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Abstract. Fixed point equationX = f(X) overw-continuous semirings are a
natural mathematical foundation of interprocedural program analgsiseric al-
gorithms for solving these equations are based on Kleene’s theordah states

that the sequend@, f(0), f(f(0)), ... converges to the least fixed point. How-
ever, this approach is often inefficient. We report on recent work iichwvive
extend Newton’s method, the well-known technique from numerical madhe

ics, to arbitraryw-continuous semirings, and analyze its convergence speed in the
real semiring.

1 Introduction

In the last two years we have investigated generic algostfon solving systems of
fixed point equations ovev-continuous semiringgl5]. These semirings provide a
nice mathematical foundation for program analysis. A paogican be translated (in
a syntax-driven way) into a system©fn) equations over an abstract semiring, where
n is the number of program points. Depending on the infornmagibout the program
one wants to compute, the carrier of the semiring and itsatistum and product op-
erations can be instantiated so that the desired informétithe least solution of the
equations. Roughly speaking, the translation maps chaidesaquential composition
at program level into the sum and product operators of tharsgmProcedures, even
recursive ones, are first order citizens and can be easitgl&ed. The translation is
very similar to the one that maps a program into a monotomesveork [16].

Kleene’s fixed point theorem applies ¢econtinuous semirings. It shows that the
least solutionuf of a system of equationX = f(X) is equal to the supremum
of the sequencéx(?);cy of Kleene approximantgiven by x(®) = 0 andx(+1) =
f(x™). This yields a procedure (let’s call Kleene’s methodto compute or at least
approximate. f. If the domain satisfies what is usually known as éiseending chain
condition then the procedure terminates, because there existsach thatx(? =
i+l — qu.

Kleene’s method is generic and robust: it always converdesnvstarted ab, for
any w-continuous semiring, and whatever the shapefaé. On the other hand, its
efficiency can be very unsatisfactory. If the ascendingrcloaindition fails, then the
sequence of Kleene approximants hardly ever reaches thgosohfter a finite num-
ber of steps. Another problem of the Kleene sequence aridbg iarea of quantitative
program analysis. Quantitative information, like averag#ime and probability of ter-
mination (for programs with a stochastic component) cao laésscomputed as the least
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solution of a system of equations, in this case over the segnaf the non-negative
real numbers plus infinity. While in these analyses one caexpéct to compute the
exact solution by any iterative method (it may be irratiomadl not even representable
by radicals), it is very important to find approximation tagfues that converge fast to
the solution. However, the convergence of the Kleene apmants can be extremely
slow. An artificial but illustrative example is the case ofragedure that can either ter-
minate or call itself twice, both with probability/2. The probability of termination of
this program is given by the least solution of the equafior 1/2 +1/2X2. Itis easy
to see that the least solution is equal fdut we have:( < 1 — Z% for everyi > 0,
i.e., in order to approximate the solution withiibits of precision we have to compute
about2! Kleene approximants. For instance, we ha{®? = 0.9990.

Faster approximation techniques for equations over tHe heave been known for
a long time. In particular, Newton’s method, suggested bgd¢dNewton more than 300
years ago, is a standard efficient technique to approximaera@of a differentiable
function. Since the least solution &f = 1/2+1/2X?is azeroofl /2 + 1/2X? — X,
the method can be applied, and it yield® = 1 — 2~ for the i-th Newton approx-
imant So: bits of precision require to compute onlyapproximants, i.e., Newton’s
method converges exponentially faster than Kleene’s s ¢hse. However, Newton’s
method on the real field is by far not as robust and well behagedleene’s method
on semirings. The method may converge very slowly, convergg when started at a
point very close to the zero, or even not converge at all [17].

Sothere is a puzzling mismatch between the current stagesdntics and program
analysis on the one side, and numerical mathematics on ktee. @nw-continuous
semirings, the natural domain of semantics and progranysisaKleene’s method is
robust and generally applicable, but inefficient in manyesam particular for quantita-
tive analyses. On the real field, the natural domain of nuraémathematics, Newton’s
method can be very efficient, but it is not robust.

We became aware of this mismatch two years ago through thedheof Etessami
and Yannakakis on Recursive Markov Chains and our work ohdhitistic Pushdown
Automata. Both are abstract models of probabilistic progravith procedures, and
their analysis reduces to or at least involves solving systef fixed point equations.
The mismatch led us to investigate the following questions:

— Can Newton’s method be generalized to arbitrargontinuous semirings?
l.e., could it be the case that Newton’s method is in fact aegaly applicable as
Kleene’s, but nobody has noticed yet?

— Is Newton’s method robust when restricted to the real seg®i
l.e., could it be the case that the difficult behaviour of Nmvid method disappears
when we restrict its application to the non-negative rdal$,nobody has noticed
yet?

The answer to both questions is essentially affirmative, tzamlled to a number of
papers [5, 4,14, 6]. In this note we present the results,ta@ysome attention to those
examples and intuitions that hardly ever reach the finalieersf a conference paper
due to the page limit.



2 From Programs to Fixed Point Equations on Semirings

Recall that a semiring is a set wéluestogether with two binary operations, usually
called sum and product. Sum and product are associativeamdreutral elements
and1, respectively. Moreover, sum is commutative, and prodigttidutes over sum.
Thenatural orderrelationC on a semiring is defined by setting— a + d for everyd.

A semiring isnaturally orderedf C is a partial order.

An w-continuoussemiring is a naturally ordered semiring extended by anitefin
summation-operatoy | that satisfies some natural properties. In particular, ferne
sequencéa; );>o the supremumup{> ., ., a; | £ € N} w.r.t. C exists, and is equal
to ZiEN a; [15]

We show how to assign to a procedural program a set of abstjaetions by means
of an example. Consider the (very abstractly defined) progransisting of three pro-
ceduresX, Xo, X3, and associate to it a system of equations. For our disqus®
not relevant which is the main procedure. The flow graphseptiocedures are shown
in Figure 1. For instance, procedui® can either execute the abstract actioand
terminate, or execute, call itself recursively, and, after the call has termiuiateall
procedureXs.

proc X,

a
call X, b
call X,

We associate to the program the following three abstractemns®

proc Xs

f
e call X; h
g9

Fig. 1. Flowgraphs of three procedures

X1:a-X1-X2+b
XQZC'XQ'X3+CZ'X2'X1+€ (1)
Xg=f-X1-g+h

where+ and- are the abstract semiring operations, &adb, . .., h} are semiring val-
ues. Notice that we slightly abuse language and use the samigokfor a program
action and its associated value.

! One for each procedure. A systematic translation from programs ttiegs yields one vari-
able and one equation for each program point. We have not done iténtorleep the number
of equations small.



2.1 Some Semiring Interpretations

Many interesting pieces of information about our progranregpond to the least so-
lution of the system of equations over different semiriddr the rest of the section
let X = {a,b,...,h} be the set of actions in the program, andietenote an arbitrary
element of>.

Language interpretationConsider the following semiring. The carrierd$~ (i.e., the
set of languages over). A program actioro € X' is interpreted as the singleton lan-
guage{c}. The sum and product operations are union and concateratianguages,
respectively. We call itanguage semiringver 2. Under this interpretation, the system
of equations (1) is nothing but the following context-freammar:

X1 — aX1X2 | b
X2 — CX2X3 | dX2X1 | €
Xz — fXig|h

The least solution of (1) is the triplel.(X;), L(X3), L(X3)), where L(X;) denotes
the set of terminating executions of the program wih as main procedure, or, in
language-theoretic terms, the language of the associegethgar withX; as axiom.

Relational interpretation Assume that an actiancorresponds to a program instruction
whose semantics is described by means of a rel&®igiV, V') over a sel’ of program
variables (as usual, primed and unprimed variables casresio the values before and
after executing the instruction). Consider now the follogvisemiring. The carrier is
the set of all relations ove¥, V’. The semiring element is interpreted as the rela-
tion R,. The sum and product operations are union and join of relaticespectively,
i.e, (Ry - R)(V, V') = 3V"R(V, V") A Ry(V”,V'). Under this interpretation, the
i-th component of the least solution of (1) is twemmaryrelationR;(V, V') containing
the pairsV, V' such that if proceduré; starts at valuatiof’, then it may terminate at
valuationV”.

Counting interpretation.Assume we wish to know how mams, bs, etc. we can ob-
serve in a (terminating) execution of the program, but wenaténterested in the order
in which they occur. In the terminology of abstract intetpti®n [2], we abstract an ex-
ecutionw € X* by the vector(n,, ..., n;,) € NI*I, wheren,, ..., n, are the number
of occurrences of, . .., h in w. We call this vector th&arikh imageof w. We wish to
compute the vectofP(X1), P(X2), P(X3)) whereP(X;) contains the Parikh images
of the words ofZL(X;). Itis easy to see that this is the least solution of (1) forfetiew-
ing semiring. The carrier i8¥'""' Thei-th action of X is interpreted as the singleton
set{(0,...,0,1,0...,0)} with the “1” at the i-th position. The sum operation is set
union, and the product operation is givery

U-V ={(uag+va, - un+vp)| (Uay...,up) €U, (Vay...,0n) EV}.

2 This will be no surprise for the reader acquainted with monotone framenar abstract in-
terpretation, but the examples will be used throughout the paper.
3 Abstract interpretation provides a general recipe to define thesetopsera



Probabilistic interpretations.Assume that the choices between actions are stochastic.
For instance, actions andb are chosen with probability and (1 — p), respectively.

The probability of termination is given by the least solatiof (1) when interpreted
over the following semiring (theeal semiring [8, 9]. The carrier is the set of non-
negative real numbers, enriched with an additional elemenThe semiring element

o is interpreted as the probability of choosingamong all enabled actions. Sum and
product are the standard operations on real numbers, ugatended too — if we

are instead interested in the probability of the most likegcution, we just have to
reinterpret the sum operator as maximum.

As a last example, assume that actions are assigned not proyability, but also a
duration Letd, denote the duration of. We are interested in the expected termination
time of the program, under the condition that the programmiteaites (theconditional
expected time For this we consider the following semiring. The elemearts the set
of pairs(r1,r2), wherery, o are non-negative reals ov. We interprets as the pair
(po,ds), i.e., the probability and the duration ef The sum operation is defined as
follows (where to simplify the notation we use. and-. for the operations of the
semiring, and- and- for sum and product of reals)

p1-di +p2-do
.d e (p2,dsy) = =
(p1,d1) +e (p2,d2) <p1 + p2 o1+ P2 )

(p1,d1) e (p2,d2) = (p1 - p2,d1 + da)

One can easily check that this definition satisfies the seghakioms. The-th compo-
nent of the least solution of (1) is now the péir, e;), wheret; is the probability that
procedureX; terminates, and; is its conditional expected time.

3 Fixed Point Equations

Fix an arbitraryw-continuous semiring with a sét of values. We define systems of
fixed point equations and present Kleene'’s fixed point theore
Given a finite setY’ of variables, anonomialis a finite expression

ay Xaz - apXpapy1

wherek > 0, a1,...,ap+1 € SandXy,..., X € X. A polynomialis an expression
of the formmy + ... + my wherek > 0 andmy, ..., my are monomials.

A vectoris a mappingy that assigns to every variable € X a value denoted by
vx Or vy, called theX-component ofv. The value of a monomiah = a1 X;as - --
apXpap+1 atv is m(v) = ajvx,as-- - apvx, ax+1. The value of a polynomial at
is the sum of the values of its monomialswatA polynomial induces a mapping from
vectors to values that assignsddhe vectorf(v). A vector of polynomials is a map-
ping f that assigns a polynomidly to each variableX € X; it induces a mapping
from vectors to vectors that assigns to a veetdine vectorf (v) whoseX-component
is fx(v). A fixed point off is a solution of the equatioX = f(X).

It is easy to see that polynomials are monotone and contsia@ppings w.r.tC.
Kleene’s theorem can then be applied (see e.g. [15]), whiatid to this proposition:



Proposition 3.1. A vector f of polynomials has a unique least fixed pqint which is
the C-supremum of th&leene sequenagiven byx(®) = 0, andx(+1) = f(k®).

4 Newton’s Method for w-Continuous Semirings

We recall Newton’s method for approximating a zero of a défeiable function, and
apply it to find the least solution of a system of fixed point a&épns over the reals.
Then, we present the generalization of Newton’s method Iitrary w-continuous
semirings we obtained in [5]. We focus on the univariate qase single equation
in one variable), because it already introduces all thechideas of the general case.

Given a differentiable functionp: R — R, Newton’s method computes a zerogf
i.e., a solution of the equatigy{ X) = 0. The method starts at some vai@ “close
enough” to the zero, and proceeds iteratively: giwéh, it computes a value(*+1)
closer to the zero tham®. For that, the methotinearizesg atv (¥, i.e., computes the
tangent tqy passing through the poifit(?), g(v(9)), and takes"+1) as the zero of the
tangent (i.e., the-coordinate of the point at which the tangent cutsatkexis).

We formulate the method in terms of thdferential of ¢ at a given poinb. This is
is the mappingDg|, : R — R that assigns to each € R a linear function, namely
the one corresponding to the tangenya@lt v, but represented in the coordinate system
having the point(v, g(v)) as origin. If we denote the differential gfat v by Dgl|,,
then we haveDg|,(X) = ¢'(v) - X (for example, ifg(X) = X? + 3X + 1, then
Dg|3(X) = 9X). In terms of differentials, Newton’s method starts at sarffe, and
computes iteratively ('t = () 1 A where A® is the solution of the linear
equationDg|, ) (X) 4 g(r®) = 0 (assume for simplicity that the solution of the linear
system is unique).

Computing a solution of a fixed point equati¢g(X) = X amounts to computing
a zero ofg(X) = f(X) — X, and so we can apply Newton’s method. Since for every
real numbewr we haveDg|,(X) = D f|,(X) — X, the method for computing the least
solution of f(X) = X looks as follows:

Starting at some(?), compute iteratively
D) — (0 4 A0 2)
whereA® s the solution of the linear equation
Dflyo (X) + fD) = v = X . (3)

So Newton’s method “breaks down” the problem of solving a-finear systeny (X ) =
X into solving the sequence (3) of linear systems.

4.1 Generalizing Newton’s Method

In order to generalize Newton’s method to arbitrargontinuous semirings we have to
overcome two obstacles. First, differentials are define@ims of derivatives, which
are the limit of a quotient of differences. This requireshbibie sum and product opera-
tions to have inverses, which is not the case in general sggnirSecond, Equation (3)
contains the ternf (v(Y) — v(9), which again seems to be defined only if the sum oper-
ation has an inverse.



The first obstacle Differentiable functions satisfy well-known algebraides with re-
spect to sums and products of functions. We take these ralésealefinition of the
differential of a polynomialf over anw-continuous semiring.

Definition 4.1. Let f be a polynomial in one variabl& over anw-continuous semiring
with carrier S. Thedifferential of f at the pointv is the mappingDf|, : S — S
inductively defined as follows for everye S:

0 itfes
_ a if f=X
DI@ =3 Dol (a) - h(v) + g(v) - Dhly(@) ¥ f=g-h
Z'LEI Dfily(a) if f= Zz’el fia) .

On commutative semirings, like the real semiring, we hBv&, (a) = f/(v) - a for all
v,a € S, wheref’(v) is the derivative off. This no longer holds when product is not
commutative. For a functioffi( X) = a9 Xa; Xay we have

Df|,(a)=ap-a-a;-v-as+ag-v-aj-a-as.

The second obstacldt turns out that the Newton sequence is well-defined if weoskeo
v = £(0). More precisely, in [5] weguessthat this choice will solve the problem,
define the Newton sequence, and tpeovethat the guess is correct. The precise guess
is that this choice implies® = f(v()) for everyi > 0. By the definition ofZ, the
semiring then contains a valwé’) such thatf(v(?) = () 4+ §(). We can replace
f(r®) — v by any suchi . This leads to the following definition:

Definition 4.2. Let f be a polynomial in one variable over ancontinuous semiring.
TheNewton sequencg/("));cy is given by:
V@ =f0) and D =0 4 A0 (4)
whereA( is the least solution of
Dfl,w(X)+6% =X (5)
ands is any element satisfying(v()) = v + 50,

Notice that for arbitrary semirings the Newton sequenceoisumique, since we may
have different choices fai*).

The definition can be easily generalized to the multivarcse. Fix a sei’ =
{X1,...,X,} of variables. Given a multivariate polynomig) we define the differen-
tial of f at the vectow with respect to the variabl& by almost the same equations as
above:

0 if feSorfeX\{X}
ax if f =X
Dx flo(a) = :
XI@ =4 D gl(a) - h(v) + g(v) - Dxhlola) it F=g-h
>icr Dx filo(a) it f=2 e fi-
Then the differential of at the vectow is defined a® f|, = Dx, flo+- -+ Dx, flo-
Finally, for a vector of polynomialg we setD f|, = (D fx, v, -, Dfx, |v)-



Definition 4.3. Let f: V. — V be a vector of polynomials. THdewton sequence
(v®);en is given by:

v = f0) and vt =p0 4 A (6)
whereA™ is the solution of
Dfly(X) +87 =X . (7)
ands? is any vector satisfying (v®) = v® + §@),

Theorem4.4.Let f: V — V be a vector of polynomials. For everyrcontinuous
semiring and every € N:

— There exists at least one Newton sequence, i.e., thers axvgctors”) such that
f®) = @ 4 §0;
— kD Cv0 C fw) C uf = sup, k).

5 Newton’s method on different semirings

In this section we introduce the main results of our study efvddn’s method [5, 4, 14,
6] by focusing on three representative semirings: the lagguthe counting, and the
real semiring. We first show that the Newton approximantsheflanguage semiring
are the context-free languagesfofite index a no-
tion extensively studied in the 60s [20, 11, 19, 12]. We
b then explain how the algebraic technique for solving
fixed point equations over the counting semiring pre-
sented by Hopkins and Kozen in [13] is again noth-
ing but a special case of Newton’s method. Finally,
we show that in the real semiring Newton’s method
call X is just as robust as Kleene’s.
We present the results for the three semirings with
Fig. 2. Flowgraph of a recursive the help of an 'example_. Consider the recursivg pro-
program with one procedure gram from the mtrodupﬂon that can gxecute a}c'uon
and terminate, or actioby after which it recursively
calls itself twice, see Figure 2. Its corresponding abs&goation is

proc X

a call X

X=a+b-X X (8)
We solve this equation in the three semirings, point out sofrits peculiarities, and
then introduce the general results.
5.1 The Language Semiring

Consider the language semiring with = {a,b}. Recall that the product operation
is concatenation of languages, and hence non-commut&iveve haveD f|,(X) =



bvX + bXw. Itis easy to show that when sum is idempotent the definitiothe
Newton sequence can be simplified to

v =f0) and »HHD = A0, (9)
whereA® is the least solution of

Dflyo(X)+ f(r?) =X . (10)

For the program of Figure 2 Equation (10) becomes

DX +bXv® 40+ D) = X | (11)

Dfl, iy (X) fr®)

Its least solution, and by (9) thie-1-th Newton approximant, is a context-free language.
Let G be a grammar with axion§® such that/() = L(G®). Sincev(®) = f(0),

the grammaiGG(°) contains one single production, namef{®) — a. Equation (11)
allows us to defing?(“+1) in terms of G(), and we get:

GO ={SO —q}
GUAD = @O Y {0+ = ¢ | bXS® | bSO X | pSH S0

and it is easy to see that in this cas@s (")) # L(GU+D) for everyi > 0.

It is well known that in a language semiring, context-freargmars and vectors of
polynomials are essentially the same, so we identify thetharfollowing.

We can characterize the Newton approximants of a contert-grammar by the
notion ofindex a well-known concept from the theory of context-free laages [20,
11,19, 12]. Loosely speaking, a word bfG) has index if it can be derived in such a
way that no intermediate word contains more thaccurrences of variables.

Definition 5.1. Let G be a grammar, and leD be a derivationXy = ag = -+ =

ar = w ofw € L(G), and for everyi € {0,...,r} let 8. be the projection ofv,
onto the variables of/. Theindexof D is the maximum of| 5|, . . ., |5,|}. Theindex-

i approximationof L(G), denoted byL,;(G), contains the words derivable by some
derivation ofG of index at most.

Finite-index languages have been extensively investigateler different names by
Salomaa, Gruska, Yntema, Ginsburg and Spanier, among¢it®er 2, 20, 11](see [10]
for historical background). In [4] we show that for a conténete grammar in Chomsky
normal form, the Newton approximants coincide with the @xitdex approximations:

Theorem 5.2. LetG be a context-free grammar in CNF with axicgfrand Iet(u(”)ieN
be the Newton sequence associated @Iﬁ'hen(u(i))g = L;+1(G) for everyi > 0.

In particular, it follows from Theorem 5.2 that th€<component of the) Newton se-
guence for a context-free gramm@rconverges in finitely many steps if and only if
L(G) = L;(G) for somei € N.



5.2 The Counting Semiring

Consider the counting semiring with = {(1,0)} andb = {(0,1)}. Since the sum
operation is union of sets of vectors, it is idempotent anddggns (9) and (10) hold.
Since the product operation is now commutative, Equatiof lf&comes

bov® X +a+b-vD. 0 =X (12)

By virtue of Kleene’s fixed point theorem the least solutidradinear equationX =
u - X + v over anw-continuous semiring is given by the supremum of the secuienc

v, vV+uv, U-+uv-+uuv,...

i.e.by (>, oy u')-v=u*-v, wherex is Kleene’s iteration operator. The least solution
A of Equation (12) is then given by

AD — (b- V(i))* (a+b- FON V(i>)
and we obtain:

(0 = ¢ = {(1,0)}
u(l)z(b-a)*-(a+b-a~a)
= {(nvn) ‘ n > 0} : {(170)7 (27 1)}
={(n+1,n)|n>0}
v = ({(n,n) | n>1})* {(1,0}U{2n+2,2n+1) | n>0})
=({(n,n) [n=0})"- {(1,0} U{(2n +2,2n 4+ 1) [ n > 0})
={(n+1,n) | n >0}

So the Newton sequence reaches a fixed point after only aadidte.

It turns out that the Newton sequenalevaysreaches a fixed point in the counting
semiring. This immediately generalizes to any finitely gated commutative idempo-
tentw-continuous semiring as we simply can opt not to evaluat@tbéucts and sums.
More surprisingly, this is even the case for all semiringerehsum is idempotent and
product is commutative. This was first shown by Hopkins andefoin [13], who in-
troduced the sequence without knowing that it was Newtogtgience (see [5] for the
details). Hopkins and Kozen also gave@(B™) upper bound for the number of itera-
tions needed to reach the fixed point of a system efuations. In [5] we reduced this
upper bound fron©(3™) to n, which is easily shown to be tight.

Theorem 5.3. Let f be a vector ofz polynomials over a commutative idempotent
continuous semiring. Thenf = (™, i.e., Newton’s method reaches the least fixed
point aftern iterations.

We have mentioned above that the least solutioN of « - X + v isu* - v. Using this
fact it is easy to show that the Newton approximants of equnatover commutative
semirings can be described by regular expressions. A eoyadf this result is Parikh’s
theorem, stating that the Parikh image of a context-freguage is equal to the Parikh
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image of some regular language [18]. To see why this is the, cedice that a context-

free language is the least solution of a system of fixed pojaatons over the language
semiring. Its Parikh image is the least solution of the saystesn over the counting

semiring. Since Newton’s method terminates over the cagrgemiring, and Newton

approximants can be described by regular expressionsgsiié follows.

Notice that we are by no means the first to provide an algelpraicf of Parikh’s
theorem. A first proof was obtained by Aceto et al. in [1], anddct the motivation
of Hopkins and Kozen for the results of [13] was again to giyeaof of the theorem.
Our results in [5] make two contributions: first, the aestaly appealing connection
between Newton and Parikh, and, second, an algebraic dgofor computing the
Parikh image with a tight bound on the the number of iteration

We conclude the section with a final remark. The counting Bamis a simple
example of a semiring that does not satisfy the ascendingy cduadition. Kleene’s
method does not terminate for any program containing at leas loop. However,
Newton’s method always terminates!

5.3 The Real Semiring

Consider again Equation (8), but this time over the real sagi(non-negative real
numbers enriched witho) and witha = b = 1/2. We get the equation

X=1/2+1/2-X? (13)

which was already briefly discussed in the introduction. \&etD £, (X) = v- X, and
asingle possible choice f6f”), namelys® = f(v())—v() = 1/24+1/2 (v(D)2 -,
Equation (5) becomes

v X 41/2+1/2(0)2 - = X
with A®) = (1 — () /2 as its only solution. So we get
v =172 0+t = (1400)/2

and therefore/() = 1 — 2(+1)_ The Newton sequence converged t@and gains one
bit of accuracy per iteration, i.e., the relative error it/bd at each iteration.

In[14, 6] we have analyzed in detail the convergence beliagiNewton’s method.
Loosely speaking, our results say that Equation (13) is am@ke of the worst-case be-
haviour of the method.

To characterize it, we use the telinear convergencea notion from numerical
analysis that states that the number of bits obtained afterations depends linearly
oni. If |uf —vl| / |[ufl] < 27¢ (in the maximum-norm), we say that the approxi-
mationv of uf has (at least) bits of accuracy . Newton’s method converges linearly
provided thatf has a finite least fixed point and is in an easily achievablenabform
(the polynomials have degree at ma@stand. f is nonzero in all components). More
precisely [6]:

Theorem 5.4. Let f be a vector ofr polynomials over the real semiring in the above
mentioned normal form. Then Newton’s method convergearlinghere exists @ €
N such that the Newton approximants +%(»+1):2") has at least bits of accuracy.
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Theorem 5.4 is essentially tight. Consider the followingnilgt of equation systems.

X;=1/2+1/2- X7}
Xo=1/4-X7+1/2- X1 Xo+1/4- X3

: (14)
Xp=1/4-X2_,+1/2-X,, 1 X, +1/4- X2

n—1

Its least solution ig1,...,1). We show in [14, 6] that at least- 2"~ iterations of
Newton’s method are needed to obtabiits. More precisely, we show that aftep” —*
iterations no more thain- 2"~ bits of accuracy have been obtained for the first com-
ponent (cf. the convergence behaviour of (13) above) andhleanumber of accurate
bits of the(k + 1)-th component is at most one half of the number of accurasedbit
the k-th component, for alk < n. This implies that for the.-th component we have
obtained at mostbits of accuracy.

This example exploits the fact thaf, depends only on th&; forl < k < n.
In fact, Theorem 5.4 can be substantially strengthengdsfstrongly connectedMore
formally, let a variableX dependnY if Y appearsirf y. Then,f is said to be strongly
connected if every variable depends transitively on evariable. For those systems we
show that Newton’s method gaindit of accuracy per iteration after the “threshotg”
has been reached. In addition (and even more importantly &@omputational point
of view) we can give bounds ary [6]:

Theorem 5.5. Let f be as in Theorem 5.4, and, additionally, strongly connedtedt-
ther, letm be the size of (coefficients in binary). Thehbits of accuracy are attained
by v(2"*m+i)_This improves ta/(5"*m+9) if £(0) is positive in all components.

In [7], a recent invited paper, we discuss equation systerasthe real semiring, the
motivation and complexity of computing their least solagpand our results [14, 6]
on Newton’s method for the real semiring in more detail. Wespnt an extension of
Newton’s method on polynomials within andmax operators in [3].

6 Conclusion

We have shown that the two questions we asked in the intrimgiulsive an affirmative
answer. Newton’s method, a 300 years old technique for &ppeding the solution of a
system of equations over the reals, can be extended toaayhiticontinuous semirings.
And, when restricted to the real semiring, the pathologiéésmton’s method—no con-
vergence, or only local and slow convergence—disappeam#tbod always exhibits
at least linear convergence.

We like to look at our results as bridges between numericdahemaatics and the
foundations of program semantics and program analysish®mme hand, while nu-
merical mathematics has studied Newton’s method in lartgldie has not payed much
attention to its restriction to the real semiring. Our résudicate that this is an inter-
esting case certainly deserving further research.

On the other hand, program analysis relies on computatiemgines for solving
systems of equations over a large variety of domains, ansetkegines are based,
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in one way or another, on Kleene’s iterative technique. Téehnique is very slow
when working on the reals, and numerical mathematics hasdaged much faster ones,
Newton’s method being one of the most basic. The generalizaf these techniques
to the more general domains of semantics and program asiéyain exciting research
program.
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