An Automata Approach to Some Problems on
Context-Free Grammars

J. Esparza and P. Rossmanith

Institut fiir Informatik, Technische Universitat Miinchen
Arcisstr. 21, D-80290 Miinchen, Germany

Abstract. In Chapter 4 of [?], Book and Otto solve a number of word
problems for monadic string-rewriting systems using an elegant automata-
based technique. In this note we observe that the technique is also very
interesting from a pedagogical point of view, since it provides a uniform
solution to several elementary problems on context-free languages. We
hope that Wilfried Brauer will consider these results for inclusion in the
next edition of his textbook on automata theory [?].

1 Introduction

In Chapter 4 of their book “String-Rewriting Systems” [?], Book and Otto study
so-called monadic string rewriting systems. These are sets of rewriting rules of
the form o — 3, where «a, 8 € X* for some finite alphabet X, satisfying |a| > |G|
and |8| < 1. The rule @ — 3 allows to rewrite « into S.

Among other results, Book and Otto show that the set of descendants of
a regular set L of strings — i.e., the set of strings that can be derived from
the elements of L through repeated application of the rewriting rules — is also
regular; moreover, they provide an elegant algorithm to compute it. The input
to the algorithm is a nondeterministic finite automaton (NFA) accepting I, and
the output is another NFA accepting the descendants of L.

There 1s a tight relationship between monadic string rewriting systems and
context-free grammars. Given a context-free grammar G = (V, T, P, S) without
e-productions, the set R = {& — A | (A = a) € P} is a monadic string rewriting
system over the alphabet V UT'. Loosely speaking, R is obtained by “reversing”
the productions of G. The set of descendants of a language L. C (V UT)* in R
is the set of predecessors of L in G, i.e., the set of strings from which some word
of L is derivable through repeated application of the productions.

The similarity between monadic string rewriting systems and context-free
grammars was already observed by Book and Otto in [?]. In particular, they
remark that the algorithm for the computation of descendants could be ap-
plied to problems on context-free grammars, but do not elaborate on this point.
The purpose of this note is to show that the algorithm indeed leads to elegant
and uniform solutions for the membership, emptiness and finiteness problems of
context-free grammars, among others.

2 Preliminaries

We use the notations of [?] for finite automata and context-free grammars. Given
an NFA M = (Q,%,6,q0, F), where 6§ C Q x ¥ x @, we define the transition

relation 6: (Q x ©*) — 29 by:

5
- g(q, a) = 6(q,a), and
8(g,wa) = {p | p € 8(r, a) for some state r € §(q,w)}

We often denote ¢’ € g(q, a) by ¢ % ¢'.

Given a context-free grammar G = (V, T, P,S), we denote ¥ = VUT. We
define two relations = and = between strings in X*. If A — § is a production
of P and « and 7 are any strings in X%, then aAy = afy. The string a A7y is
an tmmediate predecessor of af3y. The relation = is the reflexive and transitive
closure of =. If @ = 3, then « is a predecessor of 3. Given L C ¥, we define

pret (L) is inductively defined by pre®(L) = L and preit(L) = pre(prei(L)).
Finally, we define pre*(L) = |J;5, pre‘(L), or, equivalently,

pre* (L) = {a € ¥* | 3 € L with a = 5}

3 Computation of pre*

Let G = (V,T, P,S) be a fixed context-free grammar. Given an NFA M recog-
nizing a regular set L(M) C X*, we wish to construct another NFA recognizing
pre*(L(M)). Book and Otto’s idea (translated into context-free grammars) is to
exhaustively perform the following operation, starting with M as current NFA:
if A = «a is a production, and in the current NFA we have ¢ -2 ¢’, then we
add a new transition ¢ <45 ¢’. The algorithm terminates, because the number of
states of the NFA remains constant, and there is an upper bound to the number
of transitions of an NFA with a fixed number of states and a fixed alphabet.

Algorithm 1

Input: an NFA M = (Q, X, 6,40, F)
Output: an NFA M’ = (Q, X, 8, qo, F') with L(M') = pre*(L(M))
&« 6
repeat
forq,¢ €Q, A—p€Pdo
ifqg €6(q,B) then 8 + & U{(q,4,¢)} fi
od

until & does not change any more

We apply the algorithm to an example. Consider the context-free grammar
S — AS | SA |a, A— band the NFA of Figure ?? having only the transitions
drawn with heavier lines. Assume that for each pair of states (g,q’) the for
loop examines all productions of the grammar in the order above. Then the
transitions labeled by 1 in Figure ?? are added in the first iteration of the
repeat-until loop. The second iteration adds the transitions ¢; =5 ¢q, derived
from ¢ =5 ¢ 4 ¢, and ¢ 25 g9, derived from ¢ 4 ¢ =5 ¢o. They
are labeled by 2 in Figure ??. The third iteration adds q3 -5 ¢q, derived from
72 4 ¢1 =5 ¢1 and labeled by 3 in the figure. Nothing is added in the fourth
iteration, and the algorithm terminates.

Fig. 1. lllustration of Algorithm 1

The correctness of Algorithm 1 follows immediately from the following two
lemmata:

Lemma 1. pre*(L(M)) C L(M’).

Proof. Let M; be the NFA computed by the algorithm after ¢ executions of the
repeat-untilloop (My = M), and let —- be the transition relation of M;. Since
L(M;) C L(M'), it suffices to prove pre’(L(M)) C L(M;) for every i > 0.

We proceed by induction on i. The case i = 0 is trivial because L(M) C
L(Myg) and pre®(L(M)) = L(M). For the step from i to i + 1, let o be an
arbitrary word of pre'*(L(M)). By the definition of pre, there exist words
@1, a3 and a production A — (3 such that a@ = a1 Aay and a1 Bas € pret(L(M)).
By induction hypothesis, a3 Bas € L(M;). Therefore, there exist states ¢, ¢’ such
that

! Qg

g0 q L q 2B

(3

for some final state ¢;. So we have

5} A ! oo
5379747 9 4 U

which implies & = ay Ay € L(Miy1). m|

Lemma 2. L(M') C pre*(L(M)).

Proof. Forall j > 0, let N; be the NFA obtained after the algorithm has added j
transitions to the input automaton M, and let — denote the transition relation
of N;. Since L(M') is the union of all the sets L(N;), it suffices to prove L(N;) C
pre* (L(M)) for every j > 0.

We proceed by induction on j. The case j = 0 is trivial because Ng = M.
For the step from j to j+ 1, assume that N; 4, is obtained from N; through the
addition of a new transition ¢q; 45 ¢s. Let a be an arbitrary word of L(Nj41).
If « is accepted by Nj, then, by the induction hypothesis, o € pre*(L(M)). If
is not accepted by N;, then we have o = a1 Aaz A ... Aevp, and

o A o A A Oy,
QOTIHMjﬁf1272>f11ﬁ>f12~~f11ﬁf127>q1‘

for some final state q¢. Since there exists a production A — @ such that ¢, % q2,
we have

%%fh%%%m%qyufh%fh%%

and therefore N; accepts o' = a1fBasf... a,. By the induction hypothesis,
o € pre*(L(M)). Since o = o', we have a € pre*(L(M)). O

The running time of Algorithm 1 in the size of the input automaton is easy to
estimate.! Let n = |@| be the number of states of the input automaton M. Since
&' contains at most O(n?) elements, the repeat-until loop is executed O(n?)
times. The for loop is executed ©(n?) times. Checking whether ¢/ € g’(q,ﬁ)
holds can be done by simulating the NFA (Q,X,é',¢, F) on input 8, which
requires O(n?) time (see [?], pp. 327-329). Adding an element to § takes O(1)
time (assume for instance that é’ is stored as a bit matrix). So the running time

is O(n").

4 Improving the complexity

Algorithm 1 is very simple, but not efficient. In this section we present a new
algorithm, Algorithm 2, with a running time of O(n*). It works for grammars
with productions of the form A — BC, A — a, or A — ¢, i.e., grammars in
Chomsky normal form extended with e-productions. Observe that every context-
free grammar can be efficiently transformed into one in this form. The check
q' € é(q, B) is now easier, since [has length at most 2.

We first observe that productions of the form A — a or A — ¢ can only
contribute new transitions to the input NFA during the first iteration of the
repeat-until loop. In Algorithm 2 they are processed in an initialisation phase.
It remains to deal properly with productions of the form A — BC. In each
iteration of the repeat-until loop, Algorithm 1 goes over all pairs of states

! It is also interesting to examine the complexity in the size of the grammar, but this
is out of the scope of this little note.

(q,9"), checks if ¢’ € g(q,BC'), and if so adds the triple (¢, A4,¢') to 8. The
procedure takes ©(n*) time. Algorithm 2 adds exactly the same transitions, but
more efficiently: it goes through all states ¢'/, and it computes for each of them
the sets L(B,¢") = {g€ Q | ¢ £+ ¢"} and R(¢",C) = {¢' € Q | ¢" -5 ¢'}; the
whole procedure takes @(n?) time. Then, it adds to &' the union over all ¢"’ of
the triples L(B,q") x {A} x R(q",C).

Actually, one last refinement is needed in order to achieve O(n?) running
time: Algorithm 2 uses two sets of states L(X,q), L'(X,q) (and two analogous
sets R(q,X) and R'(q,X)). L'(X,q) is reinitialised to the empty set in each
iteration of the repeat-until loop; it stores the states ¢’ for which a transition
¢" %5 ¢ has been added during the current iteration. L(X,q) is initialised only
once before the execution of the repeat-until loop; it stores all the states ¢’ for
which a transition ¢’ 5 ¢ has been added so far. So the new triples that have
to be added to &’ after each iteration are

(Z'(B,q) x {A} x R(q,C)) U (L(B,q) x {A} x R'(q,C))
Algorithm 2

Input: an NFA M = (Q,X, 6,40, F)
Output: an NFA M' = (Q,X, 8, qo, F) with L(M') = pre*(L(M))
& 6
forge @, A—-ec€ePdod «&U{(q,4,q9)} od;
forq,¢ € Q, A—ac Pdo
if (¢,a,¢') €8 then §' « & U{(q,A,¢)} fi
od;
forge @, X €V do L(X,q) «+ 0; R(q,X) « 0 od;
repeat
forqe@, X eVdol'(X,q) «0; R(q, X) < 0 od;
for ¢, € Q, A — BC € P do
if (¢/,B,q) € & ANq' ¢ L(B,q) then
L(B,q) « L(B,q) U{¢'}; L'(B,q) + L'(B,q) U{q'}
if (¢,C,q') € &' Aq & R(q,C) then
R(q,C) < R(q, C)U{q'}; R'(q,C) « R'(¢,C) U {¢'}
fi;
od;
forge @, A— BC € Pdo
8« 6"U (L'(B,q) x {A} x R(q,0)) U (L(B,q) x {A} x R'(q,C))
od

until & does not change any more

The correctness of the algorithm is an immediate consequence of the fact
that both algorithms have added exactly the same new transitions after each
iteration of the repeat-until loop. More precisely: for every £ > 1, after k

iterations of the repeat-until loop the variable §’ has exactly the same value in
both Algorithm 1 and Algorithm 2.

Let us now examine the running time.

Lemma 3. If the repeat-until loop is executed k times, then Algorithm 2 ter-
minates in O(kn?) + O(n?) time.

Proof. The algorithm uses states (¢ and ¢'), sets of states (Q, L(X,q), L' (X, q),
R(q, X), R'(q,X)) and transition tables (§ and ') as its basic data structures.
We assume that states are implemented as numbers in {1,...,n}, while sets of
states and transition tables are implemented as bit vectors of length n, respec-
tively length n?|V].

With this implementation the time complexity of all operations is as follows:

Operation Time complexity
& 6 O(n?)

(q,a,¢') €& o(1
§—6U{(qg,A ¢)} o1

L(X,q) « 0 O(n

q' € L(B,q) o)
L'(B,q) « L'(B,q) U{q'} 0
§' « 6' UL/(B, q) x {A} x R(¢,C) O(n) + O(n - |L'(B, q)|)

Only the last line needs some explanation. It works by reading the bit vec-
tor of L'(B, q) ignoring empty entries (ignoring an entry takes O(1) time) and
performing 6’ «+ 6’ U {(s, A, s’)} for all s € R(q,C') when finding an entry s in
L'(B,q) (O(n) steps).

Let us assume the repeat-until loop is executed exactly k times. Using the
above table we easily see that everything before the repeat-until loop runs in
time O(n?). The first for loop in the body of the repeat-untilloop runs in time
O(n?), the second for loop also in time O(n?). Not counting the last for loop,
the overall time requirement is therefore O(n?) + k - O(n?) = O(kn?).

Let Li(B,q), Li(B,q), Ri(q,C), and R;(¢q,C) denote the values of L'(B,q),
L(B,q), R'(¢,C), and R(q,C) after the ith iteration of the repeat-until loop.
The last for loop then requires

(i)=Y (0(n)+0(n |Li(B,q)]) + O(n - |Ri(q,C)]))

q€Q
A—BCeP
=0(n?) + §:|L (B,q)]) + O(n § |Ri(q,C
q€Q q€Q
A—BCeP A—BCeP

steps during the ith iteration of the repeat-until loop. The total running time

of the algorithm is therefore O(kn?) + T(1) + T(2) + - -+ T(k).

Since the Li(B,q)’s fori = 1,..., k as well as the R}(q,C)’s are disjoint, we

have
k k

SoILiBg) <n and Y IR, 0)| <n.

i=1 i=1

So the sum T'(1) + T(2) + - - - + T(k) yields

k k k
Y0+ Y (O(n-Y |Li(B,q)))+O(n- Y |Ri(g,C)])) = O(kn®) + O(n®)
i=1 qeEQ i=1 i=1
A—BCEeP
The overall running time is therefore O(kn? + n?). O

We immediately get
Theorem 4. Algorithm 2 runs in O(n*) time.

Proof. Since M’ has O(n?) transitions, the repeat-until loop is executed O(n?)
times. Use now Lemma ?7. O

It requires a bit of thought to find a grammar and a family of NFAs for which
the repeat-until loop is executed @(n?) times and Algorithm 2 runs in @(n*)
time. The next figure shows an example (more precisely, the figure shows the
grammar and a member of the family):

H — DA
C — AB
C—-(CB
E—CH
G —> EB
A— FG

5 A special case

In this section, we show that Algorithm 2 needs only O(n®) time for linear NFAs,
a special class of inputs relevant for the next section. An NFA is linear if there
is a bijection I: Q — {1,...,n} such that I(¢) < I(¢') if and only if ¢ -2 ¢’ for
some word a.?

Lemma 5. If the input NFA M of Algorithm 2 is linear, then the repeat-until
loop is executed at most O(n) times.

2 Observe that all circuits of a linear NFA are of the form ¢ -2+ ¢. We call them
self-loops.

Proof. Observe first that any new transition ¢ -4 ¢’ added by the algorithm to
a linear input M satisfies I(q) # I(q"). Therefore, if the input M is linear, so is
the output M’.

Let the width of a transition ¢ -2 ¢’ be I(q') —I(q). We show that transitions
q 45 ¢’ of width i are added after at most (i + 1)|V|th iterations of the repeat-
until loop.

We proceed by induction on i. The base of the induction is the case ¢ = 0.
We then have ¢ = ¢’ and so the transition ¢ 45 ¢’ is in fact the self-loop ¢ 25 ¢.
If ¢ 45 ¢ is added by one of the two initial for loops, then it has been added
after 0 iterations of the repeat-until loop, and we are done. So assume that
72 ¢, ¢ % g and arule A — BC yield together ¢ <45 ¢. Since the current
automaton is linear, we have ¢ = ¢/, and so both ¢ 25 ¢ and ¢ <5 ¢ are self-
loops. Since each state can have at most |V| self-loops labelled with variables,
and in each iteration of the repeat-until loop at least one of them is added,
q -4 ¢ is added during the first |V| iterations.

Now, let the width of ¢ 45 ¢’ be i > 0. Again, if ¢ 45 ¢’ is added by one
of the two initial for loops, then we are done as before. So assume that there is
a state ¢” with ¢ £5 ¢” and ¢ << ¢’ and a production A — BC € P. Clearly,
the widths of ¢ &5 ¢” and ¢ < ¢’ are at most i. If these two widths are
smaller than 7, then by the induction hypothesis ¢ 25 ¢” and ¢’ < ¢’ are
added after at most (i — 1)|V] iterations. So ¢ -4 ¢’ is added after at most
(1= 1D|V]+ 1 < i|V] iterations.

Let us now assume that the width of q By g is i or the width of ¢/ <5 ¢

is i Then q = q or ¢ CIf g = ¢" we say ¢ 4 depends directly on
g4 .M q =q¢" wesayq —) q' depends directly on q —) q

In general we have dlrect dependency chains ¢ 45 ¢/, ¢ 45 ¢/, ¢ 45 A q,. ..,
q A®, q’', where q ELN q' depends directly on ¢ A, ¢ fort =0,...,k—1.

Since no two transitions of the chain can be identical and there are only V|

variables, we have k < |V|. The last transition ¢ EIGN q' of a maximal chain does
not depend directly on a transition, and so it is added because of transitions with
width smaller than i. By induction hypothesis this occurs after at most (i—1)|V|

iterations. Then ¢ EIGN q' is added after at most (i — 1)|V| + k — ¢ iterations,
and ¢ 4y ¢’ after (i — 1)|V| + k < i|V] iterations.

Since the width of all transitions is at most n = |@|, all transitions are added
after at most n|V| iterations of the repeat-until loop. So 8’ does not change
any more during the n|V|+ 1 iteration, and the loop is executed O(n) times. O

It follows from Lemma ?? and Lemma ?? that Algorithm 2 runs in O(n?)

time for linear NFAs.

6 Applications

We show that several standard problems on context-free languages, for which
textbooks often give independent algorithms, can be solved using Algorithm 2.
We fix a context-free grammar G = (V, T, P, S) for the rest of this section.

In order to avoid redundant symbols in G it is convenient to compute the set
of useless variables ([?], p.88). Recall that X € V is useful if there is a derivation
S = aXp S wfor some o, 3 and w, where w is in T*. Otherwise it is useless.
To decide if X is useless, observe that X is useful if and only if S € pre*(T* XT™)
and X € pre*(T*). Compute the automata accepting pre* (7T XT*) and pre*(T™)
using Algorithm 2, and check if they accept S and X, respectively.

Nullable variables have to be identified when eliminating e-productions ([?],
p. 90). A variable X is nullable if X = €. To decide the nullability of a variable
observe that X is nullable if and only if X € pre*({¢}).

Consider now the membership problem: given a word w € T* of length n,
is w generated by G? To solve it, compute the automaton accepting pre*({w}),
and check in constant time if it accepts S. Since there is a linear automaton with
n + 1 states recognizing {w}, the complexity of the algorithm is O(n?). This is
also the complexity of the CYK-algorithm usually taught to undergraduates [?].

To decide if L(G) is contained in a given regular language L, observe that
L(G) C L is equivalent to L(G) N L = (§, which is equivalent to S ¢ pre*(L).
If L is presented as a deterministic finite automaton with n states, compute a
deterministic automaton for L in O(n) time, and check S ¢ pre*(L) in O(n%).

Similarly, to decide if L(G) and L are disjoint, check whether S ¢ pre*(L). In
the example of Figure 77 the languages are disjoint because there is no transition
qo0 -5 q2.

To decide if L(G) is empty, check whether L(G) is contained in the empty
language, which is regular. In this case the automaton for L has just one state.

To decide if L(G) is infinite, assume that G has no useless symbols (other-
wise apply the algorithm above), and use the following characterization (see for
instance [?], Theorem 6.6): L(G) is infinite if and only if there exists a variable
X and strings «, f € ©* with aff # ¢ such that X 2 aXp. This is the case if
and only if X € pre*(ZTXT* UX*XTH).

7 Conclusions

In our opinion, our adaptation of Book and Otto’s technique has a number of
pedagogical merits that make it very suitable for an undergraduate course on
formal languages and automata theory: it is appealing and easy to understand,
its correctness proof is simple, it applies the theory of finite automata to the
study of context-free languages, and it provides a unified view of several standard
algorithms.

Acknowledgements We are very grateful to Ahmed Bouajjani and Oded Maler,
who drew our attention to Book and Otto’s result, and applied it, together with
the first author, to the analysis of pushdown automata [?,?]. Many thanks to an
anonymous referee for pointing out an important mistake in a former version of
the paper, and for very helpful suggestions.

References

1.

2.

A. V. Aho, J. E. Hopcroft and J. D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, 1976.
R. F. Book and F. Otto. String-Rewriting Systems. Texts and Monographs in
Computer Science. Springer, 1993.

. A. Bouajjani and O. Maler. Reachability analysis of pushdown automata Proceed-

ings of INFINITY °96, tech, rep. MIP-9614, Univ. Passau, 1996.

. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown au-

tomata: Application to model checking. To appear in CONCUR ’97.

. W. Brauer. Automatentheorie. Teubner, 1984.
. J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and

Computation. Addison-Wesley, 1979.

. D. H. Younger. Recognition and parsing of context-free languages in time n’. In-

formation and Control, 10:189-208, 1967.

