The PEP Verification System!

Eike Best?, Javier Esparza®, Bernd Grahlmann?,

Stephan Melzer?, Stefan Romer® and Frank Wallner?

Abstract

This paper gives a short overview of the verification system PEP (a
Programming Environment based on Petri nets). Tt focuses on some
recent developments.

Keywords: Model Checking, Partial Order Semantics, Petri Nets,
Programming, Verification.

1 Introduction

The PEP tool [1, 4, 5, 17] supports the development of parallel systems. It
combines a set of facilities for the modelling, the editing, the simulation and
the compilation of systems expressed in various languages — including an
imperative programming language, Petri nets, and finite automata — with a
number of algorithms for the analysis and the verification of their properties.
Two of the distinctive features of the tool are that it is based on Petri net
theory, and that its analysis component uses partial order semantics in order
to avoid the construction of the state space, whenever possible.

This paper is structured as follows. Section 2 provides a brief account of
the structure of the tool. Section 3 describes the verification component, in
particular the novel items. Section 4 concludes.

2 Modelling parallel systems with PEP

The PEP tool [1, 4, 5, 17] supports the main phases of the development
of parallel systems: modelling, simulation, compilation, analysis and verifi-
cation. The user may choose between a spectrum of input languages and
various ways of translating them into each other. There is also the possi-
bility of editing temporal logic formulae and running automatic verification
algorithms. These algorithms are comparable in performance with other ex-
isting model-checking systems [11, 14, 19, 22, 23], but are limited — as are all
others — by the inherent complexity of verification. They could be used, for
instance, for the verification of prototypes, intricate distributed algorithms,
or communication protocols.

!This work has been supported by the Deutsche Forschungsgemeinschaft (DFG) under
grants Be 1267/2-1, Be 1267/2-2, Be 1267/6-1, F1 207/1-1, Sta 450/1-1 and by project
A3 (Spezifikation, Analyse, Modellierung) of the DFG-Sonderforschungsbereich SFB-342
(Methoden und Werkzeuge fiir die Nutzung paralleler Rechnerarchitekturen).

2e.best@informatik.uni-oldenburg.de; Fachbereich Informatik, Carl-von-Ossietzky-Uni-
versitat zu Oldenburg.

?{esparza,melzers,roemer,wallnerf}@informatik.tu-muenchen.de; Institut fir Informa-
tik, Technische Universitat Munchen.

*bernd@informatik.uni-hildesheim.de; Institut fiir Informatik, Universitit Hildesheim.



parallel finite
automata (PFA)

temporal logic formula®
referring to program 1

program Tt
written in B(PN)?

process algebraic high-level net
expression (PBC) (M-net)

1-safe low-level
Petri net N

temporal logic formulad’
referringtonet N

finite prefix

restricted

(pmperty checkeﬂ [mode' ChECkef} model checker

verification component

Figure 1: Functionality diagram of the existing PEP system

Figure 1 depicts the components of the existing PEP system and their func-
tional dependencies. The user may choose between modelling a parallel
system either as a collection of finite automata [13], writing a concurrent pro-
gram in a language such as B(PN)? [7], or specifying a modular high-level
Petri net (M-net [2]). The models may be edited and simulated, compiled
into Petri nets.

The translations between different models is achieved by means of com-
pilations, as shown by arrows in figure 1. For instance, a parallel finite
automaton may be compiled into a B(PN)? program. The latter may be
compiled either into a process algebraic expression of the PBC [6] or into an
M-net, and from either, further into a 1-safe low-level net (both routes yield
equivalent low-level nets). A 1-safe low-level net may further be subjected
to a prefix-builder which constructs the McMillan prefix [9, 15].

Editors and simulators exist for the following objects shown in figure 1:
parallel finite automata, B(PN)? programs, M-nets and 1-safe nets. For
PBC expressions and temporal logic formulae, PEP provides only editors
but (naturally, for formulae) no specific simulators.

The components of PEP are glued together by a reference component [12]
which records information such as, for instance, which place(s) of a net
correspond to a given variable or to a given control point of a program. By
means of the reference component, formulae referring to a program may be
translated automatically into formulae referring to the corresponding net,
and the simulation of a net may trigger the simulation of the corresponding
program (if there exists any). The reference component also severs a link



between a program and a net, once the latter has been edited independently
of the former.

Finally, PEP also has output filters such as one which transforms a B(PN)?
program into executable C code. PEP has been implemented on X-platforms
and conforms to the usual standards of user-friendly software.

3 The Verification Component of PEP

The starting point of the verification component is a 1-safe Petri net. Most
of the implemented algorithms try to avoid the state explosion problem using
one of the following two strategies: (1) construct a compact representation of
the state space by means of a so-called net unfolding [15, 9], or (2) construct
a set of constraints whose solutions are a superset of the state space, and
use this set to derive semidecision procedures.

The verification component offers a number of dedicated algorithms to check
key properties like deadlock-freedom. A wider range of safety properties can
be checked using efficient semidecision algorithms [16]. Finally, PEP also
offers a model checker for a small temporal logic [8]. When the Petri net
satisfies certain constraints this model checker can be replaced by a more
efficient one [3].

Recent developments. We briefly describe three recent developments:

¢ A new model checker for Linear Temporal Logic (LTL).

e An extension that allows to check Petri nets which are not necessarily
1-safe.

e A new technique that improves the efficiency of the deadlock detection
algorithm.

We have developed a model checker for 1-safe Petri nets and LTL formu-
las [24]. Tt is based on the so-called automata-theoretic approach to model
checking. Given a formula ¢, a Biichi automaton A-4 is constructed which
accepts exactly all the infinite sequences of markings which violate ¢. Then,
A_4 is composed in a certain way with the system under consideration to
yield a 1-safe net that accepts all the computations of the system that fail ¢.
Finally, the unfolding of the composed net is computed and used to decide
if the composed system accepts any sequence.

The advantage of the algorithm lies in the fact that the unfolding of the
composed system is usually much smaller than the state space. This allows
to solve the state-explosion problem in many cases. When the system does
not satisfy the property, a failing run is delivered as fault diagnosis.

The method for the construction of the net unfolding introduced in [9] ac-
cepted only 1-safe nets as input. We have recently extended it to arbitrary
Petri nets. The algorithm terminates if and when the Petri net has a fi-
nite state space [10]. It is planned to extend the algorithm even further to
high-level nets (such as M-nets).



We have implemented an algorithm for deadlock detection based on net
unfoldings [18]. In contrast to a former algorithm by McMillan for the same
purpose [15], the unfolding is explored using a new technique based on linear
programming. This technique improves the performance in many cases.

4 Conclusions

We have briefly presented some of the main features of the PEP tool. For
an overview of the other analysis and verification methods available in PEP
we refer the reader to [1].

Our experiences have prompted us to consider the following future aims:

e A model checker for high-level Petri nets will be developed and imple-
mented.

e The INA system [21] (in particular, its state graph checker and its
theorem data base) will be fully integrated in PEP.

o Other verification methods (like a BDD based model checker) will be
integrated, and interfaces to other tools (like SPIN [14] or PROD [22])
will be offered.

e The graphical net editors will be improved to meet the needs of indus-
trial applications, e.g. [20].

References

[1] E. Best: Partial Order Verification with PEP. Proc. POMIV ’96, Partial Order
Methods in Verification. G. Holzmann, D. Peled, V. Pratt (eds), American
Mathematical Society (1996).

[2] E. Best, H. Fleischhack, W. Fraczak, R.P. Hopkins, H. Klaudel and E. Pelz:
An M-net Semantics of B(PN)?. Proc. STRICT ’95, Berlin, J. Desel (ed.).
Springer-Verlag, Workshops in Computing, 85-100 (1995).

[3] E. Best and J. Esparza: Model Checking of Persistent Petri Nets. Proc. 5th
Workshop Computer Science Logic-91. Springer-Verlag, LNCS Vol. 626, 35-52
(1992).

[4] E.Best and B. Grahlmann: PEP - more than a Petri Net Tool. Proc. Tools and
Algorithms for the Construction and Analysis of Systems, 2nd International
Workshop, TACAS ’96, Passau, March 1996, T. Margaria, B. Steffen (eds).
Springer-Verlag, LNCS Vol. 1055, 397-401 (1996).

[5] E. Best and B. Grahlmann: PEP: Documentation and User Guide. Universitét
Hildesheim, 1995. Available together with the tool via:
http://www.informatik.uni-hildesheim.de/ pep/HomePage.html

[6] E. Best, R. Devillers and J.G. Hall: The Petri Box Calculus: a New Causal
Algebra with Multilabel Communication. Advances in Petri Nets 1992, G.
Rozenberg (ed.). Springer-Verlag, LNCS Vol. 609, 21-69 (1992).

[7] E. Best and R.P. Hopkins: B(PN)? — a Basic Petri Net Programming No-
tation. Proc. PARLE’93, A. Bode, M. Reeve, G. Wolf (eds). Springer-Verlag,
LNCS Vol. 694, 379-390 (1993).



[8]

[24]

J. Esparza: Model Checking based on Branching Processes. Habilitation,
Hildesheim (1993). Published as: Model Checking Using Net Unfoldings. Proc.
TAPSOFT’93 (1993), M.C. Gaudel, J.P. Jouannaud (eds). Springer-Verlag,
LNCS Vol. 668, 613-628 (1993). Full version in Science of Computer Pro-
gramming Vol. 23, 151-195 (1994).

J. Esparza, St. Romer and W. Vogler: An Improvement of McMillan’s Un-
folding Algorithm. Proc. of TACAS’96, 1996.

J. Esparza, St. Romer and W. Vogler: An Extension of McMillan’s Unfolding
Algorithm (in preparation).

P. Godefroid: On the Costs and Benefits of using Partial-order Methods for the
Verification of Concurrent Systems. Proc. POMIV’96, Partial Order Methods
in Verification. G. Holzmann, D. Peled, V. Pratt (eds), American Mathemat-
ical Society (1996).

B. Grahlmann: PEP: A Reference Component Supports Analysis of Parallel
Systems (submitted).

B. Grahlmann, M. Moeller and U. Anhalt: A New Interface for the PEP Tool:
Parallel Finite Automata. Proc. 2nd Workshop Algorithmen und Werkzeuge
fiir Petrinetze 1995, J. Desel, H. Fleischhack, A. Oberweis, and M. Sonnen-
schein (eds), Report AIS 22, Universitat Oldenburg (1995).

G. Holzmann: Design and Validation of Computer Protocols. Prentice Hall
(1990).
K.L. McMillan: Using Unfoldings to Avoid the State Explosion Problem in

the Verification of Asynchronous Circuits. Proc. Jth Workshop on Computer
Aided Verification, 164-174 (1992).

St. Melzer and J. Esparza: Checking System Properties via Integer Program-
ming. Proc. ESOP’96, Furopean Symposium on Programming, Hanne Riis
Nielson (ed.). Springer-Verlag, LNCS 1058, 250-264 (1996).

St. Melzer, St. Romer and J. Esparza: Verification using PEP. Proc. AMAST
’96. Springer-Verlag, LNCS 1101, pp. 591-594. (1996).

St. Melzer and St. Romer: Checking Deadlock Properties Using Net Unfold-
ings (in preparation).

D. Peled: Combining Partial Order Reductions with On-the-fly Model-
Checking. Journal of Formal Methods in Systems Design, Vol. 8(1), 39-64
(1996).

B. Sanchez: Model Checking for State-Graphs via Integer Programming. In-
ternal Report ZF SE 95/96 Sanchez-1, Siemens ZFE, 1996.

P. H. Starke: INA: Integrated Net Analyzer. Reference Manual, 1992.

K. Varpaaniemi, J. Halme, K. Hiekkanen and T. Pyssysalo: PROD reference
Manual. Helsinki University of Technology, Digital Systems Laboratory, Series
B: Technical Report No.13 (1995).

A. Valmari: Stubborn Set Methods for Process Algebras. Proc. POMIV’96,
Partial Order Methods in Verification. G. Holzmann, D. Peled, V. Pratt (eds),
American Mathematical Society (1996).

F. Wallner: Model Checking LTL Using Net Unfoldings (in preparation).



