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Abstract
We study the following summarization problem: given a parallel composition A = A1 ‖ . . . ‖
An of labelled transition systems communicating with the environment through a distinguished
componentAi, efficiently compute a summary Si such that E ‖ A and E ‖ Si are trace-equivalent
for every environment E. While Si can be computed using elementary automata theory, the
resulting algorithm suffers from the state-explosion problem. We present a new, simple but subtle
algorithm based on net unfoldings, a partial-order semantics, give some experimental results using
an implementation on top of Mole, and show that our algorithm can handle divergences and
compute weighted summaries with minor modifications.
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1 Introduction

We address a fundamental problem in automatic compositional verification. Consider a
parallel composition A = A1 ‖ . . . ‖ An of processes, modelled as labelled transition systems,
which is itself part of a larger system E ‖ A for some environment E. Assume that Ai is
the interface of A with the environment, i.e., A communicates with the outer world only
through actions of Ai. The task consists in computing a new interface Si with the same set
of actions as Ai such that E ‖ A and E ‖ Si have the same behaviour. In other words, the
environment E cannot distinguish between A and Si. Since Si usually has a much smaller
state space than A (making E ‖ A easier to analyse) we call it a summary.

We study the problem in a CSP-like setting [12]: parallel composition is by rendez-vous,
and the behaviour of a transition system is given by its trace semantics.

It is easy to compute Si using elementary automata theory: we first compute the transition
system of A, whose states are tuples (s1, . . . , sn), where si is a state of Ai. Then we hide
all actions except those of the interface, i.e., we replace them by ε-transitions (τ -transitions
in CSP terminology). We can then eliminate all ε-transitions using standard algorithms,
and, if desired, compute the minimal summary by applying e.g. Hopcroft’s algorithm. The
problem of this approach is the state-space explosion: the number of states of A can grow
exponentially in the number of sequential components. While this is unavoidable in the worst
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case (deciding whether Si has an empty set of traces is a PSPACE-complete problem, and
the minimal summary Si may be exponentially larger than A1, . . . ,An in the worst case, see
e.g. [10]) the combinatorial explosion happens already in trivial cases: if the components
A1, . . . ,An do not communicate at all, we can obviously take Si = Ai, but the algorithm we
have just described will need exponential time and space.

We present a technique to palliate this problem based on net unfoldings (see e.g. [4]).
Net unfoldings are a partial-order semantics for concurrent systems, closely related to event
structures [21], that provides very compact representations of the state space for systems
with a high degree of concurrency. Intuitively, an unfolding is the extension to parallel
compositions of the notion of unfolding a transition system into a tree. The unfolding is
usually infinite. We show how to algorithmically construct a finite prefix of it from which
the summary can be easily extracted. The algorithm can be easily implemented re-using
many components of existing unfolders like Punf1 and Mole2. However, its correctness
proof is surprisingly subtle. This proof is the main contribution of the paper, but we also
evaluate the algorithm on some classical benchmarks [2].

Related work. The summarization problem has been extensively studied in an inter-
leaving setting (see e.g. [9, 20, 22]), in which one first constructs the transition system of A
and then reduces it. We study it in a partial-order setting.

Net unfoldings, and in general partial-order semantics, have been used to solve many
analysis problems: deadlock [17, 14], reachability and model-checking questions [5, 3, 13, 4, 1],
diagnosis [6], and other specific applications [16, 11]. To the best of our knowledge we are
the first to explicitly study the summarization problem.

Our problem can be solved with the help of Zielonka’s algorithm [23, 18, 8], which
yields an asynchronous automaton trace-equivalent to A. The projection of this automaton
onto the alphabet of Ai yields a summary Si. However, Zielonka’s algorithm is notoriously
complicated and, contrary to our algorithm, requires to store much additional information
for each event [18].

In [7], the complete tuple S1, . . . ,Sn is computed by means of an iterative message-passing
algorithm that transfers information between components until a fixed point is reached.
However, the fixed point is only guaranteed to be reached when the communication graph is
acyclic.

2 Preliminaries

Transition systems. A labelled transition system (LTS) is a tuple A = (Σ, S, T, λ, s0)
where Σ is a set of actions, S is a set of states, T ⊆ S × S is a set of transitions, λ : T → Σ
is a labelling function, and s0 ∈ S is an initial state. An a-transition is a transition labelled
by a. A (finite or infinite) action sequence σ = a1a2a3 . . . ∈ Σ∗ ∪ Σω is a trace of A if there
is a (finite or infinite) sequence s0s1s2 . . . of states such that s0 = s0, ti = (si−1, si) ∈ T
and λ(ti) = ai for every i. The path s0 . . . sn is a realization of σ. The set of traces of A is
denoted by Tr(A). Figure 1 shows three transition systems.

Let A1, . . . ,An be LTSs where Ai = (Σi, Si, Ti, λi, s
0
i ). The parallel composition A =

A1 ‖ . . . ‖ An is the LTS defined as follows. The set of actions is Σ = Σ1∪. . .∪Σn. The states,
called global states, are the tuples s = (s1, . . . , sn) such that si ∈ Si for every i ∈ {1..n}.
The initial global state is s0 = (s0

1, . . . , s
0
n). The transitions, called global transitions, are

1 homepages.cs.ncl.ac.uk/victor.khomenko/tools/punf/
2 http://www.lsv.ens-cachan.fr/∼schwoon/tools/mole/
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Figure 1 Three labeled transition systems (left) and a branching process (right)

the tuples t = (t1, . . . , tn) ∈ (T1 ∪ {?}) × · · · × (Tn ∪ {?}) \ {(?, . . . , ?)} such that there is
an action a ∈ Σ satisfying for every i ∈ {1..n}: if a ∈ Σi, then ti is an a-transition of Ti,
otherwise ti = ?; the label of t is the action a. If ti 6= ? we say that Ai participates in t. It
is easy to see that σ ∈ Σ∗ ∪Σω is a trace of A iff for every i ∈ {1..n} the projection of σ on
Σi, denoted by σ|Σi

, is a trace of Ai.
Petri nets. A labelled net is a tuple (Σ, P, T, F, λ) where Σ is a set of actions, P and

T are disjoint sets of places and transitions (jointly called nodes), F ⊆ (P × T ) ∪ (T × P )
is a set of arcs, and λ : P ∪ T → Σ is a labelling function. For x ∈ P ∪ T we denote
by •x = { y | (y, x) ∈ F } and x• = { y | (x, y) ∈ F } the sets of inputs and outputs of
x, respectively. A set M of places is called a marking. A labelled Petri net is a tuple
N = (Σ, P, T, F, λ,M0) where (Σ, P, T, F, λ) is a net and M0 ⊆ P is the initial marking. A
marking M enables a transition t ∈ T if •t ⊆M . In this case t can occur or fire, leading to
the new marking M ′ = (M \ •t)∪ t•. An occurrence sequence is a (finite or infinite) sequence
of transitions that can occur from M0 in the order specified by the sequence. A trace is the
sequence of labels of an occurrence sequence. The set of traces of N is denoted by Tr(N ).

Branching processes. The finite branching processes of A = A1 ‖ . . . ‖ An are
labelled Petri nets whose places are labelled with states of A1, . . . ,An, and whose transitions
are labelled with global transitions of A. (Since global transitions are labelled with actions,
each event is also implicitly labelled with an action.) Following tradition, we call the places
and transitions of these nets conditions and events, respectively. We say that a marking M
of these nets enables a global transition t of A if for every state s ∈ •t some condition of M
is labelled by s. The set of finite branching processes of A is defined inductively as follows:
1. A labelled Petri net with conditions b01, ..., b0n labelled by s0

1, . . . , s
0
n, no events, and with

initial marking {b01, ..., b0n}, is a branching process of A.
2. Let N be a branching process of A such that some reachable marking of N enables some

global transition t. Let M be the subset of conditions of the marking labelled by •t. If
N has no event labelled by t with M as input set, then the Petri net obtained by adding
to N : a new event e, labelled by t; a new condition for every state s of t•, labelled by s;
new arcs leading from each condition of M to e, and from e to each of the new conditions,
is also a branching process of A.

Figure 1 shows on the right a branching process of the parallel composition of the LTSs on
the left. Events are labelled with their corresponding actions.

The set of all branching processes of a net, finite and infinite, is defined by closing the
finite branching processes under countable unions (after a suitable renaming of conditions
and events) [4]. In particular, the union of all finite branching processes yields the unfolding
of the net, which intuitively corresponds to the result of exhaustively adding all extensions
in the definition above.
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A trace of a branching process N is the sequence of action labels of an occurrence sequence
of events of N . In Figure 1, firing the events on the top half of the process yields any of the
traces cbdcbd, cdbcbd, cbdcdb, or cdbcdb. The sets of traces of A and of its unfolding coincide.

Let x, y be nodes of a branching process. We say that x is a causal predecessor of y,
denoted by x < y, if there is a non-empty path of arcs from x to y; further, x ≤ y denotes
that either x < y or x = y. If x ≤ y or x ≥ y, then x and y are causally related. We say that
x and y are in conflict, denoted by x # y, if there is a condition z (different from x and y)
from which one can reach both x and y, exiting z by different arcs. Finally, x and y are
concurrent if they are neither causally related nor in conflict.

A set of events E is a configuration if it is causally closed (that is, if e ∈ E and e′ < e then
e′ ∈ E) and conflict-free (that is, for every e, e′ ∈ E, e and e′ are not in conflict). The past
of an event e, denoted by [e], is the set of events e′ such that e′ ≤ e (so it is a configuration).
For any event e, we denote by M(e) the unique marking reached by any occurrence sequence
that fires exactly the events of [e]. Notice that, for each component Ai of A, M(e) contains
exactly one condition labelled by a state of Ai. We denote this condition by M(e)i. We
write St(e) = {λ(x) | x ∈M(e) } and call it the global state reached by e.

3 The Summary Problem

Let A = A1 ‖ · · · ‖ An be a parallel composition with a distinguished component Ai, called
the interface. An environment of A is any LTS E (possibly a parallel composition) that
only communicates with A through the interface, i.e, ΣE ∩ (Σ1 ∪ . . . ∪ Σn) = ΣE ∩ Σi.
We wish to compute a summary Si, i.e., an LTS with the same actions as Ai such that
Tr(E ‖ A)|ΣE = Tr(E ‖ Si)|ΣE for every environment E, where X|Σ denotes the projection
of the traces of X onto Σ. It is well known (and follows easily from the definitions) that this
holds iff Tr(Si) = Tr(A)|Σi

[12]. We therefore address the following problem:

I Definition 1 (Summary problem). Given LTSs A1, . . . ,An with interface Ai, compute an
LTS Si satisfying Tr(Si) = Tr(A)|Σi

, where A = A1 ‖ · · · ‖ An.

The problem can be solved by computing the LTS A, but the size of A can be exponential
in A1, . . . ,An. So we investigate an unfolding approach.

The interface projection Ni of a branching process N of A onto Ai is the following
labelled subnet of N : (1) the conditions of Ni are the conditions of N with labels in Si; (2)
the events of Ni are the events of N where Ai participates; (3) (x, y) is an arc Ni iff it is an
arc of N and (x, y) are nodes of Ni. Obviously, every event of Ni has exactly one input and
one output condition, and Ni can therefore be seen as an LTS; abusing language, sometimes
we speak of the LTS Ni. The interface projection N1 for the branching process of Figure 1 is
the subnet given by the black conditions and their input and output events, and its LTS
representation is shown in the left of Figure 2.
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Figure 2 Projection of the branching process of Figure 1 on A1 (left) and a folding (right)

The projection Ui of the full unfolding of A onto Ai clearly satisfies Tr(Ui) = Tr(A)|Σi
;

however, Ui can be an infinite transition system. In the rest of the paper we show how to
compute a finite branching process N and an equivalence relation ≡ between the conditions
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of Ni such that the result of folding Ni into a finite transition system by merging the
conditions of each equivalence class yields the desired Si. The folding of Ni with respect to
an equivalence relation ≡ on the conditions of Ni is standardly defined: its states are the
equivalence classes of ≡, and every transition (s, s′) of Ni yields a transition ([s]≡, [s′]≡) of
the folding. Figure 2 shows on the right the result of folding the LTS on the left when the
only equivalence class with more than one member is formed by the two rightmost states
labelled by q2.

We construct N by starting with the branching processes without events and iteratively
adding events according to the definition of branching processes. Some events are marked as
cut-offs [4]. An event e added to N becomes a cut-off if N already contains an e′, called
the companion of e, satisfying a certain, yet to be specified cut-off condition. Events with
cut-offs in their past cannot be added. The algorithm terminates when no more events
can be added. The equivalence relation ≡ is determined by the interface cut-offs: the
cut-offs labelled with interface actions. If an interface cut-off e has companion e′, then we
set M(e)i ≡M(e′)i. Algorithm 1 is pseudocode for the unfolding, where Ext(N , co) denotes
the possible extensions: the events which can be added to N without events from co in their
past.

Algorithm 1 Unfolding procedure for a product A.
let N be the unique branching process of A without events and let co = ∅
While Ext(N , co) 6= ∅ do

choose e in Ext(N , co) and extend N with e
If e is a cut-off event then let co = co ∪ {e}

For every e ∈ co with companion e′ do merge [M(e)i]≡ and [M(e′)i]≡

Notice that the algorithm is nondeterministic: the order in which events are added is
not fixed (other than the fact that this order must necessarily respect causal relations).
Our task consists in finding a definition of cut-offs such that the LTS Si delivered by the
algorithm with this definition is a correct solution to the summary problem. Several papers
have adressed the problem of defining cut-offs such that the branching process delivered by
the algorithm contains all global states of the system (see [4] and the references therein).
Appendix A.1 shows that these approaches do not “unfold enough”.

4 Two Attempts

The right definition of cut-offs turns out to be remarkably subtle, and so we approach it in a
series of steps.

4.1 First attempt
In the following we shall call events in which Ai participates i-events for short; analogously,
we call i-conditions the conditions labelled by states of Ai.

The simplest idea is to declare an i-event e a cut-off if the branching process already
contains another i-event e′ such that St(e) = St(e′). Intuitively, the behaviours of the
interface the configurations [e] and [e′] is identical, and so we only explore the future of [e′].

Cut-off definition 1. An event e is a cut-off event if it is an i-event and N contains
an i-event e′ such that St(e) = St(e′).

It is not difficult to show that this definition is correct for non-divergent systems.
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I Definition 2. A parallel composition A with interface Ai is divergent if some infinite trace
of A contains only finitely many occurrences of actions of Σi.

I Theorem 3. Let A be non-divergent. The instance of Algorithm 1 with cut-off definition
1 terminates with a finite branching process N , and the folding Si of Ni is a summary of A.

The proof of this theorem is given in Appendix A.2
The system of Figure 1 is non-divergent. Algorithm 1 computes the branching process on

the right of Figure 1. The only cut-off is the dashed event with companion 3. The folding is
shown in Figure 2 (right) and is a correct summary.

However, cut-off definition 1 never works if A is divergent because the unfolding procedure
does not terminate. Indeed, if the system has divergent traces then we can easily construct
an infinite firing sequence of the unfolding such that none of the finitely many i-events in the
sequence is a cut-off. Since no other events can be cut-offs, Algorithm 1 adds all events of
the sequence. This occurs for instance for the system of Figure 3 with interface A1, where
the occurrence sequence of the unfolding for the trace i(fcd)ω contains no cut-off.

4.2 Second attempt

To ensure termination for divergent systems, we extend the definition of cut-off. For this, we
define for each event e its i-predecessor. Intuitively, the i-predecessor of an event e is the last
condition that e “knows” has been reached by the interface.

I Definition 4. Let e be an event. The i-predecessor of e, denoted by ip(e), is the condition
M(e)i.

Assume now that two events e1 < e2, neither of them interface event, satisfy ip(e1) = ip(e2)
and St(e1) = St(e2). Then any occurrence sequence σ that executes the events of the set
[e2]\ [e1] leads from a marking to itself and contains no interface events. So σ can be repeated
infinitely often, leading to an infinite trace with only finitely many interface actions. It is
therefore plausible to mark e2 as cut-off event, in order to avoid this infinite repetition.

Cut-off definition 2. An event e is a cut-off if
(1) e is an i-event, and N contains an i-event e′ with St(e) = St(e′), or
(2) e is not an i-event, and N contains an event e′ < e such that St(e) = St(e′) and

ip(e) = ip(e′).

A first contribution of our paper is an example showing that this natural definition
does not work: the algorithm always terminates but can yield a wrong result. Consider
the parallel composition at the left of Figure 3, with interface A1. It is easy to see that
Tr(A)|Σ1 = Tr(A1) = iab∗e. For any strategy the algorithm generates the branching process
N at the top right of the figure. N has two cut-off events: the interface event 6, which is
of type (1), and event 8, a non-interface event, of type (2). Event 6 has 5 as companion,
with St(5) = {q2, r2, s2}. Event 8 has 0 as companion, with St(0) = {q1, r1, s1} = St(8);
moreover, 0 < 8 and ip(0) = ip(8). The folding of N1 is shown at the bottom right of the
figure. It is clearly not trace-equivalent to A1 because it “misses” the trace iabe. The dashed
event at the bottom right, which would correct this, is not added by the algorithm because
it is a successor of 8.
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Figure 3 Cut-off definition 2 produces an incorrect result on A = A1 ‖ A2 ‖ A3

5 The Solution

Intuitively, the reason for the failure of our third attempt on the example of Figure 3 is
that A1 can only execute iabe if A2 and A3 execute ifcd first. However, when the algorithm
observes that the markings before and after the execution of ifcd are identical, it declares 8
a cut-off event, and so it cannot “use” it to construct event e. So, on the one hand, 8 should
not be a cut-off event. But, on the other hand, some event of the trace i(fcd)ω must be
declared cut-off, otherwise the algorithm does not terminate.

The way out of this dilemma is to introduce cut-off candidates. If an event is declared
a cut-off candidate, the algorithm does not add any of its successors, just as with regular
cut-offs. However, cut-off candidates may stop being candidates if the addition of a new
event frees them. (So, an event is a cut-off candidate with respect to the current branching
process.) A generic unfolding procedure using these ideas is given in Algorithm 2, where
Ext(N , co, coc) denotes the possible extensions of N that do not have any event of co or coc
in their past. Assuming suitable definitions of cut-off candidates and freeing, the algorithm
would, in our example, declare event 8 a cut-off candidate, momentarily stop adding any of
its successors, but later free event 8 when event 5 is discovered.

Algorithm 2 Unfolding procedure for a product A.
let N be the unique branching process of A without events; let co = ∅ and coc = ∅
While Ext(N , co, coc) 6= ∅ do

choose e in Ext(N , co, coc) according to the search strategy
If e is a cut-off event then let co = co ∪ {e}
Elseif e is a cut-off candidate of N then let coc = coc ∪ {e}
Else for every e′ ∈ coc do
If e frees e′ then coc = coc \ {e′}

extend N with e
For every e ∈ co with companion e′ do merge [M(e)i]≡ and [M(e′)i]≡

The main contribution of our paper is the definition of a correct notion of cut-off candidate
for the projection problem. We shall declare event e a cut-off candidate if e is not an interface
event, and N contains a companion e′ < e such that St(e′) = St(e), ip(e) = ip(e′), and,
additionally, no interface event e′′ of N is concurrent with e without being concurrent with
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e′. As long as this condition holds, the successors of e are put “on hold”. In the example of
Figure 3, if the algorithm first adds events 0, 3, 4, and 8, then event 8 becomes a cut-off
candidate with 0 as companion. However, the addition of the interface event 5 frees event 8,
because 5 is concurrent with 8 and not with 0.

However, we are not completely done yet. The parallel composition at the left of Figure 4
gives an example in which even with this notion of cut-off candidate the result is still wrong.
A1 is the interface. One branching process is represented at the top right of the figure.
Event 3 (concurrent with 1) is a cut-off candidate with 2 (concurrent with 1, 4, and 5) as
companion. This prevents the lower dashed part of the net to be added. Event 6 is cut-off
with 1 as companion. This prevents the upper dashed part of the net to be added. The
refolding obtained then (bottom right) does not contain the word e1e2e3e2.
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Figure 4 An example illustrating the use of strong causality

If we wish a correct algorithm for all strategies, we need a final touch: replace the
condition e′ < e by e′ � e, where � is the strong causal relation:

I Definition 5. Event e′ is a strong cause of event e, denoted by e′ � e, if e′ < e and b′ < b

for every b ∈M(e) \M(e′), b′ ∈M(e′) \M(e).

Using this definition, event 3 is no longer a cut-off candidate in the branching process of
Figure 4 as it is not in strong causal relation with its companion 2 (because the t2-labelled
condition just after 2 belongs to M(2) \M(3) and is not causally related with the r1-labelled
condition just after 0 which belongs to M(3) \M(2)).

We are now in a position to provide adequate definitions for Algorithm 2.

I Definition 6 (Cut-off and cut-off candidate). Let IcoN (e) denote the set of non cut-off
interface events of N that are concurrent with e. An event e

is a cut-off if it is an i-event, and N contains an i-event e′ such that St(e) = St(e′).
is a cut-off candidate of N if it is not an i-event, and N contains e′ � e such that
St(e) = St(e′), ip(e′) = ip(e), and IcoN (e) ⊆ IcoN (e′).
frees a cut-off candidate ec of N if ec is not a cut-off candidate of the branching process
obtained by adding e to N .

I Theorem 7. Let A = A1 ‖ . . . ‖ An with interface Ai. The instance of Algorithm 2 given
by Definition 6 terminates and returns a branching process N such that the folding Si of Ni
is a summary of A.
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The proof of this Theorem is involved. It is given in the Appendix A.3. We sketch
the main ideas. Termination follows from a lemma showing that every infinite chain of
causally related events contains an infinite subchain of strongly causally related events. The
equality Tr(Si) = Tr(A)|Σi is proved in two parts. Tr(Si) ⊆ Tr(A)|Σi follows easily from
the definitions. The proof of Tr(Si) ⊇ Tr(A)|Σi

is more involved. For every trace of A we
identify a strongly succinct occurrence sequence in the unfolding with this trace as projection.
Intuitively, in such a sequence, interface events occur as early as possible, and the number
of non-interface events occurring between them is minimal. The main point in the proof is
to show that every cut-off in strongly succinct sequences is necessarily an interface event,
which allows one to conclude the proof as in the non-divergent case. This is proved by
contradiction: If e is a cut-off candidate with companion e′, we show that (1) e and e′ are
located between the same two interface events (this uses IcoN (e) ⊆ IcoN (e′)), (2) there is
no i-event in [e] \ [e′], and (3) every event of [e] \ [e′] is also located between the same two
interface events (this is ensured by e′ � e). The events from [e] \ [e′] can then be removed
from the sequence, contradicting the definition of strongly succinct sequence.

6 Implementation and Experiments

Test case Events Markings
CyclicC(6) 426 639
CyclicC(9) 3347 7423
CyclicC(12) 26652 74264

CyclicS(6) 303 639
CyclicS(9) 2328 7423
CyclicS(12) 18464 74264

Dac(9) 86 1790
Dac(12) 134 14334
Dac(15) 191 114686

Dp(6) 935 729
Dp(8) 5121 6555
Dp(10) 31031 48897

Dpd(4) 2373 601
Dpd(5) 23789 3489
Dpd(6) 245013 19861

Dpsyn(10) 176 123
Dpsyn(20) 701 15127
Dpsyn(30) 1576 1860498

Ring(5) 511 1290
Ring(7) 3139 17000
Ring(9) 16799 211528
Table 1 Experimental results

As an illustration of the previous results, we report in
this section on an implementation of Algorithm 2 as a
modification of the existing unfolding tool Mole. All
programs and data used are publicly available.3 Many
components of Mole could be re-used. The main
work consisted in determining cut-off candidates and
the “freeing” condition of Definition 6. This required
two main algorithmic additions discussed in detail in
Appendix B: (i) an efficient traversal of [e], for a given
event e that allows to determine the conditions for
cut-off candidates; (ii) computing IcoN (e) for an event
e. Both additions could be obtained by extending
existing components of the tool. While the additions
were not always trivial, they could be obtained with
small additional overhead.

We tested our implementation on well-known
benchmarks used widely in the unfolding literature,
see e.g. [2, 5, 15]. The input is the set of components
A1, . . . ,An, which are converted into an equivalent
Petri net. For each example, we report the number
of events (including cutoffs) in the prefix. Notice that
this prefix is computed in less than one second in
most cases (more detailed experimental results are
given in Appendix C). We also report the number
of reachable markings (taken from [19] where available, and computed combinatorially for
DpSyn). Comparing this with the number of events gives a rough indication on how long a
‘trivial’ algorithm that computes the entire reachability graph (cf. Introduction) would take
compared to our approach.

3 http://www.lsv.ens-cachan.fr/$\sim$schwoon/tools/mole/summaries.tar.gz

http://www.lsv.ens-cachan.fr/$\sim $schwoon/tools/mole/summaries.tar.gz
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The experiments are summarized in Table 1. We used the following families of examples:
the CyclicC and CyclicS families are a model of Milner’s cyclic scheduler with n consumers
and n schedulers; in one case we compute the folding for a consumer, in the other for a
scheduler. The Dac family represents a divide-and-conquer computation. Ring is a mutual-
exclusion protocol on a token-ring. The tasks are not entirely symmetric, we report the
results for the first. Finally, Dp, Dpsyn, and Dpd are variants of Dining Philosophers. In
Dp, philosophers take and release forks one by one, whereas in Dpsyn they take and release
both at once. In Dpd, deadlocks are prevented by passing a dictionary.

In all cases except one (Dpd) our algorithm needs clearly fewer events than there are
reachable markings; in some families (Dac, Dpsyn, Ring) there are far fewer events. A
comparison of Dp and Dpsyn is instructive. In Dp, neighbours can concurrently pick and
drop forks. Intuitively, this leads to fewer cases in which the condition IcoN (e) ⊆ IcoN (e′)
for cut-off candidates is satisfied. On the other hand, in Dpsyn both forks are picked and
dropped synchronously, and so no event in Ai is concurrent to any event in the neighbouring
components, making the unfolding procedure much more efficient.

7 Extensions: Divergences and Weights

7.1 Divergences
We extend our algorithm so that the summary also contains information about divergences.
Intuitively, a divergence is a finite trace of the interface after which the system can “remain
silent” forever.

I Definition 8. Let A1, . . . ,An be LTSs with interface Ai. A divergence of Ai is a finite
trace σ ∈ Tr(Ai) such that σ = τ|Σi

for some infinite trace τ ∈ Tr(A).
A divergence-summary is a pair (Si, D), where Si is a summary and D is a subset of

states of Si such that σ ∈ Tr(Si) is a divergence of Ai iff some realization of σ in Si leads to
a state of D.

We define the set of divergent conditions of the output of Algorithm 2, and show that it
is a correct choice for the set D.

I Definition 9. Let N be the output of Algorithm 2. A condition s of Ni is divergent if after
termination of the algorithm there is e ∈ coc with companion e′ such that s is concurrent to
both e and e′. We denote the set of divergent conditions by DC .

I Theorem 10. A finite trace σ ∈ Tr(Si) is a divergence of Ai iff there is a divergent
condition s of Ni such that some realization of σ leads to [s]≡. Therefore, (Si, [DC ]≡) is a
divergence-summary.

The proof of this theorem is given in Appendix A.4

7.2 Weights
We now consider weighted systems, e.g parallel compositions of weighted LTS. More formally,
a weighted LTS Aw = (A, c) consists of an LTS A = (Σ, S, T, λ, s0) and a cost function
c : T → R+ associating a weight to each transition. A weighted trace of Aw is a pair (σ,w)
where σ = a1 . . . ak is a finite trace of A and w is the minimal weight among the paths
realizing σ, i.e:

w = min
s0...sk∈Sk+1,s0=s0,

ti=(si−1,si)∈T,λ(ti)=ai

k∑
j=1

c(tj).
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We denote by Tr(Aw) the set of all the weighted traces of Aw. The parallel composition
Aw = Aw1 ||w . . . ||wAwn of the LTS Aw1 , . . . ,Awn is such that A = A1|| . . . ||An and the weight
of a global transition t = (t1, . . . , tn) is:

c(t) =
∑
ti 6=?

ci(ti).

Similarly a weighted labelled Petri net is a tupleNw = (N , c) whereN = (Σ, P, T, F, λ,M0)
is a labelled Petri net and c : T → R+ associates weights to transitions. A weighted trace
in such a net is a pair (σ,w) with σ a finite trace of N and w the minimal weight of an
occurrence sequence corresponding to σ, where the weight of an occurrence sequence is the
sum of the weights of its transitions. By Tr(Nw) we denote the set of all the weighted traces
of Nw.

The branching processes of Aw1 ||w . . . ||wAwn are defined as weighted labelled Petri nets in
the same way as above. Each event being implicitly labelled by an action (as before) and a
cost.

Given a finite set of weighted traces W we define its restriction to the alphabet Σ as

W|Σ = {(σ,w) : ∃(σ′, w′) ∈W,σ = σ′|Σ ∧ w = min
(σ′,w′)∈W
σ′|Σ=σ

w′}.

As in the non-weighted case we are interested in solving the following summary problem:

I Definition 11 (Weighted summary problem). Given weighted LTSs Aw1 , . . . ,Awn with in-
terface Awi , compute a weighted LTS Swi satisfying Tr(Swi ) = Tr(Aw)|Σi

, where Aw =
Aw1 ||w . . . ||wAwn .

This section aims at showing that the approach to the summary problem proposed in
the unweighted case still works in the weighted one. In other words Swi can be obtained by
computing a finite branching process Nw of Aw (using Definition 6 of cut-off and cut-off
candidates and Algorithm 2) then taking the interface projection Nw

i of Nw on Awi and
folding it. The notion interface projection needs to be slightly modified to take weights into
account. The conditions, events, and arcs of Nw

i are defined exactly as above, and the cost
of an event e of Nw

i is ci(e) = c([e]) − c([e′]) if the predecessor e′ of e in Nw
i exists and

ci(e) = c([e]) else, where c([e]) =
∑
ek∈[e] c(ek) for [e] the past of e in the weighted branching

process Nw.

I Theorem 12. Let Aw = Aw1 ||w . . . ||wAwn with interface Awi . The instance of Algorithm 2
given by Definition 6 terminates and returns a weighted branching process Nw such that the
folding Swi of Nw

i is a weighted summary of Aw.

The proof of this theorem is given in Appendix A.5.

8 Conclusions

We have presented the first unfolding-based solution to the summarization problem for trace
semantics. The final algorithm is simple, but its correctness proof is surprisingly subtle. We
have shown that it can be extended (with minor modifications) to handle divergences and
weighted systems.

The algorithm can also be extended to other semantics, including information about
failures or completed traces; this material is not contained in the paper because, while
laborious, it does not require any new conceptual ideas.
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We conjecture that the condition e′ � e in the definition of cut-off candidate can be
replaced by e′ < e, if at the same time the algorithm is required to add events in a suitable
order. Similar ideas have proved successful in the past (see e.g. [5, 15]).
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A Proofs

I Definition 13. Let A = (Σ, S, T, λ, s0) be a LTS. A sequence of transitions τ = t1t2t3 · · · ∈
T ∗∪Tω is an execution of A if there is a sequence s0s1s2 . . . of states such that tk = (sk−1, sk)
for every k. We write s0

τ−→ (or s0
τ−→ sn when τ is finite with tn as last transition).

An execution is a history if s0 = s0. A sequence σ = a1a2a3 . . . ∈ Σ∗ ∪ Σω of actions is a
computation if there is an execution τ = t1t2t3 . . . such that λ(τ) = λ(t1)λ(t2)λ(t3) . . . = σ;
if s0

τ−→ , then we also write s0
σ−→ . (Observe that σ is a trace iff τ is a history.)

Abusing language, given an execution τ = t1t2t3 . . ., we denote by tr(τ) the computation
λ(t1)λ(t2)λ(t3) . . . (even if it is not necessarily a trace).

A.1 Standard cut-off condition does not work

Usually, an event e is declared a cut-off if the branching process already contains an event e′
with the same global state. If events are added according to an adequate order [4], then the
prefix generated by the algorithm is guaranteed to contains occurrencesequences leadingto
all reachable markings.

We show that with this definition of cut-off even we do not always compute a correct
summary. We do so by showing an example in which independently of the order in which
Algorithm 1 adds events the summary isalways wrong. Consider the parallel composition of
Figure 5 with A1 as interface.
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Figure 5 Three labeled transition systems (left) and a branching process (right)

Independently of the order in which events are added, the branching process N computed
by Algorithm 1 is the one shown on the right of Figure 5. The only cut-off event is 5, with
companion event 2, for which we have St(5) = {q2, r1, s2} = St(2). The interface projection
N1 is the transition system in Figure 6.

q1
c

a

q3

aa

q4

q2 d q1

q3

c q2 d q1

Figure 6 Projection of the branching process of Figure 5 on A1

Since N1 does not contain any cut-off, its folding is again N1. Since Tr(A)|Σ1 ⊇ cdc(dc)∗,
N1 is not a summary.
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A.2 Proof of Theorem 3
I Theorem 3. Let A be non-divergent. The instance of Algorithm 1 with cut-off definition
2 terminates with a finite branching process N , and the folding Si of Ni is a summary of A.

Proof. Let N be the branching process constructed by Algorithm 1. Assume N is infinite
(i.e., the algorithm does not terminate). Then N contains an infinite chain e1 < e2 · · · of
causally related events [15]. Since A is non-divergent, the infinite configuration C =

⋃∞
i=1[ei]

contains infinitely many i-events. Since the interface Ai participates in all of them, they are
all causally related, and so C contains an infinite chain e′1 < e′2 . . . of causally related i-events.
Since A has only finitely many global states, the chain contains two i-events e′j < e′k such
that St(e′j) = St(e′k). So e′k is a cut-off, in contradiction with the fact that e′k+1 belongs to
N . So N is finite, and so Algorithm 1 terminates.

It remains to prove Tr(Si) = Tr(A)|Σi . We prove both inclusions separately, but we first
need some preliminaries. We extend the mapping St() to conditions by defining St(b) = St(e),
where e is the unique input event of condition b. Since the states of Si are equivalence classes
of conditions of Ni and, by definition, if b ≡ b′ then St(b) = St(b′), we can extend St()
further to equivalence classes by defining St([b]≡) = St(b).

Tr(Si) ⊆ Tr(A)|Σi
. Let tri be a (finite or infinite) trace of Si. Then [b0]≡

tri

−−→ in Si,
where [b0]≡ is the initial state of Si. By the definition of folding, there exist tri1, tri2, tri3, . . .
(finite sequences of actions) and pairs (b′1, b1), (b′2, b2), (b′2, b2), . . . of conditions of Ni such

that (1) tri = tri1tr
i
2tr

i
3 . . .; (2) b0 = b′1; (3) b′j

tri
j−−→ bj in Ni for every j; and (4) bj−1 ≡ b′j

for every j.
By (3) and the definition of projection, we have St(b′j)

trj−−→ St(bj) in A for some
trj ∈ Σ∗ such that trij = trj |Σi

: indeed, if e and e′ are the input events of bj and b′j ,
then St(bj) is reachable from St(b′j−1) by means of any computation trj corresponding to
executing the events of [e] \ [e′], and any such trj satisfies trij = trj |Σi

. Moreover, by (4) we
have St(bj−1) = St(b′j). So we get

St(b′1) tr1−−→ St(b′2) tr2−−→ St(b′3) tr3−−→ · · ·

By (1) and (2) we have St(b0) tr1tr2tr3...−−−−−−−−→ in A, and so tri = tr|Σi ∈ Tr(A)|Σi with
tr = tr1tr2tr3 . . . .

Tr(A)|Σi
⊆ Tr(Si). Let tr be a finite or infinite trace of A. We prove that there exists a

trace tri of Si such that tri = tr|Σi . For that we prove that for every history h of A there
exists a history hi of Si such that tr(hi) = tr(h)|Σi

.
A finite history h = t1 . . . tk is short if the unique sequence of events of the unfolding

e1 . . . ek such that λ(e`) = t` for every ` ∈ {1..k} satisfies the following conditions: e` ≤ ek
for every ` ∈ {1..k}, and ek is an i-event. (The name is due to the fact that, loosely speaking,
h is a shortest history in which ek occurs.)

We say that a finite or infinite history h is succinct if there are h1, h2, h3 . . . such that
h = h1h2h3 . . ., |tr(hk)|Σi | = 1 for every k, and h1 . . . h` is short for every `. We call
h1h2h3 . . . the i-decomposition of h. It is easy to see that for every history there exists a
succinct history with the same projection onto Ai. ADD AN ARGUMENT HERE? So it
suffices to prove the result for succinct histories.

We prove by induction the following stronger result. For every succinct history of A with
i-decomposition h1h2h3 . . . there exist hi1, hi2, hi3, . . . such that for every k:
(a) Hi

k = hi1 . . . h
i
k is an history of Si such that tr(Hi

k) = tr(h1 . . . hk)|Σi
.
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(b) There exists a configuration Ck of N that contains no cut-offs and such that [M(Ck)i]≡
is the state reached by Hi

k.

Base case. If k = 0, then Hi
k is the empty history of Si, take Ck = ∅.

Inductive step. Let Hk+1 be the prefix of h with i-decomposition Hk+1 = h1 . . . hkhk+1
(it is a succinct history of A). Then Hk = h1 . . . hk is succinct with i-decomposition h1 . . . hk.
By induction hypothesis Hi

k = hi1 . . . h
i
k and some configuration Ck satisfy the conditions

above.
Let ok+1 = e1 . . . em, where m = |hk+1|, be the only sequence of events whose labelling is

hk+1 and can occur in the order of the sequence from the marking M(Ck) (this sequence
always exists by the properties of Ck). Two cases are possible.
1. ok+1 contains no cut-off. In this case ok+1 is a sequence of events from N (because Ck

contains no cut-offs). Thus, there exists an execution hi,k+1 of Si from the state [M(Ck)i]≡
to the state [M(em)i]≡ such that tr(hi,k+1) = tr(hk+1)|Σi . So we can take hik+1 = hi,k+1.
It remains to choose the configuration Ck+1. We take Ck+1 as Ck ∪ {e1, . . . , em}, which
contains no cut-offs because Ck contains no cut-offs by hypothesis.

2. ok+1 contains some cut-off. Since hk is succinct, em is the only i-event of hk+1, and
the only maximal event of {e1, . . . , em} w.r.t. the causal relation. Since only i-events
can be cut-offs, em is a cut-off, and the only cut-off among the events of ok+1. So
ok+1 is a sequence of events from N whose last event is a cut-off. Further, by the
maximality of em, the marking reached by ok+1 is M(em). By the definition of folding,
Si has an execution hi,k+1 from the state [M(Ck)i]≡ to the state [M(em)i]≡ such that
tr(hi,k+1) = tr(hk+1)|Σi

. As above, this allows to take hik+1 = hi,k+1.
It remains to choose the configuration Ck+1. We cannot take Ck+1 = Ck ∪ {e1, . . . , em},
because then Ck+1 would contain cut-offs. So we proceed differently. We choose Ck+1 =
[e′m], where e′m is the companion of em. Since e′m is not a cut-off, Ck+1 contains no cut-offs.
Moreover, since the marking reached by ok+1 is M(em), we have that [M(Ck+1)i]≡ is the
state reached by Hi

k+1.
J

A.3 Proof of Theorem 7
We first prove two properties of the strong causal relation.

I Lemma 14. Every infinite chain e1 < e2 < e3 · · · of events of a branching process contains
a strong causal subchain ei1 � ei2 � ei3 · · · .

Proof. Let E = {e1, e2, . . . }. Say that a component Aj of A participates in an event e if
it participates in the transition labelling e. We partition the (indices of the) components
into the set S of indices j such that Aj participates in finitely many events of E, and
S̄ = {1, . . . , n} \S. We say that the LTS Aj has stabilized at event ek in the chain if Aj does
not participate in any event e ≥ ek. Let eα be any event of E such that all LTSs of S have
stabilized before eα. We claim that there exists eγ in E such that eα � eγ . Since clearly all
LTSs of S have also stabilized before eγ , A repeated application of the claim produces the
desired subsequence. The claim itself is proved in two steps:

(1) There exists eβ > eα in E such that M(eβ)k 6= M(eα)k for every k ∈ S̄, (which implies
M(eα)k < eβ for every k ∈ S̄).
The existence of eβ follows from (1) the fact that all events of E are causally related, and
(2) the definition of S̄, which implies for any k ∈ S̄ the existence of an infinite subchain
e`1 < e`2 < . . . such that M(e`i

)k 6= M(e`j
)k for every i, j.
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(2) There exists eγ > eβ in E such that M(eγ)k > eβ for every k ∈ S̄.
Observe that if e < M(ei)k for some i and some k, then e < M(ej)k for all j > i (as
∀i, j, ∀k,M(ei)k ≤ M(ej)k). Suppose that eγ does not exist. Then there exists k ∈ S̄
such that M(e′)k ≯ e for every e′ > e. As k ∈ S̄, there exists, by definition, an infinite
subchain e < e`1 < e`2 . . . of E such that M(e`i

)k 6= M(e`j
)k for every i, j. So for any of

these e`i there exists a k-event e′`i
such that e′`i

< e`i and e′`i
is concurrent with e`i−1 .

Let e′′`i
be an event on a path from e′`i

to e`i
and such that b > e and b′ ≯ e for some

b, b′ ∈ •e′′`i
(the existence of such an event is ensured by the fact that M(e`i)k ≯ e). As

b > e we get e′′`i
> e and thus b′′ > e for every b′′ ∈ e′′`i

•. Hence, by the observation above,
the set {k ∈ S̄ : M(e`i

)k > e} is strictly greater than the set {k ∈ S̄ : M(e`i−1)k > e}.
Since A is finite, this contradicts the existence of k ∈ S̄ such that M(e′)k ≯ e for every
e′ > e in E. So the event eγ exists.

It follows immediately from (1) and (2) that eα � eγ (because for any k, k′, M(eα)k < eβ <

M(eγ)k′), and all LTSs of S have stabilized before eγ , and so the claim is proved. J

I Lemma 15. If e′ � e and ê is concurrent with both e′ and e, then ([e] \ [e′]) ∩ [ê] = ∅.

Proof. Assume e1 ∈ ([e] \ [e′]) ∩ [ê].
Then e1 ≤ e and e1 ≤ ê. Since e and ê are concurrent, we have e 6= e1 6= ê. So e1 < ê,

and so there is a nonempty path e1 ≺ b1 ≺ e2 ≺ b2 ≺ . . . ≺ ek = ê, where x ≺ y denotes
y ∈ x•. Since e and ê are concurrent, there is a first condition bj in the path such that bj
and e are concurrent, and we have bj ∈ M(e). Since e1 /∈ [e′], we have bj /∈ M(e′). Since
e′ � e, we have bj < b for every b ∈M(e′) \M(e). In particular, since there is at least one
condition b′ such that e′ ≺ b′ < e, we have bj < b′, and so e′ < bj . But then, since bj belongs
to the path from e1 to ê, we have e′ < bj < ê, contradicting that e and ê are concurrent. J

I Theorem 7. Let A = A1 ‖ . . . ‖ An with interface Ai. The instance of Algorithm 2
given by Definition 6 terminates and returns a branching process N such that the folding Si
of Ni is a summary of A.

Proof. We first prove termination. Assume the algorithm does not terminate, i.e., it
constructs an infinite branching process N . Then there exists an infinite chain e1 < e2 < ...

of causally related events in N [15]. First remark that C = ∪∞i=1[ei] cannot contain an
infinite number of i-events: if there is infinitely many i-event in C one of them must be a
cut-off (this is due to the finite number of global states in A) as all the i-events of C are
causally related there is a contradiction. Hence, C contains an infinite chain w′ of causally
related events such that for any two events e and e′ of w′ one has M(e)i = M(e′)i. From
that, the finite number of possible global states in A ensures that there exists an infinite
subchain w′′ of w′ such that for any two events e and e′ of w′′ one has St(e) = St(e′). The
finite number of possible global states in A also ensures that in N there exists only a finite
set of non-cut-off i-events. So, there exists an infinite subchain w′′′ of w′′ such that for any
two events e and e′ of w′′′ one has IcoN (e) = IcoN (e′). Finally, by Lemma 14 there exists
two events e and e′ of w′′′ such that e′ � e. Then, e is a cut-off candidate of N , which is in
contradiction with the infiniteness of w′′′ and so with the existence of e1 < e2 < . . . . The
termination of Algorithm 2 is thus proved.

Now we prove Tr(Si) = Tr(A)|Σi
. As in the proof of Theorem 3, we extend the mapping

St() to conditions, and to equivalence classes of conditions of Ni.
Tr(Si) ⊆ Tr(A)|Σi

. The proof of this part is identical to that of Theorem 3: since the
folding Si is completely determined by the cut-offs that are i-events, and the definition of
these cut-offs in Definition 2 and Definition 5 coincide, the same argument applies.
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Tr(A)|Σi ⊆ Tr(Si). The proof has the same structure as the proof of Theorem 3, but
with a number of important changes.

Let tr be a finite trace of A. We prove that there exists a trace tri of Si such that
tri = tr|Σi

. For that we prove that for every history h of A there exists a history hi of Si
such that tr(hi) = tr(h)|Σi

.
As in Theorem 3, we use the notion of a succinct histories. However, we need to

strengthen it even more. Let ν = s1 . . . sk be a sequence of global states of A, and let
H(ν) be the (possible empty) set of succinct histories h with i-decomposition h1 . . . hk such
that s0 h1−−→ s1

h2−−→ · · · hk−−→ sk. We say that a history hs ∈ H(ν) with i-decomposition
h1s . . . hks is strongly succinct if for every history h ∈ H(ν) with i-decomposition h1 . . . hk we

have |hjs| ≤ |hj | for every j ∈ {1..k}. Observe that if h1 . . . hj . . . hk is succinct, sj−1
h′j−−→ sj ,

and |hj | ≤ |h′j |, then h1 . . . h
′
j . . . hk is also succinct. Therefore, if H(ν) is nonempty then it

contains at least one strongly succinct history.
As in Theorem 3, we prove by induction a result implying the one we need. For every

strongly succinct history h of A with i-decomposition h = h1 . . . hk:
(a) There exists a history hi of Si such that tr(hi) = tr(h)|Σi .
(b) There exists a configuration Ch of N that contains no cut-offs and such that [M(Ch)i]≡

is the state reached by hi.
(c) If h is nonempty, then there exists an i-event eh such that Ch = [eh].
(The first two claims are as Theorem 3, while the third one is new.)
Base case. If h is empty, then take hi as the empty history of Si and Ch = ∅.
Inductive step. The initial part of the inductive step is identical to that of Theorem 3.
Let h be a strongly succinct history of A with i-decomposition h = h1 . . . hkhk+1. Then
h′ = h1 . . . hk is strongly succinct with i-decomposition h1 . . . hk. By induction hypothesis
there exists a history h′i, a configuration Ch′ , and, if C ′h is nonempty, an event eh′ satisfying
the conditions above.

Let ok+1 = e1 . . . em, where m = |hk+1|, be the only sequence of events whose labelling is
hk+1 and can occur in the order of the sequence from the marking M(Ch′) (this sequence
always exists by the properties of Ch′). Two cases are possible:
1. ok+1 contains no cut-off.
The proof of this case is as in Theorem 3. Part (c) follows because in Theorem 3 we choose
Ch as Ch′ ∪ {e1, . . . , em}, which, since ej ≤ em for every j ∈ {1..k}, implies Ch = [em].
2. ok+1 contains some cut-off event.
In Theorem 3 we used the following argument: since em is the only i-event of ok+1, and
cut-offs must be i-events, em is a cut-off. This argument is no longer valid, because in
Definition 6 non-i-events can also be cut-offs. So we prove that em is a cut-off in a different
way.

Let e be a cut-off of ok+1, and let e′ be its companion. We prove that, due to the
minimality of hk+1 in the definition of strong succinctness, we have e = em.

Assume e 6= em. Since em is the unique i-event of ok+1, e is not an i-event. So, by
Definition 6, it is an event that became a cut-off candidate and was never freed.

We consider first the case in which C ′h is the empty configuration. In this case, consider
a permutation j1j2j3 of ok+1 in which j1 contains the events of [e′], j2 contains the events of
[e] \ [e′], and j3 contains the rest of the events. Since St(e) = St(e′), h′λ(j1j3) = λ(j1j3) is
also a history of A. Since |j1j3| < |ok+1| this contradicts the minimality of hk+1.

If Ch′ is nonempty, then the i-event eh′ in part (c) of the induction hypothesis exists. We
consider the events e and eh′ . Since eh′ is an i-event but e is not, we have e 6= eh′ . Since



18 Computation of summaries using net unfoldings

there is an occurrence sequence that contains both e and eh′ , the events are not in conflict.
Moreover, since in this occurrence sequence e occurs after eh′ , we have that e is not a causal
predecessor of eh′ either. So there are two remaining cases, for which we also have to show
that they lead to a contradiction:
(b1) eh′ < e. Let e′ be the companion of e. By the definition of cut-off candidate, we have
ip(e) = ip(e′). Since eh′ is an i-event and eh′ < e, we have eh′ < ip(e), and so eh′ < e′ � e.
Consider the permutation j1j2j3 of ok+1 in which j1 contains the events of [e′] \ [eh′ ], j2
contains the events of [e] \ [e′], and j3 the rest of the events. Since St(e) = St(e′), h′λ(j1j3)
is also a history of A. Since |j1j3| < |ok+1|, this contradicts the minimality of hk+1.
(b2) eh′ and e are concurrent. We handle this case by means of a sequence of claims.
(i) Let e′ be the companion of e. The events e′ and eh′ are concurrent.

Follows from the fact that eh′ is an i-event and IcoN (e) ⊆ IcoN (e′) by the definition of
cut-off candidate.

(ii) ([e] \ [e′]) ∩ [eh′ ] = ∅.
Follows from Lemma 15, assigning ê := eh′ .

(iii) hk+1 is not minimal, contradicting the hypothesis.
By (ii), the sets [eh′ ] and [e] \ [e′] are disjoint. So every event of [e] \ [e′] belongs to ok+1.
Consider the permutation j1j2j3 of ok+1 in which j1 contains the events that do not
belong to [e′], j2 contains the events of [e] \ [e′], and j3 the rest. Since St(e) = St(e′),
h′λ(j1j3) is also a history of A, and since |j1j3| < |ok+1| the sequence hk+1 is not minimal.

Since all cases have been excluded, and so we have e = em, i.e., the i-event em is the
unique cut-off of ok+1. Now we can reason as in Theorem 3. We have that ok+1 is a sequence
of events from N whose last event is a cut-off, and the marking reached by ok+1 is M(em).
By the definition of folding, Si has an execution hi,k+1 from the state [M(Ch′)i]≡ to the state
[M(em)i]≡ such that tr(hi,k+1) = tr(hk+1)|Σi

. This allows to build hi as the concatenation
of h′i and hi,k+1. We choose Ch = [e′m], where e′m is the companion of em and then, obviously
eh = e′m. Since e′m is not a cut-off, Ch contains no cut-offs. Moreover, since the marking
reached by ok+1 is M(em), we have that [M(Ch)i]≡ is the state reached by hi. J

A.4 Proof of Theorem 10
I Theorem 10. Let A = A1 ‖ . . . ‖ An with interface Ai. The instance of Algorithm 2
given by Definition 6 terminates and returns a branching process N such that a finite trace
σ of the folding Si of Ni is a divergence of Ai iff there is a divergent condition s of Ni such
that some realization of σ leads to [s]≡.

Proof. (⇒) Assume that σ is a divergence of Ai. By the definition of a divergence, there
exists τ ∈ Tr(A) such that τ |Σi

= σ and τ is infinite. So there exists a strongly succinct
history h of A such that tr(h) = τ . Denote by ei the last i-event of h. The proof of Theorem 7
guarantees the existance of an i-event e′i in N which is not a cut-off and satisfies the following
two properties: St(ei) = St(e′i), and there exists a realisation of σ leading to [s]≡, where
s = M(ei)i. As τ is infinite, the unfolding U of A contains an infinite occurrence sequence
starting at M(ei) and containing no i-event. Since St(ei) = St(e′i), another infinite sequence
with the same labelling and without i-events can occur from M(e′i) in U . By construction
of N , and since e′i is not a cut-off, a non-empty prefix of this second occurrence sequence
appears in N , and contains at least one cut-off candidate e. So e appears in some occurrence
sequence without i-events starting at M(e′i). It follows that e is either (1) concurrent with
e′i, or (2) a successor of e′i such that ip(e) = M(e′i)i. Moreover, since e is not an i-event, it is
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concurrent with s = M(e′i)i. It remains to show that the companion e′ of e is also concurrent
with s. If (1) holds, i.e., if e is concurrent with e′i, then e′ is concurrent with e′i (and so with
s) as well, because, by the definition of a cut-off candidate, we have IcoN (e) ⊆ IcoN (e′). If
(2) h9olds, i.e., if e > e′i, then we have e′ > e′i for the same reason as in the case (b1) in the
proof of Theorem 7), and so e′ and s are concurrent.

(⇐) Consider a divergent condition s of Ni. By the definition of a divergent condition
there exist a cut-off candidate e with companion e′ such that neither e nor e′ are i-events,
and both e and e′ are concurrent with s. Let ei be the i-event such that M(ei)i = s. As e is
concurrent with s, it is either concurrent with ei, or a successor of ei such that ip(e) = M(ei)i.
We consider these two cases separately.

(1) e is a successor of ei such that ip(e) = M(ei)i. Then e′ is a successor of ei for the same
reason as in case (b1) of Theorem 7. So we have [ei] ⊆ [e′] ⊆ [e]. Let j1 be any occurrence
sequence starting from M(ei) and containing exactly the events in [e′] \ [ei] (so j1 contains
no i-events). Let j2 be any occurrence sequence starting at M(e′) and containing exactly
the events in [e] \ [e′] (so j2 contains no i-events either). As St(e) = St(e′), there exists
an occurrence sequence j1

2 in U starting at M(e) and such that tr(j1
2) = tr(j2); moreover

the last event e1 of j1
2 satisfies St(e1) = St(e). So we can iteratively construct occurrence

sequences jk2 for every k > 1, each of them starting at M(ek−1), satisfying tr(jk2 ) = tr(j2),
and ending with an event ek satisfying St(ek) = St(e). So the infinite occurrence sequence
j1j2j

1
2j

2
2 . . . can occur in U from M(ei).

(2) e is concurrent with ei. Then e′ is also concurrent with ei, because the definition of a
cut-off candidate requires IcoN (e) ⊆ IcoN (e′). By Lemma 15 we have [ei] ∩ ([e] \ [e′]) = ∅.
Let j1 be any occurrence sequence starting from M(ei) and containing exactly the events in
[e′] \ [ei] (so j1 contains no i-events).

Given two arbitrary concurrent events e1, e2, let M(e1, e2) be the unique marking reached
by any occurrence sequence that fires exactly the events of [e1]∪ [e2]. Let j2 be any occurrence
sequence starting from M(ei, e′) and containing exactly the events in [e′] \ [e] (so j2 contains
no i-events). As St(e) = St(e′) and [ei] ∩ ([e] \ [e′]) = ∅, there exists an occurrence sequence
j1
2 in U starting at M(ei, e) and such that tr(j1

2) = tr(j2); moreover the last event e1 of
j1
2 satisfies St(e1) = St(e). So for every k > 1 we can iteratively construct sequences jk2
starting from M(ei, ek−1) such that tr(jk2 ) = tr(j2) and ending with an event ek satisfying
St(ek) = St(e). It follows that the infinite occurrence sequence j1j2j1

2j
2
2 . . . can occur in U

from M(ei).
So in both cases A has an infinite execution h′ starting at St(ei) and such that tr(h′)|Σi

is empty. Moreover, if some realization of σ leads to [s]≡ = M(ei)i, the proof of Theorem 7
guarantees the existence of a history h of A reaching state St(ei) and satisfying tr(h)|Σi

= σ.
Taking τ = tr(hh′) concludes the proof. J

A.5 Proof of Theorem 12

ITheorem 12. Let Aw = Aw1 ‖w . . . ‖w Awn with interface Awi . The instance of Algorithm 2
given by Definition 6 terminates and returns a weighted branching process Nw such that the
folding Swi of Nw

i is a weighted summary of Aw.

Proof. The termination is granted by Theorem 7 as well as the fact that the weighted
trace (tr, w) belongs to Tr(Swi ) if and only if, for some w′, the weighted trace (tr, w′)
belongs to Tr(Aw)|Σi

. It remains to show that for any tr such that (tr, w) ∈ Tr(Swi ) and
(tr, w′) ∈ Tr(Aw)|Σi

one has w = w′. In the following we denote by ci the costs functions
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of Swi and Nw
i , and by c the cost function of Aw. Similarly we denote by λi the labelling

function of Nw
i and by λ the labelling function of Aw.

w′ ≤ w. This part of the proof is very close to the proof of the first inclusion of
Theorem 3. Let (tri, w) be a finite weighted trace of Swi . Then [b0]≡

tri

−−→ [b]≡ in Swi
with ci(tri) = w, where [b0]≡ is the initial state of Si, and [b]≡ is some state of Si. By the
definition of folding, there exist τ i1, . . . , τ ik occurrence sequences of Ni and (b′1, b1), . . . , (b′k, bk)
pairs of conditions of Ni such that (1) tri = λi(τ i1)λi(τ i2) . . . λiτ ik; (2) b0 = b′1 and bk = b;

(3) b′j
τ i

j−−→ bj in Ni for every j = 1, . . . , k; (4) bj−1 ≡ b′j for every j ∈ {1..k}; and (5)
ci(τ i1) + · · ·+ ci(τ ik) = ci(tri) = w.

By (3) and the definition of projection, we have St(b′j)
τj−−→ St(bj) in A for some

execution τj such that λi(τ ij) = λ(τj)|Σi
and c(τj) = ci(τ ij): indeed, if e and e′ are the input

events of bj and b′j , then St(bj) is reachable from St(b′j−1) by means of any execution τj
corresponding to executing the events of [e] \ [e′], and any such τj satisfies λi(τ ij ) = λ(trj)|Σi

and c(τj) = c(τ ij). Moreover, by (4) we have St(bj−1) = St(b′j). So we get

St(b′1) τ1−−→ St(b′2) τ2−−→ · · · τk−1−−−−→ St(b′k) τk−−→ St(bk)

By (1) and (2) we have St(b0) τ1...τk−−−−−→ St(b) in A, so tri = tr|Σi ∈ Tr(A)|Σi with tr =
λ(τ1) . . . λ(τk), and by (5) and the definition of a weighted trace w′ ≤ c(tr) ≤ c(τ1) + · · ·+
c(τk) = ci(tri1) + · · ·+ ci(trik) = w.

w ≤ w′. This part of the proof is almost exactly the same as the proof of the second
inclusion of Theorem 7. We describe here the few differences between these two proofs. The
main one is the definition of strongly succinct histories: instead of requiring |hjs| ≤ |hj |
we require c(hjs) < c(hj), or c(hjs) = c(hj) and |hjs| ≤ |hj |. Then, as we are interested
in weights, claim (a) of the induction hypothesis has the supplementary requirement that
ci(hi) = c(h). The base case is then the same, just remarking that the cost of the empty
history is 0 in both Swi and Aw. For the inductive step two things have to be done: (1)
ensuring that when ok+1 contains a cut-off it is necessarily em and (2) ensuring the new
part of claim (a) about weights. For (1) just remark that in all cases j1j3 is such that
c(j1j3) ≤ c(j1j2j3) and |j1j3| < |j1j2j3| so the same arguments as previously can be used
with the new definition of a strongly succinct history. For (2) notice that when em is a cut-off
i-event, in the unfolding of Aw the events that can occur from M(em) and from M(e′m) do
not only have the same labelling: they in fact correspond to the exact same transitions of
Aw and so they also have the same weights.

Reusing this proof we have shown that the weighted trace (tr, w′) of Aw is such that
there exists a history hi of Swi such that tr|Σi

= tr(hi) and c(hi) = c(tr) = w′. So, by the
definition of a weighted trace it comes directly that w ≤ c(hi) = w′. J

B Algorithmic additions to the unfolding algorithm

As stated in Section 6, we extended the tool Mole to implement Algorithm 2. In this
appendix we detail the work necessary to handle cut-off candidates. Note that the input of
our tool is the Petri net representation of a product A in which every place is annotated
with the component it belongs to.

Inspired by Definition 6, we introduce a blocking relation between events: we write e′ Ǹ e

if e′ � e, St(e) = St(e′), ip(e) = ip(e′), and IcoN (e) ⊆ IcoN (e′), in other words e is a cut-off
candidate because of e′; let Ǹ e := { e′ ∈ N | e′ Ǹ e }. Notice that Ǹ e ⊆ [e]. Therefore, an
over-approximation of this set can be computed when e is discovered as a possible extension,



J. Esparza, L. Jezequel and S. Schwoon 21

by checking all its causal predecessors. When N is expanded, Ǹ e can only decrease because
adding an event may lead to a violation of the condition IcoN (e) ⊆ IcoN (e′).

The blocking relation requires two principal, interacting additions to the unfolding
algorithm:
(i) a traversal of [e] collecting information about the ‘cut’ M(e);
(ii) computing the concurrency relation between events.

For (i), we modify the way Mole determines St(e): it performs a linear traversal of [e],
marking all conditions consumed and produced by the events of [e], thus obtaining M(e).
We extend this linear traversal with Algorithm 3, which computes cut = M(e), allowing
to directly determine the conditions St(e) = St(e′) and ip(e) = ip(e′). Moreover, every
condition b becomes annotated with a set ind(b) := { j | b ≤ M(e)j }. This, together with
M(e) and M(e′), allows to efficiently determine whether e′ � e holds. Notice that if the
number of components in A is “small”, the operations on ind(b) can be implemented with
bitsets. Thus, the additional overhead of Algorithm 3 with respect to the previous algorithm
can be kept small.

Algorithm 3 Traversal of [e] for efficiently determining Ǹ e, where i(b) denotes the com-
ponent to which condition b belongs.
let N be the current branching process and e its latest extension
set worklist := [e] and cut := ∅
for all conditions b, let b unmarked and ind(b) := ∅
while worklist 6= ∅ do

remove a <-maximal element e from worklist
add all unmarked conditions b ∈ e• to cut and set ind(b) := {i(b)}
I :=

⋃
b∈e• ind(b);

mark all conditions b ∈ •e and set ind(b) := I

end while
add all unmarked initial conditions b to cut and set ind(b) := {i(b)}

Concerning (ii), we are interested in determining the sets IcoN (e) for all events e. We
make use of the facts that:

Mole already determines, for every condition b, a set of other conditions par(b) that
are concurrent with b. When the N is extended with event e, it computes the set
I :=

⋃
b∈•e par(b) and sets par(b′) = I ∪ e• \ {b′} for every b′ ∈ e•.

Two events e, e′ of N are concurrent iff their inputs •e and •e′ are disjoint and pairwise
concurrent. Thus, when e is added, this relation can be checked by marking the events
in I and checking whether I includes •e′. Thus, IcoN (e) can be obtained with small
overhead w.r.t. the existing implementation.
At the same time, we can easily determine whether the addition of an event e should
lead to the removal of some event e′ from Ǹ e

′′; if this causes Ǹ e
′′ to become empty, e′′

is freed.

C More complete experimental results

All reported times are on a machine with a 2.8 MHz Intel CPU and 4 GB of memory running
Linux. For each example, we report in Table 2 the time it took to compute a summary, the
number of events (including all cutoffs), the number of states in the resulting summary Si,
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the size of a minimal deterministic automaton for a summary (Min), and the number of
reachable markings.

Test case Time/s Events |Si| Min. Markings
CyclicC(6) 0.04 426 5 2 639
CyclicC(9) 0.17 3347 5 2 7423
CyclicC(12) 4.04 26652 5 2 74264

CyclicS(6) 0.05 303 11 5 639
CyclicS(9) 0.12 2328 11 5 7423
CyclicS(12) 2.38 18464 11 5 74264

Dac(9) 0.02 86 4 4 1790
Dac(12) 0.03 134 4 4 14334
Dac(15) 0.03 191 4 4 114686

Dp(6) 0.06 935 20 4 729
Dp(8) 0.22 5121 28 4 6555
Dp(10) 2.23 31031 36 4 48897

Dpd(4) 0.10 2373 114 6 601
Dpd(5) 0.71 23789 332 6 3489
Dpd(6) 17.68 245013 903 6 19861

Dpsyn(10) 0.02 176 2 2 123
Dpsyn(20) 0.07 701 2 2 15127
Dpsyn(30) 0.26 1576 2 2 1860498

Ring(5) 0.07 511 53 10 1290
Ring(7) 0.12 3139 101 10 17000
Ring(9) 0.93 16799 165 10 211528

Table 2 More experimental results
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