
Analysis and Prediction of the Long-Run Behavior of Probabilistic
Sequential Programs with Recursion

(Extended Abstract)

Tomáš Brázdil∗,
Faculty of Informatics, Masaryk University,

Botanická 68a, 60200 Brno,
Czech Republic.

brazdil@fi.muni.cz

Javier Esparza
Institute for Formal Methods in Computer Science,

University of Stuttgart,
Universität str. 38, 70569 Stuttgart, Germany.
esparza@informatik.uni-stuttgart.de

Antonı́n Kučera†

Faculty of Informatics, Masaryk University,
Botanická 68a, 60200 Brno,

Czech Republic.
tony@fi.muni.cz

Abstract

We introduce a family of long-run average properties of
Markov chains that are useful for purposes of performance
and reliability analysis, and show that these properties can
effectively be checked for a subclass of infinite-state Markov
chains generated by probabilistic programs with recursive
procedures. We also show how to predict these properties
by analyzing finite prefixes of runs, and present an efficient
prediction algorithm for the mentioned subclass of Markov
chains.

1. Introduction

Probabilistic methods are widely used in the design, analy-
sis, and verification of computer systems that exhibit some
kind of “quantified uncertainty” such as coin-tossing in ran-
domized algorithms, subsystem failures (caused, e.g., by
communication errors or bit flips with an empirically evalu-
ated probability), or underspecification in some components
of the system [24]. The underlying semantic model for these
systems are Markov chains or Markov decision processes,
depending mainly on whether the systems under consider-
ation are sequential or parallel. Properties of such systems

∗ Supported by the Czech Science Foundation, grant No. 201/03/1161.
† Supported by the Alexander von Humboldt Foundation and by the re-

search centre Institute for Theoretical Computer Science (ITI), project
No. 1M0021620808.

can formally be specified as formulae of suitable tempo-
ral logics such as LTL, PCTL, or PCTL∗ [22]. In these
logics, one can express properties like “the probability of
termination is at least 98%”, “the probability that each re-
quest will eventually be granted is 1”, etc. Model-checking
algorithms for these logics have been developed and im-
plemented mainly for finite-state Markov chains and finite-
state Markov decision processes [13, 28, 22, 12, 14]. This
is certainly a limitation, because many implementations use
unbounded data structures (counters, queues, stacks, etc.)
that cannot always be faithfully abstracted into finite-state
models. The question whether one can go beyond this limit
has been rapidly gaining importance and attention in recent
years. Positive results exist mainly for probabilistic lossy
channel systems [6, 9, 23, 25, 2]. Examples of more generic
results are [1, 26].

Very recently, probabilistic aspects of recursive sequen-
tial programs have also been taken into account. In the non-
probabilistic setting, the literature offers two natural models
for such programs:

• pushdown automata (PDA), see e.g. [16, 19, 29, 5], where
the stack symbols correspond to individual procedures,
and the data and control flow is modeled in the finite-state
control;

• recursive state machines (RSM), see e.g. [4, 3], where the
behavior of each procedure is specified by a finite-state
automaton which can possibly invoke the computation of
another automaton in a recursive fashion.

1

Since PDA and RSM are fully equivalent (in a well-defined
sense) and there are linear-time translations between them,
the results achieved for one model immediately apply to
the other. A practical impact of these results can be docu-
mented by a successful application of software tools which
are based on the designed algorithms [7, 8].

Formal models for probabilistic recursive programs are
obtained as probabilistic variants of PDA and RSM. The
underlying semantics of these models is given in terms of
infinite-state Markov chains, and the two models are again
equivalent with respect to this semantics. Since we only
deal with these models, the existing results are described
in greater detail in the following paragraph.

In [17], it was shown that the generalized random walk
problem for Markov chains generated by probabilistic PDA
is decidable, and that the quantitative model-checking prob-
lem for deterministic Büchi specifications is also decidable.
This study was continued in [10], where the result about
deterministic Büchi automata was extended to determin-
istic Müller automata (and hence to all ω-regular proper-
ties). Moreover, it was shown that the model checking prob-
lem for the branching-time logic PCTL is already unde-
cidable, while model-checking the qualitative fragment of
the logic PECTL∗ is decidable. The complexity and other
algorithmic aspects of the reachability problem for proba-
bilistic RSM was studied in greater detail in [21]. In par-
ticular, it was shown that the qualitative reachability prob-
lem (i.e., the question whether the probability of reaching
one given configuration from another given configuration
is equal to 1) for one-exit probabilistic RSM is in P. The
complexity of the model-checking problem for probabilistic
RSM and ω-regular properties was studied in [20]. In partic-
ular, it was shown that the qualitative variant of this problem
is EXPTIME-complete. In [18], it was shown how to com-
pute the expected value and variance of the reward accumu-
lated along a path between two configurations, and how to
compute the average reward per transition for infinite paths.

Our Contribution. In this paper we focus on a differ-
ent class of properties of probabilistic sequential programs
which has not yet been considered in previous works (not
even for finite-state systems). What we are interested in here
are limit properties of runs and ways how these properties
can efficiently be predicted after performing (and observ-
ing) a bounded initial prefix of a run.

An important source of initial inspiration for this study
was the work of Luca de Alfaro presented in [15]. In [15],
it is convincingly argued that conventional temporal logics
cannot express properties related to long-run average be-
haviour of probabilistic systems, which include many rele-
vant performance and reliability issues. To get some intu-
ition, consider a system which repeatedly services certain
requests (as a concrete example one can take a www server,
an answering machine, a telephone switchboard, etc.) The

typical problems of performance analysis include questions
like “What is the average time of servicing a request?”,
or “What is the probability that a request will be serviced
within 3 seconds?”, etc. Such properties are not directly ex-
pressible in conventional temporal logics. In [15], each run
of the system is assigned the average service time defined
as limn→∞(

∑n

i=1
T (i))/n, where T (i) is the service time

for the ith request which appears along the run. Then, a spe-
cial state predicate is introduced which holds in a given state
iff the total probability of all runs where the average ser-
vice time is bounded by a given constant is equal to 1. This
state predicate is then “plugged” into the syntax of tempo-
ral logics such as PCTL or PCTL∗, and a model-checking
algorithm for finite-state Markov decision processes is pre-
sented.

Various important reliability and performance properties
cannot be deduced just from the average service time. For
example, one cannot say how much the individual service
times deviate from the average service time, i.e., what is the
average deviation. If requests with a long service time are
for some reason particularly undesirable, one can also be in-
terested what percentage of all services take longer than a
given time bound. To be able to formulate such properties,
we introduce a family of random variables that capture cer-
tain limit properties of runs, and then use these variables
to define a family of run-indicators. A run-indicator classi-
fies each run as “good” or “bad” according to some crite-
rion, and one can thus formulate questions about the proba-
bility of good/bad behaviour. For example, one can formally
express questions like

• What is the probability that the average service time of a
run is between 30 and 32 seconds?

• What is the probability of those runs where the average
service time is between 30 and 32 seconds, and the aver-
age deviation from 31 seconds is at most 5 seconds?

• What is the probability of all runs satisfying the previ-
ous condition and the condition that the percentage of ser-
vices longer than 7 seconds is at most 20%?

Actually, our treatment is generic in the sense that we use
general reward functions to assign numeric values to indi-
vidual services. These reward functions can also take nega-
tive values, and thus we can model arbitrary gains and costs
(not only time). In this general setting, we provide posi-
tive decidability results for the class of Markov chains gen-
erated by probabilistic PDA, and a class of reward func-
tions whose values depend both on the current control state
and the current stack content of a given PDA configuration.
We show that the problem whether P(I=1) ∼ %, where I
is one of the introduced run-indicators, P(I=1) the prob-
ability that I is satisfied, % ∈ [0, 1] a rational constant,
and ∼ ∈ {<,≤, >,≥, =}, is decidable. This allows to ap-
proximate the value of P(I=1) by rational lower and upper

2

bounds that are arbitrarily close (as we shall see, P(I=1)
can be irrational).

Another issue addressed in this paper is prediction of the
aforementioned limit features. To the best of our knowl-
edge, this problem has not yet been taken into account in
previous works, and therefore we explain the underlying in-
tuition in greater detail.

In ergodic Markov chains, the aforementioned limit
properties of runs take just one value (with probability one),
regardless where a run is initiated. For example, the average
service time is the same for “almost all” runs, and hence it
does not make much sense to predict the average service
time because its value is determined from the very begin-
ning. One can still ask “how fast” a run approaches this limit
value, but this is a completely different question which is
not addressed in this paper. For general Markov chains, the
average service time can take infinitely many values with a
positive probability, and the probability that the average ser-
vice time stays within given bounds changes along the exe-
cution of a run. Hence, one can ask whether it is possible to
“predict” the future behaviour of a run just by inspecting a
bounded prefix of a run. Of course, the answer is negative in
general. However, we show that for the subclass of Markov
chains that are definable by probabilistic PDA, such predic-
tions are possible, although these chains are infinite-state
and non-ergodic. In fact, one can efficiently predict quite
complicated run-indicators up to an arbitrarily small given
error δ (the smaller δ we choose, the longer prefix of a run
must be examined). We refer to Section 3 for precise defini-
tions. A practical importance of this result is obvious.

The paper is organized as follows. Section 2 contains
preliminary definitions and some background information.
In Section 3 we introduce a family of random variables
that formally capture certain long-run average properties
of Markov chains, and define the associated family of run-
indicators. We also formalize the notion of prediction. In
Section ?? we concentrate on probabilistic PDA and show
how to compute and predict the properties introduced in
Section 3. The underlying intuition and a detailed compari-
son to previous work is given at appropriate places in Sec-
tions 2, 3, and ?? after introducing the necessary notions.

2. Preliminaries

Markov chains. The underlying semantics of probabilistic
sequential systems is defined in terms of discrete Markov
chains.

Definition 2.1. A (discrete) Markov chain is a triple M =
(S,→,Prob) where S is a finite or countably infinite set of
states, → ⊆ S × S is a transition relation, and Prob is a
function which to each transition s → t of M assigns its
probability Prob(s → t) ∈ (0, 1] so that for every s ∈ S
we have

∑

s→t Prob(s → t) = 1.

In the rest of this paper we also write s
x→ t instead of

Prob(s → t) = x. A path in M is a finite or infinite se-
quence w = s0, s1, · · · of states such that si → si+1 for
every i. The length of a given path w is the number of tran-
sitions in w. In particular, the length of an infinite path is ω,
and the length of a path s, where s ∈ S, is zero. We also
use w(i) to denote the state si of w (by writing w(i) = s
we implicitly impose the condition that the length of w is
at least i). The prefix s0, . . . , si of w is denoted by wi. A
run is an infinite path. The sets of all finite paths and all
runs of M are denoted FPath and Run, respectively. Sim-
ilarly, the sets of all finite paths and runs that start with a
given w ∈ FPath are denoted FPath(w) and Run(w), re-
spectively. In particular, Run(s), where s ∈ S, is the set of
all runs initiated in s.

It this paper we are interested in probabilities of certain
events that are associated with runs. To every s ∈ S we as-
sociate the probabilistic space (Run(s),F ,P) where F is
the σ-field generated by all basic cylinders Run(w) where
w ∈ FPath(s), and P : F → [0, 1] is the unique prob-
ability function such that P(Run(w)) = Πm−1

i=0 xi where
w = s0, · · · , sm and si

xi→ si+1 for every 0 ≤ i < m (if
m = 0, we put P(Run(w)) = 1).

Probabilistic PDA. In this part we introduce probabilistic
PDA, explain their basic features, and show how to over-
come some of the fundamental difficulties of performing
their quantitative analysis.

Definition 2.2. A probabilistic PDA (pPDA) is a tuple
∆ = (Q, Γ, δ,Prob) where Q is a finite set of control
states, Γ is a finite stack alphabet, δ ⊆ Q × Γ × Q × Γ∗

is a transition relation such that whenever (p, X, q, α) ∈
δ, then |α| ≤ 2, and Prob is a function which to
each transition pX → qα assigns a rational probability
Prob(pX → qα) ∈ (0, 1] so that for all p ∈ Q and X ∈ Γ
we have that

∑

pX→qα Prob(pX → qα) = 1.

In the rest of this paper we adopt a more intuitive nota-
tion, writing pX → qα instead of (p, X, q, α) ∈ δ, and
pX

x→ qα instead of Prob(pX → qα) = x. The set Q×Γ∗

of all configurations of ∆ is denoted by C(∆). Given a con-
figuration pXα of ∆, we call pX the head and α the tail of
pXα.

To ∆ we associate the Markov chain M∆ where C(∆)
is the set of states and the transitions are determined as fol-
lows:

• pε
1→ pε for each p ∈ Q (here ε denotes the empty stack);

• pXβ
x→ qαβ is a transition of M∆ iff pX

x→ qα is a tran-
sition of ∆.

As a working example, we use a simple pPDA ∆̄ with two
control states s, p, three stack symbols I, D, Z, and the fol-

3

PSfrag replacements

0.50.50.5

0.50.5 0.50.50.5

0.250.75

1
pZ

sZ

pIZ pDZ pIDZ pDDZ

Figure 1. The Markov chain M∆̄

lowing transitions:

sZ
0.75−→ sZ, sZ

0.25−→ pIZ, pI
0.5−→ pID, pI

0.5−→ pε,

pD
0.5−→ pI, pD

0.5−→ pDD, pZ
1−→ pZ

The underlying Markov chain of ∆̄ is shown in Figure 1
(only the states reachable from sZ are drawn). Despite the
simplicity of ∆̄, even basic questions about its behaviour re-
quire a non-trivial attention. For example, one can ask what
is the probability of reaching the “terminated” state pZ from
the “initial” state sZ (formally, this probability is defined as
{w ∈ Run(sZ) | w(i) = pZ for some i ∈ N0}). In this
particular case, we can rely on standard results about one-
dimensional random walks and answer that this probabil-
ity equals (

√
5 − 1)/2 (this irrational number is commonly

known as the “golden cut”). This shows that the quantities
of our interest can take irrational values and cannot be com-
puted precisely in general.

Let pα and qβ be configurations of some pPDA ∆, and
let P(pα →∗ qβ) be the probability of reaching qβ from
pα. In [17, 21], the reachability problem was solved by
showing that P(pα →∗ qβ) is effectively expressible in
(R, +, ∗,≤). More precisely, there effectively exists a for-
mula Φ of first-order arithmetic of reals such that Φ has one
free variable x and Φ[c/x] holds iff c = P(pα →∗ qβ).
Since (R, +, ∗,≤) is decidable [27], the problem whether
P(pα →∗ qβ) ∼ %, where ∼ ∈ {<,≤, =, >,≥} and %
is a rational constant, is decidable as well—it suffices to
check whether the (closed) formula ∃x.(Φ ∧ x∼%) is valid
or invalid. Hence, P(pα →∗ qβ) can also be effectively
approximated—for an arbitrarily small δ > 0 one can ef-
fectively compute rationals L, U such that L ≤ P(pα →∗

qβ) ≤ U and U − L < δ. Since the formula Φ can be con-
structed so that the existential/universal quantifiers are not
alternated in Φ and the size of Φ is polynomial in the size of
pα, qβ, and ∆, one can apply the powerful result of [11] and
conclude that the problem whether P(pα →∗ qβ) ∼ % be-
longs to PSPACE.

Observe that once a certain quantity (such as the
probability of termination) is effectively expressible in
(R, +, ∗,≤) in the sense explained above, it can be used as
a “known constant” in other first-order expressions which
define other quantities. As long as these expressions con-
tain just multiplication, addition, and inequality over reals,
they can again be encoded into (R, +, ∗,≤). Since no quan-

tities are actually evaluated during this process, there is no
loss of precision and the newly expressed quantities enjoy
essentially the same features as the “old” ones. In particu-
lar, they can be used as known constants when expressing
other quantities, and their values can be effectively approx-
imated. This approach has been used in [18] to express the
conditional expected number of transitions needed to reach
a configuration qβ from pα under the condition that qβ is
indeed reached from pα. In this case, the “known” quanti-
ties are certain probabilities of the form P(pα →∗ qβ).

The previous two paragraphs indicate how to deal with
irrational quantities. Another fundamental difficulty is that
Markov chains generated by pPDA are not necessarily er-
godic. In fact, they are generally not strongly connected
and the number of strongly connected components can be
infinite. This means that we cannot directly apply the re-
sults of rich theory of ergodic Markov chains, although the
problems we are interested in here are typically solved us-
ing these methods (see Section 3). This is overcome by ab-
stracting the Markov chain M∆ into a finite-state Markov
chain X∆ so that certain quantitative properties of M∆ can
be solved by examining the properties of X∆. The defini-
tion and furher discussion is postponed to Section 4

3. Long-Run Properties of Markov Chains

In this section we introduce a family of long-run average
properties of Markov chains. We show how to use these
properties in performance analysis, and we also explain
what is meant by a faithful and efficient prediction of these
properties.

For the rest of this section, let us fix a Markov chain
M = (S,→,Prob) and an initial state s0 ∈ S. We also
fix a reward function f : S → R. The reward associated
with a given state may correspond to, e.g., the average time
spent in the state, certain costs or gains collected by vis-
iting the state (note that the reward can also be negative),
or a one-bit marker specifying whether the state is “impor-
tant” or not.

The request-service cycles are modeled as follows. Let
F ⊆ S be a subset of final states. Let w ∈ Run(s0) be a
run with infinitely many final states w(i1), w(i2), . . . , and
let w[j] denote the subword w(ij−1 + 1), · · · , w(ij) of w,
where i0 = 0. Hence, w[j] is the subword of w consist-
ing of all states in between the j−1th final state (not in-
cluded) and the jth final state (included). Intuitively, w[j]
corresponds to the jth service. According to our definition,
a new service starts immediately after finishing the previ-
ous service. This is not a real restriction because the reward
function can be setup so that the states visited before the ac-
tual start of the service are ignored (i.e., have zero reward).
Alternatively, one could also consider two families of “on”
and “off” states, but the current setup is technically more

4

convenient and equivalently powerful. Slightly abusing no-
tation, we use f(w[j]) to denote the total reward accumu-
lated in w[j], i.e., f(w[j]) =

∑ij

k=ij−1+1
f(w(k)).

The properties of runs we are interested in here are for-
mally defined as indicators. An indicator is a random vari-
able I : Run(s0) → {1, 0} which classifies the runs as
“good” or “bad” according to some criterion. For example,
the following simple indicator Iinf is obviously relevant in
our setting:

Iinf (w) =

{

1 if w(i) ∈ F for infinitely many i’s;
0 otherwise.

We are primarily interested in those runs w where
Iinf (w) = 1, because only then the limit features in-
troduced below make a good sense. The runs for which
Iinf equals 0 are those where the service cycle is either
eventually terminated, or the last service is never finished.
Since this can be seen as an error, P(Iinf =1) is an im-
portant quantitative information about the behaviour of s0.
For example, the quantitative model-checking problem for
linear-time properties definable via deterministic Büchi au-
tomata is obviously reducible to the problem of computing
P(Iinf =1) in any class of models that is closed under syn-
chronized product with a deterministic finite-state automa-
ton (probabilistic PDA form such a class). The decidabil-
ity of the model-checking problem for deterministic Büchi
automata and pPDA has been shown in [17] by employ-
ing non-trivial methods. Hence, even computingP(Iinf =1)
can be a difficult problem in general.

Before introducing other indicators, let us explain what
is meant by “predictability” of an indicator.

Definition 3.1. Let I be an indicator. We say that I is well-
predictable if for each δ > 0 there effectively exist n ∈ N

and an indicator Gn such that P(Gn 6=I) ≤ δ, and the
value of Gn(w) is efficiently computable just by inspect-
ing the prefix of w of length n.1

Hence, Gn “guesses” the value of I after seeing the first n
states of a run, and the “quality” of that guess is measured
by δ. In general, indicators are rarely well-predictable. An
important outcome of our work is that many complicated in-
dicators are well-predictable for a class of pPDA that satisfy
a mild and effectively checkable condition.

Now we define other random variables and the associ-
ated indicators.

A(w) =

8

>

<

>

:

limn→∞
Pn

j=1
f(w[j])

n
if Iinf (w) = 1
and the limit exists;

⊥ otherwise.

1 Due to the Markov property, the last state of the prefix contains a com-
plete information that is relevant for predicting the future behavior;
one cannot learn anything “fundamentally new” by inspecting the pre-
vious states in the prefix. However, this inspection can make the pre-
diction more efficient, as we shall see in Section 4.

D[κ](w) =

8

>

<

>

:

limn→∞

Pn
j=1

|f(w[j])−κ|
n

if Iinf (w) = 1;
and the limit exists;

⊥ otherwise.

R[λ, γ](w) =

8

>

<

>

:

limn→∞
Pn

j=1
B(w[j],λ,γ)

n
if Iinf (w) = 1;
and the limit exists;

⊥ otherwise.

Here κ ∈ R, λ, γ ∈ R
±ω, and B(w[j], λ, γ) returns either

1 or 0 depending on whether λ ≤ f(w[j]) ≤ γ or not, re-
spectively.

The random variable A returns the average reward per
service in a given run. The variable D[κ] returns the aver-
age deviation of the reward per service from a given cen-
tre κ in a given run. Finally, the variable R[λ, γ] returns the
percentage of services whose rewards are within the bounds
λ, γ.

In general, P(Iinf =1 ∧ V =⊥), where V is one of the
random variables introduced above, can be positive. How-
ever, this cannot happen for Markov chains generated by
pPDA, as we shall see in the next section.

Let V be one of the above defined variables, and let
`, u ∈ [0, 1]. The indicator I [V, `, u] is defined as follows:

I [V, `, u](w) =

{

1 if V (w) 6= ⊥ and ` ≤ V (w) ≤ u;
0 otherwise.

Apart of the aforementioned indicators, we also consider
their “Boolean combinations”. Thus, we obtain the family
I of indicators, which consists of Iinf , all I [V, `, u], and
their Boolean combinations. To get some intuition why it
makes sense to consider Boolean combinations of “basic”
indicators, let us formalize the properties mentioned in Sec-
tion 1 (assume that the reward function corresponds to av-
erage time spent in a given state).

• I(A, 30, 32) defines all runs where the average service
time is between 30 and 32.

• I(A, 30, 32) ∧ I(D[31], 0, 5) defines all runs where the
average service time is between 30 and 32, and the aver-
age deviation of service time from 31 is at most 5.

• I(A, 30, 32)∧I(D[31], 0, 5)∧I(R[7, ω], 0, 20%) defines
all runs satisfying the previous condition and the condi-
tion that the percentage of services longer than 7 is at
most 20.

This example is by no means “exhaustive”, one can easily
formulate other properties (possibly using different reward
functions) that are definable in terms of these indicators.

Let I ∈ I be an indicator. There are two basic algorith-
mic problems:

• compute P(I=1);
• check whether P(I=1) ∼ % for a given rational constant

% and ∼ ∈ {<,≤, >,≥, =}.

5

The predicate P(I=1) ∼ % is either valid or invalid in
each state s ∈ S, and hence it can be “plugged” into state-
based temporal logics such as LTL, PCTL, or PCTL∗ in the
style of [15] (the state predicate which has been introduced
and studied in [15] corresponds to P(I [A, `, u]=1) = 1).
Note that the conditional probability P(I=1 | Iinf (w)=1)
(which is relevant in situations when P(Iinf (w)=1) < 1)
is expressible from the probabilites given above, and hence
it does not require a special attention.

In the next section we examine these algorithmic prob-
lems for pPDA and a general class of reward functions that
take into account both the current control state and the cur-
rent stack content. We also show that the introduced indica-
tors are well-predictable. All these results work under some
mild and effectively checkable conditions, which are for-
mulated and explained in Section ??. Finally, we show that
if qualitative state predicates (i.e., state predicates of the
form P(I=1) = 1) are plugged into LTL or the qualitative
fragment of PECTL∗, then the model-checking problem for
these logics is still decidable. For general predicates, we de-
rive undecidability results.

4. Results for pPDA

Let us fix a pPDA ∆ = (Q, Γ, δ,Prob) and its initial con-
figuration q0Z0 such that the symbol Z0 cannot be removed
from the stack (this assumption is not restrictive because
one can always add a special bottom-of-the stack symbol
without influencing the behavior of a given pPDA). We also
fix a subset F ⊆ Q of final control states, and declare a con-
figuration pα ∈ C(∆) as final iff p ∈ F . The notions intro-
duced in Section 3 can now be applied to the chain M∆.
Since the problems formulated at the end of Section 3 are
obviously undecidable for general reward functions, we re-
strict ourselves to the following subclass:

Definition 4.1. A reward function f : C(∆) → R is well-
defined if there are functions g, h : Q → R and c : Γ → R

+

such that f(pα) = g(p)+h(p) · (∑Y ∈Γ
c(Y) ·#Y (α)) for

all pα ∈ C(∆), where #Y (α) denotes the number of oc-
currences of Y in α. For technical convenience, we assume
that g(p) · h(p) ≥ 0 for all p ∈ Q.

We say that f is simple (or linear) iff h(p) = 0 (or
h(p) = 1) for all p ∈ Q.

In the rest of this paper we use c(α) to denote
∑

Y ∈Γ
c(Y) · #Y (α). Sometimes we abuse our notation by

considering g and h as standalone simple reward functions.
Simple reward functions can model gains and costs

which do not depend on the history of activation records. A
simple example is execution time—one can reasonably as-
sume that the expected time spent in a given procedure for
given input data does not depend on the current stack of ac-
tivation records. On the other hand, if one is interested in

e.g. memory consumptions, then the total amount of allo-
cated memory in a given configuration does depend on the
amount of memory allocated in the individual procedures
stored in the stack, and here one can use linear reward func-
tions. The reason why we also introduced the function h
in Definition 4.1 is that in certain situations we might wish
not to “count” certain configurations. For example, if we
want to model an unbounded integer variable which is used
in a given procedure, we might encode its value in unary
by pushing a special symbol to the stack. Bounded changes
to the variable (such as increment or decrement) can eas-
ily be implemented as single pPDA transitions. However,
unbounded changes such as setting the variable back to 1
cannot be modeled as a single pPDA transition—the pre-
viously pushed symbols must be removed one by one. The
artificially-added intermediate configurations can influence
the properties we are interested in, and hence the obtained
results can become irrelevant. However, using h one can
“switch off” the intermediate states so that they do not con-
tribute to the accumulated reward.

As already menioned in Section ??, Markov chains gen-
erated by pPDA are not necessarily ergodic. Nevertheless,
questions about long-run avarge behaviour are inherently
related to concepts of ergodic chains (in particular, station-
ary distributions would be very useful in here). Fortunatelly,
one can establish a surprisingly powerful link to this the-
ory by abstracting the Markov chain M∆ into another finite-
state Markov chain X∆. This construction is essentially due
to [17]. Here we introduce a modified version of X∆ which
better suits our purposes, and present a collection of new re-
sults about X∆ which are then used to solve the problems
of our interest. The Markov chain M∆ is introduced in the
next subsection.

The Markov chain X∆. Let w = p1α1, p2α2 · · · be a run
of Run(q0Z0) (notice that p1α1 = q0Z0). For each i ∈ N

we define the ith minimum of w, denoted mini(w), which
is either increasing or non-increasing. The definition is in-
ductive.

• min1(w) = p1α1 (i.e., min1(w) is the starting config-
uration q0Z0 of w). We stipulate that min1(w) is non-
increasing.

• Let mini(w) = p`α`. Then mini+1(w) = pkαk where k
is the least number such that k > ` and |αk′ | ≥ |αk| for
each k′ ≥ k. Observe that |αk| − |α`| equals either 1 or
0. In the first case, mini+1(w) is increasing. Otherwise,
mini+1(w) is non-increasing.

Intuitively, the minimal configurations of a given run are
exactly the positions where one can forget about the stack
content below the top-of-the-stack symbol, because these
symbols are never accessed in the future. In other words,
the future behaviour of two configurations of the form pY α
and pY β is the same, assuming that these configurations are

6

minimal. This intuition is formally captured in our next def-
initions.

For all p, q ∈ Q and Y ∈ Γ, we use [pXq] to abbreviate
P(pX →∗ qε), and [pX↑] to abbreviate 1 − ∑

r∈Q[pXr].
Hence, [pX↑] is the probability that the stack never be-
comes empty along a run initiated in pX .

For each i ∈ N we define a random variable Xi over
Run(q0Z0) as follows: Xi(w) = (qY, m), where qY is
the head of mini(w), and m is either + or 0 depending on
whether mini(w) is increasing or non-increasing, respec-
tively. By adapting the proof technique of [17], one can
easily show that for every n≥2 and all (q1Y1, m1), · · · ,

(qnYn, mn) such that P(
∧n−1

i=1
Xi=(qiYi, mi))>0 we have

that the probability

P(Xn=(qnYn, mn) |
n−1
∧

i=1

Xi=(qiYi, mi))

is equal either to
X

qn−1Yn−1

x→qnYnZ

x · [qnYn↑]

[qn−1Yn−1↑]
or to

X

qn−1Yn−1

x→rZYn

x · [rZqn] · [qnYn↑]

[qn−1Yn−1↑]
+

X

qn−1Yn−1

x→qnYn

x · [qnYn↑]

[qn−1Yn−1↑]

depending on whether mn is equal to + or to 0, respec-
tively. In particular, observe that this probability is inde-
pendent of the values of X1, . . . , Xn−2, and it is also in-
dependent of the value of n. Hence, we can define a finite-
state Markov chain X∆ whose states are pairs of the form
(qY, m) and the probability of (qY, m) → (q′Y ′, m′) is
given by the above term where qn−1Yn−1, qnYn, and mn

are substituted with qY , q′Y ′, and m′, respectively. More
precisely, (qY, m) → (q′Y ′, m′) is a transition in X∆ iff
the above term makes sense and produces a positive value
which then defines the probability of this transition. Since
this term contains only summation, multiplication, division,
and probabilities of the form [pXq] and [pX↑] which are
known to be effectively expressible in (R, +, ∗,≤), we can
conclude that the transition probabilities of X∆ are also ef-
fectively expressible in (R, +, ∗,≤) (cf. the previous para-
graph).

As an example, consider again the pPDA ∆̄ defined in
Section 2, where sZ plays the role of initial configuration.
The probability [pIp] is equal to (

√
5 − 1)/2, which means

that [pI↑] = (3 −
√

5)/2. The Markov chain X∆̄ is de-
picted in Figure 2 (only the states reachable from (sZ, 0)
are drawn).

To each w ∈ Run(q0Z0) we associate its foot-
print X1(w), X2(w), · · · . Note that there can be runs
whose footprints are not paths in X∆. For example, the
run sZ, sZ, sZ, · · · of Run(sZ) in ∆̄ has the footprint
(sZ, 0), (sZ, 0), (sZ, 0), · · · which is not a path in X∆̄.
Let BSCC ∆ be the set of all bottom strongly connected

PSfrag replacements

1 0.5

0.5

0.50.5

3−
√

5
2

√
5−1
2

3−
√

5
4

3−
√

5
4

3−
√

5
4

3−
√

5
4

√
5−1
4

√
5−1
4

√
5−1
4

√
5−1
4

pZ, 0

pI,+

pI, 0 pD,+

pD, 0sZ, 0

Figure 2. The Markov chain X∆̄

components of X∆ (here we view X∆ as a finite graph
where the edges correspond to transitions of X∆). To each
C ∈ BSCC ∆ we associate the set Run(q0Z0, C) consist-
ing of all w ∈ Run(q0Z0) such that the footprint of w is a
path in X∆ which hits the component C. We also define a
random variable Entry which for every w ∈ Run(q0Z0) re-
turns either w(j) where j ∈ N is the least number such that
Xj(w) ∈ C for some C ∈ BSCC ∆, or ⊥ if there is no such
j. In other words, if w is a run whose footprint hits a BSCC
of X∆, then Entry(w) is the configuration which “enters”
this BSCC.

Note that since X∆ has finitely many states,
P(Run(q0Z0, Ci)) is effectively expressible in (R, +, ∗,≤)
by employing standard methods for finite-state Markov
chains (transition probabilities of X∆ can be handled fully
symbolically, there is no need to evaluate them). More-
over, it can easily be shown that

∑

C∈BSCC∆

P(Run(q0Z0, C)) = 1 (1)

Consequently, P(Entry=⊥) = 0.

Solving the Problems of Section 3 for pPDA. Now we
formulate a crucial result which says that the (in)validity of
all indicators in our family I for a given w ∈ Run(q0Z0)
is essentially determined only by the BSCC of X∆ hit by
w, and by the stack content in the configurations whis en-
ters this component. To formulate this precisely, we need to
introduce an indicator HitL, where L ⊆ Γ∗ is a regular lan-
guage:

HitL(w) =

{

1 if Entry(w) = pXβ and β ∈ L;
0 otherwise.

Theorem 4.2. Let I ∈ I be an indicator and f a well-
defined reward function. For every C ∈ BSCC ∆ there ef-
fectively exists a regular language LC ⊆ Γ∗ such that
P(I = HitLC

| Run(q0Z0, C)) = 1. Moreover, if f is a
simple reward function, then LC = Γ∗ for each C.

The proof of Theorem 4.2 is the technical core of our re-
sults.

7

Theorem 4.3. Let L ⊆ Γ∗ be a regular language and
C ∈ BSCC ∆. Then P(HitL=1 | Run(q0Z0, C)) is effec-
tively expressible in (R, +, ∗,≤). Moreover, if L = Γ∗, then
the size of the constructed formula is only polynomial in the
size of ∆, and the alternation depth of quantifiers is fixed.

As a direct corollary of Theorem 4.2 and Theorem 4.3 we
obtain the following:

Corollary 4.4. Let I ∈ I be an indicator, f a well-
defined reward function, % a rational constant, and ∼ ∈
{<,≤, >,≥, =}. The problem whether P(I=1) ∼ % is de-
cidable. Moreover, if f is a simple reward function, then this
problem belongs to EXPTIME.

References

[1] P. Abdulla, N.B. Henda, and R. Mayr. Verifying infinite
markov chains with a finite attractor or the global coarse-
ness property. In Proceedings of LICS 2005. IEEE, 2005. To
appear.

[2] P.A. Abdulla, C. Baier, S.P. Iyer, and B. Jonsson. Reason-
ing about probabilistic channel systems. In Proceedings of
CONCUR 2000, vol. 1877 of LNCS, pp. 320–330. Springer,
2000.

[3] R. Alur, S. Chaudhuri, K. Etessami, and P. Madhusudan. On-
the-fly reachability and cycle detection for recursive state
machines. In Proceedings of TACAS 2005, vol. 3440 of
LNCS, pp. 61–76. Springer, 2005.

[4] R. Alur, K. Etessami, and M. Yannakakis. Analysis of recur-
sive state machines. In Proceedings of CAV 2001, vol. 2102
of LNCS, pp. 207–220. Springer, 2001.

[5] R. Alur and P. Madhusudan. Visibly pushdown languages. In
Proceedings of STOC 2004, pp. 202–211. ACM Press, 2004.

[6] C. Baier and B. Engelen. Establishing qualitative properties
for probabilistic lossy channel systems: an algorithmic ap-
proach. In Proceedings of 5th International AMAST Work-
shop on Real-Time and Probabilistic Systems (ARTS’99),
vol. 1601 of LNCS, pp. 34–52. Springer, 1999.

[7] T. Ball and S.K. Rajamani. Bebop: A symbolic model
checker for boolean programs. In SPIN 00: SPIN Workshop,
vol. 1885 of LNCS, pp. 113–130. Springer, 2000.

[8] T. Ball and S.K. Rajamani. The SLAM project: debugging
system software via static analysis. In Proceedings of POPL
2002, pp. 1–3. ACM Press, 2002.

[9] N. Bertrand and Ph. Schnoebelen. Model checking lossy
channel systems is probably decidable. In Proceedings of
FoSSaCS 2003, vol. 2620 of LNCS, pp. 120–135. Springer,
2003.

[10] T. Br ázdil, A. Kučera, and O. Stražovsk ý. On the decid-
ability of temporal properties of probabilistic pushdown au-
tomata. In Proceedings of STACS’2005, vol. 3404 of LNCS,
pp. 145–157. Springer, 2005.

[11] J. Canny. Some algebraic and geometric computations in
PSPACE. In Proceedings of STOC’88, pp. 460–467. ACM
Press, 1988.

[12] C. Courcoubetis and M. Yannakakis. Markov decision pro-
cesses and regular events. In Proceedings of ICALP’90, vol.
443 of LNCS, pp. 336–349. Springer, 1990.

[13] C. Courcoubetis and M. Yannakakis. The complexity of
probabilistic verification. JACM, 42(4):857–907, 1995.

[14] L. de Alfaro. Temporal logics for the specification of per-
formance and reliability. In Proceedings of STACS’97, vol.
1200 of LNCS, pp. 165–176. Springer, 1997.

[15] L. de Alfaro. How to specify and verify the long-run av-
erage behavior of probabilistic systems. In Proceedings of
LICS’98, pp. 454–465. IEEE, 1998.

[16] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Effi-
cient algorithms for model checking pushdown systems. In
Proceedings of CAV 2000, vol. 1855 of LNCS, pp. 232–247.
Springer, 2000.

[17] J. Esparza, A. Kučera, and R. Mayr. Model-checking prob-
abilistic pushdown automata. In Proceedings of LICS 2004,
pp. 12–21. IEEE, 2004.

[18] J. Esparza, A. Kučera, and R. Mayr. Quantitative analysis
of probabilistic pushdown automata: Expectations and vari-
ances. In Proceedings of LICS 2005. IEEE, 2005. To ap-
pear.

[19] J. Esparza, A. Kučera, and S. Schwoon. Model-checking
LTL with regular valuations for pushdown systems. I&C,
186(2):355–376, 2003.

[20] K. Etessami and M. Yannakakis. Algorithmic verification of
recursive probabilistic systems. In Proceedings of TACAS
2005, vol. 3440 of LNCS, pp. 253–270. Springer, 2005.

[21] K. Etessami and M. Yannakakis. Recursive Markov chains,
stochastic grammars, and monotone systems of non-linear
equations. In Proceedings of STACS’2005, vol. 3404 of
LNCS, pp. 340–352. Springer, 2005.

[22] H. Hansson and B. Jonsson. A logic for reasoning about
time and reliability. Formal Aspects of Computing, 6:512–
535, 1994.

[23] S.P. Iyer and M. Narasimha. Probabilistic lossy channel sys-
tems. In Proceedings of TAPSOFT’97, vol. 1214 of LNCS,
pp. 667–681. Springer, 1997.

[24] M.Z. Kwiatkowska. Model checking for probability and
time: from theory to practice. In Proceedings of LICS 2003,
pp. 351–360. IEEE, 2003.

[25] A. Rabinovich. Quantitative analysis of probabilistic lossy
channel systems. In Proceedings of ICALP 2003, vol. 2719
of LNCS, pp. 1008–1021. Springer, 2003.

[26] A. Remke, B.R. Haverkort, and L. Cloth. Model checking
infinite-state Markov chains. In Proceedings of TACAS 2005,
vol. 3440 of LNCS, pp. 237–252. Springer, 2005.

[27] A. Tarski. A Decision Method for Elementary Algebra and
Geometry. Univ. of California Press, Berkeley, 1951.

[28] M. Vardi. Automatic verification of probabilistic concurrent
finite-state programs. In Proceedings of FOCS’85, pp. 327–
338. IEEE, 1985.

[29] I. Walukiewicz. Pushdown processes: Games and model-
checking. I&C, 164(2):234–263, 2001.

8

