
Helsinki University of Technology Laboratory for Theoretical Computer Science

Research Reports 60

Teknillisen korkeakoulun tietojenkäsittelyteorian laboratorion tutkimusraportti 60

Espoo 2000 HUT-TCS-A60

A NEW UNFOLDING APPROACH TO LTL MODEL CHECKING

Javier Esparza and Keijo Heljanko

AB TEKNILLINEN KORKEAKOULU
TEKNISKA HÖGSKOLAN
HELSINKI UNIVERSITY OF TECHNOLOGY
TECHNISCHE UNIVERSITÄT HELSINKI
UNIVERSITE DE TECHNOLOGIE D’HELSINKI

Helsinki University of Technology Laboratory for Theoretical Computer Science

Research Reports 60

Teknillisen korkeakoulun tietojenkäsittelyteorian laboratorion tutkimusraportti 60

Espoo 2000 HUT-TCS-A60

A NEW UNFOLDING APPROACH TO LTL MODEL CHECKING

Javier Esparza and Keijo Heljanko

Helsinki University of Technology

Department of Computer Science and Engineering

Laboratory for Theoretical Computer Science

Teknillinen korkeakoulu

Tietotekniikan osasto

Tietojenkäsittelyteorian laboratorio

Distribution:

Helsinki University of Technology

Laboratory for Theoretical Computer Science

P.O.Box 5400

FIN-02015 HUT

Tel. +358-0-451 1

Fax. +358-0-451 3369

E-mail: lab@tcs.hut.fi

�
c Javier Esparza and Keijo Heljanko

ISBN 951-22-4999-5

ISSN 0783-5396

Picaset Oy

Helsinki 2000

ABSTRACT: A new unfolding approach to LTL model checking is pre-
sented, in which the model checking problem can be solved by direct in-
spection of a certain finite prefix. The techniques presented so far required
to run an elaborate algorithm on the prefix.

KEYWORDS: Net unfoldings, model checking, tableau systems, LTL, Petri
nets

Contents

1 Introduction 1

2 Petri nets 2

3 Automata theoretic approach to model checking LTL 3
3.1 From emptiness checking to illegal � -traces and illegal livelocks 6
3.2 Setting and running example 6

4 Basic definitions on unfoldings 7

5 A tableau system for the illegal � -trace problem 9
5.1 Adequate orders . 10
5.2 The tableau system . 10

6 A tableau system for the illegal livelock problem 13
6.1 Computing the set of checkpoints. 13
6.2 The tableau system . 13
6.3 A tableau system for the 1-safe case 15

7 A tableau system for LTL model checking 16

8 Conclusions 16

9 Acknowledgements 17

10 Appendixes 20

1 INTRODUCTION

Unfoldings are a partial order technique for the verification of concurrent and
distributed systems, initially introduced by McMillan [12, 13]. They can be
understood as the extension to communicating automata of the well-known
unfolding of a finite automaton into a (possibly infinite) tree. The unfolding
technique can be applied to systems modelled by Petri nets, communicating
automata, or process algebras [5, 4, 11]. It has been used to verify properties
of circuits, telecommunication systems, distributed algorithms, and manufac-
turing systems [1].

Unfoldings have proved to be very suitable for deadlock detection and
invariant checking [12, 13]. For these problems, one first constructs a so-
called complete prefix [5], a finite initial part of the unfolding containing
all the reachable states. This prefix is at most as large as the state space,
and usually much smaller (often exponentially smaller). Once the prefix has
been constructed, the deadlock detection problem can be easily reduced to
a graph problem [12, 13], an integer linear programming problem [14], or to
a logic programming problem [8].

In [3, 7] and [21, 20], unfolding-based model checking algorithms have
been proposed for a simple branching-time logic and for LTL, respectively.
Although the algorithms have been applied with success to a variety of ex-
amples, they are not completely satisfactory: After constructing the complete
prefix, the model checking problem cannot be yet reduced to a simple prob-
lem like, say, finding cycles in a graph. In the case of LTL, which is the one
considered in this paper, the intuitive reason is that the infinite sequences of
the system are “hidden” in the finite prefix in a complicated way. In order to
make them “visible”, a certain graph has to be constructed. Unfortunately,
the graph can be exponentially larger than the complete prefix itself.

Niebert has observed [15] that this exponential blow-up already appears in
a system of � independent processes, each of them consisting of an endless
loop with one single action as body. The complete prefix has size

��� ��� ,
which in principle should lead to large savings in time and space with respect
to an interleaving approach, but the graph is of size

�����	� � , i.e. as large as the
state space itself.

In this paper we present a different unfolding technique which overcomes
this problem. Instead of unrolling the system until a complete prefix has
been generated, we “keep on unrolling” for a while, and stop when certain
conditions are met. There are two advantages:

 The model checking problem can be solved by a direct inspection of
the prefix, and so we avoid the construction of the possibly exponential
graph.

 The algorithm for the construction of the new prefix is similar to the
old algorithm for the complete prefix; only the definition of a cut-off
event needs to be changed.

The only disadvantage is the larger size of the new prefix. Fortunately, we
are able to provide a bound: the prefix of a system with � reachable states
contains at most

��� �
��� events, assuming that the system is presented as a

1 INTRODUCTION 1

1-safe Petri net or as a product of automata1. Notice that this is an upper
bound: the new prefix is usually much smaller than the state space, and in
particular for Niebert’s example it grows linearly in � .

Another interesting point is that the new prefix can be seen as an exten-
sion to communicating automata of the tableau techniques for LTL (see for
instance [22]). In order to emphasize the link to tableau systems we use
tableau terminology, and speak of terminals, tableaux, soundness and com-
pleteness.

The paper is structured as follows. Section 2 introduces Petri net nota-
tions. Section 3 presents the automata theoretic approach to LTL model
checking. In Sect. 4 the unfolding method is introduced. Sections 5 and
6 contain the tableau systems for the two subproblems. In Sect. 7 we show
how LTL model checking can be solved with the presented tableau systems.
In Sect. 8 we conclude and discuss topics for further research.

2 PETRI NETS

A net is a triple
����������� � , where

�
and

�
are disjoint sets of places and

transitions, respectively, and
�

is a function
���
	�� �
� ����	�� ��� ��� ����� .

Places and transitions are generically called nodes. If
� ������� ��� �

then we
say that there is an arc from

�
to
�
. The preset of a node

�
, denoted by � � , is

the set � �! "� � �$#%� ���&��� �'� ���
. The postset of

�
, denoted by

� � , is the
set � �(!� � �)#�� ������� �*� ���

. In this paper we consider only nets in which
every transition has a nonempty preset and a nonempty postset.

A marking of a net
�+��������� � is a mapping

� � , - (where , - denotes the
natural numbers including 0). We identify a marking . with the multiset
containing . �0/ � copies of

/
for every

/1 2�
. For instance, if

� �3� /546�7/ �
�

and . �8/94 �:� �
, . �0/

� �;�
�
, we write . �<� /946�+/ �

�7/
�
�
.

A marking . enables a transition = if it marks each place
/" ��= with a

token, i.e. if . �0/ �?>@� for each
/A �B= . If = is enabled at . , then it can fire or

occur, and its occurrence leads to a new marking .DC , obtained by removing
a token from each place in the preset of = , and adding a token to each place
in its postset; formally, . C �0/ �E�F. �0/ �HG � �8/I� = ��J � � = �7/ � for every place

/
.

For each transition = the relation KGLGMG�� is defined as follows: . KGLG%G��N. C if =
is enabled at . and its occurrence leads to .DC .

A 4-tuple OP� ������������� .RQ � is a net system if
�+��������� � is a net and .RQ

is a marking of
�+��������� � (called the initial marking of O). A sequence of

transitions ST�P= 4 = �VU�UWU = � is an occurrence sequence if there exist markings
. 4 , . � , . . . , . � such that

.�Q KYXGZG%G[�$. 4 K]\G^G%G[� U�U�U . �`_ 4 K8aGbGMG%G8�$. �

. � is the marking reached by the occurrence of S , which is also denoted
by .RQ cG�G%G��d. � . A marking . is a reachable marking if there exists an
occurrence sequence S such that .1Q cG�G%G6�$. . The reachability graph of
a net system O is the labelled graph having the reachable markings of O as

nodes, and the KGLG%G�� relations (more precisely, their restriction to the set of

1More precisely, the number of non-cut-off events is at most e�fhgjiBk .
2 PETRI NETS 2

reachable markings) as edges. In this work we only consider net systems with
finite reachability graphs.

A marking . of a net is � -safe if . �8/ ��� � for every place
/

. A net system
O is � -safe if all its reachable markings are � -safe.

Labelled nets Let � be an alphabet. A labelled net is a pair
� - ��� � (also

represented as a 4-tuple
�+������������� �), where - is a net and

����� � � � � is a
labelling function. Notice that different nodes of the net can carry the same
label. We extend

�
to multisets of

� � � in the obvious way.
For each label � � we define the relation �G6G%GB� between markings as

follows: . �G6G%GB�$. C if . KGLG%G��$. C for some transition = such that
� � = ���	� .

For a finite sequence
 � � 4 � ��U�U�U � �
 ��� , .
G[G%G��N. C denotes that

. ��XG�G%GMG]�$. 4 ��\G GMG%Gb�$. ��U�UWU . ��_ 4 � aGLG%GMG��$. C holds for some reachable mark-
ings . 4 � . �

�
U�U�U
� . ��_ 4 . For an infinite sequence
 � � 4 � ��U�U�U

 ��� ,
.
G[G%G � denotes that . � XG GMG%G]�d. 4 � \G�G%G%Gb� . � U�U�U holds for some reach-
able markings . 46� . �VUWU�U .

The reachability graph of a labelled net system
� - ���L� . Q � is obtained by

applying
�

to the reachability graph of
� - � . Q � . In other words, its nodes are

the set
� � � . � # . is a reachable marking

�
and its edges are the set

� � � . 4 � ��� K �G GMG%G � � � . � �
. 4 is reachable and . 4 KGLG%G��$. �

�
U

3 AUTOMATA THEORETIC APPROACH TO MODEL CHECKING LTL

We present how to modify the automata theoretic approach to model check-
ing LTL [19] to best suit the net unfolding approach.

For technical convenience we use an action-based temporal logic instead
of a state-based one, namely the linear temporal logic =�� � � C of Kaivola [10],
which is immune to the stuttering of invisible actions (see [10, 9]). Given a
finite set � of actions, and a set ����� of visible actions, the abstract syntax
of =�� � � C is given by:

� ��� ��� # � � # � 4"! �
�
� 4$# �

�
� 4%# � � �

�
where � �

The semantics of =�� � � C is given as follows. Let � be a =�� � � C formula,
and
 � � Q �I4 U�U�U

 � � . We denote by
 �'& � the suffix of
 starting at
� & . We

define that � is true of
 , denoted
 # � � , as follows:

 # ��� always.

 # � � � iff not
 # � � .

 # � � 4"! �
� iff
 # � � 4 or
 # � �

� .

 # � � 4(# �

� iff there is some)+* � , such that

–
 �'& � # � �
� , and

3 AUTOMATA THEORETIC APPROACH TO MODEL CHECKING LTL 3

– for all � � ���) ,
 � � � # � � 4 .

 # � � 4(# � � � iff there is some)+* � , such that

–
 �'& � � � U�U�U ,
–
 �'&��

4 � # � �
� ,

– for all � � ���) ,
 � � � � � � UWU�U such that � ������ , and

– for all � � ���) ,
 � � � # � � 4 .
The semantics of � 4(# �

� is as expected. Loosely speaking, a sequence

satisfies � 4(# � � � if � 4 holds until the first � in
 , and then �

� holds.
Given a net system O"� �����B���������L� .1Q � , where all the transitions of O are

labelled with actions from the set � (and thus � � �), and a formula � of
=�� � � C , the model checking problem consists of deciding if all the infinite
firing sequences2 of O satisfy � . Namely, given a labelled net system O3��+�������������L� .�Q � we define that O # � � if and only if
 # � � for all
 � �
such that .RQ
G�G%G � .

The automata theoretic approach attacks this problem as follows. First, a
procedure similar to that of [6] converts the negation of � into a Büchi au-
tomaton (definition to follow) 	�

� over the alphabet � � �F� ��� � , where
� � � is a new label used to represent all the invisible actions. More pre-
cisely, we introduce a function � � � � �T�A��� � which is defined as follows:
for all � � � � � � ��� � , and for all � ��� � � � � � ����� . We will use the
fact that an infinite sequence
 � � satisfies the =�� � � C formula � if and
only if the Büchi automaton 	�� accepts the sequence
 C , where
 C is the
image of
 under � .

A Büchi automaton 	 is a tuple
� � ��� ��� Q ���%��� � , where � is an alphabet,�

is a finite nonempty set of states,
� Q ��

is an initial state,
� � � is the set

of accepting states, and
� � �D	 � 	�� is the transition relation. As usual, 	

accepts an infinite word
 � � if some run of 	 on
 visits some state in
�

infinitely often.
Given a labelled net system O , and the Büchi-automaton 	�

� we can de-

fine a product Büchi-automaton � , whose runs correspond to infinite runs of
the net system O which do not satisfy the formula � . (See Appendix A.1.1.)
The language of the automaton � will thus be non-empty iff O �# � � . We de-
note by

#�� � #
the number of reachable markings of O , and by

�
the number

of states of 	�

� . The number of states of � is bounded by
�6# � � #
!M#�� # ��J �

,
and will thus be of size

����#�� � # � , when the formula � is fixed.
The problem with using this approach for our purposes is that to imple-

ment it, the automaton 	�
"� needs to be synchronized with the net system
O on all transitions (visible or not). This effectively sequentializes all the
behaviors of the product system and thus disables all the benefits of the net
unfolding method when applied to the product system. (Net unfoldings re-
quire concurrency in order to obtain space savings when compared to the
interleaving approach.)

Therefore we will propose a different approach, in which the net system
will only synchronize with the visible actions of the property automaton, and

2This is a small technical difference to Kaivola’s semantics which considers both finite
and infinite behaviors of the system.

3 AUTOMATA THEORETIC APPROACH TO MODEL CHECKING LTL 4

handle the cases in which the system does invisible moves separately. Our ap-
proach is similar, however, not identical in all technical details, to Valmari’s
tester approach [18].

Synchronization. We define the synchronization of a labelled net system
and a Büchi automaton3. Let O � �+����������� � � .RQ � , where the transitions of�

are labelled with letters taken from a set � of actions containing a subset
� of visible actions. Let 	�
"� � � ��� ��� � � � � � Q � �%��� C � , i.e., the alphabet
of 	

� contains the visible actions plus the special action � . For technical
reasons, we first add a new initial state

��
to
�

, a new visible action
�� to � , and

a new transition
�� �

�G6G&GB� � Q to
�
. Similarly, we add a new place

�/
to
�

, and a
new transition

�= to
�

, labelled by
�� . This new transition has

�/
as preset, and

it generates the initial marking .RQ when it fires. The new initial marking is
�. � � �/9�

. Basically, after the modification O first fires a visible transition
labelled with

�� and then behaves as before.
We keep O and 	�

� as names for the results of the modifications. Now,

the synchronization O

� is constructed in a sequence of steps:

 start with O ;

 add a new place for each state of
�

, and mark the place for
��

with one
token;

 for each = � labelled by a visible action � � , do the following:

– for each transition �
��� �G G%GB� � C of

�
, add a new transition

� = � � � to
O

� , labelled by � , with preset �B=5�!� � � and postset = �
��� � C � ;

– after all these transitions have been added, remove = together with
all its adjacent arcs.

Observe that the transitions of O labelled by invisible actions are not touched
by the synchronization. Usually, we expect this set of transitions to be large,
in which case the synchronization does not destroy much of the concurrency
of O .

We define two sets of transitions of O

� :

 The set , of infinite trace monitors contains the transitions

� = � � � such
that �

� � �G6G%GB� � C for some final state
� C of 	
"� . Loosely speaking, these

are the transitions which put a token in a final state of the Büchi au-
tomaton

 The set � of livelock monitors contains the transitions
� = � � � such that

�
��� �G6G%GB� � C for some state

� C satisfying the following condition: with� C as initial state, the automaton 	�

� accepts an infinite sequence of
invisible transitions (a livelock).

We have the following result (see Appendix A.1):

Proposition 1 The synchronization O
"� has the following properties: None
of its reachable markings enable two , -transitions concurrently, and none of
its reachable markings enable a � -transition and a � -transition concurrently.

3We give a somewhat informal but hopefully precise definition. A formal definition is
longer and more obscure.

3 AUTOMATA THEORETIC APPROACH TO MODEL CHECKING LTL 5

3.1 From emptiness checking to illegal � -traces and illegal livelocks

We now reduce the model checking problem for a formula � to two simpler
problems on the synchronization O
"� . Let O be a net system, where

�
is di-

vided into two sets � and
� � � of visible and invisible transitions. Moreover,�

contains two special subsets � and , . An illegal � -trace of O is an infinite

sequence .1Q KYX�K]\ �����GYG%G%GMG%G8� such that = & , for infinitely many indices) . An

illegal livelock of O is an infinite sequence . Q KYX�K]\ ����� K �G%G%G%GMG%G � . K ��� X K ��� \ �����G GMG%G%GMG%G%G��
such that = & � , and = &���� ��� � � � for all

� * �
.

We have the following result (see Appendix A.1.1):

Theorem 2 Let O be a labelled net system, and � a 	�

��
 C -formula. O # � �
if and only if O

� has no illegal � -traces and no illegal livelocks.

The intuition behind this theorem is as follows. Assume that O can ex-
ecute an infinite firing sequence corresponding to a word
 � � �2��� � � �
violating � (where ‘corresponding’ means that the firing sequence executes
the same visible actions in the same order, and an invisible action for each
�). If
 contains infinitely many occurrences of visible actions, then O

�
contains an illegal � -trace; if not, it contains an illegal livelock.

3.2 Setting and running example

In the next sections we provide unfolding-based solutions to the problems of
detecting illegal � -traces and illegal livelocks. We solve the problems in an
abstract setting. We fix a net system O�� �����B������� .1Q � , where

�
is divided

into two sets � and
� � � of visible and invisible transitions, respectively.

Moreover,
�

contains two special subsets � and , . We assume that no reach-
able marking of O concurrently enables a transition of � and a transition
of � . We further assume that .1Q is 1-safe. In particular, when applying
the results to the model checking problem for 	�

��
 C and 1-safe Petri nets,
the system O is the synchronization O

� of a 1-safe Petri net and a Büchi
automaton, and it satisfies these conditions.

p1 p2

p3 p4 p5

p6

t1 t2 t3

t4 t5

t6

p7

t7

LI

V

Figure 1: A net system

3 AUTOMATA THEORETIC APPROACH TO MODEL CHECKING LTL 6

We use as running example the net system of Fig. 1. We have � � � =�� � ,
,�� � = 4�� , and � � � = �

�
. The system has illegal � -traces (for instance,� = 4 =���=���=���=�� � �), but no illegal livelocks.

4 BASIC DEFINITIONS ON UNFOLDINGS

In this section we briefly introduce the definitions we need to describe the
unfolding approach to our two problems. More details can be found in [5].

Occurrence nets. Given two nodes
�

and
�

of a net, we say that
�

is causally
related to

�
, denoted by

� � �
, if there is a (possibly empty) path of arrows

from
�

to
�
. We say that

�
and

�
are in conflict, denoted by

�	� �
, if there is

a place
 , different from
�

and
�
, from which one can reach

�
and

�
, exiting

 by different arrows. Finally, we say that
�

and
�

are concurrent, denoted
by
����
 �

, if neither
� � �

nor
� � �

nor
�	� �

hold. A
��

- ���W= is a set of
nodes � such that

����
 �
for every

�����D � . Occurrence nets are those
satisfying the following three properties: the net, seen as a graph, has no
cycles; every place has at most one input transition; and, no node is in self-
conflict, i.e.,

�	�j�
holds for no

�
. A place of an occurrence net is minimal

if it has no input transitions. The net of Fig. 2 is an infinite occurrence net
with minimal places � ��� . The default initial marking of an occurrence net
puts one token on each minimal place an none in the rest.

Branching processes. We associate to O a set of labelled occurrence nets,
called the branching processes of O . To avoid confusions, we call the places
and transitions of branching processes conditions and events, respectively.
The conditions and events of branching processes are labelled with places
and transitions of O , respectively. The conditions and events of the branch-
ing processes are subsets from two sets � and � , inductively defined as the
smallest sets satisfying the following conditions:

�� � , where � is an special symbol;

 if � � , then
�8/5� � � � for every

/ �
;

 if ����� ��� , then
� = � � � � for every = � .

In our definitions of branching process (see below) we make consistent
use of these names: The label of a condition

�0/5� � � is
/

, and its unique input
event is � . Conditions

�0/5� � � have no input event, i.e., the special symbol� is used for the minimal places of the occurrence net. Similarly, the label
of an event

� = � � � is = , and its set of input conditions is � . The advantage
of this scheme is that a branching process is completely determined by its
sets of conditions and events. We make use of this and represent a branching
process as a pair

��� �� � .
Definition 3 The set of finite branching processes of a net system O with the
initial marking .RQ�� � /946� U�UWU

�7/ � � is inductively defined as follows:

4 BASIC DEFINITIONS ON UNFOLDINGS 7

 � � �0/946� � � � U�U�U
� �8/ � � � � � � � � is a branching process of O .4

 If
��� �� � is a branching process of O , = �

, and � � �
is a co-

set labelled by �B= , then
� � �2� �8/5� � � #M/ = � � �� � � � � � is also a

branching process of O , where �j� � = � � � . If � � �
, then � is called a

possible extension of
� � �� � .

The set of branching processes of O is obtained by declaring that the union
of any finite or infinite set of branching processes is also a branching process,
where union of branching processes is defined componentwise on conditions
and events. Since branching processes are closed under union, there is a
unique maximal branching process, called the unfolding of O . The unfolding
of our running example is an infinite occurrence net. Figure 2 shows an
initial part. Events and conditions have been assigned identificators that will
be used in the examples. For instance, the event

� = 46� � �8/ 46� � � � � is assigned
the identificator

�
.

p1

p1 p1

p2

p2 p2

p3

p3 p3

p4

p4 p4

p5

p5 p5

p6 p6

p6 p6p6 p6

t1

t1 t1

t2

t2 t2

t3

t3 t3

t4

t4 t4

t5

t5 t5

t6 t6

p7 p7

p7 p7p7 p7

t7 t7

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1 2 3

4 5

6 7 8 9

10 11 12 13 14 15

16 17 18 19

c d e

f g h i

j k l m

n o p q r s

t u v w x y z a’

a b

Figure 2: The unfolding of O
We take as partial order semantics of O its unfolding. This is justified, be-

cause it can be easily shown the reachability graphs of O and of its unfolding
coincide. (Notice that the unfolding of O is a labelled net system, and so its
reachability graph is defined as the image under the labelling function of the
reachability graph of the unlabelled system.)

Configurations. A configuration of an occurrence net is a set of events �
satisfying the two following properties: � is causally closed, i.e., if � �
and �WC � � then �WC � , and � is conflict-free, i.e., no two events of �

4This is the point at which we use the fact that the initial marking is 1-safe.

4 BASIC DEFINITIONS ON UNFOLDINGS 8

are in conflict. Given an event � , we call � ��� � � � C # � C � � � the
local configuration of � . Let ����� denote the set of minimal places of the
branching process. A configuration � of the branching process is associated
with a marking of O denoted by �	��

� � � �:� � � � ����� � �j� � ��� � � .

In Fig. 2, � ����� �
� �
�Z� is a configuration, and � �[�
� � (not causally closed)
or � �[� �^� (not conflict-free) are not. A set of events is a configuration if and
only if there is one or more firing sequences of the occurrence net (from
the default initial marking) containing each event from the set exactly once,
and no further events. These firing sequences are called linearisations. The
configuration � �[��� ��� ���Z� has two linearisations, namely

�������
and

�������
.

All linearisations lead to the same reachable marking. For example, the two
sequences above lead to the marking � /546�7/ � � . By applying the labelling
function to a linearisation we obtain a firing sequence of O . Abusing of
language, we also call this firing sequence a linearisation. In our example we
obtain = 4 =���=���=�� and =���= 4 =���=�� as linearisations.

Given a configuration � , we denote by � � the set of events �
, such

that: (1) � C � � for some event � C � , and (2) � is not in conflict with any
event of � . Intuitively, � � corresponds to the behavior of O from the mark-
ing reached after executing any of the linearisations of � . We call � � the
continuation after � of the unfolding of O . If � 4 and � � are two finite con-
figurations leading to the same marking, i.e. ����
�� � � 4 ��� . ������

� � � � � ,
then � � 4 and � � � are isomorphic, i.e., there is a bijection between them
which preserves the labelling of events and the causal, conflict, and concur-
rency relations (see [5]).

5 A TABLEAU SYSTEM FOR THE ILLEGAL � -TRACE PROBLEM

In this section we present an unfolding technique for detecting illegal � -
traces. We introduce it using the terminology of tableau systems, the reason
being that the technique has many similarities with tableau systems as used
for instance in [22] for model-checking LTL, or in [16] for model-checking
the mu-calculus. In order to exhibit the similarities, we think of the condi-
tions of a branching process as facts, and of its events as inference rules: if
the facts represented by the input conditions of an event hold simultaneously
(i.e., form a co-set), then the inference rule can be applied and the facts rep-
resented by the output conditions can be inferred. In this way, a branching
process can be seen as a proof tree. As in [16] or [2], we introduce a notion
of terminal inference, i.e., of an inference which marks the end of a par-
ticular branch of the proof tree; we also define successful and unsuccessful
terminals.

In order to define the terminals of the tableau systems we need the no-
tion of adequate order on configurations, first introduced in [5]. In fact, our
tableau system will be parametric in the adequate order, i.e., we will obtain
a different system for each adequate order.

5 A TABLEAU SYSTEM FOR THE ILLEGAL � -TRACE PROBLEM 9

5.1 Adequate orders

Given a configuration � of the unfolding of O , we denote by ���
the

set � � , under the condition that � � is a configuration satisfying ��� � � . We say that ���
is an extension of � . Now, let � 4 and � �

be two finite configurations leading to the same marking. Then � � 4 and
� � � are isomorphic. This isomorphism, say � , induces a mapping from the
extensions of � 4 onto the extensions of � � ; the image of � 4 �

under this
mapping is � � ���

� � .
Definition 4 A partial order � on the finite configurations of the unfolding
of a net system is an adequate order if:

 � is well-founded,

 � 4 � � � implies � 4 � � � , and

 � is preserved by finite extensions; if � 4 � � � and �	��

� � � 4 �T�
����
�� � � � � , then the isomorphism � from above satisfies � 4 � �

� � ���
� � for all finite extensions � 4 �

of � 4 .
Total adequate orders are particularly good for our tableau systems be-

cause they lead to stronger conditions for an event to be a terminal, and so
to smaller tableaux. Total adequate orders for 1-safe Petri nets and for syn-
chronous products of transition systems, have been presented in [5, 4].

5.2 The tableau system

Given a configuration � of the unfolding of O , denote by
�	� � the number

of events � � labelled by transitions of , .

Definition 5 An event � of a branching process
�� is a repeat (with respect
to �) if

� contains another event ��C , called the companion of � , such that
�	��

� � � � C � �:� ����
�� � � ��� � , and either

(I) � C � � , or

(II)
� � �WC � � � , � �WC ��� � ��� , and

��� � �WC � * ��� � ��� .
A terminal is a minimal repeat with respect to the causal relation; in other
words, a repeat � is a terminal if the unfolding of O contains no repeat � C � � .
Repeats, and in particular terminals, are of type I or type II, according to the
condition they satisfy.

Events labelled by , -transitions are called , -events. A repeat � with com-
panion ��C is successful if it is of type I, and � ��� � � ��C � contains some , -event.
Otherwise it is unsuccessful.

A tableau is a branching process
�� such that for every possible extension
� of

� at least one of the immediate causal predecessors of � is a terminal.
A tableau is successful if at least one of its terminals is successful.

5 A TABLEAU SYSTEM FOR THE ILLEGAL � -TRACE PROBLEM 10

Loosely speaking, a tableau is a branching process which cannot be ex-
tended without adding a causal successor to a terminal. In the case of a
terminal of type I, � � ��� need not be constructed because � � � C � , which is iso-
morphic to it, will be in the tableau. In the case of a terminal of type II,
� � ��� need not be constructed either, because � � � C � , which is isomorphic to it,
will appear in the tableau. However, in order to guarantee completeness, we
need the condition

��� � � C � * ��� � ��� .
The tableau construction is simple. Given O � � - � .1Q � , where .RQ �

� /946� UWU�U
�7/ � � , start from the branching process

� � �8/I46� � � � UWU�U
� �0/ � � � � � � � � .

Add events according to the inductive definition of branching process, but
with the restriction that no event having a terminal as a causal predecessor is
added. Events are added in � order; more precisely, if � ��� � � � C � , then � is
added before � C . The construction terminates when no further events can be
added.

Figure 3 shows the tableau corresponding to the net system of Fig. 1, using
the total adequate order of [5]. (We can also take the order of [4], which for
the examples yields the same results.) All we need to know about this order
is that for the events

�
and

�
in Fig. 2, � � � � � � � holds.

p1

p1

p2

p2

p3

p3

p4

p4

p5

p5

p6 p6

p6 p6

t1

t1

t2

t2

t3

t3

t4

t4

t5

t5

t6

p7 p7

p7 p7

t7

1 2 3

4 5

6 7

10 11 12

16 17

c d e

f g h i

j k

n o p

t u v w

a b

Figure 3: The tableau system for the illegal � -trace problem.

Events
� �

and
���

are terminals of type I having event
�

as companion.
Event

� �
is successful because the set � � � � � � � �H�3� �Z���Z��� � ���[�[��� �Z��� �Z� con-

tains an , -event, namely
� � . The intuition behind these terminals is rather

clear: a terminal of type I corresponds to a cycle in the reachability graph.
Loosely speaking, the events of � � � � � � � � correspond to a firing sequence lead-
ing from ����
�� � � � � � to �	��

� � � � � � � , and these two markings coincide. Since
� � � � � � � � contains an , -event, the firing sequence contains a transition of , ,
and so we have found an illegal � -trace. The set � ��� � � � � � doesn’t contains

5 A TABLEAU SYSTEM FOR THE ILLEGAL � -TRACE PROBLEM 11

p1

p2

p3

t1 t2

t3

t4

I

Figure 4: A net system

p1

p2 p3

p3 p2

t1 t2

t3 t4

1 2

3 4

b c

d e

a

Figure 5: Tableau without the condition
� � � �WC � * ��� � ���

any , -event, but � � ��� � need not be constructed, because it is isomorphic to
� � � � . Event

�
is a terminal of type II with event

�
as companion because

�	��

� � � � � ���3� / � �7/ � � ������
�� � � � � � , � � � � � � � , and
� � ��� � � ��* ��� � � �
�)� .

The intuition is that � � � � need not be constructed, because it is isomorphic
to � � � � .

However, this doesn’t explain why the condition
� � � � C � * ��� � ��� is needed.

The following example shows that after removing this condition the tableau
system is no longer complete. The net system of Fig. 4 has an illegal � -trace.
The tableau without the condition

��� � � C � * ��� � ��� is shown in Fig. 5. Event�
is a terminal with event

�
as companion (the condition

� � � � C � * ��� � ���
has been removed!); event

�
is a terminal with event

�
as companion. Both

terminals are unsuccessful.
Let � denote the number of reachable markings of O , and let

�
denote

the maximum number of tokens that the reachable markings of O put in all
the places of O .

We have the following result (see Appendix A.2):

Theorem 6 Let � be a tableau of O constructed according to a total ade-
quate order � .

5 A TABLEAU SYSTEM FOR THE ILLEGAL � -TRACE PROBLEM 12

 � is successful if and only if O has an illegal � -trace.

 � contains at most � � ! � non-terminal events.

 If the transitions of , are pairwise non-concurrent, then � contains at
most � � non-terminal events.

6 A TABLEAU SYSTEM FOR THE ILLEGAL LIVELOCK PROBLEM

The tableau system for the illegal livelock problem is a bit more involved
that that of the illegal � -trace problem. In a first step we compute a set � � �
�`. 4 � U�UWU

� . � � of reachable markings of O , called the set of checkpoints. This
set has the following property: if O has an illegal livelock, then it also has an

illegal livelock .RQ KYX�K]\ ����� K �G G&G%G%GMG �$. K ��� X K ��� \ �����G G%GMG%G%GMG%G�� such that = & � and . is a
checkpoint. For the computation of � � we use the unfolding technique of
[5] or [4]; the procedure is described in Sect. 6.1.

The tableau system solves the problem whether some checkpoint enables
an infinite sequence of invisible actions. Clearly, O has an illegal livelock if
and only if this is indeed the case. For this, we consider the net -������ obtained
from - by removing all the visible transitions together with their adjacent
arcs. We construct unfoldings for the net systems

� -������ � . 4 � � UWU�U
� � -��	��� � . � � ,

and check on them if the systems exhibit some infinite behavior. The tableau
system is described in Sect. 6.2.

6.1 Computing the set of checkpoints.

We construct the complete prefix of the unfolding of O as defined in [5] or
[4]. In the terminology of this paper, the complete prefix corresponds to a
tableau in which an event � is a terminal if there is an event � C such that
�	��

� � � � C � � ���	��

� � � ��� � , and � � C � � � ��� . As shown in [5, 4], the reachability
graph of O and of its complete prefix coincide.

Definition 7 A marking . belongs to the set � � of checkpoints of O if
. � �	��

� � � ��� � for some non-terminal event � of the complete prefix of O
labelled by a transition of � .

Let us compute � � for our example. The complete prefix of O coin-
cides with the tableau for the illegal � -trace problem in Fig. 3. The events
labelled by = � , the only transition of � , are

�
and

�[�
. The correspond-

ing markings are ����
�� � � � � � � � / �
�7/ � � and ����
�� � � �[� � �R� � / � �+/ � � . So

� � �F� � / �
�7/ � � � � / � �7/ � ��� .

6.2 The tableau system

Let �`. 4 � U�U�U
� . � � be the set of checkpoints obtained in the first phase. Let

-��	��� be the subnet of - obtained by removing from - all visible transitions
together with their incident arcs. We will use O 4 � U�U�U

� O � to denote the net
systems

� -������ � . 4 � � U�U�U
� � -
����� � . � � .

6 A TABLEAU SYSTEM FOR THE ILLEGAL LIVELOCK PROBLEM 13

Definition 8 Let

� 46� UWU�U
�
�� � be branching processes of O 4 � U�UWU

� O � , re-
spectively. An event � of

� & is a repeat (with respect to �) if there is an
index

� �) and an event � C in

� � , called the companion of � , such that
�	��

� � � � C � �:� ����
�� � � ��� � , and either

(I)
���) , or

(II))V� � and �WC � � , or

(III))V� � , � � �WC � � � , � �WC � � � ��� , and
� ��C � # * # � ��� # .

A repeat � of

� & is a terminal if

� & contains no repeat � C � � . Repeats,
and in particular terminals, are of type I, II, or III, according to the condition
they satisfy. A repeat � with companion � C is successful if it is of type II, and
unsuccessful otherwise.

A tableau is a tuple
�� 4 � U�U�U
�

� � of branching processes of O 4 � U�U�U

� O �
such that for every

� �) � � and for every possible extension � of

� & at
least one of the immediate causal predecessors of � is a terminal. Each

� &
is called a tableau component. A tableau is successful if at least one of its
terminals is successful.

Observe that an event of
�� & can be a repeat because of an event that be-
longs to another branching process

� � . The definition of repeat depends on
the order of the checkpoints, but the tableau system defined above is sound
and complete for any fixed order. Because the definition of the tableau com-
ponent

� & depends only on the components with a smaller index, we can
create the tableau components in increasing) order. Tableau components
are constructed as for the illegal � -trace problem, using the new definition of
terminal.

p2

p2

p5

p2

p4 p4

p5

p5

p6

t3

t3

t5

p7

p7

t7

t3

t7

3

5

7

12

9

15

d

e

g

h i

k

p

m

o

s

b

Figure 6: The tableau system for the illegal livelock problem

The tableau for our example is shown in Fig. 6. The names of places and
transitions have been chosen to match “pieces” of the unfolding in Fig. 2.

6 A TABLEAU SYSTEM FOR THE ILLEGAL LIVELOCK PROBLEM 14

The first tableau component contains no terminals; the construction termi-
nates because no event labelled by an invisible transition can be added. In
the second component, event

� �
is a terminal with event

�
in the first com-

ponent as companion. 5 The intuition is that we don’t need to unfold beyond� �
in the second component, because what we construct can be found after�

in the first component.
Similarly to the case of the illegal � -trace problem, a terminal of type II

corresponds to a cycle in the reachability graph. Since the transitions of -������
are all invisible, such a cycle always originates an illegal livelock, and so ter-
minals of type II are always successful. For terminals of type III, the intuition
is that � � ��� need not be constructed, because it is isomorphic to � � � C � . How-
ever, similarly to the case of the tableau system for illegal � -traces, this doesn’t
explain why the condition

� � C � # * # � ��� # is needed. We can use a slight modi-
fication of the net system of Fig. 4 to show that after removing this condition
the tableau system is no longer complete. Add a new place

/ Q , and a new
transition = Q having

/ Q as input place, and
/I4

as output place. Let � / Q � be the
initial marking. Let �<� � and �2��� = Q � . The new net system has an illegal

livelock, for instance the occurrence sequence � / Q � K��G^GMG[� � / 4�� KYX � K � K � ���G GMG%G%GMG%G`� .
The set � � contains only one element, namely the marking � /54�� . So we
have one single tableau component � 4 . If the condition

� � C � # * # � ��� # is re-
moved, then � 4 is identical to the tableau of Fig. 5. Event

�
is a terminal with

event
�

as companion, and event
�

is a terminal with event
�

as companion.
Both terminals are unsuccessful.

We have the following result (see Appendix A.3):

Theorem 9 Let � 46� U�U�U
� � � be a tableau of O 4 � U�U�U

� O � constructed according
to a total adequate order � .

 � 4 � UWU�U
� � � is successful if and only if O contains an illegal livelock.

 � 4 � UWU�U
� � � contain together at most � � ! � non-terminal events.

6.3 A tableau system for the 1-safe case

If O is 1-safe then we can modify the tableau system to obtain a bound of � �
non-terminal events. We modify the definition of the repeats of type II and
III:

(II’))V� � and
� � � C � � � , or

(III’))V� � , � C � � , � � C � � � ��� , and
� � C � # * # � ��� # .

We have the following result (see Appendix A.4):

Theorem 10 Let O be 1-safe. Let � 4 � U�U�U
� � � be a tableau of O 4 � U�U�U

� O � con-
structed according to a total adequate order � , and to the new definition of
repeats of type II and III.

 � 4 � UWU�U
� � � is successful if and only if O contains an illegal livelock.

 � 4 � UWU�U
� � � contain together at most � � non-terminal events.

5With a slightly more refined definition of terminal we could have event
�

as terminal,
whose companion would be a virtual event having � and � as output conditions.

6 A TABLEAU SYSTEM FOR THE ILLEGAL LIVELOCK PROBLEM 15

7 A TABLEAU SYSTEM FOR LTL MODEL CHECKING

Putting the tableau systems of Sections 5 and 6 together, we obtain a tableau
system for the model checking problem of =�� � � C . For the sake of clarity we
have considered the illegal � -trace problem and the illegal livelock problem
separately. However, when implementing the tableau systems there is no
reason to do so. Since all the branching processes we need to construct are
“embedded” in the unfolding of O

� , it suffices in fact to construct one single
branching process, namely the union of all the processes needed to solve both
problems.

In our running example we have to construct the union of the nets shown
in Fig. 3 (which is both the tableau system for the illegal � -trace problem and
the complete prefix needed to construct the set of checkpoints) and Fig. 6.
For each event we have to keep track of the prefixes it belongs to. So, for
instance, event

�
belongs to the tableau for the illegal � -trace problem and

to the complete prefix but not to the tableau components for the illegal live-
lock problem. (The complete prefix will always be a included in the � -trace
tableau, which follows directly from the weaker definition of terminals for
the � -trace tableau.)

Clearly, this prefix contains
� � �
� ! � � non-terminal events. If the system is

presented as a 1-safe Petri net, then the prefix contains
��� � � � non-terminal

events because the following two conditions hold:

 By Prop. 1 none of the reachable markings of the synchronization O
��
enable two , -transitions concurrently. By Theorem 6, the tableau for
the illegal � -trace problem has at most �
� non-terminal events.

 If the system is a 1-safe Petri net, then the synchronization O
�� is also
1-safe. By Theorem 9, the tableau for the illegal livelock problem has
at most � � non-terminal events.

(Note that when we fix the property � , we obtain the same bounds in the
number of reachable markings of the net system O , which was given as input
to the model checker.)

With small modifications the approach can also handle state based stut-
tering invariant logics such as LTL-X (the propositional linear temporal logic
without the next-time operator). (See Appendix A.1.2.)

8 CONCLUSIONS

We have presented a new unfolding technique for checking LTL-properties.
We first make use of the automata-theoretic approach to model checking:
a combined system is constructed as the product of the system itself and of
an automaton for the negation of the property to be checked. The model
checking problem reduces to the illegal � -trace problem and to the illegal
livelock problem for the combined system. Both problems are solved by
constructing certain prefixes of the net unfolding of the combined system.
In fact, it suffices to construct the union of these prefixes.

The prefixes can be seen as tableau systems for the illegal � -trace and the
illegal livelock problem. We have proved soundness and completeness of

8 CONCLUSIONS 16

these tableau systems, and we have given an upper bound on the size of the
tableau. For systems presented as 1-safe Petri nets or products of automata,
tableaux contain at most size

� � �
� � (non-terminal) events, where � is the
number of reachable states of the system. An interesting open problem is the
existence of a better tableau system such that tableaux contain at most

� � � �
events. We conjecture that it doesn’t exist.

The main advantage of our approach is its simplicity. Wallner’s approach
proceeds in two steps: construction of a complete prefix, and then construc-
tion of a graph. The definition of a graph is non-trivial, and the graph itself
can be exponential in the size of the complete prefix. Our approach makes
the construction of the graph unnecessary. The price to pay is a larger prefix.

We have solved the illegal � -trace and the illegal livelock problem in a very
general setting. For instance, we allow visible transitions to be concurrent.
This may open the way to solutions of the model checking problem for partial
order logics interpreted on Mazurkiewicz traces (see for instance [17]). In
some of these logics the set of traces violating a property can be characterized
as the set of traces of a Petri net. We could then construct the product of the
system and this Petri net, and proceed as in this work. This is, however, left
for future research.

9 ACKNOWLEDGEMENTS

This work has been partially supported by the Teilprojekt A3 SAM of the
Sonderforschungsbereich 342 “Werkzeuge und Methoden für die Nutzung
paralleler Rechnerarchitekturen”, the Academy of Finland (Project 47754),
and the Nokia Foundation.

References

[1] Bibliography on the net unfolding method. Available on the Internet at�����������	��
	
	
���
�������
������������	���������� 	
��	�������!�"������#�
!�����$�!#%�&�$�!#%�'�)(%���	�+*
.

[2] J. C. Bradfield. Verifying Temporal Properties of Systems, volume ISBN
0-8176-3625-0. Birkhäuser, Boston, Massachussets, 1991
(Also: Ph. D. Thesis, University of Edinburgh).

[3] J. Esparza. Model checking using net unfoldings. Science of Computer
Programming, 23:151–195, 1994.

[4] J. Esparza and S. Römer. An unfolding algorithm for synchronous prod-
ucts of transition systems. In Proceedings of the 10th International
Conference on Concurrency Theory (Concur’99), pages 2–20, 1999.
LNCS 1055.

[5] J. Esparza, S. Römer, and W. Vogler. An improvement of McMillan’s
unfolding algorithm. In Proceedings of 2nd International Workshop
on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’96), pages 87–106, 1996. LNCS 1055.

REFERENCES 17

[6] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-fly
automatic verification of linear temporal logic. In Proceedings of 15th
Workshop Protocol Specification, Testing, and Verification, pages 3–18,
1995.

[7] B. Graves. Computing reachability properties hidden in finite net un-
foldings. In Proceedings of 17th Foundations of Software Technology
and Theoretical Computer Science Conference, pages 327–341, 1997.
LNCS 1346.

[8] K. Heljanko. Using logic programs with stable model semantics to solve
deadlock and reachability problems for 1-safe Petri nets. In Proceedings
of 5th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS’99), pages 240–254, 1999.
LNCS 1579.

[9] R. Kaivola. Equivalences, Preorders and Compositional Verification
for Linear Time Temporal Logic and Concurrent Systems. PhD thesis,
University of Helsinki, Department of Computer Science, 1996. 185 p.

[10] R. Kaivola. Using compositional preorders in the verification of sliding
window protocol. In Proceeding of 9th International Conference on
Computer Aided Verification (CAV’97), pages 48–59, 1997. LNCS
1254.

[11] R. Langerak and E. Brinksma. A complete finite prefix for process al-
gebra. In Proceeding of 11th International Conference on Computer
Aided Verification (CAV’99), pages 184–195, 1999. LNCS 1663.

[12] K. L. McMillan. Using unfoldings to avoid the state explosion prob-
lem in the verification of asynchronous circuits. In Proceedings of 4th
Workshop on Computer-Aided Verification (CAV’92), pages 164–174,
1992. LNCS 663.

[13] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Pub-
lishers, 1993.

[14] S. Melzer and S. Römer. Deadlock checking using net unfoldings.
In Proceedings of 9th International Conference on Computer-Aided
Verification (CAV ’97), pages 352–363, 1997. LNCS 1254.

[15] P. Niebert. Personal communication, 1999.

[16] C. Stirling and David Walker. Local Model Checking in the Modal
Mu-calculus. Theoretical Computer Science, 89(1):161–177, 1991.

[17] P. S. Thiagarajan and I. Walukiewicz. An expressively complete lin-
ear time temporal logic for Mazurkiewicz traces. In Proceedings, 12th
Annual IEEE Symposium on Logic in Computer Science (LICS’97),
pages 183–194. IEEE Computer Society Press, 1997.

[18] A. Valmari. On-the-fly verification with stubborn sets. In Proceed-
ing of 5th International Conference on Computer Aided Verification
(CAV’93), pages 397–408, 1993. LNCS 697.

REFERENCES 18

[19] M. Y. Vardi. An automata-theoretic approach to linear temporal logic.
In Logics for Concurrency: Structure versus Automata, pages 238–265,
1996. LNCS 1043.

[20] F. Wallner. Model checking techniques using net unfoldings. PhD
thesis, Technische Universität München, Germany, forthcoming.

[21] F. Wallner. Model checking LTL using net unfoldings. In Proceed-
ing of 10th International Conference on Computer Aided Verification
(CAV’98), pages 207–218, 1998. LNCS 1427.

[22] P. Wolper. Temporal Logic can be more expressive. Information and
Control, 56(1,2):72–93, 1983.

REFERENCES 19

10 APPENDIXES

APPENDIX A.1 THE SYNCHRONIZATION

Proof of Proposition 1.
None the reachable markings of O
"� enable two , -transitions concurrently,
and none of the reachable markings of O
"� enable a � -transition and a � -
transition concurrently.

Proof:
Let . be a reachable marking of O
"� . The construction of O

� guarantees
that . � � � � �

for some Büchi state
�
, and that and that . � � C � � � for all

other Büchi states. (This can be checked by simple marking invariant analy-
sis.) (1) Assume that two , -transitions are concurrently enabled. Because all
, - transitions have a Büchi place in their preset, the places corresponding to
Büchi states need to have at least two tokens, a contradiction. (2) Assume that
a transition

�� � and a transition � � such that
� �� � are concurrently

enabled. Because
�

has a Büchi place in preset and also � has a Büchi place
in preset, the places corresponding to Büchi states need to have at least two
tokens, a contradiction. ��

A.1.1 Proof of Theorem 2

First we present the automata theoretic approach to model checking in more
detail. Then we show how emptiness checking for the created product au-
tomaton can be reduced to the problems of illegal � -trace and illegal livelock
for the synchronization.

Given a labelled net system OP� �+����������� � � .1Q � , and Büchi-automaton
	
"�"� � � ��� ��� Q ���%��� � we will next define a product Büchi-automaton as
� � � � � � C ��� Q ��� C ��� C � , where

� Q � � .�Q ��� Q � , and
� C and

� C are defined
inductively as follows:

 � .�Q ��� Q � �� C ,

 If

� . ��� � �� C � . �G�GMG��$. C for some � � , and
� � � �

�G�G%GMG%Gh� � C �� then� . C ��� C � � C and
� . ��� � �G6G%GB� � . C ��� C � � C , and

 nothing else is in
� C and

� C .
The acceptance set is defined to be

� C �F� � . ��� � � C # � � � .
The runs of � correspond to infinite executions of the net system O which

do not satisfy the formula � . The language of the automaton � will thus be
non-empty if and only if O �# � � . We denote by

#�� � #
the number of reachable

markings of O , and by
�

the number of states of 	�

� . The number of states
of � is bounded by

� � # ! # �
.

We first show that the number of reachable markings of the synchroniza-
tion as defined in Section 3 is also bounded by the same number of states.

Theorem 11 The synchronization O
"� has at most
�6#�� � # !�# � # ��J � reachable

markings.

10 APPENDIXES 20

Proof:
It follows directly from the construction of O
"� that in the initial state the

synchronization can only execute the transition
� �/5� �� � �

�G6G%GB� � .RQ ��� Q � . After
this is done, the construction ensures that all other reachable markings can
be represented as pairs

� . ��� � , where . is a reachable marking of O and
�

is
a state of 	

� . ��

We formalize the stuttering immunity of =�� � � C with the following propo-
sition, see [10, 9].

Proposition 12 Given a =�� � � C formula � , and two sequences
 �
 C � � ,
if
 C can be obtained from
 by adding and/or removing invisible transition
labels, then it holds that
�C # � � if and only if
 # � � .

Note that the proposition also holds in some sense for the Büchi-automaton
	
"� . It will accept the image of the word
 C under � if and only if it accepts
image of the word
 under � .

The following lemma shows the correspondence between the emptiness
checking of the product automaton and the illegal � -trace and illegal livelock
problems of the synchronization. We define the set �9G � ������� 	�� � 	�

� � as � � � # 	��

� � � � � � � �Z���%��� � accepts � � � , i.e. as the set of states of 	�

� which

will accept the infinite word containing only � -labels.6

Lemma 13 Let O be a labelled net system, 	�

� be a Büchi-automaton cre-
ated from a 	�

��
 C -formula � , and � the product automaton of O and 	�

� .

(1) If the product automaton � is non-empty then O

� will have either an
illegal � -trace or an illegal livelock.

(2) If O
"� has an illegal � -trace, then the product automaton � is non-
empty.

(3) If O

� has an illegal livelock, then the product automaton � is non-
empty.

Proof:

(1) Let
 � � Q �I4 U�U�U
 � � be a word accepted by � , and let S � =BQM= 4 U�U�U

be a transition sequence of O producing the word
 . We will split the
proof in two parts: (a)

� & � for infinitely many indexes)"*
� , and
(b)

� & � for only finitely many indexes)+* � .
(a) Let
�C � � be the projection of
 onto � . By Proposition 12

the logic 	
 ��
 C is immune to stuttering of invisible transitions,
and thus also the automaton 	�

� will have an accepting run� C � � Q ��4 U�U�U on
�C . Given S and

� C we can now create an illegal
� -trace of O
"� as follows. First fire the initialization transition

�= .
6Computing this set can be done in linear time in the size of �
	�� by e.g. creating the

graph of the transition structure of � 	�� restricted to
 -transitions, computing the non-trivial
maximal strongly connected components containing accepting states, and then checking
from which states these “accepting” components can be reached.

10 APPENDIXES 21

Then let
� � � and for each index) *P� do the following: (i) if

= & � � then fire the invisible transition = & , or (ii) if = & � then
fire the transition in O

� corresponding to the synchronization of

= & and the transition
� � ��� K � �G�G%GMG%Gb� � � � 4 of 	
"� , and let

� � � J �
.

Because
�C is the projection of
 on � , this sequence of transi-
tions can be fired. Now because some accepting state is repeated
infinitely often in

� C , the fired sequence of transitions will contain
infinitely many transitions in , , and will therefore be an illegal
� -trace.

(b) Let
 C � � be the projection of
 onto � . By Proposition 12
the automaton 	�

� will have an accepting run

� C on
 C � � . Now
let
� C be the state 	�

� is in the run

� C after reading
 C . It follows
directly from the definition that

� C �9G � ������� 	�� � 	
"� � . Given
S and

� C we can now create an illegal livelock of O

� as follows.
First consume all transitions of S and

� C up-to and including the
last visible transition exactly as in the case (a). After firing this
sequence, the synchronization O

� will have a marking

� . ��� C �
for some reachable marking . of O , and the last fired transition
will be a � -transition (

�= if
 contains no visible transitions). Let
S C be the suffix of S which was not yet fired. It contains an infi-
nite sequence of invisible transitions of O enabled in the marking
. , which implies that the same sequence of transitions is also
enabled at the marking

� . � � C � of O

� . Thus the synchronization
will have an illegal livelock.

(2) Let S � �=^= Q%= 4 U�UWU be an illegal � -trace of O

� , and let
 � � Q �I4 UWU�U

� � be the labelling of = QM= 4 U�U�U . If we remove from the sequence S
all invisible transitions, and project the remaining transitions on the
Büchi component of the target marking of the corresponding transi-
tion, we will obtain an accepting run

� C � � Q ��4 UWU�U
 � � of 	

� on

the word
 C � � , such that
 C is the projection of
 onto � . Thus
by Proposition 12, the automaton 	�

� will also have an accepting run�

on the image of
 under � . Therefore by removing
�= and project-

ing the transition sequence S on the transitions of O , we will have a
run = C Q = C 4 UWU�U of O and an accepting run

�
of 	�

� on the image of the

labelling
 of = C Q = C 4 UWU�U , which implies � is non-empty.

(3) Let S � �=^= Q%= 4 U�U�U be an illegal livelock of O

� , and let
�� � Q �I4 U�U�U
be the labelling of the sequence =BQ%= 4 UWU�U . If we remove from the se-
quence S all invisible transitions, and project the remaining transitions
on the Büchi component of the target marking of the corresponding
transition, we will obtain a sequence

� C � � Q � 4 U�UWU
� C � � , such that� C �IG � ������� 	 � � 	

� � . Let

� C C �� � be an accepting run of 	�

� which
begins with

� C and after this accepts the suffix � � , and let
 C be the
word accepted by the run

� C C . Because
 C can be obtained from
 by
removing invisible transition labels, by Proposition 12 the automaton
	

� will also have an accepting run

�
on the image of
 under � .

Therefore by removing
�= and projecting the transition sequence S on

the transitions of O , we will have a run = C Q =LC 4 U�U�U of O and an accepting

10 APPENDIXES 22

run
�

of 	

� on the image of the labelling
 of = C Q = C 4 U�UWU , which implies
� is non-empty.

��

Proof of Theorem 2.
O # � � if and only if O

� has no illegal � -traces and no illegal livelocks.

Proof:
The Theorem 2 now directly follows from Lemma 13 and the fact that � is
non-empty if and only if O �# � � . ��

A.1.2 A sketch on handling LTL-X

To handle the state based temporal logic LTL-X, we change the Büchi au-
tomaton construction to use e.g. [6], and the synchronization construction
used to be the observation construction presented in e.g. [21], with the mod-
ifications needed to accommodate these changes. The main difference to
the action based case is that the set � of O
 � will need to depend both on
the marking of the net system O and an the state of the Büchi automaton
	
 � . Thus the set � will need to consist of transition instances rather than
structural transitions. Given a transition instance of O
 � corresponding to
a move of the Büchi automaton,

� . C ��� C � �G GMG � � . ��� � will be in � if and
only if 	 �
 � � � � � � ���Z� �%��� � accepts � ����� � 	 �
 � � . � � , i.e. if and only if the
state

�
of 	�
 � will accept the word consisting of the infinite stuttering of the

valuation of atomic propositions in the state . . The computation of the
� -transitions instances needs to be done for each visible event added to the
livelock tableau. This should not be a major problem because the size of
	
 � is usually quite small and the algorithm needed to run for each transi-
tion instance is linear in the size of 	�
 � .

APPENDIX A.2 PROOFS FOR THE ILLEGAL � -TRACE TABLEAU

A.2.1 Finiteness

First we define the notion of a cut. A set of conditions is a co-set if all its
elements are pairwise in

��

relation. A cut is a co-set of conditions that is

maximal with respect to set inclusion. It is easy to prove that the reachable
markings of an occurrence net coincide with its cuts. We can assign to a
configuration � the marking reached by any of the occurrence sequences
mentioned above. This marking is a cut, and it is easy to prove that it is equal
to

� ����� �T� � � � � � , where ����� denotes the set of minimal places of the
branching process.

Let � denote the number of reachable markings of O , and
�

denote the
maximum number of tokens the reachable markings of O put in the places
of O . We need the following lemma.

Lemma 14 Let

be a finite subset of events of a configuration � , and let� * � . If

contains more than
� ! �

events, then there exist � 4 � U�U�U
� � � � 4E

such that � 4 � � �
� U�U�U � � � � 4 .

10 APPENDIXES 23

Proof:
We observe first that no co-set of conditions of � contains more than

�
ele-

ments: otherwise there exists a cut containing more than
�

conditions, and
since this cut corresponds to a reachable marking, O has a reachable mark-
ing which puts more than

�
tokens on the set of places

�
, contradicting the

definition of
�

. It follows that no co-set of events contains more than
�

ele-
ments, because the output conditions of these events also form a co-set, and
each event has at least one output condition. In particular, no co-set of events
of

contains more than
�

elements.
The proof of the lemma is by induction on

�
.

Basis.
� � � . Then there is nothing to prove.

Step.
� >@� . Let ����� � � be the set of maximal elements of

with respect to

the causal relation. Since �	��� � � is a co-set, it contains at most
�

elements.
Let

 C � � ����� � � . C contains more than
� � G � � ! � events, and so by

induction hypothesis there exist � 4�� U�U�U
� � � C such that � 4 � � �

� U�U�U �� � . Since � � does not belong to ����� �� � , we have � � � � � � 4 for some event
� � � 4E �	��� � � . So � 4 � � �

� U�U�U � � � � � � � 4 , and we are done. ��

Proof of Theorem 6 - finiteness.

(a) � contains at most � � ! � non-terminal events.

(b) If the transitions of , are pairwise non-concurrent, then � contains at
most � � non-terminal events.

Proof:
(a) We proceed in three steps.

(1) Let � be an configuration of � . If
� # > � ! �

, then � contains a
terminal.
If
� # > � ! �

, then, by Lemma 14, � contains a chain � 4 � U�UWU ���� � 4 . By the pigeonhole principle, there are events � & � � � , � �) � � �
�
J � , such that ����
�� � � � & � �:� ����
�� � � � � � � . So � � is a repeat. It follows
that � � is either a terminal or a causal successor of a terminal. By the
definition of tableau, � � is a terminal.

(2) Let . be a reachable marking of O . � contains at most � ! �
non-

terminal events � such that �	��

� � � �:� . .
Assuming the contrary, let � 4 UWU�U ��� be pairwise different non-terminal
events such that � > � !��

, and ����
�� � � & �:�D. for all
� �)+��� . By

(1), we have
� � & � # � � ! �

and so
��� � � & �+� � ! �

for all
� �) ��� .

By the pigeonhole principle, there are two indices) �� �
such that��� � � & ��� ��� � � � � . Since � is a total order, we have either � � & � � � � � �

or � � � � � � � & � . So either � & or � � is a repeat, and, by the definition of
tableau, a terminal.

(3) � contains at most �
� ! � non-terminal events.
By (2), � contains at most � ! � non-terminal events for each reachable
marking, and so �
� ! � non-terminal events.

(b) We proceed in three steps.

10 APPENDIXES 24

(1) Let � be an configuration of � . If � contains more than � events
labelled by transitions of , , then � contains a terminal.
Since all events labelled by transitions of , are causally related, � con-
tains a chain � 4 � U�U�U � ��� � 4 of such events. Proceed now as in
(a)(1).

(2) Let . be a reachable marking of O . � contains at most � non-
terminal events � such that �	��

� � � �:� . .
Assume the contrary, and let � 4 U�U�U ��� �

4
be pairwise different non-

terminal events such that ����

� � � & � � . for all
� �) � � J �

.
By (1), we have

��� � � & � � � for all
� �) � �$J �

. So there are two
indices) �� � such that

��� � � & � � ��� � � � � . Proceed now as in (a)(2).

(3) � contains at most �
� non-terminal events.
Proceed as in (a)(3).

��

A.2.2 Soundness

Soundness follows easily from the definition of a successful terminal.

Proof of Theorem 6 - soundness.
If � is successful then O has an illegal � -trace.

Proof:
If � is successful, then it contains a successful terminal � with companion
� C . In particular, � C � � , and so � � C � � � ��� . Let .RQ cG�G%G��d. 4 c XG�G%GMGY�$. � be
a firing sequence of O such that S and SIS 4 are linearisations of � � C � and � ��� ,
respectively. Since �	��

� � � ��� ��� ����
�� � � � C � � , we have . 4 �<. � . Since � ��� �
� � C � contains some , -event, .1Q cG�G%G��N. 4 c � XG�G%G%GL� is an infinite firing sequence
of O containing infinitely many occurrences of transitions of , . ��

A.2.3 Completeness

The proof of completeness is a bit more involved. We need a preliminary
definition, and a lemma.

Definition 15 A configuration � of a branching process of O is bad if it
contains at least

� � ! � �5J � , -events.

Lemma 16 (1) O has an illegal � -trace if and only if its unfolding contains
a bad configuration.

(2) A bad configuration contains at least one terminal. (More precisely,
if a branching process of O contains a bad configuration, then some
event of this configuration is a terminal.)

Proof:
(1) (�): Let .RQ cG�G%G��N. be a prefix of an illegal � -trace such that S contains� � ! � � J �

occurrences of , -transitions. There exists a configuration of the
unfolding of O such that S is a linearisation of � . This configuration is bad.

10 APPENDIXES 25

(1) (�): Let � be a bad configuration. � contains at least
� � ! � �HJ �

, -events. By Lemma 14, � contains a chain � 4 � UWU�U � ��� � 4 of , -events. By
the pigeonhole principle, two of these , -events, say � & � � � , satisfy ����

� � � � & � �:�
�	��

� � � � � � � , and � & � � � . Now proceed as in the proof of Theorem 6 - sound-
ness.

(2) Event � � in the proof of (1) (�) is a repeat. Since � contains a repeat,
it also contains a terminal. ��

Proof of Theorem 6 - completeness.
If O has an illegal � -trace then � is successful.

Proof:
By Lemma 16(1), it suffices to show that if the unfolding of O contains a bad
configuration, then � is successful.

We prove that, given a bad configuration � of the unfolding of O , either
� contains a successful terminal of � (and so � itself contains a successful
terminal), or there exists another bad configuration � C such that � C � � .
Since � is well founded (see Definition 4), � contains a successful terminal.

If � contains a successful terminal of � , then we are done. Otherwise,
by Lemma 16(2), � contains an unsuccessful terminal � . We have � �
� ��� � � � � � ��� � . Let ��C be the companion of � , and let � be an isomorphism
between � � ��� and � � ��C � . Define � C � � �WC � ��� � � � � ��� � . We prove that � C is a
bad configuration satisfying � C � � .

We consider two cases, corresponding to the two possibilities for a terminal
to be unsuccessful:

 �WC � � , and � ��� � � �WC � contains no , -event.
In this case we have � �WC ��� � ��� . By the second condition in the defini-
tion of an adequate order, we have � � C � � � ��� . By the third condition of
the same definition, we have � C � � .
It remains to prove that � C is bad. We show that � and � C contain
the same number of , -events. Since � ��� � � � C � contains no , -event, we
have

��� � ���V� ��� � � C � . Since isomorphisms preserve labelling, we have��� � � � � � ��� �:� ��� � � � � ��� � . So
��� � C � ��� � .

 � � C � � � ��� and
��� � � C � * ��� � ��� .

Since � � C � � � ��� , we have � C � � by the third condition in the defini-
tion of an adequate order. It remains to prove that � C is bad. We show
that � C contains at least as many , -events as � . We have

� � � � C � * ��� � ���
by assumption. Since isomorphisms preserve labelling, we also have��� � � � � � ��� �:� ��� � � � � ��� � . So

��� � C * ��� � .
��

APPENDIX A.3 PROOFS FOR THE ILLEGAL LIVELOCK TABLEAU

A.3.1 Finiteness

Proof of Theorem 9 - finiteness.
� 4 � U�UWU

� � � contain together at most �
� !�� non-terminal events.

10 APPENDIXES 26

Proof:
The proof follows the pattern of the proof of Theorem 6 - finiteness (a). Parts
(1), and (3) are proved exactly as in that theorem. Only part (2) requires a
new proof.

(2) Let . be a reachable marking of O . � 4 � U�U�U
� � � contain together at

most � ! �
non-terminal events � such that �	��

� � � �:� . .

Assuming the contrary, let

be a set containing more than � !��
non-

terminal events such that ����

� � � �:�D. for all � . By (1), we have# � ��� # � � ! �
for all �

. By the pigeonhole principle, there are two
different events � 4 � � � such that

� � 4 � # � # � � � �
#
. We show that � 4 or � � is

a repeat. There are three possible cases:

– � 4 and � � belong to different tableau components.
Then the one belonging to the component with the larger index
is a repeat.

– � 4 and � � belong to the same tableau component, and are causally
related.
Then the largest one with respect to the causal relation is a repeat.

– � 4 and � � belong to the same tableau component, and are not
causally related.
Then � 4 and � � are ordered by � , because � is a total order. Since# � � 4 � # � # � � � �

#
, the largest of the two with respect to � is a repeat.

By the definition of a tableau, either � 4 or � � is a terminal, a contradic-
tion.

��

A.3.2 Soundness

As in the case of the illegal � -trace problem, soundness follows immediately
from the definition of a successful terminal.

Proof of Theorem 9 - soundness.
If � 4 � U�U�U

� � � is successful then O contains an illegal livelock.

Proof:
If � 4 � U�U�U

� � � is successful, then it contains a successful terminal � with com-
panion � C . In particular, � and � C belong to the same tableau component,
say � & , and � C � � , which implies � � C � � � ��� . Let . & cG�G%G6�$. 4 c XG+GMG%Gb�$. � be
a firing sequence of

� -������ � . & � such that S is a linearisation of � ��C � and SIS 4
is a linearisation of � ��� . Since ����

� � � ��� ��� ����
�� � � � C � � , we have . 4 � . � .
Since . & is a checkpoint of O , there exists a firing sequence .1Q c �G%GMG �$. &
such that the last transition of S C belongs to � . So .1Q c �G%G%G^�$. & c c � XG+GMG%G%Gb� is
an illegal livelock of O . ��

A.3.3 Completeness

The completeness proof uses the following notion:

10 APPENDIXES 27

Definition 17 An � -pair is a pair
� � � � � where � is a configuration of the

unfolding of O , and � is an event of � , satisfying the following properties:

 � is labelled by a transition of � ,

 all events of � � � ��� are labelled by invisible transitions, and

 the set � � � ��� contains at least
� � ! � �5J �

events.

An � -pair
� � � � � is minimal if � ��� � � � C � for any other � -pair

� � C � � C � .
Loosely speaking, the following lemma shows that � -pairs are finite wit-

nesses of the existence of illegal livelocks. Moreover, minimal � -pairs are
related to checkpoints. This lemma makes use of our assumption stating that
no reachable marking concurrently enables a transition of � and a transition
of � .

Lemma 18 (1) O has an illegal livelock . Q cGWGMG��$. c XG+G%GMGh� if and only if
its unfolding contains an � -pair

� � � � � such that ����
�� � � ��� �:� . .

(2) If
� � � � � is a minimal � -pair, then ����

� � � ��� � is a checkpoint of O .

Proof:
(1)(�): Let .1Q cG�G%G��d. c XG�G%GMGY� be a livelock of O , i.e.,

 the last transition of S belongs to � , and

 S 4 is an infinite sequence containing only invisible transitions.

Let � be an (infinite) configuration of the unfolding of O such that SIS 4 is
one of its linearisations. � contains an event � corresponding to the last
transition of S . Since � is infinite, � � � ��� contains infinitely many events.
Let � ��� �

be an extension of � ��� such that

contains at least
� � ! � �
J �

events. The events of

are either concurrent to or causal successors of � .
In the latter case, they are labelled with transitions of S 4 , and so invisible.
In the former case, since no reachable marking concurrently enables the last
transition of S and a visible transition, none of these events is labelled by
a visible transition. So all events of

are labelled by invisible transitions,

which implies that
� � ��� � � � � is an � -pair.

(1)(�): Let
� � � � � be an � -pair, and let . � �	��

� � � ��� � . Let .1Q cG G&G��$.

be a linearisation of � ��� . Since � is the unique maximal event of � ��� , it is
labelled by the last transition of S ; since

� � � � � is an � -pair, � is labelled
by a transition of � , and so the last transition of S belongs to � . We will

now construct an infinite firing sequence . c6\ c ��G�G%G%GMG � of invisible transitions,

which implies that .1Q cG�G%G�� . c \ c ��G�G%GMG%G�� is an illegal livelock.
Since

� � � � � is an � -pair, the events of � � � ��� are labelled by invisible
transitions, and so the unfolding of

� - & � � � . � contains a configuration � C
isomorphic to � ��� ��� . Since � ��� ��� contains at least

� � ! � � J � events, so does
� C . By Lemma 14, � C contains a chain � 4 � U�U�U � ��� � 4 . By the pigeonhole
principle, there are events � & � � � such that ����
�� � � & � � �	��

� � � � � . Let
. c \G+GMG%Gb�N. 4 c �G�G%G%GY�$. � be a linearisation of � � � � such that . c \G+G%G%Gb�$. 4 is

10 APPENDIXES 28

a linearisation of � � & � . We have . 4 � . � , and so . c \G�G%G%GY�$. 4 c ��G�GMG%G � is
an infinite firing sequence. Since the transitions of � � � ��� are labelled by
invisible actions, S � S �� contains only invisible transitions, and we are done.

(2) Since
� � � � � is an � -pair, � is labelled by a transition of � , and so it

suffices to show that � belongs to the finite prefix of O . Assume this is not the
case. Then, some event � � � is a terminal of the complete finite prefix of
O . Let � C be the companion of � . Fix an isomorphism � between � ��� C � and
� ��� � , and let � C � � � � � and � C � � � � � . Since � preserves labelling, � C is
labelled by a transition of � , and all events of � C ��� �WC � are labelled by invisible
transitions. Moreover, � C � � � C � contains exactly as many events as � � � ��� , and
so at least

� � ! � �*J �
events. It follows that

� � C � � C � is an � -pair. We show
� � C ��� � ��� , which contradicts the minimality of

� � � � � . By the definition of a
terminal, we have ��� C � � ��� � . Since � � � , we have � ��� � ��� � ��� for some set
of events � . It follows � � C �:� ��� C � � � � � � . By the definition of an adequate
order, � � C � � � ��� , and we are done. ��

Loosely speaking, our next lemma shows that minimal � -pairs lead to ter-
minals in the tableau system. Before we can formulate it we need some
notations. Let � � � �`. 46� U�UWU

� . � � , and fix a minimal � -pair
� � � � � . By

Lemma 18(2), �	��

� � � ��� � is an element of � � , say . & . It follows that � � ���
restricted to the invisible events, and the unfolding of O & are isomorphic. Fix
an isomorphism � & from � � ��� restricted to the invisible events to the unfold-
ing of O & , and define ��� ��� & � � � � ��� � . Clearly, ��� is a configuration of the
unfolding of O & .
Lemma 19 The configuration ��� contains a terminal. (More precisely, in
any tuple of branching processes

� 46� U�U�U

�

� � of O 4 � U�U�U
� O � , if

� & con-

tains ��� , then some event of ��� is a terminal.)

Proof:
Since

� � � � � is an � -pair, the set � � � ��� contains at least
� � ! � ��J �

events.
Since ��� is isomorphic to � � � ��� , it also contains at least

� � ! � �9J � events.
By Lemma 14, ��� contains a chain � 4 � UWU�U � ��� � 4 . By the pigeonhole
principle there are events � & � � � such that ����

� � � � & � �?� �	��

� � � � � � � . So � �
is a repeat, and ��� contains a terminal. ��

Proof of Theorem 9 - completeness.
If O contains an illegal livelock then � 46� U�U�U

� � � is successful.

Proof:
By Lemma 18(1) O has an � -pair, and so it also has a minimal � -pair

� � � � � .
By Lemma 18(2), O has an illegal livelock . Q cGWGMG��$. & c XG�GMG%GY� such that
. & � ����

� � � ��� � , and . & is a checkpoint. Without loss of generality, we
choose

� � � � � so that the index) is minimal.
We prove that � & contains a successful terminal. We proceed as follows:

We show that either the configuration ��� of the unfolding of O & contains
a successful terminal of � & , or there exists another minimal � -pair

� � C � � �
(observe that the event � doesn’t change) such that � C� � ��� . Since � is well
founded, � & must contain a successful terminal.

10 APPENDIXES 29

If ��� contains a successful terminal of � & , then we are done. Otherwise, by
Lemma 19, it contains an unsuccessful terminal � . Let � C be the companion
of � .

We first prove that � C is also an event of � & . Assume the contrary. Then,
by the definition of a terminal, � C is an event of � � and

� �) . Since � is an
event of � & , we can split S 4 into two sequences, S 4 �FS � S � , such that S � is a
linearisation of ��� � , and so

.RQ cGWGMG��N. & c \G�G%G%Gb� ����

� � ��� � � c �G�GMG%GY�
Since �	��

� � ��� C � � � ����
�� � ��� � � , we find a linearisation S C� of ��� C � in � � such
that

. � c �

\G�G%G%GY� ����

� � ��� C � �:� ����

� � ��� � � . So we have

.RQ c �G%G%G^�$. � c �

\G�GMG%GY� ����

� � ��� C � �:� ����

� � ��� � � c �G�GMG%GY�
which is an illegal livelock of O . Since . � is a checkpoint and

� �) , we
reach a contradiction to our assumption that the index) is minimal.

Since �[C is also an event of � & , and � is an unsuccessful terminal, we have
���[C � � ��� � , and

��� C � # * # ��� � # . We construct a configuration � C of the unfolding
of O in two steps.

 Define � C� � ��� C � ��� � ��� � ��� � � , where � is an isomorphism from � ��� �
to � ��� C � .

 Define � C � � ��� ��� _
4

& � � C� � , where � & is the isomorphism from � � ��� to
the unfolding of O & we used above.

We make the following observations:

 � C� is a configuration of � & .
Follows immediately from the definitions.

 All events of � C� are labelled by invisible transitions.
Because � & is a branching process of O & � � - & � � � . & � , and - & � � con-
tains only invisible transitions.

 � C� contains at least
� � ! � ��J �

events.
Since

��� C � # * # ��� � # , we have
� C� # * # ��� # by the definition of � C� . Since� � � � � is an � -pair, ��� contains at least

� � ! � �VJ �
events, and so � C�

also contains at least
� � ! � �5J �

events.

It follows that
� � C � � � is a minimal � -pair. We now show � C� � ��� . Since

��� C � � ��� � by assumption, and � is an adequate order, we have

� C� � ��� C � ��� � ��� � ��� � � (definition of � C�)
� ��� � � � ��� � ��� � � (��� C � � ��� � and � is an adequate order)
� ���

��

10 APPENDIXES 30

APPENDIX A.4 THE 1-SAFE CASE

The new tableau system has weaker requirements for an event to be a repeat,
and so it is complete. More precisely, a repeat of type II is also a repeat of
type II C , and a repeat of type III is either a repeat of type II C (if

� � � � � C �) or a
repeat of type III C (if � � � C). We deal with soundness, and with the new size
bound.

A.4.1 Finiteness

Proof of Theorem 10 - finiteness.
� 4 � U�UWU

� � � contain together at most �
� non-terminal events.

Proof:
The proof has the same parts as that of Theorem 6 - finiteness (a). Parts (2)
and (3) are proved as in that theorem, only (1) requires a new proof.

(1) Let � be an configuration of � 4 � U�U�U
� � � . If

� # > � , then � contains
a terminal.
If
� # > � , then � contains two events � � ��C such that ����

� � � ��� � �

����
�� � � �WC � � . By the definition of repeat of type II’, � or � C is a repeat. By
the definition of tableau, � contains a terminal.

��

A.4.2 Soundness

For soundness, we need the following lemma:

Lemma 20 Let � 4 � � � configurations of the unfolding of a 1-safe net system
O such that � 4 � � � is a configuration, and �	��

� � � 4 ���
. � ����

� � � � � .
Then ����
�� � � 4 � � � �H� . .

Proof:
Let �

46�
� �
�

�
4
� be the cuts corresponding to � 4 , � � , and � 4 � � � , respectively.

(1) If
/A . , then

/A ����
�� � � 4 � � � � .
Since

/ . , there exist
��4�

�
4
,
�
�

� � such that
� � �W4 �H� / � � ���

� � . If
��4 ��

� , then
�W4�

�
4
� , and thus

/ ����

� � � 4 � � � � . Otherwise
��4 �� �

� , and since
O is 1-safe,

��4
and

�
� cannot be concurrent. Since � 4 � � � is a configuration,

they must be causally related. Assume without loss of generality that
� 4 � �

� .
Then

�W4?
�
4
� , and so

/ ����

� � � 4 � � � � .
(2) If

/A �	��

� � � 4 � � � � , then
/A . .

Since
/) �	��

� � � 4 � � � � , there exists

�
�
4
� such that

� ��� � � /
. Be-

cause ����
�� � � 4 � � ����
�� � � � � ,
/

must either exist in both �	��

� � � 4 � and
�	��

� � � � � , or in neither of them. In the first case

/ . and we are done.
Assume that

/ � . . Then there must be events � 4� � 4 , � �
 � � , such that� ��� 4 and

� ��� � . If � 4 �� � � , then � 4 � � � is not a configuration, and we
get a contradiction. In the case that � 4 � � � we get that � 4? � 4 � � � and we
get a contradiction because

�'
�
4
� . ��

Proof of Theorem 10 - soundness.
If � 4 � U�U�U

� � � is successful then O contains an illegal livelock.

10 APPENDIXES 31

Proof:
If � 4 � U�U�U

� � � is successful, then it contains a successful terminal � with com-
panion � C . In particular, � and � C belong to the same tableau component.
If � C � � , then we proceed as in the proof of Theorem 9 - soundness. If
� C ��
 � , then there exists a firing sequence . & cG�G%G6�$. 4 c XG�GMG%GY�$. � , where
S is a linearisation of � � C � � � ��� and SIS 4 is a linearisation of � ��� . By Lemma
20, ����
�� � � � C � � � ��� � � ����

� � � ��� � , and so . 4 � . � . Finally, since . & is

a reachable marking of O , there exists a firing sequence . Q c �G GMG �N. & such

that the last transition of S C belongs to � . So .1Q c �G%G%G^�$. & c cWX �G�GMG%G%G � is an
illegal livelock of O . ��

10 APPENDIXES 32

HELSINKI UNIVERSITY OF TECHNOLOGY LABORATORY FOR THEORETICAL COMPUTER SCIENCE

RESEARCH REPORTS

HUT-TCS-A47 Patrik Simons

Towards Constraint Satisfaction through Logic Programs and the Stable Model Semantics. August 1997.

HUT-TCS-A48 Tuomas Aura

On the structure of delegation networks. December 1997.

HUT-TCS-A49 Tomi Janhunen

Non-Monotonic Systems: A Framework for Analyzing Semantics and Structural Properties of NMR. March 1998.

HUT-TCS-A50 Ilkka Niemelä (Ed.)

Proceedings of the HeCSE Workshop on Emerging Technologies in Distributed Systems. March 1998.

HUT-TCS-A51 Kimmo Varpaaniemi

On the Stubborn Set Method in Reduced State Space Generation. May 1998.

HUT-TCS-A52 Ilkka Niemelä, Torsten Schaub (Eds.)

Proceedings of the Workshop on Computational Aspects of Nonmonotonic Reasoning. May 1998.

HUT-TCS-A53 Stefan Rönn

Semantics of Semaphores. 1998.

HUT-TCS-A54 Antti Huima

Analysis of Cryptographic Protocols via Symbolic State Space Enumeration. August 1999.

HUT-TCS-A55 Tommi Syrjänen

A Rule-Based Formal Model For Software Configuration. December 1999.

HUT-TCS-A56 Keijo Heljanko

Deadlock and Reachability Checking with Finite Complete Prefixes. December 1999.

HUT-TCS-A57 Tommi Junttila

Detecting and Exploiting Data Type Symmetries of Algebraic System Nets during Reachability Analysis. December

1999.

HUT-TCS-A58 Patrik Simons

Extending and Implementing the Stable Model Semantics. April 2000.

HUT-TCS-A59 Tommi Junttila

Computational Complexity of the Place/Transition-Net Symmetry Reduction Method. April 2000.

HUT-TCS-A60 Javier Esparza, Keijo Heljanko

A New Unfolding Approach to LTL Model Checking. April 2000.

ISBN 951-22-4999-5

ISSN 0783-5396

