
LIPIcs Leibniz International Proceedings in Informatics

On the Memory Consumption of
Probabilistic Pushdown Automata ∗

Tomáš Br ázdil 1, Javier Esparza 2, Stefan Kiefer 2

1 Faculty of Informatics, Masaryk University, Brno, Czech Republic

xbrazdil@fi.muni.cz

2 Institut für Informatik, Technische Universität München, Germany

{esparza,kiefer}@in.tum.de

ABSTRACT. We investigate the problem of evaluating memory consumption for systems modelled
by probabilistic pushdown automata (pPDA). The space needed by a run of a pPDA is the maxi-
mal height reached by the stack during the run. The problem is motivated by the investigation of
depth-first computations that play an important role for space-efficient schedulings of multithreaded
programs.
We study the computation of both the distribution of the memory consumption and its expectation.
For the distribution, we show that a naive method incurs an exponential blow-up, and that it can
be avoided using linear equation systems. We also suggest a possibly even faster approximation
method. Given ε > 0, these methods allow to compute bounds on the memory consumption that are
exceeded with a probability of at most ε.
For the expectedmemory consumption, we show that whether it is infinite can be decided in polyno-
mial time for stateless pPDA (pBPA) and in polynomial space for pPDA.We also provide an iterative
method for approximating the expectation. We show how to compute error bounds of our approx-
imation method and analyze its convergence speed. We prove that our method converges linearly,
i.e., the number of accurate bits of the approximation is a linear function of the number of iterations.

1 Introduction

The verification of probabilistic programs with possibly recursive procedures has been

intensely studied in the last years. The Markov chains or Markov Decision Processes un-

derlying these systems may have infinitely many states. Despite this fact, which prevents

the direct application of the rich theory of finite Markov Chains, many positive results have

been obtained. Model-checking algorithms have been proposed for both linear and branch-

ing temporal logics [8, 11, 18], the long-run behavior of the systems has been analyzed [6, 9],

and algorithms deciding properties of games have been described (see e.g. [10]).

In all these papers programs are modelled as probabilistic pushdown automata (pPDA)

or as recursiveMarkov chains; the twomodels are very close, and nearly all results obtained

for one of them can be easily translated to the other [7]. In this paper we consider pPDA.

Loosely speaking, a pPDA is a pushdown automaton whose transitions carry probabilities.

The configurations of a pPDA are pairs containing the current control state and the current

stack content. A run is a sequence of configurations, each one obtained from its predecessor

∗The first author was supported by the research center Institute for Theoretical Computer Science (ITI),
project No. 1M0545.

c© T. Brázdil, J. Esparza, S. Kiefer; licensed under Creative Commons License-NC-ND

2 ON THE MEMORY CONSUMPTION OF PROBABILISTIC PUSHDOWN AUTOMATA

by applying a transition, whichmaymodify the control state andmodify the top of the stack.

If a run reaches a configuration with empty stack, it stays in this configuration forever. We

say “it terminates”.

The memory consumption of a pPDA is modelled by the random variable M that as-

signs to a run the maximal stack height of the configurations visited along it (which may be

infinite). We study the distribution and the expected value of M. The execution time and

memory consumption of pPDA were studied in [9], but the results about the latter were

much weaker. More precisely, all it was shown in [9] was that P(M = ∞) can be compared
with 0 or 1 in polynomial space and with other rationals in exponential time.

A probabilistic recursive program whose variables have finite range can be modelled

by a pPDA, and in this case M models the amount of memory needed for the recursion

stack. But M is also an important parameter for the problem of scheduling multithreaded

computations (see [15, 3] among other papers). When a multithreaded program is executed

by one processor, a scheduler decides which thread to execute next, and the current states

of all other active threads are stored. When threads are lightweight, this makes the memory

requirements of the program heavily depend on the thread scheduler [15]. Under the usual

assumption that a thread can terminate only after all threads spawned by it terminate, the

space-optimal scheduler is the one that, when A spawns B, interrupts the execution of A and

continues with B; this is called the depth-first scheduler in [15, 3]. The depth-first scheduler

can be modelled by a pushdown automaton. To give an example, consider a multithreaded

system with two types of threads, X and Y. Imagine that through statistical sampling we

know that a thread of type X spawns either a thread of type Y or no new threads, both

with probability 1/2; a thread of type Y spawns another thread of type Y with probability

1/3, or no new thread with probability 2/3. The depth-first execution of this multithreaded

program is modelled by a pPDA with one control state, stack symbols X,Y, and rules X
1/2→

YX, X
1/2→ ε, Y

1/3→ YY, Y
2/3→ ε. Notice that the rule X

1/2→ YX indeed models the depth-first

idea: the new thread Y is executed before the thread X.

In this simple model, pPDA for multithreaded systems have one single control state.

Stack symbols represent currently active threads and pushdown rules model whether a

thread dies or spawns a new thread. On the other hand, pPDA with more than one con-

trol state can model global variables with finite range (the possible values of the global store

are encoded into the control states of the pPDA) [4]. For these reasons we study arbitrary

pPDA in this paper, but also specialize our results (and in particular the complexity of al-

gorithms) to so-called pBPA, which are pPDA with a single control state. As we shall see,

while some algorithms are polynomial for pBPA, this is unlikely to be the case for pPDA.

Our contribution. We specifically address the problem of computing P(M ≥ n), or at
least an upper bound, for a given n. This allows us to determine the size that the stack (or

the store for threads awaiting execution) must have in order to guarantee that the probabil-

ity of a memory overflow does not exceed a given bound. In Section 3 we obtain a system of

recurrence equations for P(M ≥ n), and show that for a pPDA with set Q of control states
and set Γ of stack symbols, P(M ≥ n) can be computed in time O

(
n · (|Q|2 · |Γ|)3

)
(time

O
(
n · |Γ|3

)
for pBPAs) in the Blum-Shub-Smale model, the computation model in which an

arithmetic operation takes one time unit, independently of the size of the operands. How-

T. BRÁZDIL, J. ESPARZA, S. KIEFER FSTTCS 2009 3

ever, this result does not provide any information on the asymptotic behavior of P(M ≥ n)
when n grows, and moreover the algorithm is computationally inefficient for large values

of n. We address these problems for pPDA in which the expected value of M is finite. We

show in Section 3.2 that in this case P(M ≥ n) ∈ Θ(ρn), where ρ < 1 is the spectral radius

of a certain matrix. This determines the exact asymptotic behavior up to a constant, and also

leads to an algorithm for computing a bound on P(M ≥ n) with logarithmic runtime in n.
Then we turn to computing the expectation of M. In Section 3.3 we provide an algo-

rithm that approximates the expectation, give an error bound and analyze its convergence

speed. Finally, in Section 4 we study the problem of deciding whether the expected value

of M is finite. We show that the problem is polynomial for pBPAs. For arbitrary pPDA we

show that the problem is in PSPACE and at least as hard as the SQRT-SUM and PosSLP

problems. Notice that already the problem of deciding if the termination probability of a

pPDA exceeds a given bound has this same complexity.

The full version of this paper [5] includes the proofs and more discussion.

Related work. Much work has been done also on the analysis of other well-structured

infinite-state Markov chains, such as quasi-birth-death processes and Jackson queueing

networks [16] and probabilistic lossy channel systems [17]. However, none of these classes

contain pPDA or even pBPA. There is also work on general infinite-state (continuous-time)

Markov chains which analyzes the behavior of the chain up to a finite depth [12]. This

method is very general, but it is inefficient for pPDA, because it has not been designed to

exploit the pushdown structure. Our analysis techniques are strongly based on linear alge-

bra and matrix theory, in particular Perron-Frobenius theory [2]. The closest work to ours

is [11] which also uses Perron-Frobenius theory for assessing the termination probability of

recursive Markov chains.

2 Preliminaries

In the rest of this paper, N and R denote the set of positive integers and real numbers,

respectively. The set of all finite words over a given alphabet Σ is denoted by Σ∗, and the
set of all infinite words over Σ is denoted by Σω. We write ε for the empty word. Given two

sets K ⊆ Σ∗ and L ⊆ Σ∗ ∪ Σω, we use K · L (or just KL) to denote the concatenation of K
and L, i.e., KL = {ww′ | w ∈ K,w′ ∈ L}. The length of a given w ∈ Σ∗ ∪ Σω is denoted by

|w|, where the length of an infinite word is ∞. Given a word (finite or infinite) over Σ, the

individual letters of w are denoted by w(0),w(1), . . .

Vectors and Matrices. Given a set S, we regard the elements of R
S as vectors. We use bold

letters, like u, for vectors. The vector whose components are all 0 (resp. all 1) is denoted by 0

(resp. 1). We write u = v (resp. u ≤ v) if u(s) = v(s) (resp. u(s) ≤ v(s)) holds for all s ∈ S.
If S′ ⊆ S, we write u|S′ for the vector v ∈ R

S′ with v(s) = u(s) for all s ∈ S′.
Given two vector spaces R

S,RT we identify a linear function A : R
S → R

T with its

corresponding matrix A ∈ R
T×S. We use capital letters for matrices and I for the identity

matrix. We call a matrix nonnegative if all its entries are nonnegative. For nonnegative

square matrices A ∈ R
S×S we define the matrix sum A∗ = ∑

∞
i=0 A

i = I + A+ AA+ · · · .
It is a well-known fact (see e.g. [13]) that A∗ converges (or “exists”) iff ρ(A) < 1, where

4 ON THE MEMORY CONSUMPTION OF PROBABILISTIC PUSHDOWN AUTOMATA

ρ(A) denotes the spectral radius of A, i.e., the largest absolute value of the eigenvalues
of A. Perron-Frobenius theory for nonnegative matrices (see e.g. [2]) states that ρ(A) is an
eigenvalue of A. If A∗ exists, then A∗ = (I − A)−1.

Markov Chains. Our models of interest induce (infinite-state) Markov chains.

DEFINITION 1. A Markov chain is a tripleM = (S,→,Prob)where S is a finite or countably
infinite set of states,→ ⊆ S× S is a transition relation, and Prob is a function which to each
transition s→ t of M assigns its probability Prob(s→ t) > 0 so that for every s ∈ Swe have
∑s→t Prob(s→ t) = 1 (as usual, we write s

x→ t instead of Prob(s→ t) = x).

A path in M is a finite or infinite word w ∈ S+ ∪ Sω such that w(i−1) → w(i) for every
1 ≤ i < |w|. A run in M is an infinite path in M. We denote by Run[M] the set of all runs
in M. The set of all runs that start with a given finite path w is denoted by Run[M](w).
When M is understood, we write Run (or Run(w)) instead of Run[M] (or Run[M](w), resp.).

To every s ∈ S we associate the probability space (Run(s),F ,P) where F is the σ-field

generated by all basic cylinders Run(w) where w is a finite path starting with s, and P : F →
[0, 1] is the unique probability measure such that P(Run(w)) = Π

|w|−1
i=1 xi where w(i−1) xi→

w(i) for every 1 ≤ i < |w|. If |w| = 1, we put P(Run(w)) = 1. Only certain subsets
of Run(s) are P-measurable, but in this paper we only deal with “safe” subsets that are
guaranteed to be in F . Given s ∈ S and A ⊆ S, we say A is reachable from s if P({w ∈
Run(s) | ∃i ≥ 0 : w(i) ∈ A}) > 0.

Probabilistic Pushdown Automata (pPDA).

DEFINITION 2. A probabilistic pushdown automaton (pPDA) is a tuple ∆ = (Q, Γ, δ,Prob)
where Q is a finite set of control states, Γ is a finite stack alphabet, δ ⊆ Q × Γ × Q × Γ≤2

(where Γ≤2 = {α ∈ Γ∗, |α| ≤ 2}) is a transition relation, and Prob is a function which to each
transition pX → qα assigns a rational probability Prob(pX → qα) > 0 so that for all p ∈ Q
and X ∈ Γ we have that ∑pX→qα Prob(pX → qα) = 1 (as usual, we write pX

x→ qα instead
of Prob(pX → qα) = x).

Elements of Q× Γ∗ are called configurations of ∆. A pPDA with just one control state is

called pBPA (pBPAs correspond to 1-exit recursive Markov chains defined in [11]). In what

follows, configurations of pBPAs are usually written without the control state (i.e., we write

only α instead of pα).

EXAMPLE 3 As a running example we choose the pBPA ∆ = ({p}, {X,Y,Z,W}, δ,Prob) with δ

and Prob given as follows.

X
1/4→ ε X

1/4→ Y Y
2/3→ ε Z

1→ Z
X
1/4→ XX X

1/4→ Z Y
1/3→ YY W

1→ YW

We can interpret this example as a model of a multithreaded system with four kinds of threads. Notice

that threads of type Z and W do not terminate (our results also deal with this possibility). We are

interested in the minimal number of threads n such that the probability that the execution of X

requires to store more than n threads is at most 10−5.

T. BRÁZDIL, J. ESPARZA, S. KIEFER FSTTCS 2009 5

We define the size |∆| of a pPDA ∆ as follows: |∆| = |Q| + |Γ| + |δ| + |Prob| where |Prob|
equals the sum of sizes of binary representations of values of Prob. To ∆ we associate the

Markov chain M∆ with Q× Γ∗ as set of states and transitions defined as follows:

• pε 1→ pε for each p ∈ Q;
• pXβ

x→ qαβ is a transition of M∆ iff pX
x→ qα is a transition of ∆.

Given p, q ∈ Q and X ∈ Γ, we often write pXq to denote (p,X, q). Given pXq we define

Run(pXq) = {w ∈ Run(pX) | ∃i ≥ 0 : w(i) = qε} and [pXq] = P(Run(pXq)) .

Maximal StackHeight. Given pα ∈ Q× Γ∗, we denote by height(pα) = |α| the stack height
of pα. Given pX ∈ Q× Γ, the maximal stack height of a run is defined by setting

MpX(w) = sup{height(w(i)) | i ≥ 0} for all runs w ∈ Run(pX).

It is easy to show that for all n ∈ N ∪ {∞} the set M−1
pX(n) = {w ∈ Run(pX) | MpX(w) = n}

is measurable. Hence the expectation EMpX of MpX exists and we have

EMpX = ∑
n∈N∪{∞}

n · P(M−1
pX(n)) .

For what follows, we fix a pPDA ∆ = (Q, Γ, δ,Prob)with initial configuration p0X0 ∈ Q× Γ.

We are interested in the random variable Mp0X0 modelling the memory consumption of ∆.

We wish to compute or approximate the distribution of Mp0X0 and its expectation.

3 Computing the Memory Consumption

The problem of computing the distribution of the maximal stack height is the problem of

computing the probability of reaching a given height. So, for every n ≥ 1 we define a vector
P[n] ∈ R

Q×Γ with

P[n](pX) = P({w ∈ Run(pX) | MpX(w) ≥ n}) for every pX ∈ Q× Γ ,

i.e., P[n](pX) is the probability that the maximal stack height is ≥ n in a run of Run(pX).
There is a “naive” method to compute P[n](p0X0). (Recall that M∆ is the Markov chain

associated with ∆.) First, compute the Markov chain Mn+1
∆
obtained from M∆ by restricting

it to the states with a height of at most n+ 1. Note that Mn+1
∆
has finitely many states. Then

compute P[n](p0X0) by computing the probability of reaching a state of height n+ 1 starting
from p0X0. This can be done as usual by solving a linear equation system. The problemwith

this approach is that the number of states in Mn+1
∆
is Θ(|Q| · |Γ|n), i.e., exponential in n, and

the linear equation system has equally many equations.

A better algorithm is obtained by observing that the Markov chain induced by a pPDA

has a certain regular structure. We exploit this to get rid of the state explosion in the “naive”

method. (This has also been observed in the analysis of other structured infinite-state sys-

tems, see e.g. [16].) In the following we describe the improved method, which is based on

linear recurrences. We aremainly interested in the probabilities P[n] to reach height n, but as

6 ON THE MEMORY CONSUMPTION OF PROBABILISTIC PUSHDOWN AUTOMATA

an auxiliary quantity we use the probability of not exceeding height n in terminating runs.

Formally, for every n ≥ 0 we define a vector T[n] ∈ R
Q×Γ×Q such that

T[n](pXq) = P({w ∈ Run(pXq) | MpX(w) ≤ n}) for every pXq ∈ Q× Γ ×Q ,

i.e., T[n](pXq) is the probability of all runs of Run(pX) that terminate at q and do not exceed
the height n. To every pXq ∈ Q× Γ × Q we associate a variable T〈n〉(pXq). Consider the
following equation system: If T[n](pXq) = 0, then we put T〈n〉(pXq) = 0. Otherwise, we
put

T〈n〉(pXq) = ∑
pX

y→qε
y+ ∑

pX
y→rY
yT〈n〉(rYq) + ∑

pX
y→rYZ

∑
s∈Q
yT[n− 1](rYs)T〈n〉(sZq) .

PROPOSITION 4. For n ≥ 0, the vector T[n] is the unique solution of that equation system.

The values T[n] can be used to set up an equation system for P[n]. To every pX ∈
Q× Γ we associate a variable P〈n〉(pX). Consider the following equation system: We put
P〈1〉(pX) = 1. If P[n](pX) = 0, then we put P〈n〉(pX) = 0. Otherwise, we put

P〈n〉(pX) = ∑
pX

y→qY
yP〈n〉(qY)+ ∑

pX
y→qYZ

yP[n− 1](qY)+ ∑
pX

y→qYZ
∑
r∈Q
yT[n− 2](qYr)P〈n〉(rZ) .

PROPOSITION 5. For n ≥ 1, the vector P[n] is the unique solution of that equation system.
EXAMPLE 6 In our example we have for n ≥ 1

T[n](X) = 1/4+ 1/4 T[n](Y) + 1/4 T[n](Z) + 1/4 T[n− 1](X)T[n](X)

T[n](Y) = 2/3+ 1/3 T[n− 1](Y)T[n](Y)

T[n](Z) = 0

T[n](W) = 0

and for n ≥ 2

P[n](X) = 1/4 P[n](Y) + 1/4 P[n](Z) + 1/4 P[n− 1](X) + 1/4 T[n− 2](X)P[n](X)

P[n](Y) = 1/3 P[n− 1](Y) + 1/3 T[n− 2](Y)P[n](Y)

P[n](Z) = 0

P[n](W) = P[n− 1](Y) + T[n− 2](Y)P[n](W) .

Solving those systems successively for increasing n shows that n = 17 is the smallest number n such
that P[n](X) ≤ 10−5. In the interpretation as a multithreaded system this means that the probability
that 17 or more threads need to be stored is at most 10−5.
Using the above equation systems, we can compute T[n] and P[n] iteratively for in-

creasing n by plugging in the values obtained in earlier iterations. The cost of each iteration

is dominated by solving the equation system for T[n], which can be done, using Gaussian
elimination, in time O

(
(|Q|2 · |Γ|)3

)
in the Blum-Shub-Smale model. So the total time to

compute P[n] is linear in n.

T. BRÁZDIL, J. ESPARZA, S. KIEFER FSTTCS 2009 7

PROPOSITION 7. The value P[n] can be computed by setting up and solving the equation
systems of Propositions 4 and 5 in time O

(
n · (|Q|2 · |Γ|)3

)
in the Blum-Shub-Smale model.

The values P[n] that can be computed by Proposition 7 also allow to approximate the
expectation EMp0X0 : Since EY = ∑

∞
n=1 P(Y ≥ n) holds for any random variable Y with

values inN, we have EMp0X0 = ∑
∞
n=1 P[n](p0X0), so one can approximate EMp0X0 by com-

puting ∑
k
n=1 P[n](p0X0) for some finite k.

Proposition 7 is simple and effective, but not fully satisfying for several reasons. First, it

does not indicate how fast P[n](p0X0) decreases (if at all) for increasing n. Second, although
computing P[n] using Proposition 7 is more efficient than using the “naive” method, it may
still be too costly for large n, especially if Q or Γ are large. Instead, one may prefer an

upper bound on P[n] if it is fast to compute. Finally, we wish for an approximation method
for EMp0X0 that comes with an error bound.

In the following we achieve these goals for pPDAs in which the expected memory con-

sumption is finite. So we assume the following on the pPDA ∆ for the rest of the section.

ASSUMPTION: The expectation EMp0X0 is finite.

Notice that from the practical point of view this is a mild assumption: systems with infinite

expected memory consumption also have infinite expected running time, and are unlikely

to be considered suitable in reasonable scenarios. In Section 4 we show that whether EMp0X0
is finite can be decided in polynomial time for pBPA, but also that this problem is unlikely

to be decidable in polynomial time for general pPDA.

3.1 The Matrix A

This subsection leads to a matrix A which is crucial for our analysis. It is useful to get

rid of certain irregularities in the equation systems of Propositions 4 and 5. The following

lemma shows that the variables in the equation systems do not change from 0 to positive

(or from positive to 0) if n is sufficiently large. (Recall that, by definition, T[n] ≤ T[n+ 1]
and P[n] ≥ P[n+ 1] for all n ≥ 1.)
LEMMA 8.

1. T[|Q|2|Γ| + 1](pXq) > 0⇐⇒ for all n ≥ |Q|2|Γ| + 1 : T[n](pXq) > 0⇐⇒ [pXq] > 0;
2. P[|Q||Γ| + 1](pX) > 0⇐⇒ for all n ≥ 1 : P[n](pX) > 0.

Another irregularity can be removed by restricting T[n] and P[n] to their “interest-
ing” components; in particular, we filter out entries of P[n] that cannot create large stacks.
Let T ⊆ Q × Γ × Q denote the set of all pXq such that pXΓ∗ is reachable from p0X0,
and [pXq] > 0. Let H ⊆ Q × Γ denote the set of all pX such that pXΓ∗ is reachable from
p0X0, and P[n](pX) > 0 for all n ≥ 1.
LEMMA 9. The sets T andH are computable in polynomial time.
EXAMPLE 10 For our running example, we fix X as the initial configuration. Then WΓ∗ is not
reachable and P[n](Z) = 0 for n ≥ 2, henceH = {X,Y}. Furthermore, T = {X,Y}.
We define t[n] ∈ R

T by t[n] := T[n]|T , i.e., t[n] ∈ R
T is the restriction of T[n] to T .

Similarly, we define p[n] := P[n]|H. Now we bring the equation systems for t[n] and p[n]
from Propositions 4 and 5 in a compact matrix form.

8 ON THE MEMORY CONSUMPTION OF PROBABILISTIC PUSHDOWN AUTOMATA

For t[n], we define a vector c ∈ R
T , a linear function L̃ on R

T , and a bilinear function
Q̃ : RT × R

T → R
T as follows:

(c)(pXq) = ∑
pX

y→qε
y (L̃v)(pXq) = ∑

pX
y→rY, rYq∈T

yv(rYq)

(Q̃(u, v))(pXq) = ∑
pX

y→rYZ
∑

s∈Q, rYs∈T , sZq∈T
yu(rYs)v(sZq)

By Q̃(u, ·) we denote a linear function satisfying Q̃(u, ·)(v) = Q̃(u, v).
For p[n], we define linear functions L and L′ on R

H, and a bilinear function
Q : RT × R

H → R
H as follows:

(Lv)(pX) = ∑
pX

y→qY, qY∈H
yv(qY) (L′v)(pX) = ∑

pX
y→qYZ, qY∈H

yv(qY)

(Q(u, v))(pX) = ∑
pX

y→qYZ
∑

r∈Q, qYr∈T , rZ∈H
yu(qYr)v(rZ)

By Q(u, ·) we denote a linear function satisfying Q(u, ·)(v) = Q(u, v).
Using Propositions 4 and 5 we obtain for n ≥ |Q|2|Γ| + 3 (recall Lemma 8):
PROPOSITION 11. The following equations hold for all n ≥ |Q|2|Γ| + 3:

t[n] = c+ L̃t[n] + Q̃(t[n− 1], t[n]) and p[n] = Lp[n] + L′p[n− 1] +Q(t[n− 2],p[n])

EXAMPLE 12 In our example we have for n ≥ 1

t[n] =

L̃+Q̃(t[n−1],·)
︷ ︸︸ ︷(
1/4 t[n− 1](X) 1/4

0 1/3 t[n− 1](Y)

)
t[n] +

c︷ ︸︸ ︷(
1/4

2/3

)

and for n ≥ 2

p[n] =

L+Q(t[n−2],·)
︷ ︸︸ ︷(
1/4 t[n− 2](X) 1/4

0 1/3 t[n− 2](Y)

)
p[n] +

L′︷ ︸︸ ︷(
1/4 0

0 1/3

)
p[n− 1] .

Unlike P[n], the vector p[n] can be expressed in the form Anp[n− 1] for a suitable matrix An:
PROPOSITION 13. Let An := (L + Q(t[n− 2], ·))∗L′. Then for every n ≥ |Q|2|Γ| + 3 the
matrix An exists and p[n] = Anp[n− 1].
The key of our further analysis is to replace the matrix An by A = limn→∞ An. Since

An = (L+Q(t[n− 2], ·))∗L′, we have

A := (L+Q(t, ·))∗L′

where we define t = limn→∞ t[n]. (Observe that t(pXq) = [pXq].) It is not immediate from
Proposition 13 that A exists, but it can be proved:

T. BRÁZDIL, J. ESPARZA, S. KIEFER FSTTCS 2009 9

PROPOSITION 14. The matrix A exists and its spectral radius ρ satisfies ρ < 1.

Proposition 14 is the technical core of this paper. Its proof is quite involved and relies

on Perron-Frobenius theory [2]. We give a proof sketch and a full proof in [5].

EXAMPLE 15 The termination probabilities t can be computed as the least solution of a nonlinear

equation system [8, 11]. Applied to our example we obtain t(X) = 2−
√
2 ≈ 0.586 and t(Y) = 1.

Basic computations yield the following matrix A whose spectral radius is ρ = 1/2.

A =

(
1/(2+

√
2) 1/(4+ 2

√
2)

0 1/2

)

3.2 Approximating the Distribution and a Tail Bound

We can assume p0X0 ∈ H in the following, because otherwise, by Lemma 8, we would have
P[n](p0X0) = 0 for n ≥ |Q|2|Γ| + 3, removing any need for further analysis.
The following theorem suggests an efficient approximation algorithm.

THEOREM 16. Let n⊥ := |Q|2|Γ|+ 3 and p̂[n] := p[n] for n < n⊥ and p̂[n⊥ + n] := Anp[n⊥]
for n ≥ 0. Then p[n] ≤ p̂[n] holds for all n ≥ 1. Moreover, there exists d with 0 < d ≤ 1 and

d · p̂[n](p0X0) ≤ p[n](p0X0) ≤ p̂[n](p0X0) .

The proposition shows that p[n](p0X0) and the approximation p̂[n](p0X0) differ at most by
a constant factor. Given A, the matrix powers An can be computed by repeated squaring,

which allows to compute this upper bound in timeO
(
(|Q| · |Γ|)3 · log n

)
in the Blum-Shub-

Smale model. To compute A = (L+Q(t, ·))∗L′ itself, we can compute thematrix star via the
matrix inverse, as stated in the preliminaries. Computing the vector t of termination prob-

abilities requires a more detailed discussion. The vector is the least solution of a nonlinear

equation system, and its components may be irrational and even non-expressible by radi-

cals [8, 11]. However, there are several ways to compute at least upper bounds on t (which

suffices to obtain upper bounds on p[n], as A depends monotonically on t), or lower-bound
approximations sufficiently accurate for all practical purposes, see [5] for a discussion. The-

orem 16 provides a tail bound for p[n](p0X0):

COROLLARY 17. We have p[n](p0X0) ∈ Θ (ρn) .

EXAMPLE 18 Since in our example Proposition 13 holds already for n ≥ 2, we have p̂[n] = An−11
for n ≥ 1. With the matrix A from Example 15 and using p[n] ≤ p̂[n] we obtain:

p[2] ≤ 0.5 · 1 , p[5] ≤ 0.07 · 1 , p[17] ≤ 10−4 · 1 , p[65] ≤ 10−19 · 1 , . . .

Binary search can be used to determine that n = 18 is the least number n for which p[n] ≤ p̂[n] ≤
10−5 · 1 holds, so the comparison with Example 6 shows that the overapproximation is quite tight
here. As ρ = 1/2, Corollary 17 yields p[n](p0X0) ∈ Θ (1/2n).

10 ON THE MEMORY CONSUMPTION OF PROBABILISTIC PUSHDOWN AUTOMATA

3.3 Approximating the Expectation

We define an approximation method for the expectation EMp0X0 , and bound its error. As

mentioned below Proposition 7, we have EMp0X0 = ∑
∞
n=1 p[n](p0X0), which can be (under-)

approximated by the partial sums∑
k
n=1 p[n](p0X0). The values p[n](p0X0) can be computed

using Proposition 11.

The following theorem gives error bounds on this approximation method and shows

that it converges linearly, i.e., the number of accurate bits (as defined in [14]) is a linear

function of the number of iterations. (Recall for the following statement that for a vector

v ∈ R
H its 1-norm ‖v‖1 is defined as ∑h∈H |v(h)|, and that for a matrix B its 1-norm ‖B‖1 is

the maximal 1-norm of its columns.)

THEOREM 19. Let UMp0X0(k) := ∑
k
n=1 p[n](p0X0). For all k ≥ |Q|2|Γ| + 3

EMp0X0 −UMp0X0(k) ≤ ‖A∗‖1 ‖p[k]‖1 ≤ abk

where a > 0 and 0 < b < 1 are computable rational numbers. Hence, the sequence
(UMp0X0(k))k converges linearly to EMp0X0 .

The computation procedure of the constants a and b from Theorem 19 is somewhat

involved, but the first inequality of Theorem 19 gives concrete error bounds as well:

EXAMPLE 20 Using Proposition 11 we compute ∑
12
n=1 p[n](X) = 1.5731 . . . and furthermore

‖p[12]‖1 ≈ 0.00042. We have ‖A∗‖1 = 1+
√
2 ≈ 2.4. Theorem 19 yields

1.57 < EMX ≤ 1.5731 . . .+ ‖A∗‖1 · ‖p[12]‖1 < 1.58 .

4 Finiteness of the Expected Memory Consumption

In this section we study the complexity of the finite-expectation problem that asks whether

the expectation of the memory consumption is finite.

4.1 Expected Memory Consumption of pPDA

For pPDA we can show the following theorem.

THEOREM 21. The problem whether EMp0X0 is finite is decidable in polynomial space.

The proof is based on the following proposition which strengthens Proposition 14 from

the previous section which stated that, under the assumption that EMp0X0 is finite, the spec-

tral radius ρ of A satisfies ρ < 1.

PROPOSITION 22. Suppose P(Mp0X0 < ∞) = 1. Then the matrix A exists. Moreover, its
spectral radius ρ satisfies ρ < 1 if and only if EMp0X0 is finite.

The condition P(Mp0X0 < ∞) = 1 can be checked in polynomial space [9]. If it does
not hold, then clearly EMp0X0 = ∞. Otherwise one checks ρ ≥ 1. Roughly speaking, this
can be done in polynomial space because the matrix A is given in terms of the termination

probabilities t which can be expressed in the existential theory of the reals.

T. BRÁZDIL, J. ESPARZA, S. KIEFER FSTTCS 2009 11

We can also show that this upper complexity bound from Theorem 21 cannot be signifi-

cantly lowered without a major breakthrough on long-standing and fundamental problems

on numerical computations, namely the SQRT-SUM and the PosSLP problems [1, 11, 5]:

THEOREM 23. The PosSLP problem is P-time many-one reducible to the decision problem
whether the expected maximal height of a pPDA is finite.

It follows that SQRT-SUM is (Turing) reducible to the finite-stack problem, because

SQRT-SUM is (Turing) reducible to PosSLP [1, 11].

4.2 Expected Memory Consumption of pBPA

Now we show that for pBPA the finite-expectation problem can be decided in polynomial

time. Let us fix a pBPA ∆ = ({p}, Γ, δ,Prob), and fix an initial configuration X0 ∈ Γ. Let Γ0
denote the set of all symbols Y ∈ Γ such that YΓ∗ is reachable from X0. Let Term be the set
of all symbols X ∈ Γ0 such that t(X) = 1, i.e., a run from a Term-symbol terminates almost
surely. We define NTerm = Γ0\Term. The following proposition follows from [11].
PROPOSITION 24. The sets Term and NTerm can be computed in polynomial time.

ALGORITHM DECIDING WHETHER EMX0 IS FINITE:

1. Compute the sets Term and NTerm (using Proposition 24).

2. Decide in polynomial time [5] whether all Y ∈ NTerm satisfy P(MY < ∞) = 1. If no,
then stop and return ‘no’.

3. Decide in polynomial time [5] whether all Y ∈ Term satisfy EMY < ∞. If no, then

return ‘no’. Otherwise return ‘yes’.

THEOREM 25. The above algorithm is polynomial. It returns ‘yes’ iff EMX0 is finite.

5 Conclusions

We have investigated the memory consumption of probabilistic pushdown automata

(pPDA). Technically speaking, we have studied the random variable M returning the maxi-

mal stack height of a pPDA. In [9] a PSPACE algorithm was provided for deciding whether

the runs withM = ∞ have nonzero probability, but the distribution ofM and its expectation

have not been studied. For computing the distribution of M, we have shown that the expo-

nential blow-up of the naive method can be avoided using a system of linear equations. We

have also provided an approximation method that gives upper bounds. This can be used,

e.g., for providing space that suffices with a probability of, say, 99%.

Computing the expectation EM was mentioned in [9] as “harder problem” and left

open. Using novel proof techniques, we have provided a rather complete solution. We

have shown that whether the expected maximal stack height of a pBPA is finite can be

decided in polynomial time, while for general pPDA the problem is in PSPACE. By means

of a reduction to the PosSLP and SQRT-SUM problems we have furthermore shown that

this complexity cannot be significantly lowered without major breakthroughs. Finally, we

have defined an iterative method for approximating the expectedmaximal stack height, and

12 ON THE MEMORY CONSUMPTION OF PROBABILISTIC PUSHDOWN AUTOMATA

have shown that it converges linearly. The complexity of the decision problem EMp0X0 < k

for a finite bound k is an open question.

References

[1] E. Allender, P. Bürgisser, J. Kjeldgaard-Pedersen, and P. B. Miltersen. On the complexity

of numerical analysis. In IEEE Conference on Computational Complexity, pages 331–339.

IEEE Computer Society, 2006.

[2] A. Berman and R.J. Plemmons. Nonnegative matrices in the mathematical sciences. Aca-

demic Press, 1979.

[3] R.D. Blumofe and C.E. Leiserson. Scheduling multithreaded computations by work

stealing. Journal of the ACM, 46(5):720–748, 1999.

[4] A. Bouajjani and J. Esparza. Rewriting models of boolean programs. In Proceedings of

RTA 2006, Seattle, USA, 2006.

[5] T. Brázdil, J. Esparza, and S. Kiefer. On the memory consumption of probabilistic push-

down automata. Technical Report FIMU-RS-2009-07, Masaryk University, 2009. Avail-

able at http://www.fi.muni.cz/reports/files/2009/FIMU-RS-2009-07.pdf.

[6] T. Brázdil, J. Esparza, and A. Kučera. Analysis and prediction of the long-run behavior

of probabilistic sequential programs with recursion. In FOCS’05, pages 521–530, 2005.

[7] J. Esparza and K. Etessami. Verifying probabilistic procedural programs. In FSTTCS

2004, pages 16–31, 2004.

[8] J. Esparza, A. Kučera, and R. Mayr. Model checking probabilistic pushdown automata.

In LICS 2004, pages 12–21. IEEE, 2004.

[9] J. Esparza, A. Kučera, and R. Mayr. Quantitative analysis of probabilistic pushdown

automata: Expectations and variances. In LICS’05, pages 117–126. IEEE, 2005.

[10] K. Etessami and M. Yannakakis. Recursive concurrent stochastic games. Logical Meth-

ods in Computer Science, 4(4), 2008.

[11] K. Etessami and M. Yannakakis. Recursive markov chains, stochastic grammars, and

monotone systems of nonlinear equations. Journal of the ACM, 56(1):1–66, 2009.

[12] E.M. Hahn, H. Hermanns, B. Wachter, and L. Zhang. INFAMY: An infinite-state

Markov model checker. In CAV, LNCS 5643, pages 641–647, 2009.

[13] R.A. Horn and C.A. Johnson. Matrix Analysis. Cambridge University Press, 1985.

[14] S. Kiefer, M. Luttenberger, and J. Esparza. On the convergence of Newton’s method for

monotone systems of polynomial equations. In STOC 2007, pages 217–226, 2007.

[15] G.J. Narlikar and G.E. Belloch. Space-efficient scheduling of nested parallelism. ACM

TOPLAS, 21(1):138–173, 1999.

[16] A. Remke, B. Haverkort, and L. Cloth. CSL model checking algorithms for QBDs.

Theoretical Computer Science, 382(1):24–41, 2007.

[17] P. Schnoebelen. The verification of probabilistic lossy channel systems. In Validation of

Stochastic Systems, LNCS 2925, pages 445–465. Springer, 2004.

[18] M. Yannakakis and K. Etessami. Checking LTL properties of recursive Markov chains.

In QEST 2005, pages 155–165, 2005.

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 License.

