Information Processing Letters 41 (1992) 313-319
North-Holland

17 April 1992

A solution to the covering problem
for 1-bounded conflict-free Petrl nets
using Linear Programming *

Javier Esparza

Institut fiir Informatik, Universitit Hildesheim, Samelsonplatz 1, W-3200 Hildesheim, Germany

Communicated by T. Lengauer
Received 21 August 1991
Revised 30 December 1991

’ Abjfiact

Esparza, J, A soluuoq to the qovetmg problemlfor 1-bounded conflict-free Petri-nets using: Linear Programming,

Information Processing Letters 41 (1992) 313-319.

Given a marking u of a Petri net, the covering problem consists of determining if there exists a reachable marking ' > .
We show that the covering problem for 1-bounded conflict-free Petri nets is polynomially reducible to a Linear Program-
ming problem. This proves that the covering problem is in PTIME for this class of Petri nets, which generalises a result of

Yen.

Keywords: -Coneurrency;:conflict-free; Petri nets, Linear Programming

1. Introduction

Conflict-free Petri nets have been extensively
studied from a computational point of view. Some
interesting problems have been proved to be
tractable. In particular, Howell and Rosier
showed in [1] that the reachability problem for
bounded conflict-free Petri nets is in PTIME
(whereas, if the restriction to bounded nets is
removed, the problem is NP-complete). In [6],
Yen gave a polynomial time algorithm to deter-
mine if two transitions in a 1-bounded conflict-
free Petri net can become simultaneously enabled
(called in [6] the concurrency problem), a prob-

Correspondence to: Dr. J. Esparza, Institut fiir Informatik,
Universitdt Hildesheim, Samelsonplatz 1, W-3200 Hildesheim,
Germany. Email: esparza@infhil.uucp.

* This work was partially supported by the Esprit Basic
Research Action 3148 DEMON.

lem with applications to the verification of self-
timed circuits [5].

In this paper, we show that the covering prob-
lem for 1-bounded conflict-free Petri nets is poly-
nomially reducible to a Linear Programming
problem. Since Linear Programming is known to
be in PTIME, it follows that this problem is in
PTIME as well. Both the concurrency problem
and the reachability problem in the 1-bounded
case are particular instances of the covering prob-
lem.

Given a marking p of a Petri net, the covering
problem consists of determining if there exists a
reachable marking u' > u. The concurrency prob-
lem for any set of transitions U (i.e. the problem
of determining if all the transitions in U can
become simultaneously enabled) can be reduced
to the covering problem by taking u(p)=1iff p
is an input place of some transition in U. We are

0020-0190,/92 /$05.00 © 1992 ~ Elsevier Science Publishers B.V. All rights reserved 313

Volume 41, Number 6

also able to compute the smallest reachable
marking w’ > u; this solves the reachability prob-
lem because u' = u if and only if u is reachable.

The reduction makes use of a result of [6], and
of a characterisation of the Parikh vectors corre-
sponding to the computations of 1-bounded con-
flict-free Petri nets. This characterisation can be
used as a basis for the solution of other problems
by means of Linear Programming. :

2. Definitions

As in [6], a Petri net is a 4-tuple (P, T, ¢, up),
where P is a finite set of places, T is a finite set
of transitions, ¢ is a flow function

¢:(PXT)u(TXP)—{0,1}

and u, is the initial marking, p,: P — N. Mark-
ings, firing of transitions, firing sequences—also
called here computations—and reachable mark-
ings are-defined as usual.

Givén-a place p, we denote

p*={teT|¢(p,t)=1}

and

p={teTI|¢(t, p)=1}.

Let #=(P, T, ¢, u,) be a Petri net with P =
{pys...,pyand T={¢t,,...,¢,}.

P is a marked graph iff for every p€P, |°p|

<land | p*| <1. 2 is conflict- free iff for every
place p € P either

(1) |p*l <1, 0r

(2) Vtep*: te°p.

Given p €P, we denote T, =°p\p*® and T,
=p°*\'p. T,) (T;) is the set of transitions whose
occurrence increases (decreases) the marking of
p. Notice that if a net is conflict-free then for
every place p: |T; | <1.

The nXm matrix C given by C(, j)=
&(t;, p;) — &(p;, t,) is the incidence matrix of 2.

A nonnegative integer vector of dimension | 7'}
is called a Parikh vector. Given a firing sequence
o, #; :T— N is the mapping defined by #,(¢2) =
number of occurrences of ¢ in o. The representa-
tion of this mapping in vector form, according to

314

INFORMATION PROCESSING LETTERS

17 April 1992

the total order ¢, <t¢, < <t,, is the Parikh
vector associated to o. A Parikh vector X is
executable iff X = # for some computation o.
We denote by S(X) the set of transitions with
positive . components in X, ie. S(X)={te
T|X()>0).

3. Characterisation of executable Parikh vectors

We assume within this paper, unless otherwise
stated, that #=(P, T, ¢, uy) is a 1-bounded
conflict-free Petri net in which every transition
occurs in some computation. Transitions occur-
ring in no computation can be removed in poly-
nomial time without changing the behaviour of
the net, as the next lemma shows. Therefore, we
can transform an arbitrary 1-bounded conflict-free
Petri net into an equivalent one satisfying the
assumption in polynomial time.

Lemma 3.1 [2). Given a conflict-free Petri net
P=(P, T, ¢, ny), we can construct in polynomial
time a computation 7 enabled in p, in which no
transition in T is used more than once, such that if
some transition t is not used in v, then there is no
computation (emanating from u,) in which t is
used. O

In the sequel, the symbol 7 is reserved for this
particular computation. Notice that, in the nets
satisfying our assumption, #(t)=1 for every
transition ¢. ;

There exists a simple characterisation of the
set of executable Parikh vectors for the class of
marked graphs, when every transition is known to
occur in some computation [4]. Namely, X is
executable iff

po+C-X>0, (1)

where C is the incidence matrix of the marked
graph. This is no longer true for 1-bounded con-
flict-free systems. The Petri net of Fig. 1 is an
example: X =(0, 1, 1) satisfies (1), but it corre-
sponds to no computation. This is due to the fact
that (1) does not impose any constraint on the

Volume: 41, Number 6

p2 p3

p4
Fig. 1. A 1-bounded conflict-free system.

order in which transitions have to occur, and in
this case ¢#; must occur before ¢, or ¢;.

We show in this section that by adding some
information about the causal relationships be-
tween transitions these solutions corresponding
to no computation can be eliminated.

We recall, first, a fundamental lemma.

Given two vectors X =(x,,...,x,) and Y=
(y4...,¥,) of integers, define

max(X Y) (max(xp Y1) ,max(x,,, Y,,))

Lemma 3.2 [3]. Let o, o, be computations of .
There is a computation o such that

max(#al ’ 0'2)

Moreover, if u, 3 By Mo 3 Wy and pg 5 K, then
W is reachable from p, and from u,. O

In fact, this lemma is proved in [3] for all
persistent ’Petri nets, of which conflict-free nets
are a subclass.

Definition 3.3. Let #=(P, T, ¢, o) be a Petri
net. The causal relation € C T X T is defined by:
(¢, u)é?ev eomputanons ou: #(t) >0

In words in every computatlon contalmng u, t
precedes u.

It is easy to see that, as would be expected, the
causal relation is a partial order.

INFORMATION PROCESSING LETTERS

17 April 1992

Lemma 3.4. Let p be a place. :

(1) If teT; and u €(CpNp*), then (t,u)e
% .
(2) If ttue T, and there exists a computation
oyt with # (u) =0, then (t, u) €&.

Proof. (1) Since u € (°p Np*) and the net is con-
flict-free, T, = @. Hence, the marking of p can-
not decrease along a computation. Then 7" = {¢},
because otherwise the computation 7 contains at
least two occurrences of transitions in 1},* , against
the 1-boundedness of &. Moreover, since 7 con-
tains ¢, po(p) =0.

Let ou be a computation. Since u is enabled
after the occurrence of o, and uy(p) =0, ¢ must
occur in o. So (t, u) €Z.

(2) Let o,u be a computation and p = u. By
Lemma 3.2, there exists a computation ¢ such
that
= max{#rl: s #u)-

oyt au
Let po— iy, Mo = My Ko 5 u. We show that
u(p) > 1, against the 1-boundedness of . Con-
sider two cases:

Case 1: T, = @#. Then u(p)>1 because o
contains at least one occurrence of ¢ and one of
u.

Case 2: T, #@. Then, by the conflict-free
property, T, = {v}. Wc‘ have:

>

1> py(p) = no(p) + #,(t) — #,(0), (2)
12 p,(p) 2 no(p) +#,(u) —#,,(v), (3)
n(p) = po(p) + #,(t) + # ,(u)

— max{#, (v), #,.(0)}- @
If max{# , (v), #,,(0)} = # ,(v), we get from (2)
and (4)
w(p) > # . (u) +1. (5)

/7

If max{# , (v), ,,zu(v)} #,,(v), we get from (3)
and (4

WP kML (6)

Since #,, u(u) >1and # ()>
cases p((p) >1. O

P

1 we have in both

315

Volume 41, Number 6

We can now formulate and prove our charac-
terisation of the executable Parikh vectors. Con-
sider a Parikh vector X and (¢+,) e@. If X is
executable and X(u) > 0, then, since every com-
putation containing u contains also ¢, we have
X(t)> 0. This gives a necessary condition for a
Parikh vector to be executable, which turns out to
be sufficient as well. Moreover, it is not necessary
to verify this condition for every pair of transi-
tions in &; it suffices to do it for the pairs (¢, u)
where both ¢ and u are input transitions of the
same place.

Theorem 3.5. A Parikh vector X is executable iff
1) po+C-X>0 and
@) VpeP,V(t, e & n(T; x°p): (X(t)=0
=X(u) =0).

Proof. (=) (1) is well known. (2) follows from the
definition of the causal relation.

(=) We show that if X is not executable and
(1) holds, then (2) does not hold.

Let X' <X be a maximal executable Parikh
vector (i.e. no vector X” with X' <X"<X is
executable). Let p =u,+C-X, w' =p,+C-X’
and Y=X—X'+0. We have:

(@ W'+ C-Y>0. Follows from pw'+C-Y=
e+ C-X>0.

(b) No transition in S(Y) is enabled at u'.
Follows from the maximality of X"'.

By (b), every transition in S(Y) has at least
one unmarked input place at u'. Denote by Q
the set of these unmarked places. Then:

(c) Every place in Q has at least one input
transition in S(Y). By the definition of Q, every
place p € O has at least one output transition in
S(Y). Assume p has no input transition in S(Y).
Then, since u'(p)=0, we have (' +C-Y) <0,
contradicting (a).

We construct a preorder < on QU S(Y) in
the following way: o

x<x' iff there exists a path (x,...,x") in &
containing only elements of Q U S(Y).

Since Q U S(Y) is finite, there exists at least
one minimal element x, of < (ie. x,<x for
every x € QU S(Y)). Let X, be the equivalence

316

INFORMATION-PROCESSING LETTERS

17 April 1992

class of x, induced by 4 ND,
(P,, T,, ¢) the subnet given by:

- Go=d N (P XTRUT X Py).

and N;=

Notice that, by definition of <, N, is strongly
connected.

We have:

(d) P,+ @ and T, + @. Follows easily from (b),
(c) and the minimality of x.

(e) Pyc*P, (P, is a trap). In conflict-free
nets, this is true of the set of places of any
strongly connected subnet. Since N, is strongly
connected, (e) holds.

® Loep, #'(p) =0 and L,er, no(p) = 0.
Zpe p,'(p) = 0 follows from PyCQ and the def-
1n1t10n of Q as set of unmarked places at u'.

By (e), for every py, p,:

(Y ua(p)=0Ap; >, |= ¥ u(p)=0.

PEP, pEP

(if a trap becomes marked, it remains marked).
Taking wu, = po and u,=pu', the second part of
(f) follows.

(® CPA\P)NSY)=0. Let te*P,\P;.
Then there exists p €¢*NP,. Assume ¢t € S(Y)
as well. We derive a contradiction: Since t € S(Y),
we have ¢ <p. Then ¢t € X, by the minimality of p
w.r.t. <. By (b), there exists a place p’ €*tN Q.
By definition of <, p’<t. This implies p’ € P,
against our hypothesis ¢ €°P,\ P.

Consider the computation 7.

By (f), the places of P, are initially unmarked.
Hence, no transition of Pg can occur in 7 before
some transition *Py\ P; has occurred. So a transi-
tion t € *Py\ P; appears in 7 before any transi-
tion of Pg.

By (g), t & S(Y).

Since N, is strongly connected, there exists
u €T, such that t*Nu®+@. Since ¢ occurs be-
fore u in 7, we have (¢, u) €% by Lemma 3.4.

We show that X(u) >0 and X(¢z) =0, which
implies that (2) does not hold.

- X(u)>0: Since u € T, and T, € S(Y) by defi-
nition of T,, we have u€S(Y). So Y(u)>0.
Since Y=X-X", X(u)> 0.

Volume 41, Number 6

- X(@)=0. Assume X(¢)> 0. Since t & S(Y),
we have Y(¢)=0. Therefore, since Y=X-X",
X' > 0 follows. Since ¢t €°P,, some marking pu, is
reached along the execution of X' such that
L, e p,o(P) > 0. By (e), this implies T, ¢ p 1o(P)
> 0. This contradicts (f). So X(¢t)=0. D

4. The covering problem is reducible to a Linear
Programming problem

We would like to add additional inequations to
the system (1) in Theorem 3.5 which guarantee
that the solutions of the augmented system are
exactly the executable Parikh vectors. This re-
quires to express condition (2) as an inequation.
However, it is easy to see that this inequation
cannot be linear, which forbids the use of Linear
Programming. Fortunately, things change if we
are interested only in the executable Parikh vec-
tors X< (k,...,k) for some number k. Then,
condition (2) can be expressed as:

k-X(t) > X(u) (7)

which is linear, We show that for every reachable
marking there exists an executable Parikh vector
X leading to it such that X<(|Tl,...,|TD.
This result derives from Lemma 3.2 of [6], which
will allow us to make use of (7) to reduce the
covering problem to a Linear Programming prob-
lem.

We have to reformulate this lemma to adapt
them to our context.

Lemma 4.1 [6]. If p, 5 w is one of the shortest
computations leading to ., then o can be rear-
ranged into o0, ... 0, such that

(1) pq ”~ “,

Q) Vii<k,VteT: # (t)

3)vi <l<k—1 S(qH)CS(a) and
@ k<|T|and |6l <|TI%. O

This result is proved in [6] for computations
enabling two particular transitions # and v, but
this assumption is not used in the proof. We have
now the following:

INFORMATION PROCESSING .LETTERS

17 April 1992

Corollary 4.2. If u, 5 W is one of the shortest
computations leading to u, then #, <
Arl,...,ITD.

Proof. Rearrange o into 040, ...0; asin Lemma

4.1. Then:
= f‘,# (8)

i=1
<zk:(1,. ,1) (by Lemma 4.1(2)) (9)

i=1
<(ITl,...,1T1). (by Lemma 4.1(4)). (10)
]

Theorem 4.3. Let u be a marking of 2, and I(w)
be the following system of linear inequalities:

potC-X>p,

X<(ITl,...,IT)),

VpeP,V(t,u) e#n (T} X*p):
IT1-X(¢) > X(u).

There exists a reachable markmg wep tﬁ I(w)
has an integer solution.

Proof. Use Theorem 3.5, Corollary 4.2 and the
observation leading to equation (7). O

Deciding if a system of linear inequalities has
an integer solution is known to be NP-complete.
Hence, even if we can write T(u) in polynomial
time (which will be shown later), Theorem 4.3
does not directly provide a polynomial’ algorlthm
Fortunately, we can do better.

Given a real number x, [x] deriotes the small-
est integer greater than or equal to x and | x] the
largest integer less than or equal to x.

Theorem 4.4. Let LP(u) be the following Linear
Programming problem:

L X(¢)

teT

maximise.
subject to I(u)

317

Volume 41, Number 6

There exists a reachable marking u' > u iff LP(u)
has an optimal solution X,, (i.e. a solution such
that for any other solution X, L, rX(t)<
L, e1X,,(t). Moreover, X,, is an executable

Parikh vector leading to u'.

Proof. Since the solutions of LP(u) are bounded
by (IT|,...,|T|), LP(u) has an optimal solution
iff it has a solution at all. By Theorem 4.3, all we
have to do is prove that the optimal solutions of
LP(u) are integer.

Given a vector X =(x,,...,x,), define [X]=
(xql;...5Tx,D.

Assume X, , is a noninteger optimal solution.
We show that [X,] is solution of LP(u), against
the optimality of X, ,:

@ (uo+C-[X,,D)>p. Let p be a place. By
the conflict-free property, ITp‘ | < 1. Taking into
account that (uy+ C-X,,Xp)>u(p) and u(p)
is integer, some elementary arithmetic leads to:

(#o‘*’c' [Xop])(p)
= l(l/«0+C'X0p)(p)] >n(p)-

@ 1x,,1<(Tl,...,|TD. Follows from X,,
<(T|,...,|IT).

@ V@, ween (T, x*p) |T| [X(®)]>
[X(u)l. Follows from the corresponding property
for X,,. DO

Solving LP(u) takes polynomial time in the
size of the system of inequalities. We prove now
that writing LP(u) takes polynomial time in the
size of the net, which implies that the covering
problem is polynomial in the size of the net.

By inspection of LP(u), it is easy to see that
the only problem consists of finding for each
place p the pairs (¢,) €N (T, X T,").

Proposition 4.5. Let p be a place. # N (T, X T,)
can be computed in polynomial time.

Proof. If |7, | =1, we are done. Assume |7, |
>1 and let (¢, u) €(T; X T,7). By our initial
assumption, every transition occurs in some com-
putation. Therefore, the sequence 7 contains all
transitions. In particular, it contains ¢ and u. By

318

INFORMATION PROCESSING LETTERS

17 April 1992

Lemma 3.4(2), if ¢ appears before u in 7, then (¢,
u) € @; otherwise, (u, t) € %.

Therefore, once the sequence 7 is known, we
can easily compute & N (T, X T,7). Since 7 can
be computed in polynomial time by Lemma 3.1,
&N (T, XT)) can be computed in polynomial
time. O

Howell and Rosier gave in [1] a polynomial
time algorithm to solve the reachability problem
for bounded conflict-free Petri nets. We show
now that the problem LP(u) can also be used to
decide the reachability of u, albeit only in the
1-bounded case. The advantage of the derived
algorithm is that it is easy to implement once a
Linear Programming tool is available, and joins
the already large set of Linear Programming algo-
rithms for the verification of properties in Petri
nets.

Theorem 4.6. . is reachable iff LP(u) has optimal
solutions and every optimal solution X,, satisfies
p=po+C-X,,. Moreover, X,, is an executable
Parikh vector leading to .

Proof. (=) Since u is reachable, there exists an
executable Parikh vector X, leading to u. By
Theorem 4.4, X, is solution of LP(u). Since the
basic solutions of LP(u) are bounded by
(ITl,...,|T]), the problem has optimal solu-
tions.

Let X,, be an optimal solution, and let Mop=
kot C-X,,. By the definition of LP(u), we have
I"’op > M-

We show that u =pu,,, which proves the re-
sult.

By Theorem 4.4, X,, is executable. Then, by

Lemma 3.2, Y =max{X,,, X,} is also executable.

Claim.Y=X,,.

Proof of the claim. Since Y>X,, and X, is
optimal, it suffices to show that Y is a basic
solution of LP(u). It is easy to see from its
definition that Y satisfies the second and third
constraints of LP(w). It remains to prove u,+
C-Y>p.

Let p € P. Consider two cases:

Volume 41, Number 6

(1) u(p)=0. Since Y is executable, we have
po+C-Y>0.S0 (uy+ C-YXp)=ul(p).

(2) u(p)=1. Then, since p=pu,,, we also
have u,,(p) = 1. Moreover:

(ko +C-Y)(p)
=u(p)+ L Y()- ¥ Y(r)

+ —
teT; teT,

~uo(p) + L max{X,, (1), X,(1))

.
teT;

-y max{Xop(t),Xu(t)}.

teT,

If T, =¢, then (uo+C YXp)>p,,(p) and
(ng+ C-YXp)=p(p), and we are done. If T
= {u}, then we have:

(ko +C-Y)(P) > kop(P)

if max{Xop(u), Xﬂ(u)} =X,,(u),
(#o+C-Y)(p) > n(p)

if max{Xap(u), X“(u)} =X, (u).
In all cases, (u,+C-YXp)=1.

By Lemma 3.2, u,, is reachable from p and,

since X, is solution of LP(w), we have p,, > u.
If p,,# u, then the Petri net is not 1-bounded
(even not bounded), against our hypothesis. So
"Lop = “'

(e) Use Theorem 4.4. O

5. Conclusions

We have shown that the covering problem for
1-bounded conflict-free Petri nets is polynomially

INFORMATION PROCESSING LETTERS

17 April 1992

reducible to a Linear Programming problem. As
a consequence, it is in PTIME. The concurrency
of an arbitrary set of transitions (a generalisation
of the problem considered in [6]) and the reacha-
bility of a marking in the 1-bounded case can be
decided solving particular instances of this prob-
lem. In order to obtain the reducibility result, we
have proved a characterisation of the set of exe-
cutable Parikh vectors, generalising known results
for marked graphs (see [4] for a survey). A lemma
of [6] was also very useful.

Acknowledgment

I am very indebted to two anonymous referees
for pointing out several mistakes in an earlier
version of this paper and for very helpful sugges-
tions.

References

[1] R. Howell and L. Rosier, On questions of fairness and
temporal logic for conflict-free Petri nets, in: G. Rozen-
berg, ed., Advances in Petri Nets 1988, Lecture Notes in
Computer Science 340 (Springer, Berlin, 1988) 200-226.

[2] R. Howell, L. Rosier and H. Yen, An O(n'-) algorithm to
decide boundedness for conflict-free vector replacement
systems, Inform. Process. Lett. 25 (1987) 27-33.

{3] L. Landweber and E. Robertson, Properties of conflict-free
and persistent Petri nets. J. ACM 25 (3) (1978) 352-364.

[4] T. Murata, Petri nets: Properties, analysis and applica-
tions, Proc. IEEE 77 (4) (1989) 541-580.

[5] M. Tiusanen, Some unsolved problems in modeling self-
timed circuits using Petri nets, EATCS Bulletin 36 (1988)
152-160.

[6] H. Yen, A polynomial time algorithm to decide pairwise
concurrency of transitions for 1-bounded conflict-free Petri
nets, Inform. Process. Lett. 38 (1991) 71-76.

319

