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Abstract

We present a generic approach for the analysis of concurrent programs with (unbounded)
dynamic creation of threads and recursive procedure calls. We define a model for such
programs based on a set of term rewrite rules where terms represent control configurations.
The reachability problem for this model is undecidable. Therefore, we propose a method
for analyzing such models based on computing abstractions of their sets of computation
paths. Our approach allows to compute such abstractions as least solutions of a system
of (path language) constraints. More precisely, given a program and two regular sets of
configurations (process terms) T and T ′, we provide (1) a construction of a system of
constraints which characterizes the set of computation paths leading from T to T ′, and
(2) a generic framework, based on abstract interpretation, allowing to solve this system in
various abstract domains leading to abstract analysis with different precision and cost.

Key words: Multithreaded programs with procedure calls, process
algebra, program analysis, verification.

1 Introduction

Analyzing and verifying multithreaded programs is nowadays one of the most im-
portant problems in program analysis and computer-aided verification. This prob-
lem is especially challenging in the case where the programming language allows
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(1) dynamic creation of concurrent threads, and (2) recursive calls of procedures.
It is well known that as soon as synchronization and procedure calls are taken into
account, the reachability problem (even of control points) is undecidable (see [20]).
Therefore, any analysis or verification algorithm for such programs must consider
upper-approximations of the set of possible computation paths.

In a previous work [4], we have introduced a generic framework for computing
abstractions of the set of paths for a class of multithreaded programs. We have
shown that instantiations of this framework lead to several analysis procedures with
different precision and cost. In that work, we considered programs without dynamic
creation of threads, i.e., programs with recursive procedures but with only a fixed
number of communicating threads.

In this paper, we extend our work to the more general case where threads may
be created dynamically. For that we consider the approach advocated in [12] for
modeling and analyzing parallel programs. In [12], a framework based on term
rewrite systems and automata techniques is used for analyzing parallel programs
without synchronization. In this paper, we model similarly programs by sets of
term rewrite rules, but we take into account synchronizations. More precisely, in
our model, the set of terms (defining configurations of the program) is defined by
means of (1) process constants corresponding to control points, and composition
operators corresponding to (2) sequential composition and (3) CCS-like parallel
composition. (A restriction operator is also needed at the top level in order to
forbid interleavings between synchronization actions.)

Then, the basic problem we consider is, given two sets of configurations (sets of
terms) T1 and T2, compute a representation of the set Paths(T1,T2) of computation
paths leading from a configuration in T1 to some configuration in T2. (This allows
in particular, but not only, to solve reachability problems by checking the emptiness
of this set.) Due to the undecidability result mentioned above, this set cannot be
computed precisely, in general. Therefore, our aim is to define a generic method
(in the spirit of our previous work [4] mentioned above) for effectively computing
abstractions A(T1,T2) (upper-approximations) of the set of paths Paths(T1,T2).

The method we propose in this paper consists in (1) characterizing the set
Paths(T1,T2) as the least solution of a system of constraints (on path languages),
and (2) defining a uniform framework (based on abstract interpretation [7]) for
computing (in a generic way) abstractions of the least solution of this system of
constraints. In the full paper, we give examples of abstractions which can be natu-
rally used in program analysis, and which can be defined as instances of our frame-
work. Moreover, we illustrate the applicability of our techniques and the use of
these abstractions on an example of parallel algorithm which computes minimum
values of (arbitrary length) streams of inputs.

Related work:
There are several works on static analysis of concurrent programs (see [21] for

a survey).
In [2,8], analysis techniques are defined for multithreaded programs without



procedure calls (threads are finite-state communicating systems). These techniques
are based on solving the coverability problem of Petri nets. This approach is gen-
eralized to programs with broadcast communications in [13] using Petri nets with
transfer transitions.

The automata approach for program analysis has been used in [11,10] for pro-
grams with procedures (without concurrency). These works are based on comput-
ing reachable configurations in pushdown automata [3,14]. This approach has been
extended in [17,12] to parallel programs with dynamic creation of processes, but
without synchronization, using as models process rewrite systems called PA pro-
cesses. In [5], we extend this approach to a larger class of processes allowing return
values of procedures.

In [4], we use path abstractions to analyze parallel recursive programs (with
synchronization). In that paper we use communicating pushdown automata as for-
mal model of programs and build abstractions of context-free path languages based
on our automata-based procedures for reachability analysis of pushdown automata
[3,10]. A different approach for analyzing parallel programs with procedures using
path language abstractions is presented in [15].

In [22,18], similar approaches to the one we propose here are defined. In both
papers, the authors define sets of constraints characterizing sets of computation
paths. However, these characterizations are technically different from ours, and
consider a more restricted setting. (1) These works consider the problem of com-
puting abstractions of the set of paths starting from one single initial configuration
to the set of all reachable configurations, whereas in our approach, the set of initial
configurations and target configurations can be any regular sets of configurations.
This allows us to deal in a uniform way with the analysis problem of various proper-
ties. (2) The work in [22] (like the one in [12]) does not consider synchronizations,
whereas the aim of our work is to consider synchronizations in presence of dynamic
creation of processes and procedure calls. Finally,(3) the work in [18] is focused on
a particular dataflow analysis problem (constant detection), whereas our approach
intends to deal uniformly with safety properties. It must also be said that we pay
a price for our more general setting, namely the higher complexity of some of our
abstractions.

Another work which considers the abstract analysis of concurrent programs in
presence of dynamic creation of threads and procedures is [9]. The paper provides
an (ad-hoc) approximate analysis for determining which statements can be con-
currently executed. We think that the approximation used in that work could be
phrased in our framework, but a careful comparison of our two approaches needs
to be done.

Finally, in [19], procedure summaries are used to represent the effect of execut-
ing a procedure. The approach works on the concrete multithreaded program (no
abstraction is required). The analysis algorithm is only guaranteed to terminate in
some specific cases.



2 Synchronized PA systems

We introduce a process algebra-based model for multithreaded programs with re-
cursive calls which is an extension of PA [1] with synchronization actions.

2.1 Syntax

Let Lab = {a,b,c, . . .} be a set of visible actions. Let Sync and Async be two
disjoint sets such that Lab = Sync∪Async. We assume that to each action a ∈ Sync
corresponds a co-action ā in Sync such that¯̄a = a. Intuitively, Sync is the set of all
synchronization actions, i.e., actions which must be performed simultaneously with
their corresponding co-actions in a “handshake” between two parallel processes.
Let Act = Lab ∪ {τ} be the set of all the actions, where τ is a special internal
action (as we shall see, this special action will represent the handshakes). Let
Var = {X ,Y, . . .} be a set of process constants. Then, we define T to be the set of
process terms t given by:

t ::= 0 | X | t · t | t‖t

Intuitively, 0 is the idle or terminated process (also called null process), and “.”
(resp. “‖”) corresponds to the sequential composition (resp. parallel composition).

The set of restricted process terms is defined as Tr = {t\Sync | t ∈ T }. The term
“t\Sync” corresponds to the restriction of the behavior of t to the non-synchronizing
actions. Given a set of process terms T , let T\Sync denote {t\Sync | t ∈ T}.

Definition 2.1 A Synchronized PA system (SPA for short) is is a finite set R of rules
of the form X

a
↪→ t, where t ∈ T and a ∈ Lab.

2.2 Semantics

2.2.1 Structural equivalences on terms:
Terms are considered modulo the equivalence ∼ which correponds to the algebraic
properties: neutrality of the null process “0” w.r.t. “·” and “‖”, the associativity of
“·” and “‖”, and the commutativity of “‖”. We also need to consider the equivalence
relation ∼0 on T corresponding to the properties of 0 (neutrality w.r.t. “·” and “‖”).

The equivalences above are extended to terms of Tr by considering that t\Sync≡
t ′\Sync iff t ≡ t ′. Let ≡ be an equivalence from the set {=,∼}, where = stands
for the identity between terms. Let t ∈ Tr, we denote by [t]≡ the equivalence class
modulo ≡ of the process term t, i.e., [t]≡ = {t ′ ∈ Tr | t ≡ t ′}. A set of terms L
is said to be compatible with the equivalence ≡ if [L]≡ = L. We say that L′ is a
≡-representative of L if [L′]≡ = L.

2.2.2 Transition relations and computations:
An SPA R induces a transition relation

a
→ over T ∪Tr defined by:

θ1 :
X

a
↪→ t2 ∈ R

X
a
→ t2

; θ2 :
t1

a
→ t ′1

t1 · t2
a
→ t ′1 · t2

; θ3 :
t1 ∼0 0 , t2

a
→ t ′2

t1 · t2
a
→ t1 · t ′2



θ4 :
t1

a
→ t ′1

t1‖t2
a
→ t ′1‖t2

; θ5 :
t1

a
→ t ′1 ; t2

ā
→ t ′2 ; a ∈ Sync

t1‖t2
τ
→ t ′1‖t ′2

; θ6 :
t1

a
→ t2 ; a /∈ Sync

t1\Sync
a
→ t2\Sync

Each equivalence ≡∈ {=,∼} induces a transition relation
a
→≡ over T ∪Tr:

∀t, t ′, t
a
→≡ t ′ iff ∃u,u′ such that t ≡ u,u

a
→ u′, and u′ ≡ t ′

The relation
a
→≡ is extended to sequences of actions in the usual way. For ev-

ery term t ∈ T ∪Tr, let Post∗≡[w](t) = {t ′ ∈ T ∪Tr | t
w
→≡ t ′} and let Post∗≡(t) =

S

w∈Act∗ Post∗≡[w](t). These two definitions are extended to sets of terms as usual.
Now, we consider also a weak transition relation ⇒a over T defined by the

inference rules θ1, θ2, θ3, and θ4 (i.e., synchronization and restriction rules are
ignored). This relation defines a semantics for SPA processes which is precisely
the one of PA processes. As above, we consider also the relations

a
⇒≡ induced by

the equivalences ≡ defined in the obvious way, and we define for every term t ∈ T ,
WPost∗≡[w](t) = {t ′ ∈ T | t

w
⇒≡ t ′} and WPost∗≡(t) =

S

w∈Act∗ WPost∗≡[w](t).
Given two sets of terms T,T ′ ⊆ T ∪ Tr, the set of computation paths lead-

ing from T to T ′ is defined by PathsR(T,T ′) = {w ∈ Act∗ | ∃t ∈ T,∃t ′ ∈ T ′, t ′ ∈
Post∗∼[w](t)}. We define similarly the set WPathsR(T,T ′), when T,T ′ ⊆ T , by
considering the WPost∗ relation instead of Post∗.

2.3 SPA as a model of multithreaded programs

2.3.1 From programs to SPA systems:
Programs represented by parallel flow graph systems (see e.g., [12,22,18]) can be
translated straightforwardly to SPA systems. (We assume as usual that infinite data
types have been abstracted into finite types using standard techniques of abstract
interpretation.) Nodes of the flow graphs (corresponding to control points in the
programs, coupled with abstract values of local variables) are represented by pro-
cess constants, and actions of the programs are modeled by means of process term
rewrite rule. Rules of the form X

a
↪→ X1 ·X2 correspond to procedure calls, and

rules of the form X
a

↪→ X1‖X2 correspond to dynamic creation of parallel processes.
Complementary actions a, ā are used to model synchronizations between parallel
processes (they correspond to send (a!) and receive (a?) statements ). Therefore,
we consider that the set of synchronizing actions Sync is the set {a, ā | a is a com-
munication channel}.

The initial configurations of a program are represented by a set T of process
terms in T . The behavior of the program corresponds to the set of computation
paths of its SPA model R, starting from the set of restricted terms T\Sync, i.e.,
PathsR(T\Sync,Tr).

2.3.2 Well formed systems:
A natural requirement on programs is that complementary synchronization actions
can only appear in parallel processes (they can never be executed sequentially by



the same thread). This requirement is easy to guarantee for programs with a fixed
number of parallel processes. It suffices to consider that each pair of processes
communicate through distinguished directed channels. However, this requirement
becomes hard to guarantee in the case of programs with dynamic creation of pro-
cesses. We introduce hereafter a syntactical condition on SPA systems which en-
sures this property.

Let R be an SPA modeling a program as described above. We associate with R
a dependency graph GR defined as follows. Vertices are either process constants,
or intermediate vertices (one for each rule in R). There is an edge X

a
→ Y for every

rule X
a

↪→ Y . For every rule X
a

↪→ X1opX2, where op ∈ {·,‖}, there are three edges
X

a
→ v, v

op
→ X1, and v

op
→ X2, where v is a fresh vertex.

We say that an SPA is well formed if it satisfies the following condition: For ev-

ery two transitions u1
a
→ u2 and v1

ā
→ v2 in GR, every simple path in the undirected

graph corresponding to GR relating u1 and v1 must contain an edge labelled by ‖. It
is easy to check that well formed systems satisfy the property that complementary
synchronization actions can never be executed by the same sequential process.

Lemma 2.2 If R is a well formed SPA, then for every terms t and t ′ in T , we have:

t
τ
→≡ t ′ iff ∃a ∈ Sync, t

a ā
⇒≡ t ′

3 The Reachability Problem for SPA systems

Let R be an SPA system. The problem we consider is, given two regular (finite tree-
automata definable, see definition later), potentially infinite, sets of process terms
T,T ′ ⊆ T , check whether:

PathsR(T\Sync,T ′\Sync)
?
= /0 (1)

However, it is not difficult to prove that the reachability problem of SPA systems
is undecidable (using a reduction of the halting problem of 2-counter machines).
Therefore, to tackle the problem (1), we adopt an abstraction-based approach con-
sisting as usual in checking stronger conditions, i.e., checking the emptiness of
larger sets than PathsR(T\Sync,T ′\Sync). The originality of our approach is that it
allows to consider in a generic way several kinds of abstractions.

To explain our approach, we need to reformulate the problem (1) above. It
is easy to see that PathsR(T\Sync,T ′\Sync) = PathsR(T,T ′)∩ (Async∪{τ})∗ and
therefore, solving (1) is equivalent to checking whether

PathsR(T,T ′)∩ (Async∪{τ})∗ ?
= /0 (2)

Moreover, for the class of well formed SPA systems, Lemma 2.2 implies that
(2) is equivalent to checking whether

WPathsR(T,T ′)∩ (Async∪ ∑
a∈Sync

a ā)∗
?
= /0 (3)



Since the reachability problem of SPA is undecidable, both PathsR(T,T ′) and
WPathsR(T,T ′) cannot be effectively computed as objects of any decidable class of
word automata or grammars. Therefore, the question we address is how to compute
abstractions of the path languages PathsR(T,T ′) and WPathsR(T,T ′), i.e., upper-
approximations A(T,T ′) of the set PathsR(T,T ′) (resp. W PathsR(T,T ′)), such
that the emptiness of the set A(T,T ′)∩ (Async∪{τ})∗ (resp. A(T,T ′)∩ (Async∪
∑a∈Sync a ā)∗) can be decided.

We define a generic approach for computing abstractions of the sets PathsR(T,T ′)
and W PathsR(T,T ′) based on (i) characterizing each of PathsR(T,T ′) and WPathsR(T,T ′)
as the least solution of a system of constraints on word languages (this solution can-
not be computed in general as said before), and (ii) computing the least solution of
the system of constraints in an abstract domain to obtain an upper-approximation
of PathsR(T,T ′) or WPathsR(T,T ′).

Remark 3.1 We will see later that the two formulations (2) and (3) above lead to
complementary analysis approaches: they allow to consider different abstractions
with uncomparable precisions (see Remark 5.1).

In the sequel, we assume that T ′ is a ∼-compatible set. In that case, it is possible
to show that the sets PathsR(T,T ′) and WPathsR(T,T ′) can be precisely character-
ized without taking into account the structural equivalences on terms:

Proposition 3.2 ∀T,T ′ ⊆ T , if T ′ is ∼-compatible, then (W )PathsR(T,T ′) = {w ∈
Act∗ | (W )Post∗=[w](T )∩T ′ 6= /0}.

Based on the proposition above, we provide a characterization of (W )PathsR(T,T ′)
as the least solution of a set of constraints (on sets of finite words). This set of con-
straints is built from finite tree-automata representations of the two given sets of
terms T and T ′. The next section shows this characterization in detail.

4 Characterizing Path Languages

4.1 Process tree automata

Terms in T can be seen as binary trees where the leaves are labeled with process
constants, and the inner nodes with the binary operators “·” and “‖”. Therefore,
regular sets of process terms in T can be represented by means of a kind of finite
bottom-tree automata, called process tree automata, defined as follows:

Definition 4.1 A process tree automaton is a tuple A = (Q,Var,F,δ) where Q is
a finite set of states, Var is a set of process constants, F ⊆ Q is a set of final states,
and δ is a set of rules of the form (a) f (q1,q2) →δ q, (b) X →δ q, or (c) q →δ q′,
where X ∈Var, f ∈ {‖, ·}, and q1,q2,q,q′ ∈ Q.

In the sequel, a term of the form t1 · t2 (resp. t1‖t2) will also be represented
by ·(t1, t2) (resp. ‖(t1, t2)). Let t be a process term. A run of A on t is defined in a
bottom-up manner as follows: first, the automaton annotates the leaves according to



the rules (b), then it continues the annotation of the term t according to the rules (a)
and (c): if the subterms t1 and t2 are annotated by the states q1 and q2, respectively,
and if the rule f (q1,q2)→δ q is in δ then the term f (t1, t2) is annotated by q, where
f ∈ {‖, ·}. A term t is accepted by a state q ∈ Q if A reaches the root of t in q.
Let Lq be the set of terms accepted by q. The language accepted by the automaton
A is L(A) =

S

{Lq | q ∈ F}. A set of process terms is regular if it is accepted by
a process tree automaton. From [6], the class of regular process tree languages is
closed under boolean operations. Moreover, the emptiness problem of process tree
automata is decidable in linear time.

4.2 Process Composition vs. Computation Path Composition

In order to characterize the set of computation paths, we need to associate with the
operators “·” and “‖” on processes corresponding operators on computation paths.
Let us start by the case of sequential composition.

Lemma 4.2 For every s1,s2, t1, t2 ∈ T , and every w ∈ Act∗, s1 ·s2 ∈ Post∗[w](t1 · t2)
iff ∃w1,w2 ∈ Act∗ such that w = w1w2 and, s1 ∈ Post∗[w1](t1), s2 ∈ Post∗[w2](t2),
and either s1 ∼ 0, or w2 = ε.

Depending on which semantics we associate with the parallel operator, we must
consider two different operators on paths. For the “strong” semantics, we introduce
an operator “|||” defined inductively as follows:

ε|||w = w|||ε = w
aw1||| āw2 = a(w1||| āw2)+ ā(aw1|||w2)+ τ(w1|||w2)

aw1|||bw2 = a(w1|||bw2)+b(aw1|||w2) if b 6= ā

Lemma 4.3 For every s1,s2, t1, t2 ∈ T , and every w ∈ Act∗, s1‖s2 ∈ Post∗R[w](t1‖t2)
iff ∃w1,w2 ∈ Act∗ such that w ∈ w1|||w2, s1 ∈ Post∗R[w1](t1), and s2 ∈ Post∗[w2](t2).

In the case of the weak semantics (where ‖ corresponds to pure interleaving
without synchronization), the associated operation is the shuffle operation tt on
words. The lemma above holds when Post∗ is replaced by WPost∗, and ||| is re-
placed by tt.

4.3 Fixpoint Characterization of (W)PathsR(T,T ′):

Let R be a SPA system, let T and T ′ be two regular sets of process terms, and
let A = (Q,Σ,F,δ) and A′ = (Q′,Σ,F ′,δ′) be two process tree automata such that
L(A) = T and L(A′) = T ′. We assume w.l.o.g. that for every s ∈ Q′, there is a state
s⊥ ∈ Q′ such that Ls⊥ = Ls ∩{t ∈ T | t ∼0 0} (we consider that s⊥

⊥
= s⊥) 1 .

Then, let us consider the problem of characterizing PathsR(T,T ′). The charac-
terization of WPathsR(T,T ′) can be done exactly in the same manner, by replacing
everywhere Post with WPost, and the operator ||| with tt.

1 We show in the full paper how to transform A′ in order to satisfy this assumption.



We introduce slight extensions of the automata A and A′ by adding states and
rules corresponding to the terms appearing in R. For that, let us consider the set
QR = {qt | t is a subterm of a term appearing in some rule of R} and let us define δR

to be the set of rules: (1) X → qX if qX ∈ QR, for every X ∈Var, (2) ‖(qt1,qt2)→ qt

if t = ‖(t1, t2) and qt ∈ QR, and (3) ·(qt1,qt2) → qt if t = ·(t1, t2) and qt ∈ QR.
It is easy to see that, for every subterm t appearing in R, we have Lqt = {t}.

Now, let Q = Q∪QR, ∆ = δ∪δR, Q ′ = Q′∪QR, and ∆′ = δ′∪δR. Then, given two
states q ∈ Q and s ∈ Q ′, we define the set of paths:

λ(q,s) = {w ∈ Act∗ | Post∗=[w](Lq)∩Ls 6= /0}.

Clearly, the computation of the sets λ(q,s) allows to define PathsR(T,T ′) since, by
Proposition 3.2, this set is the union of all λ(q,s) such that q ∈ F and s ∈ F ′.

4.3.1 A Set of Constraints:
We define hereafter a set of constraints on path languages and prove that it char-
acterizes precisely the sets λ(q,s). Let us consider a set of variables (representing
sets of paths) defined as follows: For every state q ∈ Q and every state s ∈ Q′, we
define a variable V (q,s). Then, we consider the following set of constraints:

(β1) If Lq ∩Ls 6= /0, then
ε ∈V (q,s)

(β2) If q1 → q2 is a rule of ∆ and s1 → s2 is a rule of ∆′, then

V (q1,s1) ⊆V (q2,s2)

(β3) If ·(q1,q2) → q is a rule of ∆ and ·(s1,s2) → s is a rule of ∆′, then

V (q1,s
⊥
1 )V (q2,s2) ⊆V (q,s)

and, if Lq2 ∩Ls2 6= /0, then

V (q1,s1) ⊆V (q,s)

(β4) If ‖(q1,q2) → q is a rule of ∆ and ‖(s1,s2) → s is a rule of ∆′, then

V (q1,s1)|||V(q2,s2) ⊆V (q,s)

(β5) If X
a

↪→ t ∈ R, then
V (q,qX)aV (qt,s) ⊆V (q,s)

4.3.2 Correctness:
We show that (i) the least solution of the previous set of constraints exists, and (ii)
that this solution corresponds precisely to the definition of the sets λ(q,s).

Proposition 4.4 The least solution of the set of constraints (β1)–(β5) exists.



Indeed, let x1, . . . ,xm be an arbitrary numbering of the variables V (q,s) for q ∈
Q and s ∈ Q ′. Then, the system (β1)–(β5) is a set of inclusion constraints

fi(x1, . . . ,xm) ⊆ xi, 1 ≤ i ≤ m (4)

where the fi(x1, . . . ,xm)’s are functions built up from the variables xi’s, and the
operators of word concatenation, |||, and ∪. (Observe that two different inclusions
of the form e1 ⊆ xi and e2 ⊆ xi can be replaced by the inclusion e1 ∪ e2 ⊆ xi.)

Let X = (x1, . . . ,xm), and F be the function such that

F(X) =
(

f1(x1, . . . ,xm), . . . , fm(x1, . . . ,xm)
)

.

The least solution of (4) is the least pre-fixpoint of F . Let L be the complete
lattice of languages over Act, i.e., L = (2Act∗,⊆,∪,∩, /0,Act∗). It can be shown
that the operators · and ||| are ∪-continuous. It follows that F is monotonic and ∪-
continuous. Therefore, by Tarski’s theorem, the least pre-fixpoint of F exists and
is equal to its least fixpoint, and by Kleene’s theorem this fixpoint is equal to:

[

i≥0

F i( /0, . . . , /0). (5)

Theorem 4.5 Let
(

L(q,s)
)

q∈Q ,s∈Q ′ be the least solution of the system (β1)–(β5).

Then, for every q ∈ Q and every s ∈ Q ′, we have L(q,s) = λ(q,s).

5 Abstracting Path Languages

The iterative computation (5) of the least solution of the system (4) does not ter-
minate in general (since the reachability problem is undecidable for SPAs). As
explained before, instead of computing the exact languages λ(q,s), our approach
consists in computing abstractions of them. To describe these abstractions, we de-
fine a formal framework based on abstract interpretation [7].

5.1 A Generic Framework

Let L be the complete lattice of languages over Act, i.e., L = (2Act∗,⊆,∪,∩, /0,Act∗).
Formally, an abstraction requires an abstract lattice D = (D,v,t,u,⊥,>), where
D is some abstract domain, and a Galois connection (α,γ) between L and D , i.e.,
a pair of mappings α : 2Act∗ → D and γ : D → 2Act∗ such that

∀x ∈ 2Act∗, ∀y ∈ D. α(x) v y ⇐⇒ x ⊆ γ(y) .

In our framework, t is associative, commutative, and idempotent. We assume
also that this operator can be extended to countably infinite sets (i.e., countably in-
finite joins are also elements of D). Moreover, we consider two abstract operations
⊗ and �, and one element 1̄ such that: ⊗ is associative and commutative, � is as-
sociative, 1̄ is the neutral element of �, and � and ⊗ are t-continuous. Notice, that
the requirements above imply that (D,t,�,⊥, 1̄) is an idempotent closed semiring.



Intuitively, the abstract operations t, �, and ⊗ of D correspond to union, con-
catenation, and word parallel composition (||| or tt, depending on the adopted
semantics) in the lattice L . ⊥ and 1̄ are the abstract objects corresponding to the
empty language and to {ε}, respectively. Moreover, the top element >∈ D and the
meet operation u correspond in the lattice L to Act∗ and to language intersection,
respectively.

We consider abstractions where the domain D is generated by ⊥, 1̄ and an
element va for each a ∈ Act. We always take vτ = 1̄. Intuitively, the element va

corresponds to the language {a} if a 6= τ.
To define a Galois connection between the concrete and the abstract domains,

we consider a mapping α that satisfies the following: α(ε) =1̄, and for every word
languages L1,L2, we have: α(L1 ·L2) = α(L1)�α(L2), α(L1∪L2)= α(L1)tα(L2),
and α(L1|||L2) = α(L1)⊗α(L2) (or α(L1ttL2) = α(L1)⊗α(L2) if we are in the
weak semantics case). It follows that

α(L) =
G

a1···an∈L

va1 �·· ·� van .

Furthermore, we define the concretization function γ by

γ(x) = {a1 · · ·an ∈ 2Act∗ | va1 �·· ·� van v x}.

It can be checked that (α,γ) is indeed a Galois connection between L and D .

The fact that α( /0) = ⊥ and γ(⊥) = /0, implies that

∀L1,L2.α(L1)uα(L2) = ⊥⇒ L1 ∩L2 = /0.

This property is necessary for our approach: To solve the problems (2) and (3) we
are interested in, it suffices to check, respectively, whether

α
(

PathsR(T,T ′)
)

uα
(

(Async∪{τ})∗
) ?

= ⊥ (6)

or
α
(

WPathsR(T,T ′)
)

uα
(

(Async∪ ∑
a∈Sync

a ā)∗
) ?

= ⊥ (7)

where α
(

PathsR(T,T ′)
)

(resp. α
(

WPathsR(T,T ′)
)

) is the least solution of the ab-
stract system of constraints:

f α
i (x1, . . . ,xm) v xi, 1 ≤ i ≤ m, (8)

obtained from the “concrete” system (β1)–(β5), where f α
i (x1, . . . ,xm) is an expres-

sion obtained by substituting in fi(x1, . . . ,xm) of (4) word concatenation with �,
the operator ||| (resp. tt) with ⊗, and the operator ∪ with t.

5.2 Computing the abstractions

To be able to solve the system (8), we consider two types of abstractions.



5.2.1 Finite-chain abstractions:
A Finite-chain abstraction is an abstraction such that the semilattice (D,t) has no
infinite ascending chains. Particular cases of such abstractions are finite abstrac-
tions where the abstract domain D is finite. In this case, the iterative computation
of the least fixpoint of the system (8) always terminates. Finite abstractions can be
used for both strong and weak semantics of parallel composition to compute upper
approximations of the sets PathsR(T,T ′) or W PathsR(T,T ′).

5.2.2 Commutative Kleene algebraic abstractions:
We introduce now a particular class of abstractions which can be used in the weak
semantics case, i.e., in order to abstract the set WPathsR(T,T ′).

We consider abstractions defined as above, but satisfying (i) � = ⊗, and (ii) �
is commutative. Intuitively, this means that both sequential word composition and
the tt operator are abstracted by � (see remark below).

In this case, the structure (D,t,�,⊥, 1̄) is a commutative idempotent closed
semiring. As usual, we define a0 = 1̄, an+1 = a� an, and a? =

F

n≥0 an. Adding
the ?-operation transforms the structure above into a commutative Kleene algebra
K = (D,t,�,?,⊥, 1̄). Then, the system (8) can be solved using the algorithm of
Hopkins and Kozen [16] for solving systems of polynomial constraints in commu-
tative Kleene algebras (see also [4]).

Remark 5.1 Notice that to be able to use the framework of commutative Kleene
algebras, we need to consider that � is commutative. It can be seen that if se-
quential composition is considered as commutative, it coincides precisely with the
shuffle operator tt. However, in Kleene algebras we cannot have an additional op-
erator ⊗ in addition to �. So, the only case we can deal with is when this operator
of parallel composition concides with �, which means that it should represent tt.
This is the reason why this approach based on commutative Kleene algebras can
only be applied in the case of the weak semantics.
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