the sequence xyc is a run of
N :
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Algorithm 1: Learning the reachability graph
Output: graph (V, E) isomorphic to the reachability graph of N

V ←− ∅; E ←− ∅
F ←− {ε} // queue of firing sequences

while not F .empty() do
w ←− F .dequeue()
forall a ∈ T do

if wa is accepted by the Teacher then
/* This means wa ∈ L(N) */

σ ← wa
forall u ∈ V do

if Equiv(u, wa) then σ ← u
end
if σ = wa then F .enqueue(wa)
add σ to V and w

a−→ σ to E
end

end

end

Proposition 1. In Algorithm 1, Equiv(u, wa) = true if and only if uwc is a run
of N , where wawc is the run reported by the Teacher when positively answering
the query about wa ∈ L(N).

Proof. If Equiv(u, wa) = true, then there is a marking m such that m0
u−→ m

and m0
wa−→ m. Because m0

wa−→ m
wcr−→ m0, we have m0

u−→ m
wcr−→ m0, which

implies that uwc is a run.
If u · wc is a run, then we have m0

wawcr−→ m0 and m0
uwcr−→ m0. Let m be

the marking such that m0
wa−→ m. We then have m

wcr−→ m0. Moreover, m is
the only marking such that m

wcr−→ m0 (Petri nets are backward deterministic:
given a firing sequence and its target marking, the source marking is uniquely
determined). Since m0

uwcr−→ m0, we then necessarily have m0
u−→ m

wcr−→ m0,
and so in particular m0

u−→ m. So both wa and u lead to the same marking m,
and we have Equiv(u, wa) = true.

We can now easily show that checking Equiv(u, wa) reduces to one single
membership query.

Proposition 2. The check Equiv(u, wa) can be performed by querying whether
uwc ∈ L(N): Equiv(u, wa) holds if and only if the Teacher answers positively
and returns the sequence uwc itself as a run.

Proof. There are three possible cases:

– The answer is negative.
Then uwc /∈ L(N), and so in particular it is not a run of N . So Equiv(u, wa)
= false.

11



– The answer is positive and the Teacher returns uwc as run.
Then Equiv(u, wa) = true by Proposition 1.

– The answer is positive, but the Teacher returns uwcv for some v 6= ε as run.
Since the Teacher returns a run uwcv such that no proper prefix uwcv

′ is
a run, we have in particular by taking v′ = ε that uwc is not a run. By
Proposition 1 we have Equiv(u, wa) = false.

Remark 1. In anticipation to the experiments described in Section 4, let us men-
tion that in many cases the queries for uwc do not even have to be submitted
to the teacher. (recall that wa labels the potentially new state and u labels a
known state). Often we can deduce that uwc is not fireable by observing that
uwc /∈ L(A) where A is the part of the DFA that is already known. If we would
query wauc instead (which would also tell us if Equiv(u, wa) = true) we would
not be able to discard any query because the neighbourhood of wa has not yet
been explored. This is one of the reasons why this algorithm is so efficient in
practice (cf. Section 4).

Example 1. We now provide an example run of our algorithm, applied to the
first part of the net in figure 1. To simplify presentation we grouped together
some queries which correspond to the interesting stages of the algorithm (w ·A
are all queries wa with a ∈ A).

i o
0

1

2

3

# Query Answer Possible Automata

1-4 ε · {0, 1, 2, 3} 0(123) 0
0

5 Equiv(ε, 0)? no 0
 ε · 123

6-8 0 · {0, 1, 3} 01(23)
3 Possibilities:

0

1 0
1

0 1

9 Equiv(ε, 01)? no 0
1

0 1
 ε · 23

10 Equiv(0, 01)? no 0 1
 0 · 23

11 02 02(13) (4 Possiblities)

12 Equiv(ε, 02)? no (3 Poss.)
 ε · 13

13 Equiv(0, 02)? no (2 Poss.)
 0 · 13

14 Equiv(01, 02)? no 0 1

2 01 · 13
15-18 01 · {0, 1, 2, 3} 012(3) (5 Poss.)

19-22 Equiv? no 0 1

2

2

({ε, 0, 01, 02}, 012)
23-26 02 · {0, 1, 2, 3} 021(3) (6 Poss. - naive)

27 [Equiv(021,012)?] yes
0 1

2

2

1

28-31 012 · {0, 1, 2, 3} 0123(ε) (7 Poss. - naive)

32 [Equiv-Queries] no
0 1

2

2

1

3

The “Answer”-column contains the run wwc returned by the teacher, if w ∈
L(N) - we put the continuations wc in brackets. As observed in Remark ??,
many queries (like ”23” in # 9) do not really have to be asked - either because
we already asked a prefix of the query that was rejected, or because the query
is a prefix of a run supplied by the teacher and therefore we already know that
is is accepted. We also do not need to ask query # 27 because 021 and 012 have
the same Parikh vector and therefore must lead to the same marking.

There is a technical issue that should be mentioned at this point. The al-
gorithm delivers a net N ′ such that the reachability graphs of N and N ′ are
isomorphic. It follows that N ′ is reversible and bounded. However, we cannot
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guarantee that N ′ has the same bound as N . We consider this a minor problem,
since N ′ and N are for behavioural purposes equivalent models.

Complexity It follows clearly from the description of Algorithm 1 that the
number of firing sequences added to the queue is equal to the number of reachable
markings r of N . For the i-th sequence taken from the queue, say w, and for
each transition, say a, we perform at most i membership queries: one to check
if wa ∈ L(N), and at most (i − 1) for checks Equiv(u, wa), because at that
point V contains at most i − 1 elements. So the algorithm performs at most∑r

i=1 n · i = nr(r + 1)/2 ∈ O(n · r2) queries.
The following theorem sums up the results of the section.

Theorem 3 (Learning by Exploration). We can learn a k-bounded and re-
versible net N with a number of workflow membership queries and a running
time that are single exponential in the number of transitions of N .

The proof follows easily form our discussion. The overall algorithm, that we
call WNL, uses the learning technique of Section 3.3 to learn a minimal DFA A
such that L(A) = L(N). Section 3.1 shows that A is single exponential in the
number of transitions of N , and so it can be learned with a single exponential
number of queries. Section 3.2 shows that this minimal DFA is (isomorphic to)
the reachability graph of N . We can then apply the polynomial algorithm of
[BBD95] for synthesis up to isomorphism (S2).

A final question is what happens if the Teacher’s answers are not compatible
with any k-bounded and reversible net N . In this case there are two possibilities:
they are not compatible with any minimal DFA having at most (k + 1)n states,
or they are compatible with some such DFA, but this DFA is not the marking-
DFA of any net. In the first case the algorithm can stop when the number of
generated states exceeds (k + 1)n. In the second case, the algorithm terminates
and produces a DFA, but the synthesis algorithm of [BBD95] does not return a
net.

3.4 Mixing process mining and learning

The algorithm we have just presented does not assume the existence of an event
log: the Learner only gets information from membership queries. However, as ex-
plained in the introduction, we consider our learning approach as a way of com-
plementing log-based process mining. In this section we explain how to modify
the algorithm accordingly.

We assume the existence of an event log consisting of use cases. Given the
set of tasks T of the business process, we can think of each use case as a word
w ∈ T ∗, such that w corresponds to a run of the reversible net to be learnt. The
event log then corresponds to a language L ⊆ T ∗.

In a first step we construct the minimal DFA for the language L. This can be
done space-efficiently in a number of ways. For instance, we can divide the set of
runs in two halves L1, L2, recursively compute minimal DFAs A1, A2 recognizing
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L1 and L2, and then compute the minimal DFA for L from A1, A2 using an
algorithm very similar to the one that computes the union of two binary decision
diagrams [And99]. Once this is done, we easily get the minimal DFA A for the
language of prefixes of (Lr)∗ (this requires to add one extra state and make all
states final).

Once A is computed, we assign to each state q of A a word wq such that
q0

wq−→ q. For every two states q1, q2, we check whether the states correspond to
the same reachable marking by calling Equiv(wq1 , wq2). After this step we are in
the same situation we would have reached if the algorithm would have queried
all the words wq.

From a practical point of view, notice that it is very inefficient to ask the
Teacher for each pair of states q1, q2 whether Equiv(wq1 , wq2). A better procedure
is to ask the Teacher, given a sequence w, which are the letters a such that wa
can be extended to a use case. We call them the possible extensions of w. The
test Equiv(wq1 , wq2) need only be carried out for sequences wq1 , wq2 having the
same set of extensions. Note that the teacher does not have to provide full runs
for any of these possible extensions so this is quite a simple task.

We can even more reduce the number of calls to Equiv() by first merging
states for which we can already deduce that they have to be equivalent. Some
criteria, which are easy properties of Petri nets, and can be directly used to trim
a DFA that was generated from event logs are:

– The DFA is backward deterministic: if m1
a−→ m3 and m2

a−→ m3 for some
a ∈ T then m1 = m2

– If two words w1,w2 only differ in the order of their letters (i.e. their Parikh
vectors coincide P (w1) = P (w2)) then they lead to the same state

– Given a k-bounded net N , if vwk+1 ∈ L(N) for some words v, w then w
describes a cycle in the reachability graph of N

A further criterion for pure nets is the “diamond property”: We can add
transitions that have to be present due to basic Petri net properties. A diamond is
a subgraph in the reachability graph of a net with four states that are connected
in the following way: m1

a−→ m2, m1
b−→ m3, m2

b−→ m4, m3
a−→ m4. A

diamond is incomplete if it is missing exactly one transition (see Figure 2).
One can easily see that incomplete diamonds can always be completed with the
missing transition (in the case of pure nets), i.e., if an incomplete diamond is
found in the DFA, we can add the missing transition. This diamond property
can also be used to merge states as indicated in Figure 2.

3.5 A Lower Bound for Petri Net Learning

We now show that we cannot in general solve the learning problem in subex-
ponential time, by providing a hard-to-learn instance. We will show with the
help of an adversary argument that any learning algorithm has to ask at least
Ω(2n) membership queries to derive the correct net, where n is the number of
transitions.
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merge()

merge()

m1

m2

m3

m4

a

b

b

a

a

b

b

a

a

b

b

a

Fig. 2. Incomplete diamond (left), states merged because of equal parikh-vectors (mid-
dle) or by using the diamond property (middle and right)

Consider the following set N of workflow nets. All the nets in N have the
same number n + 3 of transitions: two transitions init and final, transitions
called a1, . . . , an, and a transition t (see Figure 3). The pre- and postsets of all
transitions but t, which are identical for all nets of N , are shown in the figure.
The postset of t is always the place o. The preset of t always contains for each
i exactly one of the places pi or qi, and the only difference between two nets in
N is their choice of pi or qi. Clearly, the set N contains 2n workflow nets, all of
them sound.

For each net N ∈ N there is exactly one subset of {a1, . . . , an} such that t
can fire after the transitions of the set have fired. We call this subset SN . Notice
that if we know SN then we can infer •t.

p1 p2

· · ·

· · ·
pn

i

init

q1 q2

· · ·
qn

a1 a2 an

o

final

t

Fig. 3. Hard-to-learn instance for
Petri net learning

We ease the task for the Learner by
assuming she knows that the net to be
learned belongs to N . Her task consists
only of finding out •t, or, equivalently, the
set SN .

A query of an optimal Learner has
always the form ai1ai2 · · · aik

t, because
querying any ai after t does not pro-
vide the Learner with any information.
Furthermore the order of the ai is not
important—all these transitions are inde-
pendent and the Learner already knows
this. So we can view a query just as a
subset S of the set of all transitions. A
negative answer to a query S always rules
out exactly one of the nets of N , namely
the one in which •t = S. The worst case
appears when the Learner ask queries “in
the worst possible order”, eliminating all
nets of N but the right one. This requires
2n − 1 queries.

15



4 Practical experiences

To get insights in the practical feasibility of the derived algorithm WNL, we
have developed a prototype learning and synthesis tool for workflow nets and
examined its practical performance on a number of examples.

Implementation Our prototype is written in C++ with approximately 3,000
lines of code and uses libALF for dealing with automata. libALF is part of
the automata learning factory currently developed jointly at RWTH Aachen and
TU München1.

The synthesis algorithm (S2) of [BBD95] is implemented using the lp solve2

framework to efficiently solve the linear programs needed for computing the
places of the net. Furthermore lp solve is used for eliminating redundant places
after the net has been synthesized to reduce its size and to make it look more
appealing. The implementation is currently not tailored to user interaction but
consults pre-existing workflow nets for queries. Outputs are given in form of
dot-files that can be visualized using the graphviz toolkit.

Experimental Results We tested our implementation on various examples of
pure, safe and reversible nets. The examples range from existing sound workflow
nets obtained in case studies performed by [Ver04] to more standard examples
like mutual exclusion between processes and an n-cell buffer with 2n reachable
markings. The latter example is especially suitable to understand scalability
issues of the algorithms. The ”absence” workflow is loosely modelled after an
example from [SAP01], the ”complaint” workflow is the example presented in
our background section (Figure 1).

We applied our implementation once without any event logs as initial knowl-
edge and then again with randomly generated logs as input and counted the
number of queries needed to learn the model. Besides counting the queries needed
for Equiv(), we only count queries answered positively by the Teacher, as these
correspond to runs supplied by him, and thus reflect the actual work to be done
by an expert in an adequate manner.

q

?

?

?a

c
b

Fig. 4. Querying exten-
sions at state q, possible
extensions: solid arrows

To illustrate this, consider the task of learning
the sequence of calendar months: instead of asking
twelve questions of the form “Does January, Febru-
ary, . . . come after July?” (we call these ”small-step”
queries) we would just ask “Which month comes after
July?”. So we count every continuation provided by
the teacher as one query. In the situation of Figure 4
we would count 2 workflow membership queries com-
pared to 3 “small-step” queries. We have also included
the number of “small-step” queries in the table below
for comparison.

1 http://libalf.informatik.rwth-aachen.de/
2 http://lpsolve.sourceforge.net/

16



Model |T | |RG| ssq WNL
buf_2 3 4 19 12
buf_3 4 8 52 32
buf_4 5 16 137 85
buf_5 6 32 344 216
buf_6 7 64 842 538
buf_7 8 128 2008 1304
buf_8 9 256 4707 3107

mutex_2 6 8 74 40
mutex_3 9 20 300 168
mutex_4 12 48 1026 594

order_simp 9 7 77 23
absence 11 8 109 32
complaint 12 11 155 37
transit1 25 77 2256 474

Fig. 5. Membership queries
needed by WNL without any
event logs; ssq = number of
“small-step” queries, RG =
reachability graph

We have first collected the number of
membership queries needed by WNL when
learning a model “from scratch” with re-
spect to the size of the alphabet and the
reachability graph, see Figure 5. On the cho-
sen examples, the number of membership
queries ranges between 12 and 3100. The se-
ries of the n-cell buffer examples from n = 2
to n = 8 suggests that the practical perfor-
mance of WNL is even better than quadratic
in the number of reachable markings.

Next, we studied the effect of learning
workflow nets in the presence of existing
logs. To this end, we used our tool to gener-
ate random event logs containing a varying
number of runs (see Figure 6 for an exam-
ple log). The runs in the generated log-files
are not unique—runs that are more likely
will probably appear multiple times, which
is also the case for real-world event logs. For
the random logs we calculated the average
number of queries over 100 executions.

.a.b.a.c.d.b.c.a.d.b.c.d.

.a.b.c.d.

.a.b.c.a.b.d.c.a.d.b.c.d.

.a.b.a.c.d.b.c.d.

.a.b.a.c.b.a.d.c.d.b.c.d.

.a.b.c.a.d.b.a.c.d.b.c.d.

.a.b.c.a.b.d.c.d.

.a.b.a.c.b.d.a.c.d.b.c.d.

.a.b.c.d.

.a.b.c.d.

1

a

b

1

c

1

d

Fig. 6. Example event log for 3-cell buffer

We found out that for tiny models like
the buffer with two cells or the “complaint” workflow a very small number of
runs (< 10) suffices to already construct the model. The Teacher does not have
to supply additional runs for these. Clearly, for larger models, we can only expect
that the Teacher’s work is reduced but not completely eliminated when logs are
given. To illustrate the impact of event logs on the learning process we show how

17



0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 n
um

. o
f q

ue
rie

s

Number of runs in log

buffer_5
mutex_3
mutex_4

transit

Fig. 7. Average number of queries needed by WNL applied to event logs of different
sizes

the number of queries behaves for some of the larger models with logs of different
sizes (see Figure 7).3 We observe that already quite small logs drastically reduce
the number of queries to be answered. At the same time, because our logs may
not contain unique but many identical entries, larger logs contribute less and
less new knowledge. This reflects the situation for real-life logs, which mostly
contain common executions of a workflow but lack less common runs. In other
words, it seems most promising for practical applications, to combine knowledge
from (small) logs with that of Teachers responsible for “corner cases” to actually
learn the workflow net in question efficiently.

The time needed for learning the nets in an applied setting is of course
dominated by the number of queries a user has to answer. Synthesizing the
resulting Petri net using the method proposed by Darondeau et al. (see Section
2) together with some post-processing to remove redundant places needs just a
few seconds in the worst case and is therefore negligible.

The results depicted in Figures 5 and 7 suggest that, despite the seemingly
intimidating result in Section 3.5, learning of workflow models is quite feasible
for practical applications.

3 Also larger examples behave in the same way, yet, we depicted models requiring a
number of queries in the same order of magnitude to optimize the figure.
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5 Conclusion

We have presented a new approach for mining workflow nets based on learning
techniques. The approach palliates the problem of incompleteness of event logs:
if a log is incomplete, our algorithm derives membership queries identifying the
missing knowledge. The queries can be passed to an expert, whose answers allow
to produce a model.

We have shown the correctness and completeness of our approach under the
assumption of a teacher answering workflow membership queries. Starting with
general combinatorial arguments showing that workflow models can in principle
be learned, we have derived a learning algorithm requiring a single exponential
number of queries in the worst case, and we have given a matching lower bound.
We have also shown experimental evidence indicating that the combination of an
event log, even of small size, and a Teacher responsible for providing information
about “corner cases” allows to efficiently produce models in practically relevant
cases.

There are several promising paths for further research. One aspect is the ap-
plication of learning to the design of workflows. In this approach an expert on
business processes and a modelling expert (or an adequate software) cooperate.
The modelling expert asks queries about how the workflow should behave, which
are answered by the Teacher, until a model accepted by the business process ex-
pert is produced. We expect to transfer ideas from the field of learning models
of software systems [BKKL09] to workflow systems, and develop “teaching assis-
tants” that filter the queries, automatically answering those for which the answer
can be deduced from current information (for instance because it is known that
two tasks must be concurrent), and only passing to the expert the remaining
ones. Here we expect to profit from related work by Desel, Lorenz and others
[BDML09]. An important point for process mining and even more for process
design is designing fault tolerance techniques allowing to cope with false answers
by the Teacher. Finally, learning more general classes of Petri nets, and applica-
tions to modelling/reconstruction of distributed systems, or biological/chemical
processes, are also promising paths for future work.
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