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Abstract. Signal Transition Graphs (STGs) are a popular formalism for the specification of asyn-
chronous circuits. A necessary condition for the implementability of an STG is the existence of a
consistent and complete state encoding. For an important subclass of STGs, the marked graph STGs,
we show that checking consistency is polynomial, but checking the existence of a complete state
coding is co-NP-complete. In fact, co-NP-completeness already holds for acyclic and 1-bounded
marked graph STGs and for live and 1-bounded marked graph STGs. We add some relevant results
for free-choice, bounded, and general STGs.
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1. Introduction

Signal transition graphs (STGs) are a popular formalism for specifying asynchronous circuits [3, 12].
They are Petri nets in which the firing of a transition is interpreted as rising or falling of a signal in
the circuit. Not every STG can be implemented as a physical circuit. A central question related to
implementability of an STG is whether it admits a so-called consistent and complete state coding. Most
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papers in the literature consider only the completeness part, assuming that the STG is already consistent,
and call the existence of a complete state coding the CSC property. This property, and the stronger unique
state coding property (USC property for short) have been studied in many papers (see e.g. [1, 9, 10, 11,
14, 16, 17]).

In this paper we reason about the computational complexity of deciding if a given STG has a consis-
tent and complete state coding, viewing the consistency problem separately. We obtain new results for
STGs whose underlying nets are marked graphs and free-choice nets; for completeness, we also sketch
some straightforward results for STGs with more general underlying nets (bounded or even arbitrary).

We first explore the consistency problem for marked graph STGs. In [7] a polynomial algorithm
was given to check consistency of live, bounded, and cyclic free-choice STGs, which include live and
bounded marked graph STGs as a subclass. Here we show that consistency is polynomial for arbitrary
marked graph STGs by means of a new algorithm based on linear programming.

A natural question is whether these polynomiality results also hold for the CSC or USC problems
(i.e., the problems of checking the CSC or USC properties), at least for the class of live and 1-bounded
marked graph STGs. Our main result shows that both problems are co-NP-complete, and so that poly-
nomial algorithms are unlikely. This result explains why the algorithms of [1, 9, 10, 11, 14, 16, 17]
have exponential runtime or can only decide some necessary or sufficient conditions for the CSC or USC
properties to hold. These algorithms are discussed in detail in the final section.

Our co-NP-completeness result is rather robust. We prove that the CSC and USC problems remain
co-NP-hard for 1-bounded and acyclic marked graph STGs, and that they remain in co-NP for arbitrary
marked graph STGs and for live and bounded free-choice STGs.

Moving to more general classes, we show that the consistency, CSC and USC problems are PSPACE-
complete for 1-bounded STGs, and that the consistency problem remains PSPACE-hard in the free-
choice case. Finally, we clarify the relation between the consistency, USC and CSC problems for general
STGs, and the fireability and reachability problems for general Petri nets.

The paper is structured as follows. Section 2 presents basic definitions and a characterization of
consistency. Section 3 presents the results about marked-graph STGs; it is the core of the paper. Section 4
deals with free-choice and Section 5 with general STGs. Section 6 contains conclusions and discusses
related work.
Remark. A preliminary version of this paper appeared as the conference paper [8].

2. Basic definitions

A net is a triple (P, T, F ), where P and T are disjoint sets of places and transitions, respectively, and
F is a function (P × T ) ∪ (T × P ) → {0, 1}. Places and transitions are generically called nodes; we
also note that a net can be viewed as a (bipartite) graph. Places are graphically represented as circles;
transitions are usually drawn like boxes, but we just use their labels in the figures. If F (x, y) = 1 then
we say that there is an arc from x to y. The preset of a node x, denoted by •x, is the set of its input nodes,
i.e., the set {y ∈ P ∪ T | F (y, x) = 1}. The postset of x, denoted by x•, contains its output nodes, i.e.,
the set {y ∈ P ∪ T | F (x, y) = 1}.

A marking M of a net (P, T, F ) is a mapping P → IN (where IN denotes the set of natural numbers
including 0). Graphically, a marking is represented by drawing M(p) tokens on the circle representing
the place p. A marking M enables a transition t if it puts at least one token on each place p ∈ •t, i.e.,
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if M(p) ≥ 1 for each p ∈ •t. If t is enabled at M , then it can fire (or occur) and its firing (occurrence)
leads to a new marking M ′, obtained by removing a token from each place in the preset of t, and adding

a token to each place in its postset; formally, M ′(p) = M(p)+F (t, p)−F (p, t) for every place p. M
t
−→

denotes that t is enabled at M , and M
t
−→M ′ moreover denotes that firing t leads to M ′.

The notation M
σ
−→, M

σ
−→M ′ is extended to finite sequences σ ∈ T ∗ in the natural way. When

M
σ
−→M ′, for σ = t1t2 · · · tn, we speak of an occurrence sequence from M to M ′, meaning the se-

quence

M
t1−−→M1

t2−−→· · ·Mn−1
tn−−→M ′

By the Parikh vector of σ ∈ T ∗, denoted by ~σ or P (σ), we mean the mapping (or the corresponding
vector) T → IN such that ~σ(t) is the number of occurrences of t in σ.

The incidence matrix of N is the matrix CN : P ×T → {−1, 0,+1} given by CN (p, t) = F (t, p)−
F (p, t). We note that if M

σ
−→M ′ then M + CN · ~σ = M ′.

A Petri net is a pair (N,M0) where N is a net and M0 is a marking of N , called the initial marking.
A marking M is called reachable if there exists an occurrence sequence from M0 to M ; we also denote
this by M0 −→

∗ M . We call
M0 + CN · X ≥ 0

the marking inequation. We note that M0
σ

−→M implies M0 + CN · ~σ = M ; ~σ is thus a (nonnegative
integer) solution of the marking inequation.

A marking M of a net N is n-bounded if M(p) ≤ n for every place p. A Petri net (N,M0) is
n-bounded if all its reachable markings are n-bounded.

A transition t is fireable in (N,M0) if there is σ such that M0
σ

−→M and M
t

−→. A Petri net (N,M0)
is live if each transition t is fireable in (N,M) for each M reachable from M0. A transition is dead at a
marking M if t is not fireable in (N,M).

A net N is called a marked graph if every place has at most one input and at most one output
transition. N = (P, T, F ) is a free-choice net if: for each place p and every transition t, if F (p, t) = 1
then F (p′, t′) = 1 for every p′ ∈ •t, t′ ∈ p•. In a free-choice net, if some output transition of a place
is enabled at a marking, then all its output transitions are enabled, and it is possible to “freely” choose
among them.

Signal transition graphs. Let A = {a1, . . . , an} be a set (alphabet) of signals partitioned into input
and output signals. Rising and falling of a signal a is denoted by a+ and a−, respectively. (In some proofs
we also use the notation +a and −a, which is more convenient for using sub- and superscripts.) We call
an element of L = A × {+,−} a label. A signal transition graph (STG) is a triple S = (N,M0, `),
where (N,M0) is a Petri net and ` is a labelling function that assigns to each transition of N a label in
L.

A signal transition graph is a specification of the behaviour of the circuit under some assumptions
on the environment. An STG S is implementable if there exists a state coding mapping λ (we also
use the term binary encoding) that associates with each reachable marking M a vector of signal values
λ(M) ∈ {0, 1}n satisfying the following two properties:

(1) Consistency. If M
t

−→M ′ and t is labelled by a+
i , then the i-th components of λ(M) and λ(M ′)

are 0 and 1, respectively, and all other components have the same value in λ(M) and λ(M ′). If t
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is labelled by a−

i , then the i-th components of λ(M) and λ(M ′) are 1 and 0, respectively, and all
other components have the same value in λ(M) and λ(M ′).

(2) Completeness: if two different reachable markings M , M ′ satisfy λ(M) = λ(M ′), then they
enable exactly the same output labels.

Consistency is obviously necessary for implementability. Completeness is necessary because the state
of an implementation is completely determined by the signal values of all signals. Therefore, if some
output signal is enabled at M but not at M ′, then M and M ′ must correspond to different states of the
implementation, and so they must differ in the value of at least one signal.

We define the consistency problem as the problem of deciding if a given STG is consistent, i.e., if it
admits a binary encoding λ satisfying (1). The Complete State Coding problem, CSC problem for short,
is the problem to decide if a given STG (usually already assumed consistent) has the CSC property, i.e.,
admits a binary encoding satisfying (1) and (2). A stricter version is the USC problem (unique state
coding) where we ask if a given STG has the USC property, i.e., admits an injective binary encoding λ

satisfying (1) (thus λ(M) 6= λ(M ′) for any two different reachable M,M ′).
STGs naturally inherit many notions from their underlying (Petri) nets. We already used this when

speaking about ‘enabling a label’, e.g. M
a+

−−→ (meaning that M enables a transition with label a+).
Thus we will freely speak about n-bounded, live, marked graph, or free-choice STGs, etc. We can also
use notions like a is dead at M (meaning that each transition with label a+ or a− is dead at M ).

We also freely use notation like M
u

−→M ′ for sequences of labels (meaning that there is a transition
sequence σ = t1t2 · · · tm such that M

σ
−→M ′ and u = `(t1)`(t2) · · · `(tm)). We can occasionally even

mix, and consider u as a sequence of transitions and labels, when this should not cause confusion. We
also use expressions like u is a-free, meaning that there is no a+ nor a− in u; and if u contains transitions,
we mean that those transitions do not have labels a+, a−. Recall that P (u) denotes the Parikh vector of
u; We denote by P (u)(a+) the number of transitions with label a+ in u.

Finally we note that since the circuit implementation of an STG can be seen as a finite object with at
most 2n states, where n is the number of signals, STGs used in practice are bounded, most of them are
even 1-bounded; but in principle unbounded STGs can make sense.

We finish the section by a characterization of consistency, i.e., we look in more detail on when an
STG is inconsistent.

Proposition 2.1. An STG S = (N,M0, `) is inconsistent (i.e., it admits no consistent binary encoding)
iff there is

a pair (M,a) where M0 −→
∗ M and a is a signal

such that one of the following conditions holds:

(1) M enables ua+ and va−

for some a-free sequences u, v,

(2) M enables a+ua+ or a−ua−

for some a-free sequence u,

(3) M is reachable by w1a
+u and by w2a

−v

for some a-free sequences u, v (and some w1, w2).



Esparza, Jančar, Miller / Complexity of CS-coding for STGs 1005

Proof:
If there is a pair (M,a) such that one of the conditions holds then S is obviously inconsistent.

If there is no such pair then we can (soundly) define the following (partial) encoding λ:
For each reachable M and signal a we put

• λ(M)(a) = 0 if M enables ua+ for an a-free sequence u,

• λ(M)(a) = 1 if M enables ua− for an a-free sequence u.

We note that if λ(M)(a) is (so far) undefined then M is a-dead; we then put

• λ(M)(a) = 1 when M can be reached by wa+u for some a-free sequence u,

• λ(M)(a) = 0 when M can be reached by wa−u for some a-free sequence u,

• λ(M)(a) = λ(M0)(a) otherwise (i.e., when M is reachable only by a-free sequences); if M =
M0 we define λ(M0)(a) = 0 (we could use λ(M0)(a) = 1 as well here).

One can easily check that λ is a consistent binary encoding. ut

3. Marked graphs

In this section we show that consistency can be decided in polynomial time for all marked graph STGs
and that both the CSC problem and the USC problem are co-NP-complete for them, even in the case of
1-bounded acyclic marked graphs and in the case of live 1-bounded marked graphs.

3.1. Consistency

In [7] it is shown that consistency of live, bounded, and cyclic free-choice STGs can be decided in
polynomial time. (A Petri net is cyclic if the initial marking is reachable from every reachable marking,
i.e., if it is always possible to return to the initial marking). Since live and bounded marked graphs are
always cyclic (see for instance [4]), and marked graphs are a special case of free-choice nets, [7] provides
a polynomial algorithm deciding consistency of live and bounded marked graph STGs. We now show a
polynomial algorithm for all marked graph STGs.

We start by recalling some simple properties of marked graphs and derive a simpler variant of Propo-
sition 2.1, valid for marked graphs. One such property is that if M enables a sequence with n occurrences

of t and M
t′
−→M ′ for t′ 6= t then M ′ enables a sequence with n occurrences of t as well; if t′ = t then

M ′ enables a sequence with n−1 occurrences of t.
By P (u)(t) we denote the number of occurrences of t in a transition sequence u (P stands for the

Parikh vector).

Claim 3.1. Let M be a marking of a marked graph. If M
u

−→M1 and M
v

−→M2 then M
w

−−→M ′ for
some w and M ′ such that

∀t : P (w)(t) = max{P (u)(t), P (v)(t)}.

Moreover, if M1
t

−→ and P (v)(t) ≤ P (u)(t) then M ′ t
−→.
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Proof:
We can perform u and then a sequence consisting of P (v)(t)−P (u)(t) occurrences of each t for which
P (u)(t) < P (v)(t). ut

Slightly abusing notation, by max(u, v) we will denote the w guaranteed by the claim.

Proposition 3.1. A marked graph STG S = (N,M0, `) is inconsistent iff one of the following condi-
tions holds:

(1’) there is a reachable M (M0 −→
∗ M ) such that

M
a+

−−→ and M
a−

−−→ for some signal a,

(2’) there is a reachable M such that

M
a+ua+

−−−−−→ or M
a−ua−

−−−−−→
for some signal a and some a-free sequence u.

Proof:
If (1’) or (2’) holds then S is obviously inconsistent.

Now assume that S is inconsistent. Then we know that there is a reachable M and a signal a such
that one of the conditions (1), (2), (3) of Proposition 2.1 holds. It is sufficient to show that this implies
(1’) or (2’).

If (M,a) satisfies (2) then (2’) holds. If (M,a) satisfies (1), i.e. M
ua+

−−−→ and M
va−

−−−→ for a-free

sequences u, v, then M
max(u,v)
−−−−−−→M ′ and M ′ a+

−−→, M ′ a−

−−→ (recall Claim 3.1); thus (1’) holds.
We finish by deriving a contradiction from the assumption that the inconsistency of S can not be

shown by using (1) nor (2) while we have (M,a) satisfying (3). Hence

M0
w1t1u
−−−−→M and M0

w2t2v
−−−−→M ,

where `(t1) = a+, `(t2) = a−, and u, v are a-free.
Necessarily, all transitions labelled by a+ or a− are dead in M—otherwise there would exist (M ′, a)

satisfying (2). Thus both t1, t2 are dead in M , which means that w1 contains the maximal possible
number of occurrences of t2, while w2 contains the maximal possible number of occurrences of t1.

Let w1 = u1t2v1 where v1 is t2-free. Similarly w2 = u2t1v2 where v2 is t1-free. We note that
P (u2)(t2) ≤ P (u1)(t2), and P (u1)(t1) ≤ P (u2)(t1).

Hence M0
max(u1,u2)

−−−−−−−−→M ′ where M ′ enables both t1 and t2, so we have both M ′ a+

−−→ and M ′ a−

−−→.
Thus (M ′, a) satisfies (1)—a contradiction. ut

It is now sufficient to show that conditions (1’), (2’) of Proposition 3.1 can be checked in polynomial
time.

To this aim, we recall further useful observations about marked graphs. We note that, given a marked
graph STG S = (N,M0, `), we can check in polynomial time if there is a cycle in N which is not marked
at M0 (i.e., its places have no tokens in M0). The places of such a cycle can be safely removed, since no
transition in the cycle can ever occur.

We call a marked graph (N,M0) normalized if every cycle in N is marked at M0.
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Claim 3.2. Let (N,M0) be a normalized marked graph, and consider the inequation M0 + CN ·X ≥ 0,
where CN is the incidence matrix of N . An integer vector X0 ≥ 0 is a solution of this inequation if and
only if M0

σ
−→ for a transition sequence σ whose Parikh vector is X0.

Moreover, if M0
σ

−→M then M0 + CN · X0 = M .

Proof:
The only nonobvious claim is that a solution X0 implies the existence of an appropriate σ. But this can
be done easily by induction on |X0|: among the transitions t with X0(t) ≥ 1, some must be enabled
at M0—otherwise we would find a cycle unmarked in M0; we can fire such a transition and use the
induction hypothesis. ut

Now we come to the polynomiality claims, which can be quickly established by using linear pro-
gramming (which is a well-known polynomial problem).

Proposition 3.2. For normalized marked graph STGs, checking (1’) of Proposition 3.1 can be done in
polynomial time.

Proof:
Let S = (N,M0, `) be a normalized marked graph STG. If S satisfies (1’) then N contains transitions
t1, t2 with `(t1) = a+ and `(t2) = a− such that there is σ for which

M0
σ
−→M, M

t1−−→, M
t2−−→ .

We note that M ≥ Mt1 + Mt2 where Mt denotes the marking that puts one token in each input place of
t and no tokens elsewhere. The Parikh vector of σ is thus a solution of the linear inequation

M0 + CN · X ≥ Mt1 + Mt2 .

On the other hand, if the inequation has a nonnegative, rational solution X0 then the integer vector bX0c
is also a solution, as one can easily check. Claim 3.2 then guarantees the existence of an appropriate σ,
meaning that S satisfies (1’).

Thus checking (1’) can be done by solving the inequations for all appropriate pairs t1, t2. ut

Proposition 3.3. For normalized marked graph STGs not satisfying (1’), checking (2’) can be done in
polynomial time.

Proof:
Let S = (N,M0, `) be a normalized marked graph STG which does not satisfy (1’); i.e., no reachable M

can enable both a+ and a−. From this we can derive that (M0, a) does not satisfy (1) of Proposition 2.1.
Therefore, in every occurrence sequence containing occurrences of the signal a, the first occurrence of a

always has the same sign. Which sign this is, + or −, can be determined very efficiently, e.g. by firing
any maximal transition sequence in which each transition of S occurs at most once (such a sequence
contains all transitions that can ever be enabled).

Consider signal a, and assume we have found that a+ is fireable as the first of a+, a−. (The case
with a− being the first is similar.)

Let us now solve the linear programming problems
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maximize f(X)

subject to X ≥ 0, M0 + CN · X ≥ 0,

minimize f(Y )

subject to Y ≥ 0, M0 + CN · Y ≥ 0,

where
f(X) =

∑

t∈`−1(a+)

X(t) −
∑

t∈`−1(a−)

X(t).

If we find that it is NOT the case that both problems have optimal solutions Xop, Yop with f(Xop) = 1
and f(Yop) = 0 then we claim ‘(2’) holds’.

To check (2’), we run the above procedure for each signal a separately, and claim that (2’) holds
when one signal gives rise to this claim, otherwise we claim that (2’) does not hold. The overall time of
this algorithm is surely polynomial; it remains to show its correctness.

Let us again consider signal a where a+ is fireable as the first (of a+, a−). It is obvious that condition
(2’) holds for signal a iff there is a transition sequence σ, with Parikh vector X , such that M0

σ
−→ and

f(X) ≥ 2 (there are two a+’s without any a− in-between) or f(X) ≤ −1 (two a−’s without any a+

in-between).
So if (2’) holds for signal a then the procedure for a surely gives rise to the claim ‘(2’) holds’.
If (2’) does not hold for a then we have f(X) ∈ {0, 1} for each integer admissible solution X (due

to Claim 3.2). We want to show that the procedure for a finds some optimal solutions Xop, Yop with
f(Xop) = 1 and f(Yop) = 0 (and thus does not give rise to the claim ‘(2’) holds’).

To see this, we recall that all solutions of X ≥ 0, M0 + CN · X ≥ 0 constitute a polyhedron.
The optimal solutions Xop, Yop exist if and only if f(X) is bounded from above and from below on the
polyhedron, and then such solutions can be found in the extremal points. The fact that f(X) ∈ {0, 1}
for all integer X easily implies that f(X) is bounded for all (admissible) X; thus the optimal solutions
exist.

We now note that every row of CN contains at most one +1 and at most one −1, which means
that matrix CN is (totally) unimodular. Hence the extremal points of the polyhedron are integer vectors
(cf. e.g. [13]). Thus the procedure for a indeed finds some optimal solutions Xop, Yop with f(Xop) = 1
and f(Yop) = 0. ut

Theorem 3.1. Consistency of marked graph STGs can be decided in polynomial time.

Proof:
The polynomial algorithm first normalizes the STG and then uses the algorithms guaranteed by Proposi-
tions 3.2 and 3.3 to check if one of the conditions (1’), (2’) of Proposition 3.1 holds. ut

3.2. Complete state coding

In this subsection we show the announced co-NP-completeness results for the CSC problem and the USC
problem on (consistent) marked graph STGs.

The next lemma is the main technical result of the paper. We say that an occurrence sequence is
balanced if for every signal a the sequence contains the same number of occurrences of transitions
labelled by a+ and of transitions labelled by a−.
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Lemma 3.1. The following problem is NP-complete:
Instance: a (consistent) STG S = (N,M0, `) such that (N,M0) is a 1-bounded, acyclic marked graph.
Question: is there an occurrence sequence M0

σ
−→M1

τ
−→M2 of S such that τ is nonempty and bal-

anced?

Proof:
Membership in NP is clear: In any net (N,M0) which is 1-bounded and acyclic, each transition can
appear at most once in any occurrence sequence. So a nondeterministic algorithm can just guess a
sequence στ of pairwise distinct transitions and verify that it is performable from M0 and that τ is
nonempty and balanced.

The main point is NP-hardness, which we show by a reduction from CNF-SAT. Let ϕ be a boolean
formula in conjunctive normal form

• with m clauses c1, . . . , cm,

• and n variables x1, . . . , xn.

(E.g., formula (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x4) has 2 clauses and 4 variables.)
Our aim is to show a polynomial construction of a certain STG Sϕ = (N,M0, `), with (N,M0)

being a 1-bounded acyclic marked graph, so that ϕ is satisfiable iff Sϕ admits M0
σ

−→M1
τ
−→M2 for

some sequence σ and some nonempty balanced sequence τ .
The construction is based on the fact that there is a truth assignment

A : {x1, x2, . . . , xn} → {0, 1}

satisfying ϕ if and only if there is a consistent choice of literals, by which we mean a mapping

l : {c1, c2, . . . , cm} → {x1, x1, x2, x2, . . . , xn, xn}

attaching to each clause ci one of its literals, denoted l(ci), in such a way that l(ci) 6= l(cj) for all i, j

(i.e., it is forbidden that one clause ‘chooses’ x while another clause ‘chooses’ x).
We can easily observe that any consistent choice of literals l naturally provides a satisfying truth

assignment A (which can be specified arbitrarily for variables not appearing in the range of l); and any
satisfying truth assignment enables to define (maybe several) consistent choices of literals.

We now describe the STG Sϕ, providing also informal comments which will ease the later correctness
proof. Figure 1 shows the overall structure of Sϕ.

We need a few remarks about the notation. We construct Sϕ = (N,M0, `) where N is an acyclic
marked graph. All the minimal elements with respect to the flow relation will be places, and precisely
these places will be initially marked (i.e., each will carry one token). We say that there is an arc from
transition t1 to transition t2 when there is an (intermediate) place p (initially unmarked) and arcs t1 → p,
p → t2. (This is, in fact, a usual convention which we also use for drawing marked graphs.)

Each symbol of Figure 1 (i.e., each V 1
T , . . . , CP

m) stands for an acyclic marked graph. The arrow
V 1

T → N$ has the following meaning: V 1
T has a transition t which is the unique maximal element in V 1

T

(w.r.t. the order induced by the flow relation), N$ has a transition u which is the unique minimal element
in N$, and the (overall) net N contains an arc leading from t to u (with an intermediate place—using our
convention). The meaning of the other arrows in the structure is analogous.

It will be clear (after we finish the construction) that any complete behaviour of Sϕ can be divided
into three phases:
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V 1
T

...
V n

T

V 1
F

...
V n

F

N$

CN
1

...
CN

m

CP
1

...
CP

m

Figure 1. The overall structure of Sϕ

I. first, all transitions in V 1
T , . . . , V n

T , CN
1 , . . . , CN

m occur,

II. then all transitions of N$ follow,

III. and finally all transitions in V 1
F , . . . , V n

F , CP
1 , . . . , CP

m occur.

The complete behaviours of Sϕ differ only in the order in which transitions occur in the phases I and III.
We proceed to describe the marked graphs corresponding to N$, V

1
T , . . . , V n

T , CN
1 , . . . , CN

m . Since we
need to use both sub- and superscripts, we change the notation and write +a and −a instead of a+ and
a−. The net N$, enabled after the whole phase I is finished, has one single (complete) behaviour, shown
in Figure 2.

+$ −x1 −x2 · · · −xn −c1 −c2 · · · −cm −$

Figure 2. (Linear) behaviour of N$

This means that the signal set of Sϕ contains (among others):

• a signal ci for every clause (1 ≤ i ≤ m);

• a signal xj for every variable (1 ≤ j ≤ n);

• a (special) signal $.

Signal $ will not appear anywhere else but in N$. It will be the case that any nonempty balanced sequence
must include all transitions of N$, and so such a sequence will necessarily contain the whole phase II.

For the rest of the proof let bal denote any non-empty and balanced sequence such that M0
σ

−→M1
bal
−−→M2.

In bal , each falling −xj (1 ≤ j ≤ n) must be compensated by a raising +xj; the label +xj will appear
just on the maximal (i.e., the last) transition of V

j
T (cf. Figure 3) and on the minimal (i.e., the first) tran-

sition of V
j
F (cf. Figure 4). So precisely one of the subnets V

j
T , V

j
F will contribute to bal . We interpret

this as ‘choosing’ a truth assignment A.
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Similarly, each falling −ci (1 ≤ i ≤ m) must be compensated by a raising +ci; the label +ci will
appear just once in CN

i and once in CP
i , now ‘almost’ as the last transition and ‘almost’ as the first

transition, respectively. Again, exactly one of the subnets CN
i , CP

i will contribute to bal .
Now we continue with the details of our construction. We extend the signal set used so far by

• a signal p
j
i for each pair i, j (1 ≤ i ≤ m, 1 ≤ j ≤ n) such that clause ci contains literal xj (p

stands for ‘positive’);

• a signal n
j
i for each pair i, j (1 ≤ i ≤ m, 1 ≤ j ≤ n) such that clause ci contains literal xj (n

stands for ‘negative’).

(As usual, we can assume that no clause ci of formula ϕ contains a complementary pair of literals.)
Given j (1 ≤ j ≤ n), let {ci1 , ci2 , . . . , cia} be the set of clauses containing (the positive) literal

xj . The (sub)net V
j
T (representing setting xj to ‘true’) is depicted in Figure 3. Thus V

j
T ‘emits’ labels

• +p
j
i1

...
...

• +p
j
ia

+xj

Figure 3. The net V
j
T

+p
j
i1

,+p
j
i2

, . . . ,+p
j
ia

in any order, and then finishes by +xj .

Now let {ck1
, ck2

, . . . , ckb
} be the set of clauses containing (the negative) literal xj . The (sub)net V

j
F

(representing setting xj to ‘false’) is depicted in Figure 4. Thus, after the label −$ of N$ occurs, V
j
F

+xj

−n
j
k1

...
...

−n
j
kb

Figure 4. The net V
j
F

‘emits’ label +xj and then labels −n
j
k1

,−n
j
k2

, . . . ,−n
j
kb

in any order.

We now define the subnets CN
i , CP

i . Recall that the sequence bal will contain either transitions of
CN

i or CP
i , but not of both. This corresponds to ‘choosing’ either a positive or a negative literal l(ci)

from ci. Which literal is chosen will depend on which transitions of the corresponding net occur in bal ,
and is explained later.

The nets CN
i and CP

i have no concurrency. They use additional ‘parenthetical’ signals. More pre-
cisely, we enhance the signal set by
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• a signal �
j
i for each pair i, j, 1 ≤ i ≤ m and 1 ≤ j ≤ ni, where ni is the number of negative

literals in ci;

• a signal 4j
i for each pair i, j, 1 ≤ i ≤ m and 1 ≤ j ≤ pi, where pi is the number of positive

literals in ci.

Given i (1 ≤ i ≤ m), let {xj1 , xj2 , . . . , xja
} be the set of negative literals of the clause ci.

The (sub)net CN
i has a (marked) place as the least element (w.r.t. the flow relation). And the only

(complete) behaviour of CN
i is the sequence of labels shown in Figure 5. The key observation is that if

+�
1
i +n

j1
i −n

j2
i −�

1
i +�

2
i +n

j2
i −n

j3
i −�

2
i · · ·

· · ·+�
a−1
i +n

ja−1

i −n
ja

i −�
a−1
i +�

a
i +n

ja

i +ci −�
a
i

Figure 5. (Linear) behaviour of CN
i

the label +ci of CN
i belongs to the balanced sequence bal , then bal must also contain −�

a
i , and thus,

by balancedness, also +�
a
i . But then bal also contains +n

ja

i , and so it must also contain −n
ja

i . If we
add the label −n

ja

i of CN
i to bal , then we are forced to add −�

a−1
i as well, and thus also +�

a−1
i and

+n
ja−1

i ; etc. So if labels of CN
i occur in bal , then bal contains an occurrence of some +n

j
i , where xj is

a literal of ci, such that the ‘balancing’ occurrence of −n
j
i does not come from CN

i , and so it must come
from V

j
F . We interpret this as ‘choosing’ the literal xj of ci, i.e., as setting l(ci) = xj .

The (sub)net CP
i is similar. We let {xk1

, xk2
, . . . , xkb

} be the set of positive literals of the clause
ci. The least element of CP

i (w.r.t. the flow relation) is a transition labelled by 41
i ; it follows from the

overall structure that this transition is enabled after −$ occurs. The only (complete) behaviour of C P
i

(after being enabled) is the sequence of labels shown in Figure 6. And we reason similarly as above. If

+41
i +ci −pk1

i −41
i +42

i +pk1

i −pk2

i −42
i +4b

i +p
kb−1

i −p
kb

i −4b
i

Figure 6. (Linear) behaviour of CP
i

the label +ci from CP
i belongs to bal , then bal must also contain +41

i , and thus also −41
i etc. So if

labels of CP
i occur in bal , then bal contains an occurrence of some −p

j
i , where xj is a literal of ci, such

that the ‘balancing’ occurrence +p
j
i does not come from CN

i , and so it must come from V
j
T . We interpret

this as ‘choosing’ the literal xj of ci, i.e., as setting l(ci) = xj .
For illustration, Figure 7 shows the STG Sϕ for a simple formula ϕ. In fact, it is a slightly different

variant of Sϕ, using more concurrency and additional signals T j , F j which stress the correspondence
with setting variable xj to true or false. (The shaded region shows a balanced sequence, which will be
also discussed later.)

We have thus completed the (obviously polynomial) construction of Sϕ, and we can easily check
that Sϕ is a consistent 1-bounded acyclic marked graph. We have also provided some intuition why the
reduction works, i.e., why
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••••••

+p1
1+p1

2

+T 1

+x1

−T 1

+p2
2

+T 2

+x2

−T 2

+p3
1

+T 3

+x3

−T 3

+�
1
1

+n2
1+c1

−�
1
1

+�
1
2

+n3
2+c2

−�
1
2

+$

−x1−x2−x3−c1−c2

−$

+F 1

+x1

−F 1

+F 2

+x2

−F 2

−n2
1

+F 3

+x3

−F 3

−n3
2

+41
1

+c1−p1
1

−41
1

+42
1

+p1
1−p3

1

−42
1

+41
2

+c2−p1
2

−41
2

+42
2

+p1
2−p2

2

−42
2

Figure 7. STG Sϕ for ϕ ≡ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)
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ϕ is satisfiable ⇐⇒ Sϕ admits M0
σ

−→M1
τ
−→M2 for some nonempty balanced τ .

Now we summarize the correctness arguments, first informally and then in more detail.
If ϕ is satisfiable, then we ‘choose’ a satisfying truth assignment A and for each clause ci we ‘choose’

a literal li such that A makes li true, where ‘choose’ has the meaning described above. This leads
to a balanced sequence bal . On the other hand, if a balanced sequence bal can be found, then the
corresponding ‘choice’ of literals must be consistent (and so ϕ is satisfiable): if both xj and xj are
‘chosen’, then both +n

j
i and −p

j
k appear in bal , and both V

j
T an V

j
F must contribute to bal , which, as we

have seen, is not possible. A more detailed formulation of these arguments follows.

(“=⇒”) Suppose that ϕ is satisfiable; we shall show that there is an occurrence sequence M0
σ
−→M1

τ
−→M2

in Sϕ such that τ is nonempty and balanced. Let

l : {c1, c2, . . . , cm} → {x1, x1, x2, x2, . . . , xn, xn}

be a consistent choice of literals (which must exist since ϕ is satisfiable).
We now define certain sequences σ(X), τ(X) for the appropriate subnets X . The required sequence

σ will then be defined as
σ = σ(V 1

T ) · · · σ(V n
T )σ(CN

1 ) · · · σ(CN
n ),

and τ will be defined as τ = τ1 τ2 τ3, where

τ1 = τ(V 1
T ) · · · τ(V n

T ) τ(CN
1 ) · · · τ(CN

n ),

τ2 = τ(N$),

τ3 = τ(V 1
F ) · · · τ(V n

F ) τ(CP
1 ) · · · τ(CP

n ).

As expected, we define
τ(N$) = +$ −x1 · · · −xn −c1 · · · −cm −$.

For each j, 1 ≤ j ≤ n, we proceed as follows. If xj is in the range of l (xj was chosen by at least one
clause), we define τ(V j

T ) to be a sequence finishing by +xj and otherwise consisting of precisely those
+p

j
i for which xj = l(ci); σ(V j

T ) contains all others +p
j
i appearing in V

j
T . And we define τ(V j

F ) as the
empty sequence.

If xj is in the range of l, we define σ(V j
T ) to be a sequence containing all transitions (i.e., labels)

of V
j
T , and we define τ(V j

T ) as empty. But now τ(V j
F ) is nonempty; it starts with +xj and otherwise

contains precisely those −n
j
i for which xj = l(ci).

The above definition is sound since both xj , xj can not belong to the range of l (l is consistent). If
none of xj , xj belongs to the range of l, we can define σ(V j

T ) as a sequence consisting of all +p
j
i in V

j
T ,

and we put τ(V j
T ) = +xj and τ(V j

F ) empty.

Now for each i, 1 ≤ j ≤ m, we proceed as follows. If l(ci) = xj (thus τ(V j
T ) is nonempty), we

define τ(CP
i ) as the sequence

+41
i +ci · · · −p

kd

i −4d
i ,

where kd = j (recall Figure 6); thus +ci and −p
j
i is left to be compensated in τ(CP

i ). And we define
σ(CN

i ) as the whole behaviour of CN
i , and τ(CN

i ) as empty.
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If l(ci) = xj (thus τ(V j
F ) is nonempty), we define

σ(CN
i ) = +�

1
i +n

j1
i · · · −n

jd

i −�
d−1
i

τ(CN
i ) = +�

d
i +n

jd

i · · ·+ci −�
a
i ,

where jd = j (recall Figure 5); thus +ci and +n
j
i is left to be compensated in τ(CP

i ). And we define
τ(CP

i ) as empty.
It is now straightforward to check that the defined sequence στ can really occur from M0, and that

τ is nonempty and balanced. (For each j, 1 ≤ i ≤ m, either τ(V j
T ) or τ(V j

F ) is nonempty; thus the
occurrence −xj of τ(N$) is compensated. For each i, 1 ≤ i ≤ m, either τ(CN

i ) or τ(CP
i ) is nonempty.

Suppose that it is τ(CN
i ), the other case being similar. Then τ(CN

i ) is balanced except of the two
‘superfluous’ occurrences: +ci and +n

j
i , where l(ci) = xj . But +ci is compensated by −ci of τ(N$),

and +n
j
i is compensated by −n

j
i of τ(V j

F ).)
Remark. The formula ϕ of Figure 7 is satisfiable. The shaded region corresponds to the balanced

sequence for the choice l(c1) = x2, l(c2) = x1 (and setting x3 to true).

(“⇐=”) We now assume that there is an occurrence sequence M0
σ

−→M1
τ
−→M2 in Sϕ such that τ is

nonempty and balanced; we shall show that ϕ is satisfiable. We can easily check that τ must contain at
least one transition of N$; but this obviously implies that τ contains all transitions of N$.

Hence τ can be written
τ = τ ′

1 τ ′

2 τ ′

3,

where
τ ′

2 = τ(N$) = +$ −x1 · · · −xn −c1 · · · −cm −$.

For each j, 1 ≤ j ≤ n, the occurrence −xj in τ ′

2 must be compensated by +xj in either τ ′

1 or τ ′

3; so
precisely one of the nets V

j
T and V

j
F contributes to τ . This naturally corresponds to a truth assignment A.

For each i, 1 ≤ j ≤ m, the occurrence −ci in τ ′

2 must be compensated by +ci in either τ ′

1 or τ ′

3. It is
thus clear that precisely one of the nets CN

i and CP
i contributes to τ ; in this contribution, precisely one

+n
j
i or −p

j
i , respectively, is left to be compensated. This naturally defines a choice of literals l; we will

show that this choice l is consistent.
The only possibility how such a ‘superfluous’ +n

j
i (l(ci) = xj) is compensated in τ is by −n

j
i in

V
j
F , which means that +xj of V

j
F appears in τ (i.e., A(xj) = 0). If it is −p

j
i which is to be compensated

(l(ci) = xj), τ must contain +p
j
i of V

j
T , which means that +xj of V

j
T appears in τ (i.e., A(xj) = 1).

This implies that the above mentioned choice of literals l is indeed consistent, which means that ϕ is
satisfiable. ut

The previous lemma is now used to derive the desired co-NP-hardness results.

Proposition 3.4. Both the CSC problem and the USC problem are co-NP-hard for (consistent) STGs
whose underlying nets are 1-bounded acyclic marked graphs.

Proof:
We use the STG Sϕ constructed in the proof of Lemma 3.1, recalling that it is a consistent 1-bounded
acyclic marked graph; let us denote its (unique) consistent binary encoding by b.
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Assume now that Sϕ does not have the USC property. This means that there are occurrence sequences

M0
σ1−−→M1, M0

σ2−−→M2,

such that

• M1 6= M2 (i.e., σ1 and σ2 do not contain the same transitions),

• b(M1) = b(M2).

We explore the following cases C1), C2), C3), covering all possibilities.

C1) One of σ1, σ2 contains +$ but not −$ (turns out impossible):

In this case, both σ1, σ2 must contain +$ and not −$ (since b(M1) = b(M2)). (I.e., both M1,
M2 are in the ‘middle segment’.) But this is impossible, since we obviously cannot have both
M1 6= M2 and b(M1) = b(M2).

C2) Both σ1, σ2 do not contain +$ or both contain −$ (turns out impossible):

Either both M1, M2 are in the ‘left segment’ or both are in the ‘right segment’. Let us assume the
subcase where both σ1, σ2 do not contain +$ (i.e., both are in the ‘left segment’). We observe that
σ1 and σ2 must contain the same transitions of V

j
T , for each j (since b(M1) = b(M2)).

So there must be a transition of CN
i (for some i), which is, say, in σ2 but not in σ1; i.e., σ2 contains

a longer prefix of the behaviour of CN
i (cf. Figure 5) than σ1. But then the difference between the

two prefixes must obviously be balanced, which can be easily checked to be impossible.

The subcase where both σ1, σ2 contain −$ can similarly be shown as impossible.

C3) One of σ1, σ2 does not contain +$, and the other contains −$:

We can assume that σ1 does not contain +$ and σ2 contains −$. (I.e., M1 is in the ‘left segment’,
M2 is in the ‘right segment’.) This implies that there is (a nonempty) τ such that M0

σ1−−→M1
τ
−→M2;

necessarily, τ is balanced. And from the proof of Lemma 3.1 we know that this is possible if and
only if ϕ is satisfiable.

Thus cases C1), C2) turn out to be impossible, and C3) is possible if and only if there is a (nonempty) τ

such that M0 −→
∗ M1

τ
−→M2; necessarily, τ is balanced. Moreover, such M1,M2 (with b(M1) = b(M2))

enable different sets of signals, so the CSC property is violated—when viewing all signals as output
signals. Therefore we can apply Lemma 3.1 to finish the proof. ut

Proposition 3.5. Both the CSC problem and the USC problem are co-NP-hard for live 1-bounded marked
graph STGs.

Proof:
Consider the USC problem. We reuse the Petri net Sϕ from the proof of Lemma 3.1. We note that the
behaviour obtained by firing all transitions of Sϕ is not balanced; i.e., b(M0) and b(Mf ), where b is the
consistent boolean encoding and Mf is the final marking, differ on some signals.
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Remark. For concreteness, these unbalanced signals are xj , ci, n
jd

i (for d = 2, 3, . . . , a),
and p

kd

i (for d = 1, 2, . . . , b−1).

We define a new STG S ′

ϕ by adding a ‘final segment’ to Sϕ: we add a fresh signal f and construct a
‘linear’ net Nf with the behaviour

+f `1 `2 · · · `k −f,

where `i are the labels compensating the unbalance of Sϕ; they include −xj , −ci, +n
j2
i , etc.; we note

that each nonempty sequence of transitions of Nf is unbalanced. The net Nf will be prompted in S ′

ϕ

after all transitions of Sϕ occur; the final transition of Nf will then restore the initial marking M0.
Hence S′

ϕ is an STG whose underlying net is a live and 1-bounded marked graph. It is easy to see
that any sequence containing precisely one occurrence of each transition of S ′

ϕ is balanced. Let b′ be the
unique consistent boolean encoding of S ′

ϕ.
We show that Sϕ has the USC property iff S ′

ϕ has the USC property, which proves the second part of
the proposition.

It is trivial that if Sϕ does not have the USC property, then S ′

ϕ does not have it either. For the other
direction, assume that S ′

ϕ does not have the USC property. Then there is a witness of the USC-violation,
i.e., two occurrence sequences

M0
σ1−−→M1, M0

σ2−−→M2

as in the proof of Proposition 3.4.
Let us assume that the witness is minimal in the sense that neither σ1 nor σ2 can be shortened. We

prove that this minimal witness also corresponds to a USC-violation in the Petri net Sϕ. It suffices to
show that neither σ1 nor σ2 contains a transition labelled by the signal f .

Assume that one of σ1 and σ2, say σ2, contains an occurrence of the signal f . Since b′(M1) =
b′(M2), we can easily check that the assumption b′(M2)(f) = 1 would force M1 = M2, a contradiction.
So b′(M2)(f) = 0, which means that the last occurrence of f in σ2 is −f . But then σ2 can be (rearranged
and) written as σ2 = σ′

2σ where σ contains precisely one occurrence of each transition of S ′

ϕ. This

implies M0
σ′
2−−→M2, which contradicts our minimality assumption.

Consider now the CSC property. Assume that all signals are output signals. We show that Sϕ has the
CSC property iff S ′

ϕ has the CSC property. As in the USC case, it is trivial that if Sϕ does not have the
CSC property, then S ′

ϕ does not have it either. For the other direction, assume Sϕ has the CSC property.
We have shown in Lemma 3.1 that in this case Sϕ has the USC property as well. So, by the first part of
this proof concerning the USC property, S ′

ϕ has the USC property. Since USC implies CSC, S ′

ϕ has the
CSC property, and we are done. ut

We now show the upper bound, a lemma which was already (implicitly) proved in [1].

Lemma 3.2. Both the CSC problem and the USC problem are in co-NP for (bounded or unbounded)
marked graph STGs.

Proof:
Let S = (N,M0, `) be a normalized and consistent marked graph STG. (We recall that consistency of S

can be checked in polynomial time.) It is sufficient to deal with the CSC problem; the claim for the USC
problem will follow easily.

We observe that S does not have the CSC property if and only if there are sequences u1, u2 such that
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• M0
u1−−→M1, M0

u2−−→M2,

• M1 6= M2,

• for each signal a:

P (u1)(a
+) − P (u1)(a

−) = P (u2)(a
+) − P (u2)(a

−),

• M1, M2 enable different output signals.

To check that there is such a ‘CSC-violation’, a nondeterministic (polynomial) algorithm guesses a place
p such that M1(p) 6= M2(p), and guesses further whether M1(p) > M2(p) or M2(p) > M1(p) holds.
The algorithm proceeds to guess an output signal a, and which of M1, M2 enables a. Assume w.l.o.g.
the guess is that M1 enables a and M2 does not. The algorithm guesses which places of M1 carry at least
one token (including all the input places of some transition labelled by a) and which places of M2 carry
no token (including at least one input place of each transition labelled by a). The algorithm translates
all these guesses into a system of linear inequalities, guesses an integer solution of polynomial size, and
checks in polynomial time that it is indeed a solution. (Variables for transition sequences are replaced by
variables for their Parikh vectors, and Claim 3.2 is used.) ut

Putting together Propositions 3.4 and 3.5 and Lemma 3.2 we obtain:

Theorem 3.2. The CSC problem and the USC problem are co-NP-complete for marked graph STGs, and
stay co-NP-hard for live and 1-bounded marked graph STGs as well as for 1-bounded acyclic marked
graph STGs.

Remark. Notice that in the marked graphs produced by the reduction from the proof of Lemma 3.1
there are different transitions carrying the same label. The case with injective labelling (each transition
has its unique label) might well admit a polynomial algorithm but we leave this problem open here.

4. Live and bounded free-choice nets

As already mentioned, [7] shows that consistency can be decided in polynomial time for live and bounded
free-choice STGs that are moreover cyclic, meaning that the initial marking is reachable from every
reachable marking. It is not known whether the polynomiality result still holds if the cyclicity condition
is removed, and we leave this problem open.

We now show co-NP-completeness of the CSC problem and of the USC problem for live and bounded
free-choice STGs. Since live and bounded marked graphs are cyclic, Theorem 3.2 gives co-NP-hardness
even for cyclic live and bounded free-choice STGs. So we just need to show that the complementary
problem is in NP. We proceed similarly as in the marked graph case, first recalling a known result analo-
gous to Claim 3.2; for this we use the following notation:

For a net N = (P, T, F ) and X : T → IN, we denote by NX = (PX , TX , FX ) the subnet of N

defined as follows: TX is the set of transitions of T for which X(t) ≥ 1, PX = •TX ∪ T •

X , and FX is
the projection of F on (PX × TX) ∪ (TX × PX). We also recall that Q ⊆ P is a trap in N = (P, T, F )
if Q• ⊆ •Q. (If a trap is marked, i.e., has at least one token, it cannot be unmarked). Here we consider
only nonempty traps Q 6= ∅.
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Lemma 4.1. ([15])
Let (N,M0) be a live and bounded free-choice Petri net, and let CN be its incidence matrix. An integer
vector X0 ≥ 0 is the Parikh vector of a transition sequence enabled at M0 if and only if

1. M0 + CN · X0 ≥ 0, and

2. M = M0 + CN · X0 marks all traps of NX0
.

Theorem 4.1. The CSC problem and the USC problem are co-NP-complete for live and bounded free-
choice STGs.

Proof:
As mentioned above, co-NP-hardness follows from Theorem 3.2 (even when the Petri nets are also
cyclic).

A nondeterministic polynomial algorithm for showing that a given (consistent) live and bounded
free-choice STG does not have the CSC property (or the USC property) can be constructed as in the
proof of Lemma 3.2, using Lemma 4.1 instead of Claim 3.2.

A little difficulty is the fact that a (nonnegative integer) solution of M0 +CN ·X ≥ 0 may not be the
Parikh vector of an occurrence sequence. The algorithm handles this problem by guessing (and requiring
in the system of inequalities) which components of X are positive and which are zero; then it guesses a
subset P ′ of places of NX , verifies that P ′ does not contain a trap in NX (which can be easily done in
polynomial time) and requires (in the constructed system of inequalities) that M0 + CN · X is positive
for all places of NX outside P ′. ut

In the next section we show the importance of the assumption of liveness.

5. More general nets

Here we study the complexity of the consistency, CSC, and USC problems for more general classes of
STGs.

By a straightforward use of standard techniques of Petri net theory (using the reachability problem
for k-bounded nets) we can show:

Proposition 5.1. The consistency problem, the CSC problem and the USC problem are PSPACE-complete
for k-bounded nets (for any fixed k).

The relevant proofs can be found in the appendix.
It is worth noting that free-choice does not make this simpler:

Proposition 5.2. The consistency problem for 1-bounded free-choice STGs (not necessarily live) is
PSPACE-complete.

Proof:
An arbitrary 1-bounded STG can be transformed into a 1-bounded free-choice STG by means of the
operation illustrated in Figure 8 while preserving consistency. (This operation is closely related to the
“releasing arcs”-technique, see e.g. [4].)
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Figure 8. Transforming a 1-bounded STG into a 1-bounded free-choice STG

In more detail: For changing an arbitrary 1-bounded STG into a 1-bounded free-choice STG, we use
transformations of the following type:

• inside an original arc from a place p to a transition t, insert a fresh label f + (i.e., add a new freshly
labelled transition and an additional place), and

• split t into t1, t2, adding a new place p′ and arcs t1 → p′, p′ → t2, where t1 (t2) inherits the current
input (output) places of t; put `(t1) = `(t) and `(t2) = f−.

Figure 8 shows the result of two such transformations, where f2 was inserted before f1 (in fact, the
order of the f−

i labels is irrelevant); f−

2 now has the original output places of l2.
Using sufficiently many such transformations, we can obviously transform each 1-bounded STG

S = (N,M0, `) into S = (N,M0, `) which is 1-bounded and free-choice; M0 coincides with M0 on
places from N and is 0 elsewhere.

An important observation is that S is consistent iff S is consistent. To show this, it suffices to show
that using the described transformation, i.e., the step performed for one arc and changing an intermediate
S′ to S′′, keeps the (in)consistency untouched. We can easily note that if S ′ is inconsistent then so is S ′′.
And 1-boundedness guarantees that S ′′ can not become inconsistent due to the added f +, f−; thus an
inconsistency witness in S ′′ naturally ‘translates’ into S ′. ut

Using reductions from and to the reachability problem of general Petri nets, we can show

Proposition 5.3. The consistency problem and the CSC problem for general STGs are decidable but
EXPSPACE-hard.

The proofs are also in the appendix.

6. Conclusions and related work

We have explored the complexity of the consistency and the CSC problem for several classes of STGs.
The main result shows that deciding the CSC property is co-NP-complete even for 1-bounded and acyclic
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marked graph STGs and for 1-bounded and live marked graph STGs. The same result holds for the USC
property. This result explains why none of the existing approaches for checking the USC or the CSC
property in marked graph STGs is polynomial and complete.

In [14] the USC property was studied for live and 1-bounded marked graph STGs with injective
labelling (i.e., one up-transition and one down-transition per signal). A sufficient condition for the USC
property to hold is presented, and it is shown that it can be checked in polynomial time. The condition is
conjectured to be also necessary, which would imply that checking the USC property is polynomial. The
reduction used in our NP-completeness result transforms a formula into an STG in which several signals
have two up- and two down-transitions, and so it does not apply to this case. The complexity of the USC
property for this particular case is left for future research.

In [16] the result of [14] is extended to the case where the STG may have several up- and down-
transitions per signal. The paper presents a generalization of the sufficient condition of [14]. Our NP-
completeness result shows that if P6=NP, then the condition is not necessary, or it cannot be checked
in polynomial time, or both. In fact, we conjecture that the condition is neither necessary, nor can be
checked in polynomial time (it requires to establish a property for a potentially exponential number of
objects).

In [17] it is shown that a live and 1-bounded marked-graph STG violates the USC property iff the
STG has a so-called complementary path. The paper proposes an algorithm that searches for such paths.
The worst-case complexity of the algorithm is exponential, and by our result this is unavoidable unless
P=NP.

In [11] a polynomial algorithm is presented that detects all violations of the CSC property in a live
and bounded free-choice STG. However, the algorithm may also give false positives, i.e., it may detect
false violations. Our result shows that if P6=NP then every polynomial algorithm must produce false
positives or false negatives.

In [1] a procedure is described that, given a marked-graph STG, constructs in polynomial time an
Integer Linear Programming (ILP) problem such that the STG violates the CSC property if and only if
the problem has a solution. Our result shows that, unless P=NP, ILP is necessary, and cannot be replaced
by ordinary Linear Programming (recall that Linear Programming problems can be solved in polynomial
time).

In [9, 10] it is shown how to check the CSC property for arbitrary bounded STGs using net unfoldings
and ILP-solvers or SAT-solvers. Given a bounded STG S, an object is constructed called the unfolding of
S. This unfolding is used to generate an ILP problem (a boolean formula) such that S violates the CSC
property iff the ILP problem has a solution (iff the formula is satisfiable). If S is a live and 1-bounded
marked graph, then the unfolding of S has polynomial size in S ([5], Theorem 4.14). This shows that,
even for marked graphs, ILP-solvers or SAT-solvers are unlikely to be replaceable by other tools with
polynomial running time: if P6=NP, then no polynomial algorithm taking the unfolding of S as input can
decide the CSC or the USC property.

Finally, it could be argued that the important problem in practice is not to decide whether a given
STG satisfies the CSC property, but to transform an STG that does not satisfy the CSC property into
another one that does. In [2] an automatic, very efficient procedure for such a transformation is pre-
sented. Unfortunately, the procedure adds many additional signals (one per place of the STG), and so
in most cases its output is only useful as a first approximation to the design. The optimization of this
first approximation has to be carried out by a (possibly automatic) trial and error procedure in which a
candidate for an optimized STG is guessed. The candidate must be checked for the CSC property, which
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brings us back to the problem discussed in this paper.
Acknowledgments. The first author thanks Jordi Cortadella and José Carmona for helpful discussions.
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7. Appendix (Bounded nets and general nets)

This appendix provides proofs for the results mentioned in Section 5. I.e., it demonstrates the hardness
of the consistency problem and the CSC problem in the general case, where the underlying net of an STG
can be an arbitrary Petri net, and in the subcase when a bound on the number of tokens in each place is
given (which can be viewed as ‘capacity’). This is done by showing suitable polynomial reductions from
the reachability problem to the consistency problem and to the CSC problem, respectively.

In fact, the reachability problem can also provide an upper bound, so the consistency and CSC prob-
lems can be roughly viewed as equivalent with the reachability (w.r.t. the computational complexity).
We also clarify the case of consistency in more detail, by showing a relation to the fireability problem
(which is straightforwardly equivalent to the coverability problem).

The proof ideas use the usual techniques, so we do not describe them very formally nor in great detail.
For completeness, we start by recalling definitions and the known complexity results for reachability and
fireability. (Precise references can be found, e.g., in [6].)

The reachability problem (RP)

Instance: a Petri net (N,M0) and a marking M .

Question: Is M0 −→∗ M?

Theorem 7.1. For (general) Petri nets, RP is decidable and EXPSPACE-hard. For k-bounded nets (for
any fixed k), RP is PSPACE-complete.

The fireability problem (FP)

Instance: a Petri net (N,M0) and a transition t.

Question: Is t fireable (i.e., is there some M such that M0 −→∗ M
t

−→)?

Theorem 7.2. For (general) Petri nets, FP is EXPSPACE-complete. For k-bounded nets (for any fixed
k), FP is PSPACE-complete.

7.1. Nonreachability reduces to consistency

We show how an instance (N,M0),M1 of the reachability problem in general nets can be transformed
into an STG which is consistent if and only if M1 is not reachable in (N,M0). Moreover, if (N,M0) is
1-bounded then the constructed STG is also 1-bounded. In addition, we clarify the difference between
conditions (1) and (2) of Proposition 2.1 on one hand and condition (3) on the other hand. Conditions
(1), (2) turn out to be equivalent to the fireability problem; it is condition (3) which is as difficult as
reachability.
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We start with a simple construction that we use several times:

Construction 1: Given a Petri net (N,M0), we denote by S(N,M0) the STG obtained as follows:

• As the set of signals of S(N,M0) we take the set of transitions of N .

• In N , we replace every transition t by a place pt and two transitions t1, t2, labelled by t+, t−,
respectively. Transition t1 inherits the input places of t, and has pt as the unique output place;
transition t2 has pt as the unique input place and inherits the output places of t.

• We add a (run-)place r, and an arc r → t1 and t2 → r, for every transition t of N .

• The initial marking of S(N,M0) coincides with M0 on the places inherited from N ; moreover, r

carries 1 token, and places pt are empty.

Observation 7.1. The STG S(N,M0) is consistent, and it tightly simulates the behaviour of (N,M0).

Proposition 7.1. The reachability problem for general Petri nets (for k-bounded Petri nets) is polyno-
mially reducible to the inconsistency problem for general STGs (for k-bounded STGs).

Proof:
Assume an instance of the reachability problem: (N,M0),M1. We consider the following construction
of an STG S:

• Start with S(N,M0) as described in Construction 1.

• Add a transition tf labelled by a fresh label f+, and an arc from (the run-place) r to tf . (Thus the
added tf can fire at most once, by which a dead marking is reached, corresponding to a reachable
marking of N .)

• Add a new (starting) place s; the initial marking of S will put 1 token in s; all other places
(including r) will be initially empty.

• Add a transition z1, labelled by a fresh a+. It takes the token from s and installs M1 in the places
inherited from N . (Marking M1 thus becomes ‘frozen’.)

• Finally add transitions z2, z3, labelled with a+ and a−, a place pz , and the arcs

s → z2(a
+) → pz → z3(a

−) → r

as well as additional arcs from z3 which install M0 in the places inherited from N .

We observe that the constructed S can start either with firing z1 (label a+), reaching the ‘frozen’ M1, or
with firing z2z3 (a+a−) after which it behaves like S(N,M0), with a possibility to ‘freeze’ any reachable
marking of (N,M0). We also note that if (N,M0) is k-bounded then S is also k-bounded.

It is clear that S can not provide any inconsistency witness (M,a) of the form (1) and (2) of Propo-
sition 2.1; there might be a witness satisfying (3) but this happens if and only if M1 is reachable in
(N,M0). ut
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The previous reduction was based on condition (3). For completeness, we show that the existence of
an inconsistency witness of form (1) or (2) is ‘easier’, namely polynomially equivalent to the fireability
problem.

Claim 7.1. The problem of deciding, given an STG S, if there is a pair (M,a) satisfying conditions (1)
or (2) of Proposition 2.1 is polynomially equivalent to the fireability problem.

Proof:
We first show that the problem if S provides a pair (M,a) satisfying (1) can be reduced to the fireability
problem.

Let us fix a (a signal), and define:

• S+
a is a ‘copy’ of S from which we remove all transitions labelled by a− together with their

adjacent arcs, and we add a (run-)place r+
a with 1 token. For every transition t of S+

a which is not
labelled by a+ we add arcs r+

a → t, t → r+
a ; in the case of t labelled a+ we only add r+

a → t.

We observe that S+
a behaves like S until a first occurrence of an a-label; this a-label must be a+, and the

computation of S+
a is thus finished.

Similarly we proceed for a−:

• S−

a is a ‘copy’ of S from which we remove all transitions labelled by a+ together with their
adjacent arcs, and we add a (run-)place r−a with 1 token. For every transition t of S−

a which is not
labelled by a− we add arcs r−a → t, t → r−a ; in the case of t labelled a− we only add r−a → t.

Now, we put the STGs S+
a and S−

a side by side. We add new places p+
a and p−a , which are initially

empty, and a new transition taf with the arcs p+
a → taf and p−a → taf . Moreover, for each t in S+

a labelled
by a+ we add t → p+

a , and for each t in S−

a labelled by a− we add t → p−a .
We have thus got a Petri net (N,M0) where taf is fireable if and only if the initial marking M of S

satisfies (1).
To reach our goal, we further modify the net (N,M0):

• Add a new (run-)place r, initially with a token, and let r+
a , r−a be initially empty.

• For each transition t of S, add an additional copy of t (to (N,M0)), with the arcs r → t, t → r.
For each arc p → t in S, add arcs p1 → t, p2 → t, where p1 and p2 are the copies of p in S+

a and
S−

a , respectively. Similarly for the output arcs t → p.

• Finally add a transition ta, with the arcs r → ta, ta → r+
a , ta → r−a .

We observe that the arisen net (N ′,M ′

0) in the first phase simulates S synchronously on both the places
in S+

a and the places in S−

a . To enable taf , this first phase must stop by firing ta (which unmarks r and
marks r+

a , r−a ). Transition taf can then indeed be enabled if and only if the corresponding M , reachable
in S and copied in both S+

a and S−

a , satisfies (1).
Thus we have described a polynomial algorithm which, given an STG S and signal a, constructs

(N ′,M ′

0) so that S has an inconsistency witness (M,a) satisfying (1) iff ta
f is fireable in (N ′,M ′

0).

The construction can be completed by subnets S+
b and S−

b for all signals b, and some straightforward
modifications, one of them ensuring that firing any tb

f will enable an additional distinguished transition
tf .

Using similar techniques, we can extend the overall construction to show that
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there is a polynomial algorithm which, given an STG S, constructs a net (NS ,MS), with a
distinguished transition tf , so that S has an inconsistency witness (M,a) satisfying (1) or
(2) iff tf is fireable in (NS ,MS).

For the other direction, assume an instance (N,M0), t of the fireability problem. We start with con-
structing S(N,M0) by Construction 1; then we add a new transition z, whose only input place is pt and
whose label is t+. it is clear that the so constructed STG S has some (M,a) satisfying (1), or (2), iff t is
fireable in (N,M0). ut

7.2. Nonreachability reduces to CSC

Proposition 7.2. The reachability problem for general Petri nets (for k-bounded Petri nets) is polyno-
mially reducible to the negation of the CSC problem for general STGs (for k-bounded STGs).

Proof:
We use the single-place-zero reachability problem. So an instance is (N,M0) and a place p0, and the
question is if there is a reachable M with M(p0) = 0. Given such an instance, we construct a (consistent)
STG S as follows:

• We start with the (consistent) STG S(N,M0) from Construction 1; recall that it has a run-place r.

• We now add two transitions t1 and t2, labelled with fresh signals a+ and a−, respectively, two new
places p1, r1, and the following arcs:

r → t1(a
+) → p1 → t2(a

−) → r1.

• We add another two transitions t3, t4, labelled with fresh b+, b−, a place p2, and the depicted arcs:

r → t3(b
+) → p2 → t4(b

−), t4 → r1, t4 → p0

• Finally we add a new transition t5 labelled by o+, where o is defined as the only output signal; and
we add the arcs r1 → t5 and p0 → t5.

We observe that the constructed S is still consistent, we denote the consistent boolean encoding by b.
Now assume that (N,M0) can reach M such that M(p0) = 0. Then in S = (N ′,M ′

0, `) we have

• M ′

0 −→∗ M ′, where M ′(p0) = 0,

• M ′ a+a−

−→ M1, where M1(p0) = 0,

• M ′ b+b−
−→ M2, where M2(p0) = 1,

So M1 6= M2 and necessarily b(M1) = b(M2); but M1 does not enable o+ and M2 does. Hence S does
not have the CSC property.

On the other hand, if all reachable M in (N,M0) satisfy M(p) ≥ 1, then S obviously has the CSC
property.

Finally we note that if (N,M0) is k-bounded then the STG S is ‘almost’ k-bounded. The only
problem (increasing to k+1) can be caused by the arc t4 → p0. But we can replace it by an arc t4 → p′

for a new place p′, and add a further transition t′5 labelled by o+, with the arcs r1 → t′5, p′ → t′5. ut
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7.3. PSPACE-completeness for bounded nets

Let us consider k-bounded STGs. Propositions 7.1 and 7.2 show that both the consistency problem and
the CSC problem are PSPACE-hard. For showing that these problems are in PSPACE, it is sufficient to
consider nondeterministic algorithms for the complementary problems (recall that PSPACE=NPSPACE).
But such algorithms are obvious; so we have:

Proposition 7.3. Both the consistency problem and the CSC problem are PSPACE-complete for (explicitly-
)bounded nets.

7.4. Reduction to reachability

To provide some upper bound on the complexity of the consistency and CSC problems in the general case,
we show reductions to the reachability problem. By a reduction we mean showing how an instance (of the
consistency or CSC problem) can be answered by solving possibly several instances of the reachability
problem, all of them being constructed in polynomial time.

Proposition 7.4. The consistency problem (for general STGs) is reducible to the reachability problem.

Proof:
Due to Claim 7.1, it is sufficient to handle condition (3) of Proposition 2.1. Given an STG, to decide
if there is a marking M reachable by w1a

+u and by w2a
−v for some a-free sequences u, v, we can

let run two copies S ′, S′′ of S independently (each having its own run-place). S ′ has the possibility to
‘freeze’ a marking reached by a sequence where a+ was the last a-transition, while S ′′ has the possibility
to ‘freeze’ a marking reached by a sequence where a− was the last a-transition. In the final phase, the
markings in both copies S ′, S′′ will be ‘compared’: for each place of S, a transition which takes a token
from both p′ and p′′, which are the copies of p in S ′ and S′′, respectively, will fire as long as possible.
The everywhere-zero marking can thus be reached if and only if the markings reached in S ′ and S′′

coincide. ut

Proposition 7.5. The CSC problem (for general STGs) is reducible to the reachability problem.

Proof:
Let S = (N,M0, `) be an STG (which can be supposed to be consistent). For each signal a, we add
places pa+ and pa−, and we check which of the two signals a+ and a− can be enabled first. In the first
case, we put 1 token in pa− and 0 tokens in pa+, and in the second case vice versa. We add further arcs,
such that each a+-transition takes a token from pa− and puts a token in pa+, and each a−-transition takes
one from pa+ and puts it in pa−.

So the modified net faithfully simulates the original S; moreover, each reachable marking contains
explicit information about the current (consistent) binary encoding.

Again, we can use two copies of S, use run-places for distinct phases of computation etc., such
that this allows to choose any two reachable markings M1, M2, after which it will be guaranteed that a
specified (sub)marking will be reachable if and only if M1 and M2 have the same binary encoding but
one of these markings enables a certain output signal while the other does not. (We can solve this for
each output signal separately.) ut


