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Abstract. We present a model-checker for boolean programs with (pos-
sibly recursive) procedures and the temporal logic LTL. The checker is
guaranteed to terminate even for (usually faulty) programs in which the
depth of the recursion is not bounded. The algorithm uses automata to
finitely represent possibly infinite sets of stack contents and BDDs to
compactly represent finite sets of values of boolean variables. We illus-
trate the checker on some examples and compare it with the Bebop tool
of Ball and Rajamani.
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1 Introduction

Boolean programs are C programs in which all variables and parameters (call-by
value) have boolean type, and which may contain procedures with recursion. In
a series of papers, Ball and Rajamani have convincingly argued that they are a
good starting point for investigating model checking of software [1, 2].

Ball and Rajamani have also developed Bebop, a tool for reachability analysis
in boolean programs. As part of the SLAM toolkit, Bebop has been successfully
used to validate critical safety properties of device drivers [2]. Bebop can de-
termine if a point of a boolean program can be reached along some execution
path. Using an automata-theoretic approach it is easy to extend Bebop to a tool
for safety properties. However, it cannot deal with liveness or fairness proper-
ties requiring to examine the infinite executions of the program. In particular,
it cannot be used to prove termination.

In this paper we overcome this limitation by presenting a model-checker
for boolean programs and arbitrary LTL-properties. The input to the model
checker are symbolic pushdown systems (SPDS), a compact representation of
the pushdown systems studied in [4]. A translation of boolean programs into
this model is straightforward. The checker is based on the efficient algorithms
for model checking ordinary pushdown systems (PDS) of [4]. While SPDSs have
the same expressive power as PDSs, they can be exponentially more compact.
(Essentially, the translation works by expanding the set of control states with
all the possible values of the boolean variables.) Therefore, translating SPDSs
into PDSs and then applying the algorithms of [4] is very inefficient. We follow
a different path: We provide symbolic versions of the algorithms of [4] working
on SPDSs, and use BDDs to succintly encode sets of (tuples of) values of the
boolean variables.

The paper is structured as follows. PDSs and SPDSs are introduced in Sec-
tion 2. The symbolic versions of the algorithms of [4] are presented in Section 4
and their complexity is analysed. In particular, we analyse the complexity in
terms of the number of global and local variables. In Section 5 we discuss three
improvements in the checker. We present some experimental results on differ-
ent versions of the Quicksort algorithm; in particular we present results on the
impact of the improvements. Section 6 compares our tool with Bebop using an
example of [1]. Finally, Section 7 contains conclusions.

2 Basic definitions

In this section we briefly introduce the notions of pushdown systems and linear
time logic, and establish our notations for them.
2.1 (Symbolic) Pushdown systems

We mostly follow the notation of [4]. A pushdown system is a four-tuple P =
(P, T, co, A) where P is a finite set of control locations, I is a finite stack alphabet,



and A C (PxT')x(Px1I'*)is afinite set of transition rules. If ((q, %), (¢’,w)) € A
then we write {q,v) — {¢', w). A configuration of P is a pair {p, w) where p € P
is a control location and w € I'* is a stack content. cg is called the initial
configuration of P. The set of all configurations is denoted by C.

If {q,v) — (¢, w), then for every v € I'* the configuration (g, yv) is an imme-
diate predecessor of {¢', wv), and {¢', wv) an immediate successor of {q,yv). The
reachability relation = is the reflexive and transitive closure of the immediate
successor relation. A run of P is a maximal sequence of configurations such that
for each two consecutive configurations c;c;+1, ¢iy1 is an immediate successor
of ¢;.

The predecessor function pre: 2¢ — 2€ of P is defined as follows: ¢ belongs to
pre(C') if some immediate successor of ¢ belongs to C'. The reflexive and transitive
closure of pre is denoted by pre*. We define post(C') and post* similarly.

Loosely speaking, a symbolic pushdown system is a pushdown system in
which the sets of control locations and stack symbols have a special structure,
and in which sets of transition rules are represented by symbolic transition rules.
Formally, a symbolic pushdown system is a tuple Pg = (Po x G, Io X L, co, As),
where G' and L are two sets of global and local values ' and Ag is a set of
symbolic transition rules of the form (p, ) SELIN (P71 ---Vn), where R C (G x
L) x (G x L") is a relation. A symbolic pushdown system corresponds to a
normal pushdown system (Py x G, I'g x L,co, A) in the sense that a symbolic
rule (p,~) SN (P'y¥1---7n) denotes a set of transition rules as follows:

if (galaglalla ce 7171) S Ra then <(pvg)7 (’771» — <(p/agl)7 (71711) . (7n7ln)> €A

In practice, R should have an efficient symbolic representation. In our applica-
tions we have G = {0, 1} and L = {0, 1}"™ for some n and m, and so R can be
represented by a BDD.

Given a pushdown system P = (P, I, co, A), we use P-automata in order
to represent sets of configurations of P. A P-automaton uses I' as alphabet,
and P as set of initial states. Formally, a P-automaton is an automaton A4 =
(I,Q,6, P, F) where @ is the finite set of states, d C @ x I' x @ is the set of
transitions, P is the set of initial states and F C @ the set of final states. An
automaton accepts or recognises a configuration (p, w) if p—= ¢ for some p € P,
q € F. The set of configurations recognised by an automaton A is denoted by
Conf(A). A set of configurations of P is regular if it is recognized by some
automaton.

A symbolic automaton has a symbolic transition relation ds. We denote by
ds(q,7v,q") the set of all (g,1,¢') such that ((¢,9),(v,1),(¢',¢’)) € d, and by
q %} q’ the set of transitions ((q,¢), (v,1), (¢',¢')) such that (g,1,¢') € R.

2.2 The model-checking problem for LTL

We briefly recall the results of [3] and [4]. Given a formula ¢ of LTL, the model-
checking problem consists of deciding if ¢g violates ¢, that is whether there is

! The reason for these names will become clear in Section 3.



int x;

main: f:
void main() { @ _
int z; v Xy
f(x+z); f(x+z)<? returnQE
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void £() {
x=x+y; %
}

Fig.1. An example program (left) and the associated flowgraph (right)

some run starting at co that violates . The problem is solved in [4] using the
automata-theoretic approach. First, a Biichi pushdown system is constructed as
the product of the original pushdown system and a Biichi automaton B for the
negation of . This new pushdown system has a set of final control states. Now,
define the head of a transition rule (p,vy) < (p/, w) as the configuration (p, 7).
A head (p,~v) is repeating if there exists v € I'* such that (p,yv) can be reached
from (p, ) for some v while visiting some accepting control state along the way.
It is shown in [4] that the model-checking problem reduces to either:

— checking whether ¢g € pre*(R I'*), or, equivalently,
— checking whether post*({co}) N RI™* # 0.

Furthermore, it is shown that the problem can be solved in O(|P|?|A||B|?) time
and O(|P||A||B|?) space.

3 Modelling programs as symbolic pushdown systems

Pushdown systems find a natural application in the analysis of sequential pro-
grams with procedures (written in C or Java, for instance). We allow arbitrary
recursion, even mutual procedure calls, between procedures; however, we require
that the data types used in the program be finite. In the following, we present
informally how to derive a symbolic pushdown system from such a program.

In a first step, we represent the program by a system of flow graphs, one
for each procedure. The nodes of a flow graph correspond to control points in
the procedure, and its edges are annotated with statements, e.g. assignments or
calls to other procedures. Non-deterministic control flow is allowed and might
for instance result from abstraction. Figure 1 shows a small C program and the
corresponding flow graphs. The procedure main ends in an infinite loop to ensure
that all executions are infinite. In the example, a finitary fragment of the type
integer has to be chosen.



Given such a system of flow graphs, we derive a pushdown system and a
corresponding symbolic pushdown system. For simplicity, we assume that all
procedures have the same local variables. The sets G and L contain all the
possible valuations of the global and local variables, respectively. E.g., if the
program contains three boolean global variables and each procedure has two
boolean local variables, then we have G = {0,1}? and L = {0,1}2. P, contains
one single element p, while I" is the set of nodes of the flow graphs.

Program statements are translated to pushdown rules. We distinguish three
types of statements.

Assignments An assignment labelling a flow-graph edge from node n; to node ny
is represented by a set of rules of the form

{glob, (n1, loc)) < {glob’, (naq, loc')).

where glob and glob’ (loc and loc') are the values of the global (local) variables
before and after the assigment. This set is represented by a symbolic rule of the
form {p,n1) SN {p,na), where RC (G x L) x (G x L).

Procedure calls A procedure call labelling a flow-graph edge from node n; to
node nq is translated into a set of rules with a right-hand side of length two
according to the following scheme:

{glob, (n1, loc)) < {glob’, (mq, loc') (na, loc"))

Here myg is the start node of the called procedure; loc’ denotes initial values of
its local variables; loc” saves the local variables of the calling procedure. (No-
tice that no stack symbol contains variables from different procedures; hence
the size of the stack alphabet depends only on the largest number of local vari-
ables in any procedure.) This set is represented by a symbolic rule of the form
(p,n1) SN (p, monza), where RC (G x L) x (G x L x L).

Return statements A return statement has an empty right side:
(glob, (n, loc)) — {glob’, &)

These rules correspond to a symbolic rule of the form {p, n) SN (p, €), where
R C (Gx L)xG. Procedures which return values can be simulated by introducing
an additional global variable and assigning the return value to it.

Notice that the size of the symbolic pushdown system may be exponentially
smaller than the size of the pushdown system. This is the fact we exploit in
order to make model-checking practically usable, at least for programs with few
variables. Notice also that in the symbolic pushdown system we have |Py| = 1
and [ is the set of nodes of the flow graphs.

Since a symbolic pushdown system is just a compact representation of an
ordinary pushdown system, we continue to use the theory presented in [4]. In this
paper we provide modified versions of the model-checking algorithms that take



advantage of a more compact representation. In our experiments, we consider
programs with boolean variables only and use BDDs to represent them. Integer
variables with values from a finite range were simulated using multiple boolean
variables.

4 Algorithms

According to Section 2, we can solve the model-checking problem by giving
algorithms for the following three tasks:

— to compute the set pre*(C') for a regular set of configurations C' (which will
be applied to C = RI™*)
— to compute the set post*(C) for a regular set of configurations C' (which will

be applied to C' = {¢o})
— to compute the set of repeating heads R

In [4] efficient implementations for these three problems were proposed for or-
dinary pushdown systems. In this section, we sketch how the algorithms may
be lifted to the case of symbolic pushdown systems. More detailed presentations
are given in the appendix.

We fix a symbolic pushdown system P = (Po x G, I'o X L, ¢, Ag) for the rest
of the section.

4.1 Computing predecessors

Given a regular set C' of configurations of P, we want to compute pre*(C).
Let A be a P-automaton that accepts C. We modify A to an automaton that
accepts pre*(C). The modification procedure adds only new transitions to A,
but no new states are created. Without loss of generality, we assume that A has
no transitions ending in an initial state.

In ordinary pushdown systems, new transitions are added according to the
following saturation rule:

If (p,v) = (P/yvi-..7) and p g1 2. 2 g

in the current automaton, add a transition (p, v, q).

The correctness of the procedure was proved in [3]. For the symbolic case,
the corresponding rule becomes:

If {p,7) RN (p',w) and p’ %) q1 7%—22) %) q in the current
automaton, replace p %} g by p %) g where

R" = RIU{(galagn) | (galagoalla"- Jn) €R
A 3g1,-e gn-1: V1 <i<n:(gi-1,li,9:) € Ri }.

The computation of R” can be carried out using standard BDD operations.
The appendix gives a detailed, efficient implementation of the procedure.



4.2 Computing the repeating heads

For ordinary pushdown systems [4] we construct a directed graph G whose nodes
are the heads of the transition rules (and so elements of P x I'). There is an edge
from (p,v) to (p', ') iff there is a rule {(p,v) < (p”, v1y'v2) such that {p”, v1) =
(p',€) holds. The edge has label 1 iff either p is an accepting Biichi state, or
(p", 1) = (p',€) holds. The edges are computed using pre*. Now, a head
(p,7) is repeating iff it belongs to a strongly connected component containing
a 1-labelled edge. The components are computed in linear time using Tarjan’s
algorithm [7].

For symbolic pushdown systems we represent G compactly as a symbolic
graph SG. The nodes of SG are elements of Py x Iy, and its edges are annotated
with a relation R C (G x L)% (plus a boolean, which is easy to handle and

is omitted in the following discussion for clarity). An edge (po, o) i(pf),’y())
stands for the set of edges (po, g, v0,{) = (P4, 9’5 ¥, ') such that (g,{,¢',!") € R.
Unfortunately, when R is symbolically represented Tarjan’s algorithm cannot be
applied. So, instead, we “saturate” SG according to the following two rules:

/1

— T (pos Y0) = (phy ) = (ph, %)), then add (po, v0) —— (b, 76), Where
R":={((g,0), (¢, 1)) | 3(¢",1"): ((9,1), (¢", ")) € RA((g",1"), (¢, 1)) € R'}.
(

7
— TIf (po, vo) £, P, Y6) and (po, Yo) L(p(), ¥6), then replace these two arcs by

9
RUR'
(Pos ¥0) ———(Phs 76

The saturation procedure terminates when a fixpoint is reached. It is easy to see
that this algorithm has complexity O(n - m) where n and m are the number of
nodes and edges of G. So the model-checking problem for symbolic systems has
a worse asymptotic complexity than for normal systems. However, in practice
the more succinct representation more than offsets this disadvantage.

4.3 Computing successors

Given an automaton A accepting the set C, we modify it to an automaton
accepting post™(C'). Again we assume that A has no transitions leading to initial
states, and moreover, that |w| < 2 holds for all rules {p, ) SN (p', w). This is
not an essential restriction, as all systems can be transformed into one of this
form with only a linear increase in size.

In the ordinary case, we allow e-moves in the automaton. We write == for

the relation (—)*~3(—3)*. The algorithm works in two stages [4]:

- I (p,y) = (p',v'¥") € A, add a state (p',7') and a transition (p',¥', (p',7'))-
— Add new transitions to A according to the following saturation rules:



If (p,7) = (p',¢) € A and p== ¢ in the current automaton,

add a transition (p', ¢, q).

If (p,y) = (p',4') € A and p=L> ¢ in the current automaton,

add a transition (p',~', q).

If r = (p,7) = (p',7'¥") € A and p=L> ¢ in the current automaton,

add a transition ((p,v),v",q).

For the symbolic case, the corresponding first stage looks like this: For each
symbolic rule {(p,~) SN (p',y'y") we add a new state (p',v'). We must ad-
just the symbolic transition relation slightly for these new states; e.g. when ¢
and ¢’ are such states, then dg(q,7,¢’) is a relation over (G x L) x L x (G x L).
Moreover, for each such rule we add a transition ¢t = (p/, ¥/, (p', ¥/')) s.t. ds(¢) =
{0V, (g, 0") | 3g,l,¢',',1") € R}. Concerning e-transitions, ds(q,¢,¢’') is a
subset of G x G. In the second stage, we proceed as follows:

Tf {p, v} SN (p',e) € Ag and p%q in the current automaton,

add to ds(p, ¢, q) the set {(¢',¢") | 3(g,l,¢') € R, (g9,1,¢") € R’ }.

If {p, v} SN (p',y') € As and p%ﬂ] in the current automaton,

add to ds(p', 7, q) the set {(¢’,V,¢") | 3(g,1,9’,1') € R, (9,1,9") € R' }.
If {p,7) SN (p',v'y") € Ag and p%ﬂ], add to ds((p',7"),7",4q)

the set { ((¢',),!",¢") | 3(g,l,9",U',1") € R, (9,1,9") € R }.

In the appendix we present an efficient implementation of these rules.

4.4 Complexity analysis

Let P = (P, T, ¢, A) be an ordinary pushdown system, and let B be a Biichi
automaton corresponding to the negation of an LTL formula ¢. Then, according
to [4], the model-checking problem for P and B can be solved in O(|P|?-|Al-|B[?)
time and O(|P|-|A|- |B|?) space.

Consider a pushdown system representing a sequential program with proce-
dures. Let n be the size of a program’s control flow, i.e. the number of statements.
Let my be the number of global (boolean) variables, and let m3 be the maximum
number of local (boolean) variables in any procedure. Assuming that the pro-
grams use deterministic assignments to variables, each statement translates to
2m1t+mz different pushdown rules. Since the number of control locations is 21,
we would get an Q(n - 231%™z . |B|3) time and O(n - 22™1+™2 . | B|?) space
algorithm by translating the program to an ordinary pushdown system.

When we use symbolic system, the complexity gets worse. The graph SG has
O(]A|) nodes and O(|P|-|A]) edges. So our symbolic algorithm for computing the
strongly connected components has complexity O(|P|-|A|?). We therefore get
O(n?.23m1+2m2 | B|3) time in the symbolic case. (The space complexity remains
the same.) However, as mentioned before, the more compact representation in
the symbolic case compensates for this disadvantage in the examples we tried.



5 Efficient implementation

We have implemented the algorithms of 4 in a model-checking tool. Three re-
finements with respect to the abstract description of the algorithms are essential
for efficiency.

Variable ordering Tt is well known that the performance of BDD-based algo-
rithms is very sensitive to the variable ordering. When checking boolean pro-
grams with inputs a useful heuristic is to place the variables which initially hold
the input at the end. Since the inputs are usually stored in global variables,
this criterion often corresponds to placing the local variables before the global
variables.

Procedure for the model-checking problem As mentioned in section 2.2, the
model-checking problem reduces to (a) checking whether ¢g € pre*(R I'*), or (b)
checking whether post*({co})N R I'* # 0. The latter turns out to be far superior.
In order to compute (b) symbolically, we first compute the reachable configura-
tions (i.e., post*({co})). Then, in each symbolic rule (p, v) SN (P'yy1---yn) we
replace R by a new relation Ryeqcp defined as follows: (g,1,¢',l1,...1,) € Rreach
if (9,4,9’,11,...1,) € R and some configuration {(p, g), (7, {)w) is reachable from
co- This dramatically reduces the efforts needed for most computations.

Ffficient computation of the repeating heads As mentioned in section 4.2, the
computation of the repeating heads reduces to determining the strongly con-
nected components of a graph G symbolically represented as a labelled graph
SG. The nodes of SG are elements of Py X Iy, and its edges are annotated with
a relation R C (G x L)? (and a boolean).

In our implementation, we first compute the components “roughly”, i.e.,
ignoring the Rs in the edges, using Tarjan’s algorithm. Then we refine the search
(including the Rs); we use the less efficient algorithm of section 4.2, but we need
to search only inside the “rough” components, usually saving a lot of effort.

In the rest of the section we give an idea of the performance of the algorithm
by applying it to some versions of Quicksort. Then we show the impact of the
three improvements listed above by presenting the running times when one of
the improvements is switched off. All computations were carried out on an Ul-
trasparc 60 with 1.5 GB memory. Operations on BDDs were implemented using

the CUDD package [6].

5.1 Quicksort

We intend to sort the global array a in ascending order; a call to the quicksort
function in figure 2 should sort the fragment of the array starting at index left
and ending at index right. The program is parametrised by two variables: n, the
number of bits used to represent the integer variables, and m, the number of array
entries. We are interested in two properties: first, all executions of the program
should terminate, and secondly, all of them should sort the array correctly.



void quicksort (int left,int right) n locals time memory

{ . o faulty version
int lo,hi,piv; 3 12 0.14s  4.6M
if (left >= right) return; 4 _16 0.39s 5-3M
. . . . 5 20 1.37s 7.2M
piv = alright]; lo = left; hi = right;
. . 6 24 6.86s 10.5 M
while (lo <= hi) { : )
if (alhil > piv) { 7 28 53s 12.3M
N P 8 32 5925 14.6M
} olse { 9 36 > 3600 s -
swap al[lo],alhi]; corrected version
lo++; 3 15 0.22s 4.8M
} 4 20 0.67s  6.1M
} 5025 3.63s  9.4M
quicksort(left,hi); 6 30 48.67s  14.TM
quicksort(lo,right); 735 1238s  15.1M
} 8§ 40 > 3600s -

Fig. 2. Left: Faulty version of Quicksort. Right: Results for termination check.

normal randomised
n m globals locals time memory time memory
3 4 12 18 1s 7.2M 1s 80M
3 5 15 18 4s 14.5M 8s 15.2M
3 6 18 18 38s 22.3M 82s 29.9M
4 4 16 24 3s 12.1M 6s 12.3M
4 5 20 24 24s 18.7M 48 s 25.1M
4 6 24 24 193 s 77.4M 531s 134 M
4 7 28 24 1742 s 414M >3600s -

Fig. 3. Results for correctness of sorting.

Termination For this property we can abstract from the actual array contents
and just regard the local variables. The program in figure 2 is faulty; it is not
guaranteed to terminate (finding the fault is left as an exercise to the reader). A
corrected version (containing one more integer variable) is easy to obtain from
the counterexample provided by our checker. Figure 2 lists some experimental
results. For each n, we list the number of resulting local variables in terms of
booleans. Since the array contents are abstracted away here, there are no global
variables, and m does not play a role.

Correctness of the sorting In this case we also need to model the array contents
as global variables. Figure 3 lists the results for the corrected version of the
algorithm in figure 2, as well as for a variant in which the pivot element is
chosen randomly.



time memory

NONE 1.02s 7.2M
VORD 49s 6.8M
PROC  624s 60.6 M
REPH 1.39s 81M

NONE36 38s 22.3M
REPH36 66s 36.3M

Fig. 4. Impact of the improvements.

Impact of the improvements Figure 4 shows the impact of the three improve-
ments in the task of checking the correctness of Quicksort. We consider the
non-randomised version with n = 3, and m = 4. The line NONE contains the
reference values when all three improvements are present. The lines VORD,
PROC, and REPH give the time and space consumption when the improvements
concerning variable ordering, procedure for solving the model-checking problem,
and algorithm for computing repeating heads are “switched off”, respectively.
More precisely, in the VORD line we use a BDD ordering corresponding to
the order left, right, lo, hi, piv (i.e. all BDD variables used for representing left
before and after a program step come before those for representing right etc.)
plus automatic reordering. In the PROC line we compute pre*(R I'*) instead of
post*({co})N R I'*. In the REPH line we directly use the quadratic algorithm for
the computation of the repeating heads without preprocessing. Since for n = 3
and m = 4 the impact of this last improvement is small, we consider also the

case n = 3, m = 6 (lines NONE36 and REPH36).

6 Comparison with Bebop

In [1], Ball and Rajamani used the following example (see figure 5) to test
their reachability checker Bebop. The example consists of one main function
and n functions called level;, 1 < ¢ < n, for some n > 0. There is one global
variable g. Function main calls level; twice. Every function level; checks g;
if it’s true, it increments a 3-bit counter to 7, otherwise it calls level; ; twice.
Before returning, level; negates g. The checker is asked to find out if the labelled
statement in main is reachable, i.e. if g can end with a value of false. Since g is
not initialised, the checker has to consider both possibilities.

Despite the example’s simplicity, some its features are worth pointing out.
There is no recursion in the program, and so its state space is finite. However,
typical finite-state approaches would flatten the procedure call hierarchy, blowing
up the program to an exponential size. Moreover, the program has exponentially
many states, yet we can solve the reachability question in time linear in n. Finally,
there are O(n) different variables in the program; however, only two of them are



bool g; void level; () {

int (0..7) 1i; n time

void main() { 1f.(g) { 200  0.50s
level; (); i=0; 400 0.94
level; (); while (i < 7) i++; o8

. . . 600 1.46s

if ('g) { } else if (i< n) {
. 800 1.99s
reach: skip; level;1();

} levelit: () 1000 2.41s

) ) 2000 4.85s
= g 5000 13.63s
g = '8 -

}

Fig. 5. Left: The example program. Right: Experimental results.

in scope at any given time. For this reason, we can keep the stack alphabet very
small, exploiting the locality inherent in the program’s structure.

Running times for different values of n are listed in table 5. In [1] a running
time of four and a half minutes using the CUDD package and one and a half
minutes with the CMU package is reported for n = 800, but unfortunately
the paper does not say on which machine. More significant is the comparison of
space consumption. We have a peak number of 155 live BDD nodes, independent
of n. On the contrary, Bebop’s space consumption for BDDs increases linearly,
reaching more than 200,000 live BDD nodes for n = 800. The reason of this
difference is that our BDDs require 4 variables (one for the global variable g and
three for the 3-bit counter), while Bebop’s BDDs require 2401 variables (one
variable for g and 2400 for the 800 3-bit counters).

7 Conclusions

We have presented a model-checker to verify arbitrary LTL-properties of boolean
programs with (possibly recursive) procedures. To the best of our knowledge this
is the first checker able to deal with liveness properties. The Bebop model checker
by Ball and Rajamani, the closest to ours, can also deal with recursive boolan
programs, but it can only check safety properties [1].

Our checker works on a model called symbolic pushdown systems (SPDSs).
While this model is definitely more abstract than Bebop’s input language, a
translation of the former into the latter is simple (see section 3). Moreover, hav-
ing SPDSs as input allows us to profit from the efficient automata-based algo-
rithms described in [4], which leads to some efficiency advantages. In particular,
the maximal number of variables in our BDDs depends only on the maximal
number of local variables of the procedures, and not on the recursion depth of
the program.

Another interesting feature of the reachability algorithms of our checker is
that they can be used to compute the set of reachable configurations of the
program, i.e. we obtain a complete description of all the reachable pairs of the



form (control point, stack content). This makes them applicable to some security
problems of Java programs which require precisely this feature [5]. Even more
generally, we can compute the set of reachable configurations from any regular
set of initial configurations.
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Appendix

In this appendix we give efficient implementations for the algorithms presented
in section 4.

Notations on Binary Decision Diagrams

We are interested in using BDDs to represent sets of states and performing
operations on them. Given two BDDs R; and Rs we denote the intersection of
their corresponding sets by R1 A Rz and their union by R1V Ry. Given two BDD
variables a and b we denote by R[a — b] a copy of the BDD R in which all
nodes originally labelled by a are now labelled by b. We extend this notation to
sets: Given two ordered sets A and B of equal size, R[A — B] denotes the BDD
in which each variable of A has been relabelled to its counterpart (w.r.t. to the
ordering of the sets) in B. Moreover, we write 34 : R for existential quantification
of R over the variables in A. Finally, A = B denotes pairwise equality between
ordered sets of the same size.

Tf {p, ) SN (P',91 - --7n) is a symbolic rule, then R will be a set of tuples
(g,0,9', 11,..., 1) € (G x L) x (G x L™). Without loss of generality, we assume
that for all rules n < 2 holds; this allows us to express all the rules we need for
our purpose (see section 3) without limiting the expressiveness of the systems
in general. It also limits the number of different BDD variables our algorithms
have to deal with.

The algorithms use a number of BDD variables to represent certain sets
during computation; we partition the BDD variables into seven sets called Fp,
Py, Py, and Yy, Y7, Y3, Y. In the BDD representation of R the set Py corresponds
to g; Yo represents [, and P is used for g’. For 1 < i < n, the set Y; represents ;.

The proofs of correctness for the algorithms presented here are analogous to
the algorithms in [4], so we omit them. The main difference between the two
versions are that we deal with whole sets of rules and edges in every operation
in the symbolic algorithms.

An algorithm for pre*

Algorithm 1 works as follows: We maintain two sets of transitions, rel and trans.
The set trans contains transitions that still need to be processed, and rel contains
those that have already been processed. No transition is processed more than
once. It can easily be seen that all additions to trans and rel match the saturation
rule given in section 4.

In the automata, d5(q,7,4') C (G x L x G) contains tuples of the form
(g.1,9'), represented by Py, Y1, and Pa, respectively.

An algorithm for post™

Algorithm 2 implements the procedure described in section 4 with one difference:
e-transitions are eliminated and simulated with non-e-transitions; if R C G x G



Algorithm 1

Input: a symbolic pushdown system P = (P; x G, I x L, co, As);
a symbolic P-Automaton A = (Ip x L,Q, s, Py x G, F)
without transitions into initial states

Output: the set of transitions of Apres

1 procedure add_trans (q,v,4, R)
2 begin
3 trans(q,v,q') < (trans(q,v,q¢'Y U R) \ rel(q,v,q')
4 end
5
6 begin
7 rel « 0; trans <« §; A" « 0;
8  for all {p,7) — (p',¢) € A do
9 add_trans(p,v,p’, R[Po = P1,Yo — Y1, P = P));
10 while trans # 0 do
11 pick (q,7v,q') s.t. trans(q,v,q') # 0;
12 R « trans(q,v,q');
13 trans(q,v,q') < 0;
14 rel(p’,v',q) 1"61(,17'7 7',q) UR;
15 for all (p', ") =2 {q,7) € (AU A') do
16 add_trans(p’, '\/',Iq'7 (3P, Yi: RAR) P, = P, Yo = Y1));
17 for all (p', ') —2— {(q,77") € A do
18 RtmpF(Epl,yvllR/]\{R,)[P2—>P1,Y'2—)Yv1];
19 A= AU, ) = N
20 for all ¢ € P, s.t. rel(q’,v",4") # 0 do
21 R rel(q', 71/7 q//);
22 add_trans(p',v',q",(3P1,Y1: Rimp A R")[Po = P1, Yo — Yi]);
23 return rel
24 end

is a set such that (p,g) i>*(q, g') for every (g,9') € R, we place the tuple (p, R)
into the set eps(q).

The algorithm is in some ways similar to Algorithm 1; again we use trans
and rel to store transitions that we need to examine. Note that transitions not
originating in P go directly to rel. The procedure add_trans is the same as in
Algorithm 1.

We have three types of states in the resulting automaton; the initial states,
the new states added by the algorithm, and other non-initial states. Therefore,
the representation of d5(q,,q’) will vary depending on the type of ¢ and ¢'.
If ¢ is initial, its symbolic counterparts will be represented by Py in the BDD;
if ¢ = (p,7v) is a new state, it will be represented by P; and Y7, respectively,
otherwise by P; only. If ¢’ is a new state, the variables of Py and Y3 will be used
for it, otherwise P,. The variables Yy always correspond to 7.



Algorithm 2

Input: a symbolic pushdown system P = (P; x G, I x L, co, As);
a symbolic P-Automaton A = (I x L,Q, s, Py x G, F)
without transitions into initial states

Output: the automaton Aposr

1 begin

2 trans + 65 N ((Po x G) x (In x L) x Q);

3 rel + 35\ trans; Q' + Q; F' + F,

4 for all {p,7) — (p',7'7y") € A do

5 Qe QUEEL X (GX L)),

6 Rtmp%(apo,%,ml[])l—)])o,y'l—)YE)])/\(P()EPQ)/\(YE)EYE;);

7 add_trans(p',v', (p',7"), Rimp);

8 for all ¢ € Q' do eps(q) + 0;

9 while trans # () do

10 pick (p, 7, q) s.t. irans(p, v, q) # 0;

11 R « trans(p,v,q);

12 trans(p,v,q) « 0;

13 rel(p,v,q) < rel(p,v,q) UR;

14 for all {(p,vy) —— (p',e) € A do

15 Rimp + (3P0, Yo: RAR)[P1 = Po, P — P1,Ys — Y1i;
16 if (p', Rimp) is not contained in eps(q) then

17 eps(q) < eps(q) U{(p', Rimp)};

18 for all v q" s.t. rel(q’,v",¢') # 0 do

19 R" « rel(¢',v", d');

20 add_trans(p',v",q',3P1,Y1: Rimp A R");

21 if g € F then F' « F'U({p'} x Rimp);

22 for all (p,v) <2~ (p',7') € A do

23 add_trans(p’, 7', q, (3P, Yo: RAR[PI = Py, Y1 = Yol;
24 for all (p, ) 2= (p',7'7") € A do

25 Rimp + (3P0, Yo: RA R')[Ys — Yo;

26 rel((p',7'),v",q) < rel((p', "), v",q) U Rimp;

27 for all (p",R") € eps((p',7')) do

28 add_trans(p”,v",q,3P1,Yi: Rump A R");

29 return (Iy x L, Q' rel, Po x G, F')
30 end



