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Abstract. The paper defines two notions of composition of concurrent modules
modelled by means of Petri nets: synchronisations and fusions. We study these two
notions for the class of Free Choice nets, and characterise the compositions (within this
class) that preserve liveness (absence of partial or global deadlocks) and boundedness
(absence of overflows in finite stores). The characterisation shows which structures must
be avoided in order to preserve the properties.
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1 Introduction

The development of compositional techniques for the analysis and synthesis of con-
current systems is an active field of research. This paper deals with this problem for
systems modelled by means of Petri Nets. In particular, our goal is to give, for interest-
ing composition operators, necessary and sufficient conditions on the structure of the
net for the preservation of two properties: liveness and boundedness. Liveness is defined
as the absence of partial or global deadlocks (from every reachable state all actions can
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be executed again). Boundedness means finiteness of the state space, and can be also
interpreted as the absence of overflows in finite stores such as buffers.

However, the obtention of these conditions for general Petri Nets is an exceedingly
ambitious goal, because the interplay between nondeterminism - choices - and concur-
rency makes very difficult to find relationships between the behaviour of a system and
the structure of the net that models it. That is why we consider here the subclass of
Free Choice nets (F'C), in which this interplay is restricted: in FC nets, choices are
not influenced by the environment, a concept similar to the internal nondeterminism of
TCSP. This subclass has been studied in [BD 90,Hack 72,TV 84] among other papers.

Recently, [ES 90] gave a first complete theory for the fop-down synthesis of live
and bounded FC systems, which was subsequently used in [Espa 90] to derive new
properties. In this work, we present a compositional synthesis theory for the class of
nets underlying this class of systems: actually, the free choice nets that are structurally
live and structurally bounded (SL&SB for short). In other words, we abstract from the
initial markings. However, this is not a heavy constraint, since the markings that make
these nets live and bounded can be easily calculated.

We start introducing two notions of composition: synchronisations and fusions.
Synchronisations essentially merge transitions: they are closely related to the parallel
operator of process algebras. Fusions, on the other hand, essentially merge places. We
introduce later the concept of well formed FC-synchronisalions as those preserving the
free choice property (i.e. if the components of the synchronisation are FC so is the
final result), and satisfying an additional graph theoretical condition. We show that an
FC-synchronisation is SL&SB if and only if it is well formed.

This characterisation in terms of graph theoretical properties can be called “low
level”, since it is close to the graph structure of nets but difficult to interpret. We show
that it is equivalent to a “high level” characterisation, which consist of the absence of
two structures in the composed net, called killing choices and synchronic mismatches.
These two structures have a clear and intuitive meaning.

Finally, we use the Duality Theorem of F'C nets to derive for fusions similar results
to the ones obtained for synchronisations.

Section 2 introduces the concepts of synchronisation and fusion. Sections 3 and 4
present the “low level” and “high level” characterisations of SL&SB FC-synchronisations.
In section 5 the correspondent results for fusions are derived.

The basic definitions of net theory relevant for the paper can be found in [Espa 90].
For full proofs the reader is referred to [Espa 90b).

2 Composition of nets: Synchronisations and Fu-
sions

To define synchronisations and fusions, we introduce the notions of isomorphic nets and
composition.
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Definition 2.1 Two nets N, = (F,,T,, F;) and N, = (B, Ty, F}) are isomorphic iff
there ezists a bijection h: P, UT, U F, — P,U T, U F} such that:
h(Pn) = }767 h(q‘:\) = T;n h(Fu) =F
- ¥(2,y) € Fa:h((2,y)) = (h(=), h(y)) =21

Definition 2.2 Let {N,..., Ni} be a finite set of nets. N = (P,T, F) is a composition
Of {le" . ,Nk} 1.ﬂ'.

(a) there ezists a set {N,...,Ni} of subnets of N such that Vi,1 < i < k: N; is
isomorphic to N;
" The nets M,.. , Ni: are components of N. =22

The notion of composition is too general: very little can be said about the behaviour
of the composition from the behaviours of the components. We consider now particular
compositions with a better interpretation.

Definition 2.3 A composition N of {Ni,..., Ni} (under isomorphisms hy,...ht) is a
synchronisation iff .
Vi, 1<i<k VpeP:*puUp' CT:
N is ¢ fusion iff

Vi, 1<i<k VteT:*tut C P,
where the dot notation refers to N. =23

Figure 1 shows a composition, a synchronisation and a fusion of two small nets. The
drawing conventions are as follows. In the net composed by other two:

white nodes belong to the first component but not to the second.
shaded nodes belong to the second component but not to the first.

dashed nodes belong to both components.

These conventions are used again in section 4. ‘

Loosely speaking, the isomorphisms of synchronisations “preserve” the environment
of places, while the isomorphisms of fusions “preserve” the environment of transitions,
This means that the communication between the components is done through transitions
in the case of synchronisations, and through places in the case of fusions. The first
corresponds to communication by means of rendez-vous, and the second to the case
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A synchronisation‘ of Na and Nb A fusion of Na and Nb

Figure 1: A composition, a synchronisation and a fusion of two small nets.

‘in which the components share some kind of resource, such as local memory, or share
‘certain states.

-, In the sequel we consider only compositions of two nets. This is not an important
‘restriction, because any composition of k nets can be done in a stepwise way composing
first two nets N; and Na, then composing the obtained net with N3 and so on, that is,
;dwxdmg it into k—1 compositions of two nets. The definitions are given from this point
“on for two nets, though theirs extension to the general case is always straightforward.

:We also change the notation, and denote the two components of the composition by N,
a.nd Np.

i We are interested in the study of synchronisations producing FC nets, that we call
’I"ree Choice Synchronisations. :

Definition 2.4 A synchronisation N of {N,, N}} is a Free Choice synchronisation (FC-
synchronisation for short) iff N is FC. 24

Free Choice synchronisations admit the following more useful characterisation, which
follows easily from the definitions.

Proposition 2.5 Let N be a synchronisation of {N,,Ny}. N is a Free Choice synchro-
nisation iff the two following conditions hold:

: (a) N, and N, are FC nets
" (b) For every transition t in N: (*tN (P \ B) #0A*tN (R \ P) # 8) = (°t)° C {t}.

Proof: 1t is easy to show that a net is Free Choice iff for all transitions : |*t] > 1 =

(1) = {t}.
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Figure 2: A synchronisation of four nets.

(=) Assume N is Free Choice. (a) is obvious. To prove (b), notice that (*¢N (P, \
R) #8A*tN (R \ F) # 0) implies |*¢| > 1.

(¢=) Assume (a) and (b) hold. Take a transition ¢ of N such that |*¢] > 1. E
*t C P, by the definition of synchronisation, (°t)* C T,. Since N, is FC by (a)é
we have (°t)* = {t}. Similarly if *¢ C P,. If neither *t C P, nor *t C B, we have
again (*t)* = {t} by (b). . 2%

Figure 2 shows how an FC net can be constructed stepwisely by means of succesive.
FC-synchronisations. The four initial nets, Ny;, Niz, Na;, Ny, are strongly conne
state machines. Ny; and Ny, are synchronised to yield N; (the nodes identified by
isomorphisms are shaded). Analogously, Ni; and Nj; yield Ns. Fma.lly, N; and N,
synchronised to yield N (not shown in the figure).
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3 Well Formed Free Choice Synchronisations

Our goal is to characterise in structural terms (i.e. through conditions on the graph
structure of the net) the FC-synchronisations of two SL&SB nets that are also SL&SB.
In fact, it is easy to show that structural boundedness is given for granted.

Proposition 3.1 Let N,, N, be two SL&SB nets, and N a synchronisation of {Ng, N;}.
Then N is also structurally bounded.

Proof: (sketch) Let p be a place of N. Assume w.l.o.g. that p € F,. Let M be an
arbitrary marking of N, and M, its projection on N,. It is easy to see that the
language of (N, M) projected on the transitions of N, is a subset of the language
of (N,,M,). Since N, is structurally bounded, p is bounded in (N,, M,). Due to
the language inclusion, p is also bounded in (N, M). Since p and M are arbitrary,
the result follows. x3.1

The difficulty lies in characterising which are the structurally live FC-synchronisations.
We show in this section that they are exactly the well formed FC-synchronisations. In
order to introduce them, we need to define first two structures: handles [ES 89], and
T-components [Hack 72].

Definition 3.2 Let N be a net and N' < N a partial subnet of N. An elementary path
(z1y...,2,) in N, r > 2, is a handle of N’ iff {z1,...,2,} N (P UT') = {z1,2,}. Itis
also said that N’ has a handle (z1,...,2,). . 3.2

The reason of the name is its graphical appeal, which can be appreciated in figure
3. The reader should not confuse our handles with the ones defined in [GJRT 83] for
the study of graph grammars.

The character of a handle is determined by the nature (place or transition) of its
first and last nodes. We classify them according to this criterion into four subclasses:
PP-) PT-, TP- and TT-handles (see figure 3). The meaning is obvious.

The intuition lying behind figure 3 is that, when constructing a system through the
iterative addition of handles, PP- and TT-handles are nicer for preserving liveness and
boundedness than PT- or TP-handles, which “create problems” that have to be solved.

T-components are structures associated to the infinite behaviours of the net.

Definition 3.3 Let N = (P,T,F) be a net. A strongly connected T-graph Ny =
(P, T1, i) C N is a T-component of N iff P, = *Ty = Ty, where the dot notation
refers to N. 3.3

The basic property of T-components is that an occurrence sequence in which only
the transitions of the T-component occur, and they occur exactly once, reproduces the
original marking. Therefore, such a sequence can be executed infinitely many times.
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A PP-handle "~ A TT-handle
(PP-handles represent (TT-handles represent |
"well formed" choices) "well formed" concurrency) :

A TP-handle . APT-handle
(TP-handles can lead to unboundedness) (PT-handles can lead to non-liveness)

Figure 3: The four classes of handles.

Proposition 3.4 Let (N, M) be a system and N; = (P, Th, Fi) @ T-component of N.
If there ezists a sequence o such that

w1 ifteny

o(t) = { 0 otherwise
t&enMo[a)Mo S ERita ' x34

 We can now define well formed FC-synchronisations.

Definition 3.5 Let N, and Ny be two SL&SB nets. N is a well formed FC-synchronisation
of {Na, N} #ff no T-component of N, or Ny has a TP-handle in N. 3.5

Using the following proposition, it is not difficult to prove that SL&SB FC-synchronisationg
must be well formed:
g |
Proposition 3.6 Let N be an FC net and N' < N a strongly connected T-graph with
¢ TP-handle in N. Then N is not SL&SB.
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Figure 4: Illustration of the definition of well formed synchronisation.

Proof: (sketch) The result is a slight generalisation of [Dese 86]. It is proven there
for the case in which N’ is an elementary circuit. It is not difficult to see that
whenever N contains a strongly connected T—graph with a TP-handle, it also

E contains an elementary circuit with the same property. w36

Since a T-component of N, or N; is a strongly connected T-graph of N, it follows
| that a non well formed FC-synchronisation cannot be SL&SB. We would like to give
~ an informal argument to make this result plausible. Let N? be a T-component of N,
- with a TP-handle H = (t,...,p) in N. The intuitive 1dea. is to use a policy for the
- occurrence of transitions. Denote by N} U H the net composed by Nf and H (see
figure 4). Let p' be any place in N} U H. Whenever one of its output transitions is
enabled, allits output transitions are enabled because the net is Free Choice. The policy
consists of always letting the transition in N{ U H occur. Assume that the system is
- live. It can be proved that occurrence sequences exist which respect this policy and let ¢
- occur arbitrarily many times. These occurrence sequences increase arbitrarily the total
. number of tokens in the places of N U H. Hence, the system is not bounded for these
. markings, which contradicts proposition 3.1.
i Well formedness is not only a necessary condition but also characterises SL&SB
. FC-synchronisations of SL&SB components:

. Theorem 3.7 Let N be an FC-synchronisation of {N,, Ny}, where N, and N, are
' SL&SB. N is SL&SB iff it is well formed.

Proof: (hint)
(=) See above.

(<=) The proof is long and quite hard. It has two parts. First the result is
proven for the particular case in which N, is a strongly connected P-graph. It is
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shown that, if N is well formed, then it can be reduced to N, using the reduction
algorithm of [ES 90]. Since this reduction procedure preserves SL&SB and N
is SL&SB by hypothesis, it follows that N is SL&SB. Using this first result, the
general case is proven by means of a graph argument. n3.7

The reader can check that all the FC-synchronisations performed to obtain the net
N of figure 2 are well formed, and that the resulting net is SL&SB.

We finish this section with two results. The first shows that every SL&SB FC net
can be obtained through well formed synchromsatnons of strongly connected P-graphs
(i.e. well formed synchronisations are, in some sense, complete).

We need introduce first the notion of P-component of a net.

Definition 3.8 Let N = (P,T,F) be a net. A sirongly connected P-graph N, =
(P, Ty, ;) € N is a P-component of N iff Ty = *P; = P;, where the dot notation
refers to N. ‘ = 3.8

Proposition 3.9 Let N be an SL&SB FC net. There ezists a set {Ny,...,Ni} of
strongly connected P-graphs and a sequence {N',...,N*} of nets such that:

s (1) Nl =
(2) Vz,l <i< (k 1): N1 s g well formcd FC-aynchronwatwn of {N°,N;}
(9 Nt=

Proof: (sketch) By a well known result [Hack 72], every node of N belongs to some
P-component. The nets N; to N; are chosen isomorphic to some minimal set of
P-components that cover the net. This guarantees that N can be obtained by
synchronising N; to Ni. The result follows then from an important monotonicity
property: if N* is not SL&SB, then N*+! is also not SL&SB. Now, if the synchro-
nisation of {N*, N;} were not well formed, N*+! would not be SL&SB and, by the
monotonicity result, neither would be N, against the hypothesis. =39

The net N of figure 2 can be obtained by synchronising first Ny; a.nd Nia, and
synchronising then the result with Na; and Na; succesively.

The second result characterises, by means of a simple structural condition, the set of
markings that make an SL&SB FC net live and bounded. This shows that by considering
the structural problem first we did not impose a strong constraint.

Theorem 3.10 Let N be an SL&SB FC net. (N, M) is live and bounded iff for every
P-component Ny = (P,, Ty, Fy) of N, at least one place of P, is marked at M.

Proof: (hint) Follows from Commoner’s theorem [Hack 72] and lemma 6.10 of [BT 87].
= 3.10

The condition of theorem 3.10 can be checked in polynomial time by means of a
graph algorithm.
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D

NP: do Not Play tennis
P: Play tennis

GD: Go Dancing

D: have a Drink

Figure 5: The pair of transitions (P, GD) is a synchronic mismatch.

4 High-level characterisation of structurally well-
formed synchronisations

The definition of well formed synchronisations has one strong and one weak point.
The strong point is its simplicity and suitability for calculations. The weak point, its
absence of “meaning”. K it is shown that a certain synchronisation is not well formed,
the definition sheds no light on which kind of design error was committed. Due to this
reason, we characterise here well formed synchronisations from a “high-level” point of
view, by means of more complex structures in the graph theoretical sense, but closer to
design concepts. In fact, we show that there are only two “bad structures” or structural
design errors that may cause an FC-synchronisation to be non well formed.

Synchronic mismatches. In order to introduce this first design error, consider the
two nets on the left of figure 5. They model the behaviour of John and Mary, two
millionaires of Palm Beach. Every day John decides whether he will play tennis or not.
If he does not play tennis, he goes dancing and then has a drink. If he does play tennis,
then he is too tired to go dancing and just drinks. After the drink a new day comes
and everything starts again.

Also Mary decides every day to play tennis or not. But, since she is in better shape
than John, she always goes dancing after, and then has the drink. The question is: if
John and Mary get married, and want to play tennis, go dancing and drink together, can
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the marriage reach a deadlock? The marriage corresponds to the FC-synchronisation on
the right of the figure, and it is easy to see that the system can deadlock. The reason is
that John can execute the action “do play tennis” an arbitrarily large number of times
without executing “go dancing”, while Mary cannot. Since the occurrence dependences
of these two actions are different for the two components of the synchronisation we say
that they do not “match”.

To formalize the above problem, let us introduce a synchronic relation. Synchronic
relations [Silv 87] are used to study dependences between the occurrences of transitions.

Definition 4.1 Let (N, M,) be a system with N = (P,T,F) and t,,t; € T. We define

the following relations over T x T:

- (1) (t1,t2) is in k-bounded deviation relation in (N, Mo) iff VM € [Mo) and Yo
applicable at M (i.e. M[0)):5(t;) =0 = 5(t1) < k. .

(2) (t1,t2) is in bounded deviation relation (BD-relation) in (N, Mo) iff 3k € IV such
that (t1,13) is in k-bounded deviation relation.

Let now N = (P,T,F) be a net and t,t, € T.
(3) (t1,%) e in structural BD-relation in N iff VMo: (t1,t;) are in BD-relation. = 4.1

Definition 4.2 Let N be a synchronisation of {Nay N3} and t;,t; € T,NT,. (ti,t5) isa
synchronic mismatch iff it is in structural BD-relation in one and only one of N,, N;.
w42

In the case of John and Mary, the pair (P,GD) is in the structural BD-relation of
Mary but not in the one of John. The pair is hence a synchronic mismatch.

Proposition 4.3 Let N be an FC-synchronisation of {Na, N;}, where both N,, N; are
SL&SB. If N contains a synchronic mismatch, then N is not SL&SB.

Proof: (sketch) Assume w.lo.g. that (#;,¢;) is in the structural BD-relation for N,
but not for N,. Using a result of [Silv 87, we have:

every T-component of N, containing ¢; contains also ;
there exists a T-component Nj of N; that contains #; but not ;.

The proof is carried out by showing that N} has a TP-handle in N. Then, N is
not well formed and by theorem 3.7 not SL&SB. It is proved that:

There is an elementary path I in N, leading from a transition ¢ of N} tot;,
such that its only node in N} is ¢. -
This part is non trivial. See [Espa 90b)].
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MO /JO: Mary / John decides to go to the Odeon
MC/JC : Mary / John decides to go to the Capitol
GO: John and Mary go to the Odeon

GC: John and Mary go to the Capitol

Figure 6: The two places on the top are killing choices.

- There is an elementary path II' in N, leading from t; to a place p of N}, such
that its only node in N} is p. ‘
Since N; is SL&SB, it is strongly connected [Best 87]. This guarantees the
existence of an elementary path in N leading from t; to a node of Ny,
with only its last node in N}. This last node is a place because N} is a
T-component of Nj.

The TP-handle can be extracted from the concatenation of II and II'. =43

Killing choices. In order to introduce the second error, let us go back to John and
Mary. They have changed of hobbies, and like now to go to the cinema every day. There
are two cinemas for millionaires in Palm Beach, the “Odeon” and the “Capitol”. John
decides each day which of the two cinemas he wants to go to, and so does Mary.

John and Mary want to get married and go to the cinema together, but both want
to decide, without consulting the other, which of the two cinemas they will go to. The
corresponding synchronisation is shown in figure 6. Notice that the net contains no
synchronic mismatches, but nevertheless leads to a deadlock for any marking. The
deadlock is produced by the fact that the choices of John and Mary are private, but
concern the pariner. It is intuitively reasonable that these choices lead to non liveness
for any marking. We call them killing choices.
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Definition 4.4 Let N be a FC-synchronisation of {N, = (F,, To, F,), Ny = (B, T, |})}.
A place p € P, is a killing choice of N, iff the following three conditions hold:

(e)p¢ R
(b) There ezists a Tymmponent N} of N, containing p and a transition t; € T, N T}.

_(¢) There ezists an elementary path B = (p,...,1;), t; € T, N'Th, such that p is the
- only node of N} in B.

A killing choice of Ny is defined analogously. N contains a killing choice iff it contains
a killing choice of N, or a killing choice of Ny. . ndd

Notice that p is a place with more than one output transition, because it has at least
one output transition in the T-component and another one out of it. In fact, N, can
decide freely at p whether the tokens are kept in the T-component or are taken out of
it. The reader can check that the two top places of the net of figure 6 are killing choices.

We obtain the following result: .

Proposition 4.5 Let N, and N be two SL&SB FC nets and N be an FC-synchronisation
of {Na, Ni}. If N contains a killing choice, then N is not SL&SB.

Proof: (sketch) Assume w.l.o.g. that N contains a killing choice p of N,. By definition,
there exists a T-component N! of N, containing p and #;, but not t; (where ;,
t; € ToNT;). The definition of killing choice does not impose further requirements
on {; , t;. Nevertheless, it is inmediate to see the following: ‘

- t; can be chosen such that there exists an elementary path O=(t,...,p) of
N} whose only node in N, is ¢;.

- t; can be chosen such that the only node of the path B in Nj is ¢; (where B
is the path required by the definition of killing choice).

As N, is SL&SB, a well known result states that there exists a T-component. of
Nj containg ¢; [Best 87]. Consider two cases:

Case 1. Every T-component of N; containing ¢; contains t,

In this case, N contains a synchronic mismatch and by proposition 4.3 it is not
well formed.

Case 2. There exists a T-component N} of N, that contains #; but not ¢;.

In this case, the concatenation of IT and B is an elementary path leading from N}
to t; whose only node in Nj is ;. Since N, is SL&SB, it is strongly connected
[Best 87]. Therefore there exists a path B’ in N, from ¢; to N} whose only node
in Ny is the last one. This last node is a place because N} is a T-component of
N;. A TP-handle of N} can be extracted from the concatenation of II, B and B'.

545
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The completeness theorem. Killing choices and synchronic mismatches are struc-
tures that correspond to our intuitions of bad designs in the construction of a concurrent
system. It is not surprising that they lead to deadlocks. The stronger result we present
is that, loosely speaking, these are the only two possible errors. More precisely, all
FC-synchronisations which are not SL&SB contain killing choices and/or synchronic
mismatches:

Theorem 4.6 Let N, and Ny two SL&SB FC nets and N an FC-synchronisation of
{Na,Nt}. N is SL&SB iff it contains no synchronic mismatch and no killing choice.

Proof (=) Use propositions 4.3, 4.5.

(<) ¥ N is not well formed, we can assume w.L.o.g. that N, is a T-component of
N, with a TP-handle H = (¢,...,p). It is possible to prove that H can be chosen'
as the concatenation of two pa.ths 1, and B, where Iy = (4,...,t') is a handle of
N, and B is a path of N,.

Consider now two cases:

Case 1. Every T-component of N; containing ¢ contains also t'.

Then (¢,?') is a synchronic mismatch because t is not a transition of N}.

Case 2. There exists a T-component N} = (P}, T}; F}) containing ¢ but not #'.
Let p’ be the last node of II, that belongs to N} ( p’ must be a place because N, !
is a T-component of N3). The subpath I} = (p’ yeerst') of II; leads from N} to

¥ € T.NT} and its only node in N} is p'. Moreover, ? ¢ P, because II; is a handle
of N,. Then p’ is a killing choice of N,. . =46

5 Fusions

Given a net N, N-¢ denotes the reverse dual net of N. The following relatxonshxp g
between synchronisations and fusions follows easily from the definitions:

‘Proposition 5.1 N is an FC-synchronisation of {N., Ny} iff N™¢ is an FC-fusion of :
{N:I;Nb—!} . 5.1

Making use of this property and of the Duality theorem for FC nets, we can obtain for
fusions similar results to the ones obtained for synchronisations. The Duality theorem
states the following: ‘

Theorem 5.2 [Hack 78] Let N be a net. N is SL&SB FC iff N~% is SL&SB FC.u 5.2

In order to check if an FC-fusion N of two SL&SB FC nets N,, N, is SL&SB as
~well, we just consider the reverse-dual net N -4, which by proposition 5.1 is an FC-
synchronisation. We can then check whether this FC-synchronisation is well formed.
By theorem 3.7, this is the case exactly when N-¢ is SL&SB and, by the Duality

theorem, exactly when N is SL&SB.
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It is possible to mimic our presentation of the results for synchronisations. An
FC-fusion is defined to be well formed iff the FC-synchronisation of the reverse-dual
components is well formed. Also the design errors can be introduced in the same way:
an FC-fusion of two nets has a killing joint (respectively, a fusion mismatch) iff the FC-
synchronisation of of the reverse-dual nets has a killing choice (respectively, a synchronic
mismatch). We obtain the dual theorems corresponding to our two main results for
synchronisations:

Theorem 5.3 Let N be an FC-fusion of {N,, Ny} N is SL&SB iff it is well formed.
. =5.3

Theorem 5.4 Let N, and N, be two SL&SB FC nets and N an FC-fusion of {N,, N,}.
N is SL&SB iff it contains no fusion mismatch and no killing joint. w54

6 Conclusions

We have introduced two composition operators for Petri Nets. For the class of Free
Choice nets, we have characterised by means of compositional structural conditions
when these operators preserve SL&SB. We have interpreted this characterisation in
terms of two design errors. These errors are close to the intuition, and suggest what to
change in order to obtain a correct system.
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