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Abstract. Fixed point equationsX = f (X) overω-continuous semirings are a
natural mathematical foundation of interprocedural program analysis. Generic al-
gorithms for solving these equations are based on Kleene’s theorem, which states
that the sequence0, f (0), f (f (0)), . . . converges to the least fixed point. How-
ever, this approach is often inefficient. We report on recent work in which we
extend Newton’s method, the well-known technique from numerical mathemat-
ics, to arbitraryω-continuous semirings, and analyze its convergence speed in the
real semiring.

1 Introduction

In the last two years we have investigated generic algorithms for solving systems of
fixed point equations overω-continuous semirings[15]. These semirings provide a
nice mathematical foundation for program analysis. A program can be translated (in
a syntax-driven way) into a system ofO(n) equations over an abstract semiring, where
n is the number of program points. Depending on the information about the program
one wants to compute, the carrier of the semiring and its abstract sum and product op-
erations can be instantiated so that the desired information is the least solution of the
equations. Roughly speaking, the translation maps choice and sequential composition
at program level into the sum and product operators of the semiring. Procedures, even
recursive ones, are first order citizens and can be easily translated. The translation is
very similar to the one that maps a program into a monotone framework [16].

Kleene’s fixed point theorem applies toω-continuous semirings. It shows that the
least solutionµf of a system of equationsX = f(X) is equal to the supremum
of the sequence(κ(i))i∈N of Kleene approximantsgiven byκ(0) = 0 andκ(i+1) =
f(κ(i)). This yields a procedure (let’s call itKleene’s method) to compute or at least
approximateµf . If the domain satisfies what is usually known as theascending chain
condition, then the procedure terminates, because there exists ani such thatκ(i) =
κ(i+1) = µf .

Kleene’s method is generic and robust: it always converges when started at0, for
any ω-continuous semiring, and whatever the shape off is. On the other hand, its
efficiency can be very unsatisfactory. If the ascending chain condition fails, then the
sequence of Kleene approximants hardly ever reaches the solution after a finite num-
ber of steps. Another problem of the Kleene sequence arises in the area of quantitative
program analysis. Quantitative information, like averageruntime and probability of ter-
mination (for programs with a stochastic component) can also be computed as the least

⋆ This work was in part supported by the DFG projectAlgorithms for Software Model Checking.



solution of a system of equations, in this case over the semiring of the non-negative
real numbers plus infinity. While in these analyses one cannotexpect to compute the
exact solution by any iterative method (it may be irrationaland not even representable
by radicals), it is very important to find approximation techniques that converge fast to
the solution. However, the convergence of the Kleene approximants can be extremely
slow. An artificial but illustrative example is the case of a procedure that can either ter-
minate or call itself twice, both with probability1/2. The probability of termination of
this program is given by the least solution of the equationX = 1/2+1/2X2. It is easy
to see that the least solution is equal to1, but we haveκ(i) ≤ 1 − 1

i+1 for everyi ≥ 0,
i.e., in order to approximate the solution withini bits of precision we have to compute
about2i Kleene approximants. For instance, we haveκ(200) = 0.9990.

Faster approximation techniques for equations over the reals have been known for
a long time. In particular, Newton’s method, suggested by Isaac Newton more than 300
years ago, is a standard efficient technique to approximate azero of a differentiable
function. Since the least solution ofX = 1/2 + 1/2X2 is a zero of1/2 + 1/2X2 −X,
the method can be applied, and it yieldsν(i) = 1 − 2−i for the i-th Newton approx-
imant. So i bits of precision require to compute onlyi approximants, i.e., Newton’s
method converges exponentially faster than Kleene’s in this case. However, Newton’s
method on the real field is by far not as robust and well behavedas Kleene’s method
on semirings. The method may converge very slowly, convergeonly when started at a
point very close to the zero, or even not converge at all [17].

So there is a puzzling mismatch between the current states ofsemantics and program
analysis on the one side, and numerical mathematics on the other. Onω-continuous
semirings, the natural domain of semantics and program analysis, Kleene’s method is
robust and generally applicable, but inefficient in many cases, in particular for quantita-
tive analyses. On the real field, the natural domain of numerical mathematics, Newton’s
method can be very efficient, but it is not robust.

We became aware of this mismatch two years ago through the thework of Etessami
and Yannakakis on Recursive Markov Chains and our work on Probabilistic Pushdown
Automata. Both are abstract models of probabilistic programs with procedures, and
their analysis reduces to or at least involves solving systems of fixed point equations.
The mismatch led us to investigate the following questions:

– Can Newton’s method be generalized to arbitraryω-continuous semirings?
I.e., could it be the case that Newton’s method is in fact as generally applicable as
Kleene’s, but nobody has noticed yet?

– Is Newton’s method robust when restricted to the real semiring?
I.e., could it be the case that the difficult behaviour of Newton’s method disappears
when we restrict its application to the non-negative reals,but nobody has noticed
yet?

The answer to both questions is essentially affirmative, andhas led to a number of
papers [5, 4, 14, 6]. In this note we present the results, devoting some attention to those
examples and intuitions that hardly ever reach the final version of a conference paper
due to the page limit.
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2 From Programs to Fixed Point Equations on Semirings

Recall that a semiring is a set ofvaluestogether with two binary operations, usually
called sum and product. Sum and product are associative and have neutral elements0
and1, respectively. Moreover, sum is commutative, and product distributes over sum.
Thenatural orderrelation⊑ on a semiring is defined by settinga ⊑ a + d for everyd.
A semiring isnaturally orderedif ⊑ is a partial order.

An ω-continuoussemiring is a naturally ordered semiring extended by an infinite
summation-operator

∑
that satisfies some natural properties. In particular, for every

sequence(ai)i≥0 the supremumsup{
∑

0≤i≤k ai | k ∈ N} w.r.t.⊑ exists, and is equal
to

∑

i∈N
ai [15].

We show how to assign to a procedural program a set of abstractequations by means
of an example. Consider the (very abstractly defined) program consisting of three pro-
ceduresX1,X2,X3, and associate to it a system of equations. For our discussion it is
not relevant which is the main procedure. The flow graphs of the procedures are shown
in Figure 1. For instance, procedureX1 can either execute the abstract actionb and
terminate, or executea, call itself recursively, and, after the call has terminated, call
procedureX2.

procX3

f

g

h

call X3

procX2

dc

call X2 e

call X1

call X1call X2

procX1

call X2

a

bcall X1

Fig. 1.Flowgraphs of three procedures

We associate to the program the following three abstract equations1

X1 = a · X1 · X2 + b

X2 = c · X2 · X3 + d · X2 · X1 + e (1)

X3 = f · X1 · g + h

where+ and· are the abstract semiring operations, and{a, b, . . . , h} are semiring val-
ues. Notice that we slightly abuse language and use the same symbol for a program
action and its associated value.

1 One for each procedure. A systematic translation from programs to equations yields one vari-
able and one equation for each program point. We have not done it in order to keep the number
of equations small.
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2.1 Some Semiring Interpretations

Many interesting pieces of information about our program correspond to the least so-
lution of the system of equations over different semirings.2 For the rest of the section
let Σ = {a, b, . . . , h} be the set of actions in the program, and letσ denote an arbitrary
element ofΣ.

Language interpretation.Consider the following semiring. The carrier is2Σ∗

(i.e., the
set of languages overΣ). A program actionσ ∈ Σ is interpreted as the singleton lan-
guage{σ}. The sum and product operations are union and concatenationof languages,
respectively. We call itlanguage semiringoverΣ. Under this interpretation, the system
of equations (1) is nothing but the following context-free grammar:

X1 → aX1X2 | b
X2 → cX2X3 | dX2X1 | e
X3 → fX1g | h

The least solution of (1) is the triple(L(X1), L(X2), L(X3)), whereL(Xi) denotes
the set of terminating executions of the program withXi as main procedure, or, in
language-theoretic terms, the language of the associated grammar withXi as axiom.

Relational interpretation.Assume that an actionσ corresponds to a program instruction
whose semantics is described by means of a relationRσ(V, V ′) over a setV of program
variables (as usual, primed and unprimed variables correspond to the values before and
after executing the instruction). Consider now the following semiring. The carrier is
the set of all relations overV, V ′. The semiring elementσ is interpreted as the rela-
tion Rσ. The sum and product operations are union and join of relations, respectively,
i.e., (R1 · R2)(V, V ′) = ∃V ′′R1(V, V ′′) ∧ R2(V

′′, V ′). Under this interpretation, the
i-th component of the least solution of (1) is thesummaryrelationRi(V, V ′) containing
the pairsV, V ′ such that if procedureXi starts at valuationV , then it may terminate at
valuationV ′.

Counting interpretation.Assume we wish to know how manyas, bs, etc. we can ob-
serve in a (terminating) execution of the program, but we arenot interested in the order
in which they occur. In the terminology of abstract interpretation [2], we abstract an ex-
ecutionw ∈ Σ∗ by the vector(na, . . . , nh) ∈ N

|Σ|, wherena, . . . , nh are the number
of occurrences ofa, . . . , h in w. We call this vector theParikh imageof w. We wish to
compute the vector(P (X1), P (X2), P (X3)) whereP (Xi) contains the Parikh images
of the words ofL(Xi). It is easy to see that this is the least solution of (1) for thefollow-
ing semiring. The carrier is2N

|Σ|

. The i-th action ofΣ is interpreted as the singleton
set{(0, . . . , 0, 1, 0 . . . , 0)} with the “1” at the i-th position. The sum operation is set
union, and the product operation is given3 by

U · V = {(ua + va, . . . , uh + vh) | (ua, . . . , uh) ∈ U, (va, . . . , vh) ∈ V } .

2 This will be no surprise for the reader acquainted with monotone frameworks or abstract in-
terpretation, but the examples will be used throughout the paper.

3 Abstract interpretation provides a general recipe to define these operators.
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Probabilistic interpretations.Assume that the choices between actions are stochastic.
For instance, actionsa andb are chosen with probabilityp and(1 − p), respectively.
The probability of termination is given by the least solution of (1) when interpreted
over the following semiring (thereal semiring) [8, 9]. The carrier is the set of non-
negative real numbers, enriched with an additional element∞. The semiring element
σ is interpreted as the probability of choosingσ among all enabled actions. Sum and
product are the standard operations on real numbers, suitably extended to∞ – if we
are instead interested in the probability of the most likelyexecution, we just have to
reinterpret the sum operator as maximum.

As a last example, assume that actions are assigned not only aprobability, but also a
duration. Letdσ denote the duration ofσ. We are interested in the expected termination
time of the program, under the condition that the program terminates (theconditional
expected time). For this we consider the following semiring. The elementsare the set
of pairs(r1, r2), wherer1, r2 are non-negative reals or∞. We interpretσ as the pair
(pσ, dσ), i.e., the probability and the duration ofσ. The sum operation is defined as
follows (where to simplify the notation we use+e and ·e for the operations of the
semiring, and+ and· for sum and product of reals)

(p1, d1) +e (p2, d2) =

(

p1 + p2,
p1 · d1 + p2 · d2

p1 + p2

)

(p1, d1) ·e (p2, d2) = (p1 · p2, d1 + d2)

One can easily check that this definition satisfies the semiring axioms. Thei-th compo-
nent of the least solution of (1) is now the pair(ti, ei), whereti is the probability that
procedureXi terminates, andei is its conditional expected time.

3 Fixed Point Equations

Fix an arbitraryω-continuous semiring with a setS of values. We define systems of
fixed point equations and present Kleene’s fixed point theorem.

Given a finite setX of variables, amonomialis a finite expression

a1X1a2 · · · akXkak+1

wherek ≥ 0, a1, . . . , ak+1 ∈ S andX1, . . . ,Xk ∈ X . A polynomialis an expression
of the formm1 + . . . + mk wherek ≥ 0 andm1, . . . ,mk are monomials.

A vector is a mappingv that assigns to every variableX ∈ X a value denoted by
vX or vX , called theX-component ofv. The value of a monomialm = a1X1a2 · · ·
akXkak+1 at v is m(v) = a1vX1

a2 · · · akvXk
ak+1. The value of a polynomial atv

is the sum of the values of its monomials atv. A polynomial induces a mapping from
vectors to values that assigns tov the vectorf(v). A vector of polynomials is a map-
ping f that assigns a polynomialfX to each variableX ∈ X ; it induces a mapping
from vectors to vectors that assigns to a vectorv the vectorf(v) whoseX-component
is fX(v). A fixed point off is a solution of the equationX = f(X).

It is easy to see that polynomials are monotone and continuous mappings w.r.t.⊑.
Kleene’s theorem can then be applied (see e.g. [15]), which leads to this proposition:
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Proposition 3.1. A vectorf of polynomials has a unique least fixed pointµf which is
the⊑-supremum of theKleene sequencegiven byκ(0) = 0, andκ(i+1) = f(κ(i)).

4 Newton’s Method for ω-Continuous Semirings

We recall Newton’s method for approximating a zero of a differentiable function, and
apply it to find the least solution of a system of fixed point equations over the reals.
Then, we present the generalization of Newton’s method to arbitrary ω-continuous
semirings we obtained in [5]. We focus on the univariate case(one single equation
in one variable), because it already introduces all the basic ideas of the general case.

Given a differentiable functiong : R → R, Newton’s method computes a zero ofg,
i.e., a solution of the equationg(X) = 0. The method starts at some valueν(0) “close
enough” to the zero, and proceeds iteratively: givenν(i), it computes a valueν(i+1)

closer to the zero thanν(i). For that, the methodlinearizesg at ν(i), i.e., computes the
tangent tog passing through the point(ν(i), g(ν(i))), and takesν(i+1) as the zero of the
tangent (i.e., thex-coordinate of the point at which the tangent cuts thex-axis).

We formulate the method in terms of thedifferentialof g at a given pointv. This is
is the mappingDg|v : R → R that assigns to eachx ∈ R a linear function, namely
the one corresponding to the tangent ofg atv, but represented in the coordinate system
having the point(v, g(v)) as origin. If we denote the differential ofg at v by Dg|v,
then we haveDg|v(X) = g′(v) · X (for example, ifg(X) = X2 + 3X + 1, then
Dg|3(X) = 9X). In terms of differentials, Newton’s method starts at someν(0), and
computes iterativelyν(i+1) = ν(i) + ∆(i), where∆(i) is the solution of the linear
equationDg|ν(i)(X)+g(ν(i)) = 0 (assume for simplicity that the solution of the linear
system is unique).

Computing a solution of a fixed point equationf(X) = X amounts to computing
a zero ofg(X) = f(X) − X, and so we can apply Newton’s method. Since for every
real numberv we haveDg|v(X) = Df |v(X)−X, the method for computing the least
solution off(X) = X looks as follows:

Starting at someν(0), compute iteratively

ν(i+1) = ν(i) + ∆(i) (2)

where∆(i) is the solution of the linear equation

Df |ν(i)(X) + f(ν(i)) − ν(i) = X . (3)

So Newton’s method “breaks down” the problem of solving a non-linear systemf(X) =
X into solving the sequence (3) of linear systems.

4.1 Generalizing Newton’s Method

In order to generalize Newton’s method to arbitraryω-continuous semirings we have to
overcome two obstacles. First, differentials are defined interms of derivatives, which
are the limit of a quotient of differences. This requires both the sum and product opera-
tions to have inverses, which is not the case in general semirings. Second, Equation (3)
contains the termf(ν(i))− ν(i), which again seems to be defined only if the sum oper-
ation has an inverse.
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The first obstacle.Differentiable functions satisfy well-known algebraic rules with re-
spect to sums and products of functions. We take these rules as thedefinitionof the
differential of a polynomialf over anω-continuous semiring.

Definition 4.1. Letf be a polynomial in one variableX over anω-continuous semiring
with carrier S. Thedifferential of f at the pointv is the mappingDf |v : S → S
inductively defined as follows for everya ∈ S:

Df |v(a) =







0 if f ∈ S
a if f = X

Dg|v(a) · h(v) + g(v) · Dh|v(a) if f = g · h
∑

i∈I Dfi|v(a) if f =
∑

i∈I fi(a) .

On commutative semirings, like the real semiring, we haveDf |v(a) = f ′(v) · a for all
v, a ∈ S, wheref ′(v) is the derivative off . This no longer holds when product is not
commutative. For a functionf(X) = a0Xa1Xa2 we have

Df |v(a) = a0 · a · a1 · v · a2 + a0 · v · a1 · a · a2.

The second obstacle.It turns out that the Newton sequence is well-defined if we choose
ν(0) = f(0). More precisely, in [5] weguessthat this choice will solve the problem,
define the Newton sequence, and thenprovethat the guess is correct. The precise guess
is that this choice impliesν(i) ⊑ f(ν(i)) for everyi ≥ 0. By the definition of⊑, the
semiring then contains a valueδ(i) such thatf(ν(i)) = ν(i) + δ(i). We can replace
f(ν(i)) − ν(i) by any suchδ(i). This leads to the following definition:

Definition 4.2. Let f be a polynomial in one variable over anω-continuous semiring.
TheNewton sequence(ν(i))i∈N is given by:

ν(0) = f(0) and ν(i+1) = ν(i) + ∆(i) (4)

where∆(i) is the least solution of

Df |ν(i)(X) + δ(i) = X (5)

andδ(i) is any element satisfyingf(ν(i)) = ν(i) + δ(i).

Notice that for arbitrary semirings the Newton sequence is not unique, since we may
have different choices forδ(i).

The definition can be easily generalized to the multivariatecase. Fix a setX =
{X1, . . . ,Xn} of variables. Given a multivariate polynomialf , we define the differen-
tial of f at the vectorv with respect to the variableX by almost the same equations as
above:

DXf |v(a) =







0 if f ∈ S or f ∈ X \ {X}
aX if f = X

DXg|v(a) · h(v) + g(v) · DXh|v(a) if f = g · h
∑

i∈I DXfi|v(a) if f =
∑

i∈I fi .

Then the differential off at the vectorv is defined asDf |v = DX1
f |v + · · ·+DXn

f |v.
Finally, for a vector of polynomialsf we setDf |v = (DfX1

|v, . . . ,DfXn
|v).
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Definition 4.3. Let f : V → V be a vector of polynomials. TheNewton sequence
(ν(i))i∈N is given by:

ν(0) = f(0) and ν(i+1) = ν(i) + ∆(i), (6)

where∆(i) is the solution of

Df |ν(i)(X) + δ(i) = X . (7)

andδ(i) is any vector satisfyingf(ν(i)) = ν(i) + δ(i).

Theorem 4.4. Let f : V → V be a vector of polynomials. For everyω-continuous
semiring and everyi ∈ N:

– There exists at least one Newton sequence, i.e., there exists a vectorδ(i) such that
f(ν(i)) = ν(i) + δ(i);

– κ(i) ⊑ ν(i) ⊑ f(ν(i)) ⊑ µf = supj κ(j).

5 Newton’s method on different semirings

In this section we introduce the main results of our study of Newton’s method [5, 4, 14,
6] by focusing on three representative semirings: the language, the counting, and the
real semiring. We first show that the Newton approximants of the language semiring

call X

call X

b

procX

a

Fig. 2.Flowgraph of a recursive
program with one procedure

are the context-free languages offinite index, a no-
tion extensively studied in the 60s [20, 11, 19, 12]. We
then explain how the algebraic technique for solving
fixed point equations over the counting semiring pre-
sented by Hopkins and Kozen in [13] is again noth-
ing but a special case of Newton’s method. Finally,
we show that in the real semiring Newton’s method
is just as robust as Kleene’s.

We present the results for the three semirings with
the help of an example. Consider the recursive pro-
gram from the introduction that can execute actiona
and terminate, or actionb, after which it recursively

calls itself twice, see Figure 2. Its corresponding abstract equation is

X = a + b · X · X (8)

We solve this equation in the three semirings, point out someof its peculiarities, and
then introduce the general results.

5.1 The Language Semiring

Consider the language semiring withΣ = {a, b}. Recall that the product operation
is concatenation of languages, and hence non-commutative.So we haveDf |v(X) =
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bvX + bXv. It is easy to show that when sum is idempotent the definition of the
Newton sequence can be simplified to

ν(0) = f(0) and ν(i+1) = ∆(i), (9)

where∆(i) is the least solution of

Df |ν(i)(X) + f(ν(i)) = X . (10)

For the program of Figure 2 Equation (10) becomes

bν(i)X + bXν(i)

︸ ︷︷ ︸

Df |
ν
(i) (X)

+ a + bν(i)ν(i)

︸ ︷︷ ︸

f(ν(i))

= X . (11)

Its least solution, and by (9) thei+1-th Newton approximant, is a context-free language.
Let G(i) be a grammar with axiomS(i) such thatν(i) = L(G(i)). Sinceν(0) = f(0),
the grammarG(0) contains one single production, namelyS(0) → a. Equation (11)
allows us to defineG(i+1) in terms ofG(i), and we get:

G(0) = {S(0) → a}
G(i+1) = G(i) ∪ {S(i+1) → a | bXS(i) | bS(i)X | bS(i)S(i)}

and it is easy to see that in this caseL(G(i)) 6= L(G(i+1)) for everyi ≥ 0.
It is well known that in a language semiring, context-free grammars and vectors of

polynomials are essentially the same, so we identify them inthe following.
We can characterize the Newton approximants of a context-free grammar by the

notion of index, a well-known concept from the theory of context-free languages [20,
11, 19, 12]. Loosely speaking, a word ofL(G) has indexi if it can be derived in such a
way that no intermediate word contains more thani occurrences of variables.

Definition 5.1. Let G be a grammar, and letD be a derivationX0 = α0 ⇒ · · · ⇒
αr = w of w ∈ L(G), and for everyi ∈ {0, . . . , r} let βr be the projection ofαr

onto the variables ofG. Theindexof D is the maximum of{|β0|, . . . , |βr|}. Theindex-
i approximationof L(G), denoted byLi(G), contains the words derivable by some
derivation ofG of index at mosti.

Finite-index languages have been extensively investigated under different names by
Salomaa, Gruska, Yntema, Ginsburg and Spanier, among others [19, 12, 20, 11](see [10]
for historical background). In [4] we show that for a context-free grammar in Chomsky
normal form, the Newton approximants coincide with the finite-index approximations:

Theorem 5.2. LetG be a context-free grammar in CNF with axiomS and let(ν(i))i∈N

be the Newton sequence associated withG. Then
(
ν(i))S = Li+1(G) for everyi ≥ 0.

In particular, it follows from Theorem 5.2 that the (S-component of the) Newton se-
quence for a context-free grammarG converges in finitely many steps if and only if
L(G) = Li(G) for somei ∈ N.
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5.2 The Counting Semiring

Consider the counting semiring witha = {(1, 0)} andb = {(0, 1)}. Since the sum
operation is union of sets of vectors, it is idempotent and Equations (9) and (10) hold.
Since the product operation is now commutative, Equation (10) becomes

b · ν(i) · X + a + b · ν(i) · ν(i) = X . (12)

By virtue of Kleene’s fixed point theorem the least solution of a linear equationX =
u · X + v over anω-continuous semiring is given by the supremum of the sequence

v, v + uv, v + uv + uuv, . . .

i.e. by(
∑

i∈N
ui) · v = u∗ · v, where∗ is Kleene’s iteration operator. The least solution

∆(i) of Equation (12) is then given by

∆(i) = (b · ν(i))∗ · (a + b · ν(i) · ν(i))

and we obtain:

ν(0) = a = {(1, 0)}

ν(1) = (b · a)∗ · (a + b · a · a)

= {(n, n) | n ≥ 0} · {(1, 0), (2, 1)}

= {(n + 1, n) | n ≥ 0}

ν(2) = ({(n, n) | n ≥ 1})∗ · ({(1, 0)} ∪ {(2n + 2, 2n + 1) | n ≥ 0})

= ({(n, n) | n ≥ 0})∗ · ({(1, 0)} ∪ {(2n + 2, 2n + 1) | n ≥ 0})

= {(n + 1, n) | n ≥ 0}

So the Newton sequence reaches a fixed point after only one iteration.
It turns out that the Newton sequencealwaysreaches a fixed point in the counting

semiring. This immediately generalizes to any finitely generated commutative idempo-
tentω-continuous semiring as we simply can opt not to evaluate theproducts and sums.
More surprisingly, this is even the case for all semirings where sum is idempotent and
product is commutative. This was first shown by Hopkins and Kozen in [13], who in-
troduced the sequence without knowing that it was Newton’s sequence (see [5] for the
details). Hopkins and Kozen also gave anO(3n) upper bound for the number of itera-
tions needed to reach the fixed point of a system ofn equations. In [5] we reduced this
upper bound fromO(3n) to n, which is easily shown to be tight.

Theorem 5.3. Let f be a vector ofn polynomials over a commutative idempotentω-
continuous semiring. Thenµf = ν(n), i.e., Newton’s method reaches the least fixed
point aftern iterations.

We have mentioned above that the least solution ofX = u · X + v is u∗ · v. Using this
fact it is easy to show that the Newton approximants of equations over commutative
semirings can be described by regular expressions. A corollary of this result is Parikh’s
theorem, stating that the Parikh image of a context-free language is equal to the Parikh
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image of some regular language [18]. To see why this is the case, notice that a context-
free language is the least solution of a system of fixed point equations over the language
semiring. Its Parikh image is the least solution of the same system over the counting
semiring. Since Newton’s method terminates over the counting semiring, and Newton
approximants can be described by regular expressions, the result follows.

Notice that we are by no means the first to provide an algebraicproof of Parikh’s
theorem. A first proof was obtained by Aceto et al. in [1], and in fact the motivation
of Hopkins and Kozen for the results of [13] was again to give aproof of the theorem.
Our results in [5] make two contributions: first, the aesthetically appealing connection
between Newton and Parikh, and, second, an algebraic algorithm for computing the
Parikh image with a tight bound on the the number of iterations.

We conclude the section with a final remark. The counting semiring is a simple
example of a semiring that does not satisfy the ascending chain condition. Kleene’s
method does not terminate for any program containing at least one loop. However,
Newton’s method always terminates!

5.3 The Real Semiring

Consider again Equation (8), but this time over the real semiring (non-negative real
numbers enriched with∞) and witha = b = 1/2. We get the equation

X = 1/2 + 1/2 · X2 (13)

which was already briefly discussed in the introduction. We haveDf |v(X) = v ·X, and
a single possible choice forδ(i), namelyδ(i) = f(ν(i))−ν(i) = 1/2+1/2 (ν(i))2−ν(i).
Equation (5) becomes

ν(i) X + 1/2 + 1/2 (ν(i))2 − ν(i) = X

with ∆(i) = (1 − ν(i))/2 as its only solution. So we get

ν(0) = 1/2 ν(i+1) = (1 + ν(i))/2

and thereforeν(i) = 1 − 2(i+1). The Newton sequence converges to1, and gains one
bit of accuracy per iteration, i.e., the relative error is halved at each iteration.

In [14, 6] we have analyzed in detail the convergence behaviour of Newton’s method.
Loosely speaking, our results say that Equation (13) is an example of the worst-case be-
haviour of the method.

To characterize it, we use the termlinear convergence, a notion from numerical
analysis that states that the number of bits obtained afteri iterations depends linearly
on i. If ‖µf − v‖ / ‖µf‖ ≤ 2−i (in the maximum-norm), we say that the approxi-
mationv of µf has (at least)i bits of accuracy . Newton’s method converges linearly
provided thatf has a finite least fixed point and is in an easily achievable normal form
(the polynomials have degree at most2, andµf is nonzero in all components). More
precisely [6]:

Theorem 5.4. Let f be a vector ofn polynomials over the real semiring in the above
mentioned normal form. Then Newton’s method converges linearly: there exists atf ∈
N such that the Newton approximantν(tf +i·(n+1)·2n) has at leasti bits of accuracy.
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Theorem 5.4 is essentially tight. Consider the following family of equation systems.

X1 = 1/2 + 1/2 · X2
1

X2 = 1/4 · X2
1 + 1/2 · X1X2 + 1/4 · X2

2

... (14)

Xn = 1/4 · X2
n−1 + 1/2 · Xn−1Xn + 1/4 · X2

n

Its least solution is(1, . . . , 1). We show in [14, 6] that at leasti · 2n−1 iterations of
Newton’s method are needed to obtaini bits. More precisely, we show that afteri ·2n−1

iterations no more thani · 2n−1 bits of accuracy have been obtained for the first com-
ponent (cf. the convergence behaviour of (13) above) and that the number of accurate
bits of the(k + 1)-th component is at most one half of the number of accurate bits of
thek-th component, for allk < n. This implies that for then-th component we have
obtained at mosti bits of accuracy.

This example exploits the fact thatXk depends only on theXl for l ≤ k ≤ n.
In fact, Theorem 5.4 can be substantially strengthened iff is strongly connected. More
formally, let a variableX dependonY if Y appears infX . Then,f is said to be strongly
connected if every variable depends transitively on every variable. For those systems we
show that Newton’s method gains1 bit of accuracy per iteration after the “threshold”tf
has been reached. In addition (and even more importantly from a computational point
of view) we can give bounds ontf [6]:

Theorem 5.5. Letf be as in Theorem 5.4, and, additionally, strongly connected. Fur-
ther, letm be the size off (coefficients in binary). Theni bits of accuracy are attained
byν(n2n+2m+i). This improves toν(5n2m+i), if f(0) is positive in all components.

In [7], a recent invited paper, we discuss equation systems over the real semiring, the
motivation and complexity of computing their least solutions, and our results [14, 6]
on Newton’s method for the real semiring in more detail. We present an extension of
Newton’s method on polynomials withmin andmax operators in [3].

6 Conclusion

We have shown that the two questions we asked in the introduction have an affirmative
answer. Newton’s method, a 300 years old technique for approximating the solution of a
system of equations over the reals, can be extended to arbitraryω-continuous semirings.
And, when restricted to the real semiring, the pathologies of Newton’s method—no con-
vergence, or only local and slow convergence—disappear: themethod always exhibits
at least linear convergence.

We like to look at our results as bridges between numerical mathematics and the
foundations of program semantics and program analysis. On the one hand, while nu-
merical mathematics has studied Newton’s method in large detail, it has not payed much
attention to its restriction to the real semiring. Our results indicate that this is an inter-
esting case certainly deserving further research.

On the other hand, program analysis relies on computationalengines for solving
systems of equations over a large variety of domains, and these engines are based,
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in one way or another, on Kleene’s iterative technique. Thistechnique is very slow
when working on the reals, and numerical mathematics has developed much faster ones,
Newton’s method being one of the most basic. The generalization of these techniques
to the more general domains of semantics and program analysis is an exciting research
program.

References
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