
Reduction Rules for Colored Workflow Nets?

Javier Esparza and Philipp Hoffmann

Technische Universität München

Abstract. We study Colored Workflow nets [8], a model based on Work-
flow nets [14] enriched with data. Based on earlier work by Esparza and
Desel on the negotiation model of concurrency [3, 4], we present reduction
rules for our model. Contrary to previous work, our rules preserve not only
soundness, but also the data flow semantics. For free choice nets, the rules
reduce all sound nets (and only them) to a net with one single transition
and the same data flow semantics. We give an explicit algorithm that
requires only a polynomial number of rule applications.

1 Introduction

Workflow Petri nets [14, 13] are a very successful formalism for modeling and
analyzing business processes. They have become the most popular formal backend
for graphical notations like BPMN (Business Process Modeling Notation), EPC
(Event-driven Process Chain), or UML Activity Diagrams, which typically do not
have a formal semantics. By translating the basic constructs of such languages
into Petri nets one gets access to a large variety of analysis techniques and tools.

One of these analysis techniques is reduction. Reduction algorithms are a very
efficient analysis technique for workflows, EPCs, AND-XOR graphs and other
models (see for instance [11, 15, 18, 21]). They consist of a set of reduction rules,
whose application allows one to simplify the workflow while preserving important
properties. Reduction aims to elude the state-explosion problem, and, when the
property does not hold, provides error diagnostics in the form of an irreducible
graph [15]. Moreover, for certain classes of nets the rules can be complete, meaning
that they reduce all workflows satisfying the property to some unique canonical
workflow (and only them); in this case, reduction provides a decision algorithm
for the property that avoids any kind of state-space exploration. Reduction
algorithms are an important part of the well-known Woflan tool [20, 9].

Free choice workflow nets (also called workflow graphs) are a class of workflow
nets that captures many control-flow constructs of BPMN, EPC, or Activity
Diagrams (see [14], or [6] for a very recent study). In [15] it is shown that a certain
set of reduction rules for free choice workflow models, originally presented in [2],
preserves the soundness property, and is complete. Soundness is a fundamental
analysis problem for workflows [14, 16]. Loosely speaking, a workflow net is sound
if a distinguished marking signaling successful termination is reachable from any
reachable marking. The reduction algorithm provides a polynomial-time decision
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procedure for soundness, in sharp contrast with the fact that deciding soundness
is at least PSPACE-hard for general workflow nets1.

However, the rules of [2] have two important shortcomings. First, while they
preserve soundness, they do not preserve any property concerning data. Workflows
manipulating data can be modeled as colored workflow nets [8], where tokens
carry data values, and transitions transform a tuple of values for its input places
into a tuple of values for its output places. The linearly dependent place rule
(Rule 2 in Chapter 7 of [2]) allows one to remove place p from a net, if it is
redundant in the sense that there are other places which together have the same
incoming and outgoing transitions as p. However, this reduction does not make
sense for the colored workflow net: the tokens on p might hold a value needed by
an outgoing transition t to compute the value of the produced tokens! Loosely
speaking, the application of the rule destroys the dataflow semantics of the net.

The second shortcoming is that the linearly dependent place rule is not correct
for arbitrary workflow nets, only for free choice ones ([2], page 1452). Since not all
industrial business processes are free choice (30% of our benchmarks in Section 5
are non-free choice), this considerably reduces the applicability of the rules.

The most satisfactory solution to these two problems would be to replace the
linearly dependent place rule by rules extensible to colored nets, while keeping
completeness. However, this problem has remained open for over 15 years.

In this paper we solve this problem and present a set of surprisingly simple
rules that overcomes the shortcomings. First, the rules can be applied to arbi-
trary colored workflow nets. Second, they preserve not only the sound/unsound
character of the net, but also the input/output relation of the workflow; more
precisely, the original workflow net has a firing sequence that transforms an
entry token with value vin into an exit token with value vout iff the net after the
reduction also has such a sequence. Therefore, the rules can be applied to decide
any property of the input/output relation. Finally, the new rules are complete
for free choice workflow nets.

Our results rely on previous work on negotiations, a model of concurrency
introduced in [3, 4]. Negotiations share many features with Petri nets, but, unlike
Petri nets, are a structured model of communicating sequential agents. In [4]
a complete set of reduction rules for the class of deterministic negotiations is
presented. We generalize the results of [4] to show that a similar set of rules is
correct for arbitrary workflow nets, and complete for free choice workflow nets.
Since the proofs of [4] make strong use of the agent structure, we must substantially
modify them, and in fact write many of them from scratch. Moreover, because
of the agent structure of negotiations, workflow nets obtained as translations
of negotiations are automatically 1-safe. Therefore, the results cannot be used
to deal with variants of the soundness notion, like k-soundness or generalized

1 The exact complexity depends on the specifics of the workflow model, for instance
whether the workflow Petri net is assumed to be 1-safe or not.

2 The example of page 145 is not a workflow net, but can be easily transformed into
one.



soundness [16]. Making use of the theory of free choice nets we can however show
that our rules are still correct and complete for these variants.

Finally, and as a third contribution of the paper, we report on some experi-
mental results. In [4] only the rules and the completeness result are presented,
but neither a specific algorithm prescribing a concrete strategy to decide which
rule to apply at which point, nor an implementation and experimental validation.
In this paper we report on a prototype implementation, and on experimental
results on a benchmark suite of nearly 2000 workflows derived from industrial
business processes.

Other related work. The soundness problem has been extensively studied, both
from a theoretical and a practical point of view, and very efficient verification
algorithms have been developed (see e.g. [16] for a comprehensive survey). Our
approach is not more efficient for checking soundness than the ones of e.g. [5], but
can also be applied to checking arbitrary properties of the input/output relation,
while retaining completeness. In [10, 12] state-space exploration of workflows is
performed to identify data flow anti-patterns (like a variable being assigned a
value during an execution, but never being read afterwards). Our technique aims
at avoiding state-space exploration and considers properties of the input/output
relation.

The paper is organized as follows. Section 2 defines workflow nets, free choice
nets, and soundness. Section 3 presents our reduction rules and proves them
correct. In Section 4 we first show completeness for acyclic nets and then extend
the result to cyclic nets. Section 5 presents experimental results on the benchmarks
of [17, 5]. Finally, Section 6 contains some conclusions and open questions. The
proofs of all results can be found in the arXiv version.

2 Workflow Nets and Colored Workflow Nets

We recall the definitions of workflow nets and the soundness property.

Definition 1 (Workflow net). [14] A Workflow net (WF net) is a quintuple
(P, T, F, i, o) where

– P is a finite set of places.
– T is a finite set of transitions (P ∩ T = ∅).
– F ⊆ (P × T ) ∪ (T × P ) is a set of arcs.
– i, o ∈ P are places such that i has no incoming arcs, o has no outgoing arcs.
– The graph (P ∪ T, F ∪ (o, i)) is strongly connected.

We write •p and p• to denote the input and output transitions of a place p,
respectively, and similarly •t and t• for the input and output places of a transition
t. A marking M is a function from P to the natural numbers that assigns a
number of tokens to each place. A transition t is enabled at M if all places of
•t contain at least one token in M . An enabled transition may fire, removing a
token from each place of •t and adding one token to each place of t•. The initial
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Fig. 1. A partial workflow net with data

marking (final marking) of a workflow net puts one token on place i (on place o),
and no tokens elsewhere. A marking is reachable if some sequence of transition
firings leads from the initial marking to it. We call elements in P ∪ T the nodes
of the workflow net.

Definition 2 (Soundness). [14] A WF net W = (P, T, F, i, o) is sound if

– the final marking is reachable from any reachable marking, and
– every transition occurs in some firing sequence starting from the initial

marking.

When modeling a workflow, it is useful to model not only control flow but
also data flow. We do so by means of Colored Workflow nets.

Definition 3 (Colored WF net). [8] A colored WF net (CWF net) is a tuple
W = (P, T, F, i, o, V, λ) where (P, T, F, i, o) is a WF net, V is a function that
assigns to every place p ∈ P a color set Cp and λ is a function that assigns to
each transition t ∈ T a left-total relation λ(t) ⊆

∏
p∈•t Cp ×

∏
p∈t• Cp between

the values of the input places and those of the output places of t.
A colored marking M of W is a function that assigns to each place p a

multiset M(p) over Cp, interpreted as a multiset of colored tokens currently on
p. A colored marking is initial (final) if it puts one token on place i (on place o),
of any color in Ci (Co), and no tokens elsewhere.

Observe that there are as many initial markings as elements in Ci. To distin-
guish between input and output values of a transformer λ, we separate them by
a →.

Consider the partial workflow net in Figure 1 and take Cp = N for every
place p of the net. An example of a colored marking could be the marking
({3}, ∅, ∅, ∅, {2, 4}, ∅) which puts a token of color 3 on p1 and two tokens, one of
color 2 and one of color 4, on p5. If f(x) = x+ 1 and g(x) = x+ 2, then we have
λ(t1) = {(n→ n+ 1, n+ 2) | n ≥ 0}.

We call λ(t) the transformer associated with t. When a transition t fires, the
colored marking changes in the expected way [8]: (a) remove a token from each
input place of t; (b) choose an element of λ(t) whose projection onto the input
places matches the tuple of removed tokens; (c) add the projection of λ(t) onto
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Fig. 2. Insurance claim process

the output places to the output places of t. We write M
t−→M ′ to denote that

t is enabled at M and its firing leads to M ′. For example, the colored marking
({3}, ∅, ∅, ∅, {2, 4}, ∅) enables transition t1, and taking h(y, z) = y · z we have

({3}, ∅, ∅, ∅, {2, 4}, ∅) t1−→ (∅, {4}, {5}, ∅, {2, 4}, ∅) t2−→ (∅, {4}, ∅, ∅, {4}, {10}) .

2.1 A colored version of the insurance claim example

We extend the well known insurance complaint process of [14] with data. The
workflow is shown in Figure 2. After initial registration of the complaint, a
questionnaire is sent to the complainant. In parallel, the complaint is evaluated.
The evaluation decides whether processing is required. In that case, the processing
takes place (e.g. by some employee) and is checked for correctness (e.g. by a
senior employee) which may either lead to another round of processing if an error
is found, or the processing ends. Finally, the complaint is archived.

We add colors to keep track of the status of the complaint and its estimated
cost for the company, modeled by a number in the interval [1..10] (see Table 1).
Furthermore each claimant belongs to a customer group, either A or B. A’s and
B’s insurance policies entitle them, respectively, to the full cost or to half the cost
of the damage. The color sets of places i, o, c2, c6 are the pairs {A,B} × [1..10],
modeling the customer group and the cost of the claim as estimated by the
customer. The colors of place c4 additionally contain the result of the evaluation:
PR (process) or NPR (do not process). Colors of c5 store the result of the
questionnaire: the answer to the question “was it your fault?” (YES/NO), or a
time out (TO). In place c7, the information from c4 and c5 is put together, and
in c8 the result of the first processing is added. Finally, tokens in c9 can have the
same values as those in c8, plus an additional value ERR if the check at transition
check processing reveals a miscalculation. Tokens in c6 and o store the amount



Ci = Co = Cc2 = Cc6 = {A,B} × [1..10] Cc7 = Ci × Cc5

Cc1 = Cc3 = {•} Cc8 = Cc7 × [1..10]
Cc4 = Ci × {PR,NPR} Cc9 = Cc7 × ([1..10] ∪ {ERR})
Cc5 = {YES,NO,TO}

λ(register) = {(x, k → {•} × {x, k}) | 1 ≤ k ≤ 10}
λ(send questionnaire) = {(• → •)}

λ(time out) = {(• → TO)}
λ(process questionnaire) = {(• → YES), (• → NO)}

λ(evaluate) = {(x, k → x, k,NPR) | 1 ≤ k ≤ 3}
∪ {(x, k → x, k,PR) | 4 ≤ k ≤ 10}

λ(no processing) = {(x, k,NPR, q → x, k) | 1 ≤ k ≤ 3}
λ(processing required) = {(x, k,PR, q → x, k, q) | 4 ≤ k ≤ 10}
λ(process complaint) = {(x, k, q → x, k, q, v) | 4 ≤ k ≤ 10, 1 ≤ v ≤ k}
λ(check processing) = {(x, k, v, q → x, k, q, v) | x = A, 4 ≤ k ≤ 10, v = k}

∪ {(x, k, v, q → x, k, q, v) | x = B, 4 ≤ k ≤ 10, v = k/2}
∪ {(x, k, v, q → x, k, q, ERR) | otherwise}

λ(processing NOK) = {(x, k, q,ERR→ x, k, q) | 4 ≤ k ≤ 10}
λ(processing OK) = {(x, k, q, v → x, v) | 4 ≤ k ≤ 10, 1 ≤ v ≤ 10}

λ(archive) = {(x, v → x, v) | (x, v) ∈ Cc6}

Table 1. Color sets and transformers for the insurance claim workflow

that was actually paid by the company after the processing was successful (or
without processing).

Assume that the company’s policy is to accept all claims which are evaluated
to a value of 3 or less without any further processing, and process all other claims.
The transformers modeling this policy are given in Table 1, where x ∈ {A,B}
and q ∈ {YES,NO,TO} unless otherwise stated. Division by 2 is assumed to be
integer division.

All transformers are self-explanatory except perhaps process complaint

and check processing. In process complaint, an employee may lower the
customer’s estimate k to a new value v. In check processing, a senior employee
checks that the employee made no mistake (modeled by the fact that v must be
k/2 or k depending on the customer group). If the check fails, an error flag is set
and the processing is repeated.

Apart from the soundness of the workflow, we wish to check the following
property: if two customers in the same group register insurance complaints, then
the one claiming a higher also receives a higher amount (notice that our ideal
insurance company does not reject any complaint). We shall use our reduction
algorithm to check that the property holds for customers of group A, but not for
customers of group B.

The attentive reader may have noticed that the semantics of colored nets
allows, e.g., to take the transition no processing even when the evaluation
indicates that processing is necessary. This can easily be dealt with by introducing
additional error values that are then propagated until the end. We omit them



to ease the reading and assume that no processing and processing are taken
according to the result of evaluate, and similarly in other cases.

2.2 Summaries and Equivalence

Since a workflow net describes a process starting at i and ending at o, it is
interesting to study the input/output relation or summary of the whole process.

Definition 4 (Summary and equivalence). Let W be a colored WF net. Let
Mi and Mo be the sets of initial and final colored markings of W. The summary
of W is the relation S ⊆ Mi ×Mo given by: (Mi,Mo) ∈ S iff Mo is reachable
from Mi. Two colored WF nets are equivalent iff they are both sound or both
unsound, and have the same summary.

Our rules aim to reduce CWF nets while preserving equivalence. If we are
able to reduce a CWF to another one with one single transition t, then the
summary is given by λ(t), and we say that the CWF has been completely reduced
and we have computed the summary. Since this CWF net is obviously sound and
rules preserve equivalence, if a CWF net can be completely reduced, then it is
sound. We prove that our rules preserve equivalence for all CWF nets, and give
an algorithm that completely reduces all sound free choice CWF nets, defined
below, by means of a polynomial number of rule applications.

In Section 4 we compute the summary of the free choice CWF net of Figure
2 using our reduction procedure. The result (where we write Mi ⇒Mo instead
of (Mi,Mo) ∈ S, and omit the error values) is:

{(A, k ⇒ A, k) | 1 ≤ k ≤ 10} ∪ {(B, k ⇒ B, k) | 1 ≤ k ≤ 3}
∪ {(B, k ⇒ B, k/2) | 4 ≤ k ≤ 10}

Since the summary contains (B, 3⇒ B, 3) and (B, 4⇒ B, 2), the company
policy does not satisfy the desired property for customers of group B.

2.3 Free choice Workflow Nets

We recall the definition of free choice workflow nets [2, 14].

Definition 5 (Free choice workflow nets). A workflow netW = (P, T, F, i, o)
is free choice (FC) if for every two places p1, p2 ∈ P either p•1∩p•2 = ∅ or p•1 = p•2.

The net of Figure 2 is free choice. We also need to introduce clusters, and the
new notion of free choice cluster and free choice node.

Definition 6 (Clusters, free choice nodes). [2] Let W = (P, T, F, i, o) be a
workflow net. The cluster of x ∈ P ∪ T is the unique smallest set [x] ⊆ P ∪ T
satisfying: x ∈ [x], if p ∈ P ∩ [x] then p• ⊆ [x], and if t ∈ T ∩ [x], then •t ⊆ [x].
A set X ⊆ P ∪ T is a cluster if X = [x] for some x. A cluster c is free choice if
(p, t) ∈ F for every p ∈ P ∩ c and t ∈ T ∩ c. A node x is free choice if [x] is a
free choice cluster.



The sets {c3} ∪ c•3 and {c4, c5} ∪ c•4 ∪ c•5 are free choice clusters of the net
of Figure 2. It is easy to see that clusters are equal or disjoint, and therefore
the clusters of W are a partition of P ∪ T . Further, we have [i] ∩ P = {i} and
[o] = {o}. Finally, we have that W is free choice iff all its nodes are free choice.

We say that a marking M marks a cluster c if it marks all places in c. Observe
that if a cluster is marked, then all its transitions are enabled. We say that a
cluster fires if one of its transitions fires.

3 Reduction rules

We present a set of three reduction rules for CWF nets similar to those used for
transforming finite automata into regular expressions [7].

A reduction rule, or just rule, is a binary relation on the set of CWF nets.

For a rule R, we write W1
R−→ W2 for (W1,W2) ∈ R. A rule R is correct if it

preserves equivalence, i.e., if W1
R−→W2 implies that W1 and W2 are equivalent.

Given a set of rules R = {R1, . . . , Rk}, we denote by R∗ the transitive closure
of R1 ∪ . . . ∪Rk. We say that R is complete for a class of CWF nets if for every
sound CWF net W in that class there is a CFW net W ′ consisting of a single

transition between the two only places i and o such that W R∗−−→W ′.
We describe rules as pairs of a guard and an action. W1

R−→W2 holds if W1

satisfies the guard, and W2 is a possible result of applying the action to W1.

Merge rule. Intuitively, the merge rule merges two transitions with the same
input and output places into one single transition.

Definition 7. Merge rule

Guard: W contains two distinct transitions t1, t2 ∈ T such that •t1 = •t2 and
t•1 = t•2.

Action: (1) T := (T \ {t1, t2}) ∪ {tm}, where tm is a fresh name.
(2) t•m := t•1 and •tm := •t1.
(3) λ(tm) := λ(t1) ∪ λ(t2).

Iteration rule. Loosely speaking, the iteration rule replaces arbitrary iterations
of a transition by a single transition with the same effect.

Definition 8. Iteration rule

Guard: W contains a free choice cluster c with a transition t ∈ c such that
t• = •t.

Action: (1) T := (T \ {t}).
(2) For all t′ ∈ c \ {t}: λ(t′) := λ(t)∗ · λ(t′) where λ(t)∗ =

∑
i≥0 λ(t)i,

and λ(t)0 is the identity relation.

Observe that λ(t)∗ captures the fact that t can be executed arbitrarily often.



Shortcut rule. The shortcut rule merges transitions of two clusters, one of which
will occur as a consequence of the other, into one single transition with the same
effect.

Definition 9. A transition t unconditionally enables a cluster c if c ∩ P ⊆ t•.

Observe that if t unconditionally enables c and a marking M enables t, then the

marking M ′ given by M
t−→M ′ enables every transition in c.

Definition 10. Shortcut rule

Guard: W contains a transition t and a free choice cluster c /∈ {[o], [t]} such
that t unconditionally enables c.

Action: (1) T := (T \ {t}) ∪ {t′s | t′ ∈ c}, where t′s are fresh names.
(2) For all t′ ∈ c: •t′s := •t and t′s

• := (t• \ •t′) ∪ t′•.
(3) For all t′ ∈ c: λ(t′s) := λ(t) · λ(t′).
(4) If •p = ∅ for all p ∈ c, then remove c from W.

We also use a restricted version of this rule, called the d-shortcut rule. This
rule is obtained by adding an additional guard to the shortcut rule: |c ∩ T | = 1.
This guard guarantees that the number of edges does not increase when the
d-shortcut rule is applied.

Figure 3 shows a sequence of reductions illustrating the definitions of the
rules. Notice that the graphical description does not contain the transformer
information. A second example of reduction in which the workflow net also
exhibits concurrency is shown in Section 4.1.

Theorem 1. The merge, shortcut and iteration rules are correct for CWF nets.
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4 Reduction Procedure

We show that the rules presented in the previous section summarize all sound
FC-CWF nets in polynomial time. The proof is very involved, and we can only
sketch it.

We first show that acyclic FC-CWF nets can be completely reduced.

Definition 11 (Graph). The graph of a CWF net is the graph (P ∪ T, F ). A
CWF net is acyclic if its graph is acyclic.

Theorem 2. The merge and d-shortcut rule are complete for acyclic FC-CWF
nets.

In the cyclic case we need the notion of synchronizer of a loop. Although a
similar concept was already used in [4], the definition there exploits the fact that
negotiations are a structured model of communicating sequential agents. Since
workflow nets do not have such a structure, we need a different definition.

Definition 12 (Loop). Let W be a CWF net. A non-empty transition sequence

σ is a loop of W if M
σ−→M for some reachable marking M .

Definition 13 (Synchronizer). Let W be a WF net. A free choice transition t
synchronizes a loop σ if t appears in σ and for every reachable marking M : if M
enables t, then M(p) = 0 for every p ∈ (

⋃
t′∈σ,t′ 6=t

•t′). A free choice transition is
a synchronizer if it synchronizes some loop.

Consider the insurance claim net, replacing the part between the places c7 and
c9 by Figure 4. The sequence process check1 check2 combine processing NOK

is a loop. Transitions process, combine, and processing NOK are synchronizers,
but check1 and check2 are not. We use synchronizers to define fragments of W
on which to apply our rules.

Definition 14 (Fragment). LetW be a CWF net and let t be a synchronizer of
W. The fragment Wt contains all transitions appearing in all loops synchronized
by t, together with their input and output places, and the arcs connecting them.

In our example, the fragment Wprocess is exactly the net of Figure 4. Our
procedure selects a synchronizer t and applies the rules to Wt until, loosely
speaking, all loops synchronized by t are removed from the net, and t is no
longer a synchronizer. The next lemma shows that when no synchronizers can be
found anymore, the workflow net is acyclic, and so can be completely reduced by
Theorem 2.

Lemma 1. Every sound cyclic FC-CWF net has at least one synchronizer.

Proof Sketch. We first show that in every sound cyclic FC-CWF net there exists
a loop. We then inspect minimal loops and show that they must include a
synchronizer. The proof constructs a transition sequence that pushes one token
towards the final marking while all other tokens stay inside the loop. Should no
synchronizer be present in the loop, this sequence ends in a dead lock contradicting
soundness.



Given two synchronizers t and t′, we say Wt � W ′t if every node of Wt is also
a node of W ′t. The relation � is a partial order on fragments. We have:

Lemma 2. Let t be a synchronizer of a sound FC-CWF net. If Wt is minimal
with respect to the partial order on fragments, then all non-synchronizers of Wt

can be removed by means of applications of the d-shortcut and merge rules.

Proof Sketch. Intuitively, synchronizers are points where loops begin and end.
For two distinct synchronizers of a minimal fragment, any occurrence sequence
starting from the marking enabling one of them, ending in the marking enabling
the other, and in which no other synchronizers occur, is acyclic. Thus we can
reduce the possible paths from one synchronizer to another to a single transition
using our rules. We do so by constructing auxiliary acyclic workflow nets and
reducing those, applying the same reduction rules to our original net.

In our example, the fragment of Figure 4 on the left is reduced to the
synchronizer-only fragment shown in Figure 4 on the right. In such a fragment, a
marking always marks exactly the places of one of the clusters, and nothing else.
Intuitively, the synchronizer-only fragment is an S-net, i.e., a net where every
transition has exactly one input and one output place, but in which some places
are duplicated. Figure 3 shows an example of an S-net, while the net on the right
of Figure 4 is an S-net in which place c10 is duplicated in place c11.

When reducing S-nets we must be careful that the shortcut rule does not
“run into cycles”. Consider for instance the second net in Figure 3. If instead of
shortcutting t4 we shortcut t1, we obtain a new transition t7 with i and c2 as
input and output place. If we now shortcut t7, we return to the original net with
an additional transition connecting i and o. This problem is solved by imposing
an (arbitrary) total order on the clusters. Using this order we classify transitions
as “forward” (leading to a greater cluster) and “backward” (leading to a smaller
cluster). Running into cycles is avoided by only applying the shortcut rule to
the backward transition leading to a minimal cluster. Ultimately, this procedure
reduces the fragment to an acyclic net. The total number of synchronizers is
thus reduced, until none are left. At this point, by Lemma 1 the net is acyclic,
and Theorem 2 can be applied. The complete reduction algorithm is listed as
Algorithm 1. The algorithm contains several points where the computation might
end if some condition is fulfilled. If the net was free choice, we can then conclude
that it is unsound.

We have not yet discussed why a fragment could be malformed as mentioned
in Line 3 of the algorithm. The proof that every minimal loop has a synchronizer
also shows something more: tokens can only exit a loop at a cluster that contains
a synchronizer, and all tokens exit the loop at the same time. Thus when we
compute a fragment and find transitions that lead out of the fragment and
whose cluster does not contain a synchronizer, or transitions that partially end
outside and partially inside the fragment, we can already conclude that the net
is unsound. For more information on how to compute fragments, see the next
section.



Algorithm 1 Reduction procedure for cyclic workflow nets W
1: while W is cyclic do
2: c← a minimal synchronizer of W . If there is none, return
3: F ← the fragment of c . If fragment is malformed, return
4: while F contains non-synchronizers do
5: apply the merge rule exhaustively
6: apply the iteration rule exhaustively
7: apply the d-shortcut rule to F . If not possible, return
8: end while
9: fix a total order on F

10: while F is cyclic do
11: apply the merge rule exhaustively
12: apply the iteration rule exhaustively
13: apply the shortcut rule to the backward transition which ends at a minimal

cluster
14: end while
15: end while
16: while W is not reduced completely do
17: apply the merge rule exhaustively
18: apply the d-shortcut rule to F . If neither was possible, return
19: end while

With some analysis on the number of rule application in the acyclic case
as well as the S-net case, we can bound the number of rule application to be
polynomial:

Theorem 3. Every sound FC-CWF net can be summarized in at most O(|C|4 ·
|T |) shortcut rule applications and O(|C|4 + |C|2 · |T |) merge rule applications
where C is the set of clusters of the net. Any unsound FC-CWF net can be
recognized as unsound in the same time.

4.1 Summarizing the example

We illustrate our algorithm on the example of the insurance claim of Figure 2.
To better illustrate our approach, we replace the part between the places c7 and
c9 by Figure 4.

Our algorithm begins by checking whether W is cyclic and finds a minimal
synchronizer. This could in our example be c7, its fragment is exactly the part
of the net depicted in Figure 4 on the left. Since the fragment contains non-
synchronizers c10, c11, the while loop of Line 4 is entered. The d-shortcut rule
is applied to check1 and check2. The resulting fragment is depicted in Figure
4 on the right. This fragment consists only of synchronizers and thus the while
loop ends. We fix as total order [c7] ≺ [c10] ≺ [c9].

Transition processing NOK is a backward transition as its post-set [c7] is
smaller than its pre-set [c9] according to the total order. It is shortcut resulting
in another backward transition ending in the cluster containing c10, c11, which is
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Fig. 4. Extension of the insurance claim net and the synchronizer-only fragment

i

c1

c2

c3

c4

c5

c6

c7

c10

c11

c9

oregister

send questionnaire process questionnaire

time out

evaluate no processing

processing required process check&combine

processing OK

archive

Fig. 5. After shortcutting backward transitions

then shortcut again to a self-loop on c9. The self-loop is removed via the iteration
rule.

The resulting net is depicted in Figure 5. This net is acyclic, thus now the d-
shortcut and merge rule are applied exhaustively. An intermediate step is depicted
in Figure 6. First process questionnaire and time out are merged and the
path from i to c5 is shortcut. Then the linear path from c7 to o is shortcut into a
single transition. Next the path from i to c4 is shortcut, resulting in the transition
register to unconditionally enable no processing and processing required.
Finally, with three more shortcuts and a merge, the net is completely reduced,
and we obtain the transformer shown in Section 2.2.
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no processing
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archive

Fig. 6. After some rule applications



4.2 Extension to generalized soundness

In [19, 1] (see also [16]), two alternative notions of soundness are introduced:
k-soundness and generalized soundness. We show that for free choice workflow
nets they coincide with the standard notion. Therefore, our rules are also complete
with respect to these alternative notions.

Definition 15. Let W = (P, T, F, i, o) be a workflow net. For every k ≥ 1, let ik

(ok) denote the marking that puts k tokens on i (on o), and no tokens elsewhere.
W is k-sound if ok is reachable from every marking reachable from ik. W is
generalized sound if it is k-sound for every k ≥ 1.

Theorem 4. Let W be a free choice workflow net. The following statements
are equivalent: (1) W is sound; (2) W is k-sound for some k ≥ 1; (3) W is
generalized sound.

5 Experimental evaluation

We have implemented our reduction algorithm and applied it to a benchmark
suite of models previously studied in [17, 5].

3 The most complex part of the implementation4 is the computation of
synchronizers and their fragments. A crucial point is that we are only interested
in fragments that consist of free choice places as those are the fragments we
might be able to completely reduce. The computation of the synchronizers starts
with an overapproximation: starting from a cluster c, we begin by marking for
all transitions t ∈ cT , the places in t• that are free choice as visited. Whenever
we have marked all places in a cluster as visited, we repeat the same for this
cluster. In that way we overapproximate the set of clusters that can occur in an
occurrence sequence as in the definition of synchronizer. Should all places in c be
marked as visited at some point, we consider c a potential synchronizer.

We now compute the fragment of c in a backwards fashion. Starting with only
c, we check for every transition whose out-places are contained in the currently
identified fragment, whether its in-places were completely marked in the first
step. If so, add its in-places and the transition to the fragment. We also check
simple soundness properties, e.g. that no transition exists which starts in the
fragment and ends partially inside and partially outside the fragment.

We have conducted some experiments to obtain answers to the following two
questions: (1) Since our rules must preserve not only soundness, but also the
input/output relation, they cannot be as “aggressive” as previous ones. So it
could be the case that they only lead to a small reduction factor in the non-free
choice case. To explore this question, we experimentally compute the reduction
factor for non-free choice benchmarks. (2) While Theorem 3 is a strong theoretical
result (compared to PSPACE-hardness of soundness for arbitrary workflow nets),

3 Nets can be obtained under http://svn.gna.org/viewcvs/*checkout*/service-

tech/trunk/_meta/nets/challenge/ in folders sap-reference and ibm-soundness
4 Can be obtained under https://www7.in.tum.de/tools/workflow/index.php



# |P | |T | red. # rule

nets avg. med. max avg. med. max by appl.

Acyclic FC sound 446 20.7 13 154 13.1 9 95 — 12.8

Acyclic FC uns. 761 60.4 49 264 41.1 33 285 73.6% 38.0

Cyclic FC sound 24 46.1 43 118 34.3 26 93 — 43.2

Cyclic FC uns. 155 73.2 61 274 51.1 44 243 78.1% 53.2

Acyclic not FC 542 47.0 38 262 46.8 37 267 68.4% 38.4

Cyclic not FC 30 85.6 72 193 88.1 72 185 66.4% 82.7

Table 2. Analyzed workflow nets

the O(|C|4 · |T |) bound has rather high exponents, and could potentially lead
to an impractical reduction algorithm. To explore if the worst case appears in
practice, we compute the number of rule applications for free choice benchmarks.

We have used the benchmark suites of [17, 5], both consisting of industrial
examples. We analyzed a total of 1958 nets, of which 1386 were free choice.
Running the reduction procedure for all benchmarks took 6 seconds. The results
are shown in Table 2. The number of places and transitions are always given
as average/median/max. In the free choice case, our algorithm found that 470
nets were sound (i.e. those nets were reduced completely), and on average the
nets were reduced to about 23% of their original size. In the non-free choice case
no net could be reduced completely (which does not necessarily mean they are
all unsound). However, the size of the nets was still reduced to about 35% of
their original size. While we have omitted some more data on the number of rule
applications due to lack of space, our experiments indicate that the number of
rule applications is close to linear in the size of the net.

6 Conclusion

We have presented the first set of reduction rules for colored workflow nets
that preserves not only soundness, but also the input/output relation, and is
complete for free choice nets. We have also designed a specific reduction algorithm.
Experimental results for 1958 workflow nets derived from industrial business
processes show that the nets are reduced to about 30% of their original size.

Our rules can be used to prove properties of the input/output relation by
computing it. To reduce the complexity of the computation, we observe that our
reduction rules are easily compatible with abstract interpretation techniques:
given an abstract domain of data values, the rules can be adapted so that, instead
of computing the transformers of the new transitions using the union, join, and
Kleene-star operators, they compute their abstract versions. We plan to study
this combination in future research.
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