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Abstract. We show that for several classes of idempotent semirings the least
fixed-point of a polynomial system of equatioXs = f(X) is equal to the least
fixed-point of alinear system obtained by “linearizing” the polynomials ffin

a certain way. Our proofs rely on derivation tree analysis, a prootipfi; that
combines methods from algebra, calculus, and formal languageyttzewt was
first used in [5] to show that Newton’s method over commutative and paem
tent semirings converges in a linear number of steps. Our results le#itiense
generic algorithms for computing the least fixed-point. We use theseitalgsr
to derive several consequences, includingdiv?) algorithm for computing the
throughput of a context-free grammar (obtained by speeding up th&") algo-
rithm of [2]), and a generalization of Courcelle’s result stating that tiengeard-
closed image of a context-free language is regular [3].

1 Introduction

SystemsX = f(X) of fixed-point equations, wherg is a system of polynomials,
appear naturally in semantics, interprocedural prograatyars, language theory, and
in the study of probabilistic systems (see e.g. [7, 8, 10, 18]Jall these applications the
equations are interpreted overcontinuous semirings, an algebraic structure that guar-
antees the existence of a least solutigh The key algorithmic problem is to compute
or at least approximatef.

In [5,4] we generalized Newton’s method—the well-known noetrof numeri-
cal mathematics for approximating a zero of a differen@atinction—to arbitrary
w-continuous semirings. Given a polynomial systgmour generalized method com-
putes a sequence of increasingly accurate approximatong, tcalled Newton approx-
imants. We showed in [5] that theth Newton approximant of a systemwfequations
over an idempotent (w.r.t. addition) and commutative {wanultiplication) semiring is
already equal tu f. This theorem leads to a generic computing procedure.

Our proof of this result uses a (to the best of our knowledgegghtechnique, which
we call derivation tree analysisThe systemf induces a sef of derivation treesa
generalization of the well-known derivation trees of catfieee grammars. Each tree
can be naturally assigned a semiring element, callegitiid of the tree. It is easy to
show thatu f is equal to the sum of the yields of all derivation trees. ion tree
analysis first identifies a subsét of derivation trees whose total yieM(7”) is easy
to compute in some sense, and then provesThaatisfies theembedding property
Y(t) C Y(T") for every derivation tree. If the semiring is idempotent, the embedding



property impliesy(7) = Y(T"), and souf = Y(T"). In [5], the setl” was chosen so
thatY(7") is equal to the:-th Newton approximant, and the embedding property was
proved using some tree surgery and exploiting the commvittatif the semiring.

The computation of thex-th Newton approximant can still require considerable
resources. In this paper we present a further applicatiated¥ation tree analysis to
idempotent semirings, leading to more efficient computatityorithms. For this, we
define the seB5 of bamboosf a systemf. Loosely speaking, bamboos are derivation
trees with an arbitrarily long stem but only short branchésfirst show thay (B) is the
solution of a linear system of equations whose functionsandar (but not identical)
to the straightforward linearisation ¢f Then, we prove that the following three classes
of semirings satisfy the embedding property:

e Star-distributive semiringare idempotent and commutative semirings satisfying the
additional axiom(a+b)* = a* 4+ b* (where* is the well-known Kleene iteration opera-
tor). The so-called “tropical{min, +)-semiring over the reals (extended wittbo and
—o00) is star-distributive. Our tree analysis leads to an atgorifor computing. f very
similar to the generalized Bellman-Ford algorithm of Gardiand Seidl [9]. We use it
to derive a new algorithm for computing the throughput of ategt-free grammar, a
problem introduced and analyzed by Caucal et al. in [2]. Qgorithm runs inO(N?3),

a factorN faster than the algorithm presented in [2].

e Lossy semiringare idempotent semirings satisfying the additional axiom1 = a
wherel is the neutral element of multiplication. A natural modet downward-closed
languages with union and concatenation as operationsylsessirings find applica-
tion in the verification of lossy channel systems, a modelashputation thoroughly
investigated by Abdulla et al. (see e.qg. [1]). Our tree asialieads to an algebraic proof
of Courcelle’s theorem stating that the downward closura obntext-free language is
effectively regular [3].

¢ 1-bounded semiringare idempotent semirings where the equatienl = 1 holds. A
natural example is the “maximum probability” semiring witie interval[0, 1] as car-
rier, maximum as addition, and standard multiplicationrdalie reals. Using derivation
tree analysis it is very easy to show that the least fixedtpgfrof a polynomial system
f with n variables is given byf" (0), then-fold application off to 0.

The rest of the paper is organized as follows. After the priglaries in Section 2 we
introduce derivation tree analysis in Section 3. Bamboeslefined in Section 4. In the
Sections 5, 6 and 7 we apply derivation tree analysis to thirigey classes mentioned
above. A technical report [6] includes the missing proofs.

2 Preliminaries

As usual N denotes the set of natural numbers including

An idempotent semiring = (S, +, -, 0, 1) consists of a commutative, idempotent
additive monoid(S, +,0), and a multiplicative monoids5, -, 1). In the following we
often omit the dot in products. Both algebraic structures are connected lydefl
right-distributivity, e.g.a(b + ¢) = ab + ac, and by the requirement that o = 0 for
all a € S. Thenatural-order relationC S x S is definedbys C b < a + b = b. The
semiringS is naturally orderedf C is a partial order.



An idempotent, naturally ordered semiri§gs w-continuousif countable summa-
tion ) ,ya; € Sis defined (witha; € S), and satisfies the following requirements:
(i) summation is continuous, i.esup={ag + a1 + ... +ax | k € N} = Y ien @i
for all sequences : N — S; (ii) distributivity extends in the natural way to count-
able summation; and (iiiy ;. ; >~/ ai = 32,y i holds for all partitions(Z;) e
of N. In every suchw-continuous semiring the Kleene-star operdtorS — S is well-
defined bya™ := }, a* foralla € S. In the following we consider only idempotent
w-continuous semiringS. We refer to them a®-semirings

We fix a finite, non-empty seYt’ of variablesfor the rest of the section, and us¢o
denote Y| in the following. A map fromY to S'is called avector. The set of all vectors
is denoted by/. We write bothw(X) andwv x for the value of a vectov at X € X,
also called theX-component ofv. Sum of vectors is defined componentwise: given a
countable sef and a vectow; for every: € I, we denote by . _, v, the vector given
by (3;e; i) (X) =3, vi(X) forevery X € X.

A monomial of degreé is a finite expression; Xjas - - - ap Xpar+1 wherek >
0, ai,...,axy1 € S\ {0} andXy,..., X € X. A polynomialis an expression of
the formmy + --- + my wherek > 0 andmg,...,m; are monomials. Sincé& is
idempotent, we assume w.l.0.g. that all monomials of a pwiyial are distinct. The
degree of a polynomial is the largest degree of its monomiiésletS[X'] denote the
set of all polynomials.

Let f = oy X10s ... Xpags1 be a monomial and lat be a vector. Thevaluation
of f atwv, denoted byf (v), is the productvv x, as - - - gV x, g +1. We extend this to
any polynomial: iff = Zle ms, thenf(v) = Zle m;(v).

A system of polynomialsr polynomial system is a map: X — S[X]. We write
f x for f(X). Every polynomial system induces a map frdhto V' by componentwise
evaluation of the polynomialsf(v)x = fx(v)forallv € V, andX € X. The
following proposition, which follows easily from Kleenetkeorem and the fact thgt
is a monotone and continuous mapping, shows that any polahegstemf has a least
fixed-pointu f, which is by definition the least solution & = f(X).

el

Proposition 1. A polynomial systenf has a unique least fixed-poiptf, i.e., uf =
f(pf), andpf T v holds for allv withw = f(v). Further, u.f is the supremum (w.r.t.
C) of theKleene sequencef’(0));cn, wheref' denotes the-fold application off.

3 Derivation Trees

We generalize the notion of derivation tree, as known fromrmfd languages and gram-
mars. We identify a node of a (ordered) tree¢ with the subtree of rooted atu. In
particular, we identify a tree with its root.

Let f be a polynomial system over a s&tof variables. Aderivation treet of f is
an ordered (finite) tree whose nodes are labelled with bo#riable X and a monomial
m of f. We write \,, resp.\,,, for the corresponding labelling-functions. Moreover,
if the monomial labelling of a node is \,,,(u) = a1 X7as ... Xsas41 for somes > 0,
thenu has exactlys childrenuy, . .., us, ordered from left to right, with\, (u;) = X;
foralli =1,...,s. Aderivation treg is anX-treeif \,(t) = X. The set of allX-trees
of f is denoted byl x, or just by7x if f is clear from the context.



The left part of Figure 1 shows a derivation tree of the sysfeaver the variables
X andY given by fy = aXYb+candfy = dX + Ye. The derivation trees of are
very similar to the derivation trees of the context-freengmaar with productions{ —
aXYblcandY — dX|Ye. For technical reasons, the nodes of “our” trees are labeled
by “productions” (for instance, the lab€X,aXYd) corresponds to the production
X — aXYb). On the right of Figure 1 we show how the tree would look likearding
to the standard definition. The heigh(t) of a derivation tree is the length of a longest

(X,aXYb) X
/ N\
SN YN
(X,0)  (Y,dX) |/ N\
| cd X
(X0 !

Fig. 1. A derivation tree on the left, and its standard representation on the right

path from the root to a leaf. The set &f-trees (off) of heightat mosth is denoted
by T)((h). The yieldY(t) of a derivation tree with \,,(t) = a1 Xjas -+ Xsas41 IS
inductively defined to be&/'(¢t) = a1Y(t1)az - Y(ts)as+1. We extend the definition
of Y to setsI" C Tx by settingY(T') := >, Y(t). E.g., the systenf defined above
has exactly twoX -trees of height at mo&t the tree consisting of a single node labeled
by (X, ¢), and the left tree of Figure 1. Their yields arandacdcb, respectively, and
soY(T) = ¢+ acdeb. It follows Y(T{) = £3(0), i.e., the yield of theX -trees of
height at most 2 is equal to the “Kleene approximafit{0) x from Proposition 1. The
following proposition, easy to prove [4], shows that thisi@ a coincidence.

Proposition 2. For all h € Nand X € X, we haveY(7{") = (£"(0)) -
Together with Proposition 1 we get:

Corollary 1. ufy =Y (7x).

3.1 Derivation Tree Analysis

We say that a séltx of X -trees satisfies thrembedding property Y (¢) C Y (Tx) holds
for every X-treet. Loosely speaking, the yield of every-tree can be “embedded”
in the yield of T'x. As addition is idempotent, the embedding property imntetia
implies thatY (T'x) C Y (7). Of course, a'x C Tx, we also have the other direction,
which leads to the following result.

Proposition 3. Let f be a system of polynomials over an io-semiring, andXebe
a variable of f. If a setTx of X-trees of f satisfies the embedding property, then

nf =Y(Tx).



This proposition suggests a technique for the design ofi@ffi@lgorithms computing
nf: (1) define a sef’y of derivation trees whose yield is “easy to compute” in some
io-semiring, and (2) identify “relevant” classes of io-gamys for whichT'x satisfies
the embedding property. By Proposition3f is “easy to compute” for these classes.
We call this techniqueéerivation tree analysis

4 Bamboos and their Yield

The difficulty of derivation tree analysis lies in finding at §&¢ exhibiting a good
balance between the contradictory requirements “easyrgpute” and “relevant”: if
Tx = () then the yield is trivial to compute, bty does not satisfy the embedding
property in any interesting case. Conversély, = 7 trivially satisfies the embedding
property for every io-semiring, but is not easy to computee Tain contribution of
this paper is the identification of a class of derivation s$résmboos exhibiting this
balance. In this section we define bamboos and show thatile#iris the least solution
of a system ofinear equations easily derivable frogh The “easy to compute” part is
justified by the fact that in most semirings used in pracfiivedr equations are far easier
to solve than polynomial equations (e.g. in the real semianthe language semiring
with union and concatenation as operations). The “relesaothamboos is justified in
the next three sections.

Definition 1. Let f be a system of polynomials. A treec 7; x is an X-bambooif
there is a path leading from the root bfo some leaf of, thestem such that the height
of every subtree af not containing a node of the stem is at mast 1. The set of all
X-bamboos off is denoted byB; x, or just byBx if f is clear from the context.

O :leaf
A : tree of height< n

Fig. 2. A bamboo with its stem printed bold; on the right it is shown with its stem straigtitene

In order to define the system of linear equations mentionedealve need the notion
of differential of a system of polynomials.

Definition 2. Letf € S[X] be a polynomial and let € V be a vector. Thdifferential
of f atv w.r.t. a variableX is the mapDx f|,: V — S inductively defined as follows:

0 if feSorfeX\{X}
ax Iff:X
Dxflo(@) =\ Dy glo(a) - h(v) + g(v) - Dxhlo(@) if f=g-h
¥ Dxmylo(a) if f=0F m.

5



Further, we define thdifferential of f atv by Df |, (a) := > xcx Dxflv(a). The dif-
ferential of a system of polynomigfsat v is defined componentwise @9 f|,(a))x :=
D(fx)|w(a)forall X € X.

Example L.Forf(X,Y)=a-X-X Y -b,v = (vx,vy), ¢ = (¢cx,cy) we have:

Dxflu(c)=a-cx -vx-vy -b+a-vxy-cx-vy-b
DYf|v(c):a'UX'UX'Cy-b

Using differentials we define a particular linearizatioragfolynomial system.

Definition 3. Let f be a system af polynomials. Thdamboo systenf ; associated
to f is the linear systenf5(X) = D f|¢~0)(X) + f(0). The least solution of the
system of equationX = f;(X) is denoted by, f 5.

Now we can state the relation between bamboos and bambaorss;st

Theorem 1. Let f be a system of polynomials over an io-semiring. For everjatie
X of f we haveY(Bx) = (ufg)x. i.e., the yield of theX-bamboos is equal to the
X-component of the least solution of the bamboo system.

Together with Proposition 3 we get the following corollary.

Corollary 2 (derivation tree analysis for bamboos).Let f be a system of polynomials
over an io-semiring. Ii3x satisfies the embedding property for &l i.e., for all X-
treest it holdsY (¢) C Y(Bx), thenuf = pfp.

5 Star-Distributive Semirings

Definition 4. A commutative (w.r.t. multiplication) io-semirirgis star-distributiveif
(a+b)* =a* +b* holds for alla,b € S.

A commutative io-semiring is star-distributive wheneuss hatural ordeE is total:
Proposition 4. Any totally ordered commutative io-semiring is star-distitive.
Proof. Letw.l.o.g.a C b. Then(a + b)* = b* C a* + b* C (a + b)*. O

In particular, thgmin, +)-semiring over the integers or reals is star-distributive.

We have already considered commutative idempotent seggiiim [5] where we
showed thaj:, f can be computed by solvinglinear equation systems by means of a
Newton-like method, improving thé(3™) bound of Hopkins and Kozen [12]. In this
section we improve this result even further for star-disttive semirings: One single
linear system, the bamboo systefp, needs to be solved. This leads to an efficient
algorithm for computing. f in arbitrary star-distributive semirings. In Section 5.& w
instantiate this algorithm for th@nin, +)-semiring; in Section 5.2 we use it to improve
the algorithm of [2] for computing the throughput of a cortéree grammar.

We start by stating two useful properties of star-distiilisemirings.

Proposition 5. In any star-distributive semiring the following equatidmsid:
(1) a*b* = a* +b*,and (2) (ab*)* = a* + ab*.



We can now state and prove our result:
Theorem 2. pf = pf 5 holds for polynomial systenysover star-distributive semirings.

Proof Sketch (see [6] for a complete proothe proof is by derivation tree analysis.
So it suffices to discharge the precondition of Corollary 2r&lprecisely we show
for any X-treet thatY(¢t) C Y(Bx) holds. It suffices to consider the case where
not an X -bamboo. Then the height ofis at least:, and sot is “pumpable”, i.e., one
can choose a pathin ¢ from the root to a leaf such that two different nodes on the
path share the same variable-label.tSman be decomposed into three (partial) trees
with yields a, b, ¢, respectively, such that(t) = abe, see the left side of Figure 3(a).
Notice that, by commutativity of producip*c is the yield of a set of trees obtained by

(a) a ap
b az b
C a3 c
(b) a I a
a3 b (5 c
C as

Fig. 3. “Unpumping” trees to make them bamboos

“pumping” t. We showad*c C Y (Bx ) which impliesY (¢) C Y(Bx). Ast is notanX -
bamboo¢ has a pumpable subtree disjoint frgmin this sketch we assume that it is a
subtree of that part afwhose yield is:, see the right side of Figure 3(a). Now we have
a = ajazasz, and soab*c = ajazaszb*c C ajajazb*c = ajaszb*c + aijalasc, where
we used commutativity and Proposition 5(1) in the last SBeth summands in above
sum are yields of sets of trees obtained by pumping pumpedss smaller thaty see
Figure 3(b). By an inductive argument those yields are hathuded inY (Bx). O

5.1 The(min, +)-Semiring

Consider the “tropical” semirin®R = (R U {—o0, 0}, A, 4g, 00,0). By A resp.4g
we mean minimum resp. addition over the reals. Observe higabatural ordefC is
the order> on the reals.As R is totally ordered, Proposition 4 implies tH&tis star-
distributive. Assume for the rest of this section tifats a polynomial system oveR
of degree at most. We can apply Theorem 2, i.@.f = ufz holds. This immediately
suggests a polynomial algorithm to compute the least fix@dtpComputef™ (oco) by

! By symmetry, we could equivalently consider maximum instead of minimum.



performingn Kleene iterations, and solve the linear syst&n= D f| ¢ (o0)(X) A
f(o0). The latter can be done by means of the Bellman-Ford algorith

Example 2.Consider the following equation system.

(X, Y, Z)=(-2A(YRZ), Z&l, XAY)= f(X)
We havef(co) = (=2,00,00), f*(00) = (=2,00,-2), f*(00) = (-2,~1,-2).
The linear systenX = Df|fn(°o (X)A foo) = ( ) looks as follows:

(X, Y, Z)=(-2A(-1w2)AY &-2), Z4l, XAY).

This equation system corresponds in a straightforward walye following graph.

—2
T TN
A A
-1 +1

We claim that thé/-component of. f 5 equals the least weight of any path frdirto

V whereV € {X,Y, Z}. To see this, notice thdif};(co))y corresponds to the least
weight of any path fromS to V' of length at most. The claim follows by Kleene's
theorem. So we can computef 5 with the Bellman-Ford algorithm. In our example,
X, Y, Z are all reachable fror§ via a negative cycle, spfz = (—oo0, —00, —0). By
Theorem 2uf = pfp = (—o00, —00, —00). O

The Bellman-Ford algorithm can be used here as it handlestimegycles correctly.
The overall runtime of our algorithm to compyigf is dominated by the Bellman-Ford
algorithm. Its runtime is irO(n - m), wherem is the number of monomials appearing
in f. We conclude that our algorithm has the same asymptotic lxitypas the “gen-
eralized Bellman-Ford” algorithm of [9]. It is by a factor offaster than the algorithm
deducible from [5] because our new algorithm uses the Beliffard algorithm only
once instead ofi times.

5.2 Throughput of Grammars

In [2], a polynomial algorithm for computing thteroughputof a context-free grammar
was given. Now we show that the algorithm can be both simglidied accelerated by
computing least fixed-points according to Theorem 2.

Let us define the problem following [2]. Lef be a finite alphabet and: >’ — N
a weight function. We extengd to wordsa; ---ax, € X* by settingp(a; - --ag) =
p(ai) + ...+ p(ax).2 The mean weight of a non-empty wordis defined a®(w) :=
p(w)/|w|. The throughput of a non-empty langualge X" is defined as the infimum
of the mean weights of the words b tp(L) := inf{p(w) | w € L}. LetG =
(X, X, P,S) be a context-free grammar afid= L(G) its language. The problemis to

2 We write + for the addition of reals in this section.



computetp(L). As in [2] we assume that has at most 2 symbols on the right hand
side of every production and thatis non-empty and contains only non-empty words.
Note that we cannot simply construct a polynomial systenirtggsp (L) as its least
fixed-point, as the throughput of two non-terminals is ndatitiee. In [2] an ingenious
algorithm is proposed to avoid this problem. Assume we dirdanow a routine, the
comparing routinethat decides for a given € Q whethertp(L) > ¢ holds. Assume
further that this routine ha®(N*) time complexity for somé:. Using the comparing
routine we can approximatg (L) up to any given accuracy by means of binary search.
Letd = max,ex p(a) — minge 5 p(a). A dichotomy result of [2] shows thad (N +
log d) iterations of binary search suffice to approximgtéel) up to ane that allows to
compute the exact value ¢f(L) in time O(N?). This is proved by showing that, once
a valuet has been determined such that ¢ < tp(L) < ¢, one can:

— transformG in O(N?) time into a gramma6’ of size O(N?3) generating a finite
language, and having the same throughputGaghis construction does not yet
depend ortp(L));

— compute the throughput &’ in linear time in the size o, i.e., iINnO(N?) time.

The full algorithm for the throughput runs then@(N*(N + logd)) + O(N?) time.

The algorithm of [2] and our new algorithm differ in the comipg routine. In the
routine of [2] the transformation aff into the grammar’ is donebeforetp(L) has
been determined. Then a linear time algorithm can be apmiéd to decide whether
tp(L) > t holds. (This algorithm does not work for arbitrary contéxete grammars,
and that is why one needs to transfofiinto G’.) SinceG’ has sizeO(N?), the
comparing routine hals = 3, and so the full algorithm runs i®(N* + N? log d) time.

We give a more efficient comparing routine with = 2. Given at € Q, as-
sign to each wordyv € X7 its throughput balancer;(w) = p(w) — |w| - t. Notice
thato,(w) > 0 if and only if p(w) > t. Further, for two wordsv, v we now have
oi(wu) = o¢(w) + o¢(u). SO we can set up a polynomial systexh = f(X) over
the tropical semiringR where f is constructed such that each variablec X in
the equation system corresponds to the minimum (infimunoutinput balance of the
words derivable fromX. More formally, define a mam by settingm(a) = p(a) — ¢
fora € ¥ andm(X) = X for X € X. Extendm to words in(X' U X')* by setting
m(aq -+ ag) =m(ay) +---+m(ayg). Let Py be the productions aff with X on the
left hand side. Then sgty (X) := A x_,)ep, m(w). Forinstance, if’x consists of
therulesX — aXY andX — bZ, we havef (X)) = p(a)—t+ X +Y Ap(b)—t+Z.

It is easy to see that the relevant solution of the sys¥ém: f(X) is the least one
w.rt. C, i.e., (uf)s > 0if and only if tp(L) > ¢. So we can use the algorithm from
Section 5.1 as our comparing routine. This takes {{&V?) where N is the size of
the grammar. With that comparing routine we obtain an algorifor computing the
throughput withO(N?3 + N2 log d) runtime.

6 Lossy Semirings

Definition 5. An io-semiringS is calledlossyif 1 C a holds for alla # 0.



Note that by definition of natural order the requirement « is equivalentta = a+1.

In the free semiring generated by a finite alphabetand augmented by the equation
a=a+1(a e S\{0}),everylanguagé C X* is “downward closed”, i.e. for every
wordw = ajas...q; € L all possible subwordéajal . ..a; | o € {¢,a;}} are also
included inL. By virtue of Higman’s lemma [11] the downward-closure ofantext-
free language is regular. This has been used in [1] for anesfi@nalysis of systems
with unbounded, lossy FIFO channels. Downward closure sad there to model the
loss of messages due to transmission errors.

We say that a systerfi of polynomials iscleanif uf 5 # 0 forall X € X'. Every
system can beleanedn linear time by removing the equations of all variablésuch
thatu f x = 0 and setting these variables@adn the other equations (the procedure is
similar to the one that eliminates non-productive varialitecontext-free grammars).
We consider only clean systems, and introduce a normal forrthém.

Definition 6. Let f € S[X]* be a system of polynomials over a lossy semirjig in
guadratic normal fornif every polynomialf - has the form

c+ Z ay7Z'Y'Z+ Z bl,Y'Y'br,Y
Y.Zex Yex

where (i)c € S\ {0}, (i) ay,z € {0,1}, and (iii) if }°, ., ay,z # 0, thenb, y #
0 #b.yforalY,Z e X.

Lemma 1. For every cleary € S[X]* we can construct in linear time a systefne
S[X']*" in quadratic normal form, wher& C X’ andugy = ufy forall X € X.

Proof SketchNote that, agy is clean, we havd T pug. Hence, requiremen() is
no restriction. The transformation that normalizes a sysite similar to the one that
brings a context-free grammar into Chomsky normal-form FEN'he superset’ O
X results from the introduction of new variables by this tfanmation into CNF. O
Our main result in this section is that fstrongly connectedystemsf in quadratic
normal form we again have thatf = pfz. We then show how this result leads to an
algorithm for arbitrary systems.
Given two variablesX, Y € X, we say thatX depends orY” (w.r.t. f) if Y occurs
in a monomial off y or there is a variabl& such thatX depends or¥ andZ depends
onY. The systeny is strongly connectedt X depends orY for all variablesX, Y.

Theorem 3. uf = pf 5 holds for strongly connected polynomial systefiis quadratic
normal form over lossy semirings.

We again use derivation tree analysis to show that everyatérn treet can be trans-
formed into a bamboo subsuming the yield:p§ee [6] for details.

Because of the preceding theorem, given a strongly conthegtemyf, we may use
the linear systenf 5(X) = f(0) + D f| 0y (X) for calculating..f. As f is strongly
connectedf s is also strongly connected. The least fixed-point of suchcagty con-
nected linear systerfi; is easily calculated: all non-constant monomials appgarin
f have the formb, Xb, for someX € X, andb;,b. € S\ {0}. As fz is strongly
connected, every polynomidlf )y is substituted fot” in (f;)x again and again
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when calculating the Kleene sequer(gg;(0))rcn. So, let! be the sum of all left-
handed coefficients; (appearing inany f ), and similarly define. We then have
(uf)x =1 (Xyex fy(0)r=forall X € X.

If £ is not strongly connected, we first decompgsito strongly connected sub-
systems, and then we solve these systems bottom-up. Natsulstituting the solu-
tions from underlying SCCs into a given SCC leads to a newesysh normal form.

As there are at most = |X'| many strongly connected components for a given sys-
tem f € S[X]*, we obtain the following theorem which was first stated eoiphyi for
context-free grammars in [3].

Theorem 4. The least fixed-point f of a polynomial systenf over a lossy semiring
is representable by regular expressions o$eflf f isin normal formu f can be calcu-
lated solving at most bamboo systems.

7 1-bounded Semirings

Definition 7. An io-semiringS is called1-boundedf a C 1 holds for alla € S.

Natural examples are the tropical semiring over the natunabergNU{oco}, A, +, 00, 0)
and the “maximum-probability” semiring0, 1], Vv, -, 0, 1), whereA andv denote min-
imum and maximum, respectively. Notice that any commudtibounded semiring is
star-distributive (ag* = 1 for all a), but not all1-bounded semirings have commuta-
tive multiplication. Consider for example the semiringlodse languages over X' that
areupward-closedi.e.,w € L impliesu € L for all u such thatw is a subword ofs.
This semiring isl-bounded and has™* as1-element. Upward-closed languages form a
natural dual to downward-closed languages from the prevéegtion.

We show thaj. f can be computed very easily in the casé-tfounded semirings:

Theorem 5. pf = f™(0) holds for polynomial systems oveibounded semirings.

Proof SketchRecall that, by Proposition 2, we hayg™(0))x = Y(T)E”’l)), where

T)((”_l) contains allX-trees of height at most — 1. We proceed by derivation tree
analysis, i.e., by discharging the precondition of Projpmsi3. So it suffices to show
that for anyX-treet there is anX-treet’ of height at most. — 1 with Y(¢) C Y(¢').
Such a tree’ can be constructed by prunirtgas long as some variable label occurs
more than once along any path. O

Theorem 5 appears to be rather easy from our point of viewfiagn the point of
view of derivation trees. However, even this simple resat tery concrete applications
in the domain of interprocedural program analysis [14]. Ten algorithms of [14],
the so-callegost andpre* algorithms, can be seen as solvers of fixed-point equations
overboundedsemirings, which are semirings that do not have infinite radicgy chains.
Those solvers are based on Kleene’s iteration and the caityplesult given there
depends on the maximal length of ascending chains in theiisen(cf. [14], page 28).
Such a bound may not exist, and does not exist for the troparalring over the natural
numbers(N U {oo}, A, 4, 00, 0) which is considered as an example in [14], pages 13
and 18. However, Theorem 5 can be applied to this semiringgchwshows that the
program analysis algorithms of [14] applied tebounded semirings are polynomial-
time algorithms, independent of the length of chains in #maisng.
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8 Conclusion

We have shown that derivation tree analysis, a proof tecteniigst introduced in [5], is
an efficient tool for the design of efficient fixed-point algloms on io-semirings. We
have considered three classes of io-semirings with aggitato language theory and
verification. We have shown that for star-distributive sémgis and lossy semirings the
least fixed-point of a polynomial system of equations is étm#he least fixed-point
of alinear systemthe bamboo system. This improves the results of [5]: Thesden
algorithm given there requires to solye different systems of linear equations in the
star-distributive case (wher¥ is the original number of polynomial equations), and is
not applicable to the lossy case.

We have used our results to design an efficient fixed-poiwtrakgn for the(min, +)-
semiring. In turn, we have applied this algorithm to provédeubic algorithm for com-
puting the throughput of a context-free language, imprgwire O(N*) upper bound
obtained by Caucal et al. in [2].

For lossy semirings, derivation tree analysis based on bambas led to an al-
gebraic generalization of a result of Courcelle statind thea downward-closure of a
context-free language is effectively regular. Finally veeé used derivation tree analy-
sis to derive a simple proof thatf = f"(0) holds forl-bounded semirings, with some
applications in interprocedural program analysis.
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