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Abstract. The unfolding method, initially introduced for systems mod-
elled by Petri nets, is applied to synchronous products of transition sys-
tems, a model introduced by Arnold [2]. An unfolding procedure is pro-
vided which exploits the product structure of the model. Its performance
is evaluated on a set of benchmarks.

1 Introduction

The unfolding method is a partial order approach to the verification of concurrent
systems introduced by McMillan in his Ph. D. Thesis [6]. A finite state system,
modelled as a Petri net, is unfolded to yield an equivalent acyclic net with a
simpler structure. This net is usually infinite, and so in general it cannot be
used for automatic verification. However, it is possible to construct a complete
finite prefix of it containing as much information as the infinite net itself: Loosely
speaking, this prefix already contains all the reachable states of the system.
The prefix is usually far smaller than the state space, and often smaller than a
BDD representation of it, and it can be used as input for efficient verification
algorithms. A rather complete bibliography on the unfolding method, containing
over 60 papers on semantics, algorithms, and applications is accessible online [1].

The thesis of this paper is that the unfolding method is applicable to any
model of concurrency for which a notion of ‘events occurring independently from
each other’ can be defined, and not only to Petri nets—as is often assumed. We
provide evidence in favour of this thesis by applying the method to synchronous
products of labelled transition systems. In this model, introduced by Arnold in [2],
a system consists of a tuple of communicating sequential components. The com-
munication discipline, formalised by means of so-called synchronisation vectors,
is very general, and contains as special cases the communication mechanisms of
process algebras like CCS and CSP.

Readers acquainted with both Arnold’s and the Petri net model will probably
think that our task is not very difficult, and they are right. It is indeed straight-
forward to give synchronous products of transition systems a Petri net semantics,
and then apply the usual machinery. But we go a bit further: We show that the
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additional structure of Arnold’s model with respect to Petri nets—the fact that
we are given a decomposition of the system into sequential components—can
be used to simplify the unfolding method. More precisely, in a former paper by
Vogler and the authors [4], we showed that the key to an efficient algorithm
for the construction of a complete finite prefix is to find a mathematical object
called a total adequate order, and provided such an order for systems modelled
by Petri nets1. In this paper we present a new total adequate order for syn-
chronous products of labelled transition systems. The proof of adequacy for this
new order is simpler than the proof of [4].

In a second part of the paper we describe an efficient implementation of the
algorithm , and compare it with the algorithm of [4] on a set of benchmarks.

Very recently, further evidence for the wide applicability of unfoldings has
been provided by Langerak and Brinksma in [5]. Independently from us, they
have applied the unfolding technique to a CSP-like process algebra, a model even
further away from Petri nets than ours. A brief discussion of the relation to our
work can be found in the conclusions.

The paper is organised as follows. Section 2 introduces synchronous products
of transition systems following [2], and Section 3 gives them a partial order
semantics based on unfoldings. Section 4 describes an algorithm to construct a
complete finite prefix. Section 5 discusses how to efficiently implement it. Section
6 discusses the performance of the new algorithm.

2 Synchronous Products of Transition Systems

In this section we introduce Arnold’s model and its standard interleaving seman-
tics. Notations follow [2] with very few minor changes.

2.1 Labelled Transition Systems

A labelled transition system is a tuple A = 〈S, T, α, β, λ〉, where S is a set of
states, T is a set of transitions, α, β : T → S are the source and target mappings,
and λ: T → A is a labelling mapping assigning to each transition a letter from
an alphabet A. We assume that A contains a special label ε, and that for each
state s ∈ S there is a transition εs such that α(εs) = s = β(εs), and λ(εs) = ε.
Moreover, no other transitions are labelled by ε. Transitions labelled by ε are
called idle transitions in the sequel.

We use a graphical representation for labelled transition systems. States are
represented by circles, and a transition t with α(t) = s, β(t) = s′, and λ(t) = a
is represented by an arrow leading from s to s′ labelled by t : a. Idle transitions
are not represented. Figure 1 shows two labelled transition systems.

1 More exactly, systems modelled by 1-safe Petri nets, i.e., Petri nets whose places can
hold at most one token.
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Fig. 1. Two labelled transition systems

2.2 Synchronous Products

Let A1, . . . ,An be labelled transition systems, where Ai = 〈Si, Ti, αi, βi, λi〉, and
λi labels each transition of Ti with an element of an alphabet Ai. We assume
for convenience that the sets Si and Ti are pairwise disjoint. A subset I of
(A1×. . .×An)\(ε, . . . , ε) is called a synchronisation constraint, and the elements
of I are called synchronisation vectors. Loosely speaking, these vectors indicate
which transitions of A1, . . . ,An must synchronise. The tuple A = 〈A1, . . . ,An, I〉
is called the synchronous product of the Ai under I .

As running example we use A = 〈A1,A2, I〉, where A1,A2 are the two la-
belled transition systems of Figure 1, and I contains the following synchronisa-
tion vectors:

〈a, ε〉, 〈b, ε〉, 〈d, ε〉, 〈ε, a〉, 〈ε, c〉, 〈c, b〉

I.e., c-labelled transitions of A1 must synchronise with b-labelled transitions of
A2. The other transitions do not synchronise.

The interleaving semantics of A is the labelled transition system Aint =
〈S, T, α, β, λ〉, where λ: T → I , and

S = S1 × . . . × Sn

T = {〈t1, . . . , tn〉 | 〈λ1(t1), . . . , λn(tn)〉 ∈ I}

α(〈t1, . . . , tn〉) = 〈α1(t1), . . . , αn(tn)〉

β(〈t1, . . . , tn〉) = 〈β1(t1), . . . , βn(tn)〉

λ(〈t1, . . . , tn〉) = 〈λ1(t1), . . . , λn(tn)〉

The elements of S and T are called global states and global transitions, respec-
tively.

If each of the Ai has a distinguished initial state is i, then the initial state of
A is the tuple is = 〈is1, . . . , isn〉, and A with is as initial state is denoted by
〈A, is〉. The set of reachable global states is then the set of global states reachable
from is. For our running example we take is = 〈s1, r1〉.

We introduce a notation that will help us to later define the unfolding of A.
Given a global transition t = 〈t1, . . . , tn〉 of A, we define

•t = {αi(ti) | 1 ≤ i ≤ n and λi(ti) 6= ε}

t• = {βi(ti) | 1 ≤ i ≤ n and λi(ti) 6= ε}

Loosely speaking, •t contains the sources of the non-idle transitions of t, and t•

their targets.



3 Unfolding of a Synchronous Product

In [2], synchronous products are only given an interleaving semantics. In this
section we give them a partial order semantics based on the notion of unfold-
ing of a synchronous product, and show its compatibility with the interleaving
semantics. We introduce a number of standard notions about Petri nets, but
sometimes our definitions are not completely formalised. The reader interested
in rigorous definitions is referred to [4].

3.1 Petri nets

As usual, a net consists of a set of places, graphically represented by circles, a
set of transitions, graphically represented as boxes, and a flow relation assigning
to each place (transition) a set of input and a set of output transitions (places).
The flow relation is graphically represented by arrows leading from places to
transitions and from transitions to places. In order to avoid confusions between
the transitions of a transition system and the transitions of a Petri net, we call
the latter events in the sequel. Places and events are called nodes; given a node
x, the set of input and output nodes of x is denoted by •x and x•, respectively. A
place of a net can hold tokens, and a mapping assigning to each place a number
of tokens is called a marking. If, at a given marking, all the input places of an
event hold at least one token, then the event can occur, which leads to a new
marking obtained by removing one token from each input place and adding one
token to each output place. An occurrence sequence is a sequence of events that
can occur in the order specified by the sequence.

A synchronous product can be associated a Petri net as follows: Take a place
for each state of each component, and an event for each global transition; add an
arc from s to t if s ∈ •t, and from t to s if s ∈ t•; put a token in the initial state
of each component, and no tokens elsewhere. The unfolding of a synchronous
product can be defined as the unfolding of its associated Petri net, but in the
rest of the section we give a direct definition.

3.2 Ocurrence nets

Given two nodes x and y of a net, we say that x is causally related to y, denoted
by x ≤ y, if there is a (possibly empty) path of arrows from x to y. We say that
x and y are in conflict, denoted by x#y, if there is a place z, different from x
and y, from which one can reach x and y, exiting x by different arrows. Finally,
we say that x and y are concurrent, denoted by xco y, if neither x ≤ y nor y ≤ x
nor x#y hold. Occurrence nets are those satisfying the following three properties:

– the net, seen as a graph, has no cycles;
– every place has at most one input event;
– no node is in self-conflict, i.e., x#x holds for no x.

The nets of Figure 2 and Figure 3 are occurrence nets.



Occurrence nets can be infinite. We restrict ourselves to those in which every
event has at least one input place, and in which the arrows cannot be followed
backward infinitely from any point (this is called well-foundedness). It follows
that by following the arrows backward we eventually reach a place without pre-
decessors. These are the minimal places of the net.

We associate to an occurrence net a default initial marking, in which the
minimal places carry exactly one token, and the other places no tokens. It is
easy to see that all the markings reachable from the initial marking also put at
most one token on a place. Therefore, we represent reachable markings as sets
of places.

3.3 Branching processes

Given a synchronous product of transition systems, we associate to it a set of
labelled occurrence nets, called the branching processes of A. The places2 of these
nets are labelled with states of the components of A, and their events are la-
belled with global transitions. The places and events of the branching processes
are all taken from two sets P and E , inductively defined as follows:

– ⊥ ∈ E , where ⊥ is a special symbol;
– if e ∈ E , then (s, e) ∈ P for every s ∈ S1 ∪ . . . ∪ Sn;
– if X ⊆ P , then (t, X) ∈ E for every t ∈ T .

In our definition of branching process (see below) we make consistent use of
these names: The label of a place (s, e) is s, and its unique input event is e.
Places (s,⊥) are those having no input event, i.e., the special symbol ⊥ is used
for the minimal places of the occurrence net. Similarly, the label of an event
(t, X) is t, and its set of input places is X . The advantage of this scheme is that
a branching process is completely determined by its sets of places and events.
In the sequel, we make use of this and represent a branching process as a pair
(P, E).

Definition 1. The set of finite branching processes of 〈A, is〉, where
is = 〈is1, . . . , isn〉, is inductively defined as follows:

– ({(is1,⊥), . . . , (isn,⊥)}, ∅) is a branching process of 〈A, is〉.
– If (P, E) is a branching process, t is a global transition, and X ⊆ P is a

co-set labelled by •t, then

( P ∪ {(s, e)|s ∈ t•} , E ∪ {e} )

is also a branching process of 〈A, is〉, where e = (t, X). If e /∈ E, then e is
called a possible extension of (P, E).

We denote the set of possible extensions of a branching process BP by PE (BP).

2 In some papers (including [4]), the name conditions is used instead of places.
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Fig. 2. A branching process of 〈A, is〉

A place of the form (s,⊥) or (s, e) such that s ∈ Si is called an i-place.
An event of the form (t, X) such that t(i) is not an idle transition is called an
i-event. Observe that an event can be both an i-event and a j-event for i 6= j
(in this case we say that Ai and Aj synchronize in e), but a place cannot, since
the states of the different components are disjoint by assumption.

Figure 2 shows a finite branching process of our running example (above the
dashed line), together with its two possible extensions (below that line). 1-nodes
are white, 2-nodes are dark grey, and events that are both 1- and 2 events are
light grey. The labels of events have been simplified for clarity: We write t instead
of 〈t, ε〉, and u instead of 〈ε, u〉.

The set of branching processes of 〈A, is〉 is obtained by declaring that the
union of any finite or infinite set of branching processes is also a branching
process, where union of branching processes is defined componentwise on places
and events. Since branching processes are closed under union, there is a unique
maximal branching process. We call it the unfolding of 〈A, is〉. The unfolding
of our running example is an infinite occurrence net. Figure 3 shows an initial
part. Events and places have been assigned identificators that will be used in
the examples.

The following Proposition is easy to prove by structural induction on branch-
ing processes:

Proposition 1. Two i-nodes of a branching process are either causally related
or in conflict.

For instance, in Figure 3 all white and light grey nodes are causally related
or in conflict.

3.4 Configurations and cuts

For our purposes, the most interesting property of occurrence nets is that their
sets of occurrence sequences and reachable markings can be easily characterised
in graph-theoretic terms using the notions of configuration and cut.

Definition 2. A configuration of an occurrence net is a set of events C satis-
fying the two following properties: C is causally closed, i.e., if e ∈ C and e′ < e
then e′ ∈ C, and C is conflict-free, i.e., no two events of C are in conflict.
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Fig. 3. The unfolding of 〈A, is〉

In Figure 3, {1, 3, 4, 6} is a configuration, and {1, 4} (not causally closed) or
{1, 2} (not conflict-free) are not.

It is easy to prove that a set of events is a configuration if and only if there is
an occurrence sequence of the net (from the default initial marking) containing
each event from the set exactly once, and no further events. This occurrence
sequence is not necessarily unique. For instance, for the configuration {1, 3, 4, 6}
there are two occurrence sequences like 1 3 4 6 or 3 1 4 6. However, all occurrence
sequences corresponding to the same configuration lead to the same reachable
marking. For example, the two sequences above lead to the marking {j, g}.

Definition 3. A cut is a set of places c satisfying the two following properties:
c is a co-set, i.e., any two elements of c are concurrent, and c is maximal, i.e.,
it is not properly included in any other co-set.



It is easy to prove that the reachable markings of an occurrence net coincide
with its cuts. We can assign to a configuration C the marking reached by any
of the occurrence sequences mentioned above. This marking is a cut, and it is
easy to prove that it is equal to (Min ∪ •C) \ C•, where Min denotes the set of
minimal places of the branching process.

The following Proposition can also be easily proved by structural induction
on branching processes.

Proposition 2. A cut c of a branching process contains exactly one i-place for
each component Ai.

This result allows us to use the notation c = 〈p1, . . . , pn〉 for cuts. Since the
place pi is labelled by some state si ∈ Si, the tuple 〈s1, . . . , sn〉 is a reachable
global state of 〈A, is〉. The global state corresponding to the cut of a configura-
tion C is denoted by GState(C).

We take as partial order semantics of 〈A, is〉 its unfolding. The relationship
between the interleaving and partial order semantics of 〈A, is〉 is given by the
following result:

Theorem 1. Let 〈A, is〉 be a synchronous product of transition systems.

(a) Let C be a configuration of a branching process of 〈A, is〉. There is a state
s of Aint , reachable from is, such that: (1) s = GState(C), and (2) for
every configuration C ∪ {e} (e /∈ C) there is a transition t of Aint such that
α(t) = GState(C) and β(t) = GState(C ∪ {e}).

(b) Let s be a state of Aint , reachable from is. There is a configuration C of the
unfolding of 〈A, is〉 such that: (1) GState(C) = s, and (2) for every transi-
tion t of Aint such that α(t) = s and β(t) = s′ there exists a configuration
C ∪ {e} (e /∈ C) such that e is labelled by t, and GState(C ∪ {e}) = s′.

Informally, (a) means that the information a branching process has about
Aint is correct, while (b) means that the unfolding has complete information
about Aint (actually, the unfolding also contains “true concurrency” informa-
tion).

4 Constructing a complete finite prefix

We say that a branching process of 〈A, is〉 is complete if it contains complete in-
formation about Aint , i.e., if condition (b) of Theorem 1, which is always fulfilled
by the unfolding, also holds for it.3 The important fact is that finite complete
prefixes exist, the main reason being that the number of global states of 〈A, is〉 is
finite. For instance, the prefix of Figure 3 containing the places {a, . . . , k, n, o, p}
and the events {1, . . . , 7, 10, 11, 12} can be shown to be a complete prefix.

3 In fact, it is easy to see that a complete prefix contains as much information as the
unfolding itself, in the sense that given a complete prefix there is a unique unfolding
containing it.



In [4] an algorithm is presented for the construction of a complete finite prefix,
which improves on a previous construction presented in [6]. The algorithm makes
use of a so-called adequate order on the configurations of the unfolding. Different
adequate orders lead to different versions of the algorithm, and also to different
complete prefixes. Total adequate orders are particularly nice, since they lead
to complete prefixes which, loosely speaking, are guaranteed not to be larger
than the transition system Aint

4. In [4] a total adequate order for the unfoldings
of Petri nets is presented. In this section we recall the algorithm of [4], and
then present a total adequate order for the unfoldings of synchronous products
of transition systems. The additional structure of a synchronous product with
respect to a Petri net leads to a simpler order, with a simpler proof of adequacy.

4.1 The algorithm

Given a configuration C of the unfolding, we denote by C ⊕ E the set C ∪ E,
under the condition that C ∪ E is a configuration satisfying C ∩ E = ∅. We say
that C ⊕ E is an extension of C, and that E is a suffix of C ⊕ E. Obviously, if
C ⊆ C ′ then there is a suffix E of C ′ such that C ⊕ E = C ′.

Now, let C1 and C2 be two finite configurations leading to the same global
state, i.e. GState(C1) = s = GState(C2). The ‘continuations’ of the unfolding
from the cuts corresponding to C1 and C2 (the nodes lying below these cuts)
are isomorphic (see [4] for a more formal description). For example, in Figure 3
the configurations {1, 3, 4} and {2, 3, 5} lead to the cuts 〈f, g〉 and 〈h, i〉, which
correspond to the global state 〈s4, r3〉. Loosely speaking, the continuations from
these cuts contain the nodes below f, g and h, i, respectively (f, g and h, i in-
cluded). This isomorphism, say I , induces a mapping from the extensions of C1

onto the extensions of C2, which maps C1 ⊕ E onto C2 ⊕ I(E). For example,
{1, 3, 4, 7, 12} is mapped onto {2, 3, 5, 9, 15}.

The intuitive idea behind the algorithm is to avoid computing isomorphic
continuations, since one representative suffices. However, a correct formalisation
is not easily achieved. It requires the following three basic notions:

Definition 4. A partial order ≺ on the finite configurations of the unfolding is
adequate if:

– it is well-founded,

– it refines the inclusion order, i.e. C1 ⊂ C2 implies C1 ≺ C2, and

– it is preserved by finite extensions, i.e. if C1 ≺ C2 and GState(C1) =
GState(C2), then the isomorphism I above satisfies C1 ⊕ E ≺ C2 ⊕ I(E)
for all finite extensions C1 ⊕ E of C1.

Definition 5. The local configuration [e] associated to an event e of a branching
process is the set of events e′ such that e′ ≤ e.5

4 For a more precise statement see [4].
5 It is immediate to prove that [e] is a configuration.



Definition 6. Let ≺ be an adequate order on the configurations of the unfolding,
and let BP be a branching process containing an event e. The event e is a cut-off
event of BP (with respect to ≺) if BP contains a local configuration [e′] such
that GState([e]) = GState([e′]), and [e′] ≺ [e].

The algorithm is in fact a family of algorithms: each adequate order ≺ leads to
a different member of the family. It computes a branching process, and whenever
it identifies a cut-off event it takes care of not extending the process behind it.

input: a synchronous product 〈A, is〉, where is = 〈is1, . . . , isn〉.
output: a complete finite prefix of the unfolding of 〈A, is〉.
begin

bp := ({(is1,⊥), . . . , (isn,⊥)}, ∅);
pe := PE (bp);
cut-off := ∅;
while pe 6= ∅ do

choose e = (t, X) in pe such that [e] is minimal with respect to ≺;
if [e]∩ cut-off = ∅ then

extend bp with the event e and with a place (s, e)
for every output place s of t;

pe := PE (bp);
if GState([e]) = GState([e′]) for some event e′ of bp then

cut-off := cut-off ∪{e}
endif

else pe := pe \ {e}
endif

endwhile;
return bp

end

One of the main results of [4] states that this algorithm is correct if ≺ is
an adequate order. The order ≺ need not be total, but, loosely speaking, total
orders lead to more cut-off events, and so to smaller prefixes. In fact, totality is
a sufficient condition for the output of the algorithm to be at most as large as
the interleaving semantics Aint . Weaker conditions achieve the same effect (the
order need only be total among configurations with the same associated global
state, a fact exploited in [5]), but we do not need them here.

5 Adequate orders for the unfolding of a synchronous

product

In this section we introduce a total adequate order on the configurations of the
unfolding of a synchronous product. The order is simpler to define and to prove
adequate than the order introduced in [4] for systems modelled by Petri nets.



5.1 Local views

Our adequate order is based on the notion of local view of a configuration. Given
a finite configuration C, we define its projection C|i onto Ai as its set of i-events.
If we take C = {2, 3, 5, 8, 9, 13} in Figure 3, then we have C|1 = {2, 5, 8, 13} and
C|2 = {3, 5, 9}. The events of C|i are totally ordered by the causal relation <.
This is so because i-events are either causally related or in conflict (Proposition
1), and the events of C|i are not in conflict because they belong to a configura-
tion. We define:

Definition 7. Let C be a configuration, and let e1 < e2 < . . . < eki
be the result

of ordering C|i with respect to <. The i-view of a configuration C, denoted by
Vi(C), is the sequence t1t2 . . . tki

, where tj is the global transition labelling the
event ej . We denote by V(C) = 〈V1(C), . . . , Vn(C)〉 the n-tuple of local views of
a configuration.

Intuitively, Vi(C) is the history of the computation as seen by the i-th compo-
nent. In our example we have 2 < 5 < 8 < 13 for C|1 and 3 < 5 < 9 for C|2.
Furthermore, V1(C) = t2〈t4, u2〉t5t1 and V2(C) = u1〈t4, u2〉u3.

The definition of local view can be extended without problems to suffixes of
configurations, for instance to the set {8, 9}: We have then V1({8, 9}) = 〈t5, ε〉
and V2({8, 9}) = 〈ε, u3〉. In particular, for an event e = (t, X) we have that
Vi({e}) is the empty sequence if t(i) is an idle transition, and Vi({e}) = t
otherwise.

The following result will be crucial:

Theorem 2. The mapping V is injective.

Proof. Let C1 = C2 be two configurations such that V(C1) = V(C2). We prove
C1 = C2 by showing C1 = C and C2 = C, where C = C1 ∩ C2. By symmetry it
suffices to prove C1 = C. We proceed by contradiction.

Assume C 6= C1. Then C can be extended by an event e1 ∈ C1 \C. We prove
e1 ∈ C2, a contradiction to C = C1∩C2. Let e1 = (t, X1), where t = 〈t1, . . . , tn〉.
Since t 6= (ε, . . . , ε) by the definition of global transition, some component of t,
say ti, satisfies λi(ti) 6= ε. By the definition of local view, Vi(C) · t is a prefix of
Vi(C1), and, since V(C1) = V(C2) holds by assumption, also a prefix of Vi(C2).
So C can be extended by an event e2 ∈ C2 such that e2 = (t, X2) for some co-set
X2. We prove:

– X1 and X2 are both labelled by •t. Follows immediately from e1 = (t, X1)
and e2 = (t, X2).

– Each place of X1 ∪ X2 carries a different label. Since both e1 and e2 extend
the same configuration C, we have that X1∪X2 is a co-set. Since every co-set
can be extended to a cut, we can apply Proposition 4.

It follows X1 = X2, which implies e1 = e2. So e1 ∈ C2, and we are done.



In words, Theorem 2 states that a configuration is characterised by its tuple
of local views. If we let T∗ be the set of n-tuples whose elements are sequences
of global transitions, i.e., T∗ = (T ∗)n, then a tuple of local views is an element
of T∗. By Theorem 2, an order ≺ on T∗ induces an order on configurations:

C1 ≺C C2 if and only if V(C1) ≺ V(C2)

Moreover, if ≺ is total, then ≺C is total.

5.2 From orders on local views to adequate orders

We identify sufficient conditions for an order ≺ on T∗ to induce an adequate
total order on configurations. We need to introduce some definitions. The con-
catenation of two elements σ, τ ∈ T∗ is defined componentwise, and denoted by
σ · τ . The partial order v on T∗ is defined as follows: σ v τ if there exists σ′

such that τ = σ · σ′. In other words, σ v τ if each component of σ is a prefix of
the corresponding component of τ .

We start with the following two observations, which follow easily from the
definitions.

Proposition 3. (1) If C1 ⊆ C2 then V(C1) v V(C2).
(2) V(C ⊕ E) = V(C) ·V(E).

Let us illustrate this result with configurations from Figure 3. Let C1 =
{2, 3, 5, 8} and C2 = {2, 3, 5, 8, 9, 13}. We have

V(C1) = {t2〈t4, u2〉t5, u1〈t4, u2〉}

V(C2) = {t2〈t4, u2〉t5t1, u1〈t4, u2〉u3}

Furthermore, we have C2 = C1 ⊕ E, where E = {9, 13}, and V(E) = {t1, u3},
and indeed V(C2) = V(C1) ·V(E).

We can now obtain sufficient conditions for the induced order ≺C to be
adequate and total:

Lemma 1. Let ≺ be an order on T∗ satisfying the following conditions:

(1) ≺ is well-founded;
(2) ≺ refines v, i.e. σ v τ implies σ ≺ τ ;
(3) ≺ is preserved by concatenation, i.e., if σ ≺ τ then σ · σ′ ≺ τ · σ′ for every

σ′ ∈ T∗;
(4) ≺ is a total order.
Then the induced order ≺C is a total adequate order.

Proof. We prove that ≺C satisfies the properties of a total adequate order:

(a) ≺C is well-founded. C1 �C C2 �C . . . implies V(C1) � V(C2) � . . ., con-
tradicting the well-foundedness of ≺.

(b) If C1 ⊆ C2 then C1 ≺C C2. By Proposition 3(1), V(C1) v V(C2). By (2),
V(C1) ≺ V(C2). By the definition of ≺C , C1 ≺C C2.

(c) If C1 ≺C C2 then C1 ⊕ E ≺C C2 ⊕ E. If C1 ≺C C2 then V(C1) ≺ V(C2).
By (3), V(C1) · V(E) ≺ V(C2) · V(E). By Proposition 3(2), V(C1 ⊕ E) ≺
V(C2 ⊕ E). By the definition of ≺C , C1 ⊕ E ≺ C2 ⊕ E.

(d) ≺C is total. Immediate from (4) and the definition of ≺C .



5.3 Orders on T∗ inducing adequate orders

We describe in this section two total orders on T∗ satisfying conditions (1)–(4) of
Lemma 1. We start with an arbitrary total order ≺T on T , and use the following
three auxiliary orders on T ∗:
– the size order: σ is smaller than τ if |σ| < |τ |;
– the lexicographic order: σ is smaller than τ if σ is lexicographically smaller

than τ with respect to ≺T .
– the silex (size-lexicographic) order: σ is smaller than τ if |σ| < |τ | or if

|σ| = |τ | and σ is lexicographically smaller than τ .

Let us first consider the case n = 1, i.e, A contains only one component. We
have then T∗ = T ∗, i.e., we look for an order on sequences of global transitions
satisfying (1)–(4). It is immediate to see that the silex order does the job: the
order v is in this case the prefix order on sequences, and the concatenation
operation is just the ordinary concatenation of sequences.

The silex order can be extended to an arbitrary number n of components in
two different ways:

Definition 8. Let σ, τ be elements of T∗. We say σ ≺1 τ if there is an index
1 ≤ i ≤ n such that σ(j) = τ(j) for all 1 ≤ j < i, and σ(i) is smaller than τ(i)
with respect to the silex order on sequences. We say σ ≺2 τ if
(a) there is an index 1 ≤ i ≤ n such that |σ(j)| = |τ(j)| for all 1 ≤ j < i, and

|σ(i)| < |τ(i)|, or
(b) |σ(i)| = |τ(i)| for all 1 ≤ i ≤ n, and there is an index i such that σ(j) = τ(j)

for all 1 ≤ j < i and σ(i) is lexicographically smaller than τ(i).

It is only a small exercise to prove that ≺1 and ≺2 satisfy conditions (1)–(4):

Theorem 3. The orders ≺1 and ≺2 satisfy conditions (1)–(4) of Lemma 1.
Therefore, they induce total adequate orders on configurations.

Proof. Let us prove condition (3) for the order ≺2, the others being similar or
simpler. Assume σ ≺2 τ . We prove σ ·σ ≺2 τ ·σ. Let σ(i) be the first component
of σ such that σ(i) is smaller than τ(i) with respect to the silex order. Consider
two cases:
– There is an index 1 ≤ i ≤ n such that |σ(j)| = |τ(j)| for all 1 ≤ j < i

and |σ(i)| < |τ(i)|. Then |σ(j)σ′(j)| = |τ(j)σ′(j)| for all 1 ≤ j < i and
|σ(i)σ′(i)| < |τ(i)σ′(i)|. Hence σ · σ ≺2 τ · σ.

– |σ(i)| = |τ(i)| for all 1 ≤ i ≤ n, and there is an index i such that σ(j) = τ(j)
for all 1 ≤ j < i, and σ(i) is lexicographically smaller than τ(i). Then
|σ(i)σ′(i)| = |τ(i)σ′(i)| for all 1 ≤ i ≤ n, and there is an index i such that
σ(j)σ′(j) = τ(j)σ′(j) for all 1 ≤ j < i and σ(i)σ′(i) is lexicographically
smaller than τ(i)σ′(i). Hence σ · σ ≺2 τ · σ.

This concludes the proof of adequacy of the two orders ≺1 and ≺2. The
proof consists of Theorem 2, Lemma 1, and Theorem 3. The latter two have
very simple proofs, only Theorem 2 requires a bit of ingenuity.

Which of the two orders is more suitable for an implementation is a question
of efficiency, and is discussed—together with other implementation points—in
the next section.



6 Efficient implementation of the complete finite prefix

algorithm

The algorithm presented in Section 4.1 is hopefully easy to understand. However,
it is still far too abstract. It leaves the choice of the order ≺ open, and it does
not explain how to compute the functions PE and GState, nor how to compute
a minimal event with respect to ≺. In the algorithm of [4] the computation of
the functions and the minimal event involved expensive forward and backward
global searches in branching processes. The additional structure of synchronous
products allows to compute GState and minimal events using new procedures,
described in Sections 6.2 and 6.1, respectively. In Section 6.3 we also describe
how to speed-up the computation of PE ; however, in this case the improvement
does not exploit the structure of synchronous products, and can be used for Petri
net systems as well.

In the sequel, the abstract algorithm of the last section is called ‘the algo-
rithm’. The concrete algorithm using the procedures just mentioned is called
‘our implementation’.

6.1 Computing a minimal event

In order to determine the minimal event, our implementation maintains a queue
of possible extensions sorted according to ≺C . So we need a procedure to de-
cide for two given configurations [e1], [e2] whether [e1] ≺C [e2] or [e2] ≺C [e1].
For both ≺=≺1 and ≺=≺2 we face a trade-off between time and space. The
fastest procedure is to attach to each event e in the queue the whole vector
V([e]), which leads to a high memory overhead. The most economic procedure
in memory terms is to recompute V([e]) whenever it is needed by means of a
backward search, a much slower solution. In our implementation we adopt an
intermediate solution: We attach to each event e in the queue the integer vector
〈|V1([e])|, . . . , |Vn([e])|〉.

Once this design choice has been made, the order ≺2 becomes superior to
≺1. With ≺=≺2, the vectors V([e]) and V([e′]) have to be computed only if
the integer vectors attached to e and e′ coincide, which is rarely the case. With
≺C=≺1, we have to compute V1([e]) and V1([e

′]) if the first components of the
integer vectors are equal; we have to compute V2([e]) and V2([e

′]) if V1([e]) =
V1([e

′]) and the second components of the integer vectors are equal, and so on.

6.2 Computing GState([e])

Whenever the current branching process is extended with a new event e, the
state GState([e]) has to be computed in order to determine if e is a cut-off
event or not. For that, we first compute the cut corresponding to [e]; the labels
of the conditions of this cut are GState([e]). Recall that the cut corresponding
to [e] is given by (Min ∪ [e]•) \ •[e], which provides a procedure to compute it.
However, since it is too costly to store [e] for each event e, the procedure involves
computing the events preceding e.



The additional structure of synchronous products allows to easily compute
the cut of [e] from the cuts of the immediate predecessors of e, i.e., of the input
events of e’s input conditions. Let us start with a definition and a lemma:

Definition 9. Let p = (s, e) be an i-place of a branching process. The depth
d(p) of p is recursively defined as follows:

– If e = ⊥, then d(p) = 0;
– If e = (t, X), then let p′ be the unique i-place of X; define d(p) = d(p′) + 1.

Lemma 2. Let C1, . . . , Ck be configurations such that C = C1 ∪ . . . ∪ Ck is
also a configuration. Let ci be the cut corresponding to Ci, and let c be the cut
corresponding to C. For every 1 ≤ j ≤ n, c(j) is the unique condition of the set
{c1(j), . . . , ck(j)} having maximal depth.

Proof. Since all the elements of {c1(j), . . . , ck(j)} are j-places, they are causally
related or in conflict (Proposition 1). Since C is a configuration, they cannot
be in conflict, and so they are all causally ordered. It follows that they all have
different depths (notice that not all of c1(j), . . . , ck(j) have to be different, but
of course all elements of {c1(j), . . . , ck(j)} are different by definition of set).
So c(j) is well defined. We prove that c(j) belongs to the cut of C, i.e., that
c(j) ∈ (Min ∪ C•) \ •C.

Assume without loss of generality that c(j) = c1(j). Then we have c(j) ∈
(Min ∪ C•

1 ) \ •C1. So c(j) ∈ (Min ∪ C•

1 ), and so c(j) ∈ (Min ∪ C•). It remains
to prove c(j) /∈ •C. Assume the contrary. Then there exists an index i such that
c(j) ∈ •Ci. It follows that the depth of ci(j) must be greater than the depth of
c(j), a contradiction.

We can now compute the cut of an event e as follows:

Proposition 4. Let e = (t, X) be an event, and let e1, . . . , ek be its immediate
predecessors. The cut of [e] can be computed in two steps as follows:
– Compute the cut of [e1] ∪ . . . ∪ [ek] using Lemma 2; let c be this cut;
– For each output place p of e: If p is an i-place then replace the i-place of c

by p.

Proof. Observe that the output places of e belong to the cut of [e]. The rest
follows easily from Lemma 2 and the definitions.

Let us apply this Proposition to compute the cut of [16] in Figure 3. The
immediate predecessors of event 16 are events 10 and 12. Their corresponding
cuts are 〈n, g〉 and 〈f, p〉. We have d(n) = 4, d(g) = 2 and d(f) = 2, d(p) = 4. So
the cut of [10] ∪ [12] is 〈n, p〉. Now, the second step says to replace n by t and
p by u. So the final result is 〈t, u〉. The fact that this is also the set of output
places of event 16 is a coincidence.

In order to apply Proposition 4, our implementation has to compute the
depth of each place of the current branching process. Fortunately, this leads to
no time overhead. Recall that in order to decide if [e1] ≺C [e2] we attach to
each event e the vector 〈|V1([e])|, . . . , |Vn([e])|〉. It follows immediately from the
definitions that the depth of an i-place with input event e is equal to |Vi([e])|.



6.3 Computing PE(BP)

The computation of PE (BP ) is the most time consuming part of the algorithm.
The computation is performed by considering each global transition t ∈ T in
turn, and computing the possible extensions of BP of the form (t, X). So the
problem consists of finding all X ⊆ P such that (a) X is labelled by •t, and
(b) X is a co-set. Since the places of BP can be easily indexed according to
the states they are labelled with, we search among all sets X satisfying (a) for
those satisfying also (b). The implementation stores the co-relation of the places
contained in the current branching process. Therefore, whenever the process is
extended by a new event e, it is necessary to compute the places of the process
that are in co-relation with the output places of e (notice that these output
places themselves build a co-set).

A first procedure to compute this set of places applies the definition of the
concurrency relation. Take the set of all places of the branching process, and
perform the following steps:

(1) remove all places which are causally related with e•, by iteratively computing
e’s immediate predecessors, their immediate predecessors and so on; mark
along the way all the places having more than one successor;

(2) remove the successors of the marked places (not already removed in (1)) ;
these are the places in conflict with e•;

(3) give as output the remaining set of places.

To illustrate this procedure, assume that the current branching process is
the prefix of Figure 3 containing events 1, 2, . . .11, and that event 12 is the new
event. Step (1) removes {k, g, c, a, e, b}, and marks a and e. Step (2) removes
{d, h, i, l, m}. Step (3) yields {f, j, n, o}.

In the worst case, these steps require to visit all nodes of the current branch-
ing process, and since they have to be carried out whenever a new event e is
added, the cost can be high. In the rest of the section we give a more efficient
procedure.

Proposition 5. Let e = (t, X) be a possible extension of a branching process
(P, E). Let p be an output place of e, and let p′ ∈ P be an arbitrary place. p co p′

holds if and only if p′ is an output place of e different from p, or xco p′ for every
x ∈ X.

Proof. If p = p′ then we are done, and so we consider only the case p 6= p′. Since
e is a possible extension, p < p′ cannot hold, and so we have p co p′ ⇐⇒ ¬(p′ <
p ∨ p#p′). So it suffices to prove:

(p′ < p ∨ p#p′) ⇐⇒ (p′ /∈ e•) ∧ (∃x ∈ X.x ≤ p′ ∨ p′ ≤ x ∨ x#p′)

(=⇒) We prove four statements:
– p′ < p ⇒ p′ /∈ e•. Obvious, because no two output places of e are causally

related.
– p′ < p ⇒ ∃x ∈ X.p′ ≤ x. Since p has e as unique input event, the path from

p′ to p must necessarily contain e, and so it must also contain some input
place of e, i.e., some element of X .



– p#p′ ⇒ p′ /∈ e•. Obvious, because no two output places of e are in conflict.
– p#p′ ⇒ ∃x ∈ X.x ≤ p′ ∨ x#p′. Since p#p′ there exist two paths from a

condition p′′ to p and p′ sharing only p′′. If p′′ ∈ X , then we have p′′ < p′,
and by taking x = p′′ we are done. If p′′ /∈ X , then the path from p′′ to p
contains some element x of X , and so x#p′.

(⇐=) We consider three cases:

– p′ /∈ e• ∧ ∃x ∈ X.x ≤ p′. Then there exist two paths from x to p and p′

sharing only x. So p#p′.
– p′ /∈ e• ∧ ∃x ∈ X.p′ ≤ x. Then, since x < p, we have p′ ≤ p.
– p′ /∈ e• ∧ ∃x ∈ X.x#p′. Since x < p and x#p′, we have p#p′.

If we assume that the co-relation is updated whenever a new event is added
to the current branching process (P, E), then at the point of adding a new event
e = (t, X) we can assume that we already know whether x co p′ holds or not for
every x ∈ X and every p′ ∈ P . Updating the relation is now a simple matter.
The following procedure takes care of it.

Procedure Update((P, E), co , e = (t, X))
begin

places := P ;
for every p ∈ P do

for every x ∈ X do
if ¬(x co p) then places := places \ {p} endif

endfor
endfor;

co := co ∪ (e• × e•) ∪ (e• × places) ∪ (places × e•)
end

The operations in the procedure can be efficiently implemented using a
bitvector co(p) for each place p.

There is also an obvious improvement concerning recomputations of PE (BP ).
The algorithm computes PE (BP), extends β by one event, say e, and recomputes
PE (BP). This is very inefficient, since numerous possible extensions may be
recomputed again and again. In fact, the only new possible extensions after the
addition of e are those having e as immediate predecessor. When the first event
of the queue of possible extensions is added to the current branching process,
only new extensions having this event as immediate predecessor are computed
and inserted in the queue.

7 Experimental results

The abstract algorithm of section 4.1 was originally introduced in [4] for systems
modelled by Petri nets. The same paper contained performance measures of an
implementation, called Imp1 in the sequel. Since synchronous products can be
given a Petri net semantics, as sketched in Section 3, Imp1 can also be applied to



Synch.Prod. Imp1 Imp12 Imp2

System Comp. Trans. Events Cut-offs Time Time Events cut-offs Time

DPH(7) 15 121 40672 21427 623.79 117.57 19306 9693 22.39

ELEVATOR(4) 7 939 16935 7337 96.03 24.32 16935 7337 25.42

KEY(3) 8 133 6940 2921 16.38 3.57 7187 3032 2.44

MMGT(3) 7 172 5841 2529 7.88 2.61 5841 2529 2.18

Q(1) 18 194 8402 1173 44.34 12.67 8030 1125 10.21

RING(24) 48 264 12745 1082 152.42 33.90 10722 1082 34.70

RW(12) 25 313 49177 45069 69.95 22.61 49177 45069 83.54

BUFFER(240) 240 241 28921 1 7098.06 1980.78 28921 1 34.81

CYCLIC(1000) 2000 5999 8996 1001 1372.24 1338.36 8996 1001 63.83

SENTST(2000) 2005 2030 2191 40 311.81 186.65 2030 40 8.33

Table 1. Experimental results

synchronous products. So it is possible to compare the performances of Imp1 and
the implementation of Section 6, called Imp2 in the sequel. The main differences
between Imp1 and Imp2 are

(a) Imp1 uses the adequate order of [4], while Imp2 uses ≺2;
(b) Imp1 computes the concurrency relation by the three-step procedure de-

scribed at the beginning of Section 6.3, while Imp2 uses the Update proce-
dure;

(c) Imp1 computes Marking([e]) (the equivalent of GState([e]) in [4]) by means
of a backward search, while Imp2 uses the procedure derived from Prop. 4.

The differences (a) and (c) are inherent to the change of model: Petri nets
for Imp1, and synchronous products for Imp2. On the contrary, the difference
(b) is accidental: When Imp1 was programmed, we had not found the Update
procedure. So it makes sense to consider a third implementation, Imp12, which
coincides with Imp1 on (a) and (c), and with Imp2 on (b).

We have chosen a set of benchmarks compiled by Corbett in [3]; for a de-
scription of the systems the reader is referred to [3] and [7]. All benchmarks
are scalable. Table 1 displays the results of the experiments for some represen-
tative cases. The experiments were carried out on a Sun Ultra 60 (295 MHz
UltraSPARC-II) with 640 MB RAM using Solaris 2.7. The displayed data are
the number of components and the number of global transitions of the prod-
uct, the number of events of the complete prefix, the number of cut-off events,
and the computation time (in seconds). The size of the unfoldings for Imp1 and
Imp12 is always the same, since they both use the same adequate order. The
benchmarks above the double horizontal line have a large ratio cut-offs/events,
corresponding to wide but shallow prefixes, while those below have a small ra-
tio, corresponding to narrow and deep prefixes. The results indicate that Imp2

is indeed more efficient than Imp1. A closer look, and a comparison with Imp12,
indicates that:

– For large cut-off ratios, the speed-up factor lies between 3 and 5, and it is
due to the new procedure for the computation of the concurrency relation.



– For small cut-off ratios, the speed-up factor is of 1 to 2 orders of magnitude,
and it is due to the new order, and to the new procedure for computing
GState.

These provisory conclusions still need to be tested on more examples.

8 Conclusions

We have adapted the unfolding technique to Arnold’s synchronous products
of transition systems. The fact that a synchronous product consists of a fixed
number of communicating sequential components has been used to simplify the
unfolding procedure. We have obtained adequate orders simple to define and
simple to prove correct.

We mentioned in the introduction that Langerak and Brinksma have applied
the unfolding technique to a CSP-like process algebra [5]. The algebra has more
modelling power than synchronous products; in particular, it is able to model
nested parallelism, which synchronous products cannot. The price to pay is a
more complicated adequate order than ≺1 or ≺2, although simpler than the
order of [4] for Petri nets. Together with ours, Langerak and Brinksma’s paper
gives strong evidence that the unfolding technique can be applied to any model
of concurrency allowing for a notion of independent actions.

We have presented an efficient implementation of the abstract algorithm for
the construction of a complete finite prefix, which improves on the implementa-
tion of [4]. The speed-ups can reach two orders of magnitude in very favourable
cases. A speed-up factor of at least 3 to 5 is achieved in nearly all cases.
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