
Fundamenta Informaticae 46 (2001) 1–17- - na – (PU) 1

IOS Press

Unfolding Based Algorithms for the Reachability Problem∗

Javier Esparza

Institut für Informatik

Technische Universität München

esparza@in.tum.de

Claus Schröter

Institut für Informatik

Technische Universität München

schroete@in.tum.de

Abstract. We study four solutions to the reachability problem for 1-safe Petri nets, all of them
based on the unfolding technique. We define the problem as follows: given a set of places of the
net, determine if some reachable marking puts a token in all of them. Three of the solutions to
the problem are taken from the literature [McM92, Mel98, Hel99], while the fourth one is first
introduced here. The new solution shows that the problem can be solved in time O(nk), where
n is the size of the prefix of the unfolding containing all reachable states, and k is the number of
places which should hold a token. We compare all four solutions on a set of examples, and extract a
recommendation on which algorithms should be used and which ones not.

1. Introduction

Reachability of states is one of the key problems in the area of automatic verification. Most safety
properties of systems can be reduced to simple reachability properties; a typical example is the mutual
exclusion property of mutual exclusion algorithms [Ray86]. When systems are presented as automata
communicating through rendez-vous or through bounded buffers, as synchronous products of transition
∗This work was partially supported by the project “Advanced Validation Techniques for Telecommunication Protocols” of the
Information Societies Technology Programme of the European Union.

systems, or as 1-safe Petri nets (all of them models with the same expressive power), the reachability
problem is known to be PSPACE-complete. In this paper we consider systems modelled by 1-safe Petri
nets, and define the reachability problem as follows: given a set of places of the net, decide if some
reachable marking puts a token in each of them. The problem remains PSPACE-complete if the set
contains only one place.

The unfolding technique, originally introduced by McMillan in his seminal paper [McM92], has
been very successfully applied to deadlock detection. The 1-safe Petri net is “unfolded” into an acyclic
net (in a way similar to the unfolding of a rooted graph into a tree) until a so-called (finite) complete
prefix is generated. This is a finite acyclic net having exactly the same reachable markings as the original
one. Once the complete prefix has been generated, three different algorithms can be applied: a branch-
and-bound algorithm by McMillan [McM92], an algorithm based on linear programming by Melzer
and Römer [MR97], and an algorithm based on SAT solvers (with stable model semantics) by Heljanko
[Hel99]. These algorithms have been compared (see [MR97, Hel99]), with the result that SAT algorithms
have the edge in most cases. The goal of this paper is to perform the same kind of analysis for the
reachability problem.

First of all, we show that the reachability problem is NP-complete in the size of the complete prefix.
(This is also the complexity of deadlock detection [McM92].) We then present four different algorithms.
McMillan sketches an on-the-fly solution in [McM92]. In [Mel98], Melzer extends the linear program-
ming approach of [MR97] for deadlock detection to reachability, and so does Heljanko in [Hel99]. Both
algorithms have exponential complexity in the size of the complete prefix. The fourth algorithm was
in a sense implicit in [Mel98], and even in former papers [KKTT96], but to the best of our knowledge
it has not been explicitly formulated before. In particular, we do not know of any implementation. It
reduces the reachability problem to CLIQUE, and has a better complexity than the former two: it solves
the reachability problem in time O(nk), where n is the size of the complete prefix, and k is the number of
places that should be simultaneously marked. Since n is usually much larger than k, this is a significant
improvement.

In the last part of the paper we present a comparison of the four algorithms based on experiments
conducted on a number of examples. The results show that, even though it has a better theoretical
complexity, the reduction to CLIQUE cannot compete with the other algorithms. In fact, the two best
algorithms are the on-the-fly algorithm and the algorithm based on SAT.

The paper is structured as follows: In section 2 we give an introduction to Petri nets and unfoldings
following [ERV96, MR97, ER99]. Section 3 briefly reviews the main ideas of the methods suggested
by McMillan, Melzer and Heljanko and introduces our new graph theoretic method. In section 4 we
compare the four algorithms and discuss some results. In section 5 we finish with some conclusions.

2. Basic Notations

2.0.1. Petri Nets

A triple (P, T, F) is a net if P and T are disjoint sets and F is a subset of (P×T)∪(T×P). The elements
of P are called places and the elements of T transitions. Places and transitions are generally called nodes.
We identify F with its characteristic function on the set (P × T) ∪ (T × P). The preset •x of a node x

is the set {y ∈ P ∪ T | F (y, x) = 1}. The postset x• of a node x is the set {y ∈ P ∪ T | F (x, y) = 1}.
A marking M of a net (P, T, F) is a mapping M : P 7→ IN.

A four-tuple Σ = (P, T, F,M0) is a net system if (P, T, F) is a net and M0 is a marking of (P, T, F).
M0 is called the initial marking of Σ. A marking M enables a transition t if ∀p ∈ P : F (p, t) ≤ M(p).

If t is enabled at M , then t can occur, and its occurrence leads to a new marking M ′ (denoted M
t
→ M ′),

defined by M′(p) = M(p)−F (p, t)+F (t, p) for every place p. A sequence of transitions σ = t1t2 . . . tn

is an occurrence sequence if there exist markings M1,M2, . . . ,Mn such that M0
t1→ M1

t2→ . . . Mn−1
tn→

Mn. Mn is the marking reached by the occurrence of σ, also denoted by M0
σ
→ Mn. M is a reachable

marking if there exists an occurrence sequence σ such that M0
σ
→ M .

A marking M of a net is 1-safe if M(p) ≤ 1 for every place p. A net system Σ is 1-safe if all its
reachable markings are 1-safe.

In the following we restrict ourselves only to 1-safe Perti nets. We identify a marking M of a 1-
safe net system with the set P ′ ⊆ P such that ∀p ∈ P : p ∈ P ′ ⇔ M(p) = 1. A partial marking
Mpar of a 1-safe net system is a mapping Mpar : (P 1

par ∪ P 0
par) 7→ {0, 1}, where P 1

par, P
0
par ⊆ P and

∀p ∈ P 1
par : Mpar(p) = 1 and ∀p ∈ P 0

par : Mpar(p) = 0. We identify a partial marking Mpar with the
tuple P ′

par = (P 1
par, P

0
par).

2.0.2. Occurrence Nets

Let (P, T, F) be a net and x, y ∈ P ∪ T . The nodes x and y are in conflict (denoted x#y) if there
exist distinct transitions t1, t2 ∈ T such that •t1 ∩

•t2 6= ∅ and (t1, x), (t2, y) belong to the reflexive and
transitive closure of F . The node x ∈ P ∪ T is in self-conflict if x#x. An occurrence net is a triple
(B,E, F ′), such that:

• ∀b ∈ B : |•b| ≤ 1,

• F ′ is acyclic, i.e. the (irreflexive) transitive closure of F ′ is a partial order,

• N is finitely preceded, i.e. for every x ∈ B ∪ E, the set of elements y ∈ B ∪ E such that (y, x)
belongs to the transitive closure of F ′ is finite, and

• no element e ∈ E is in self-conflict.

The elements of B and E are called conditions and events, respectively. Min(O) denotes the initial
marking of an occurrence net O, in which the minimal conditions carry exactly one token, and the other
conditions no token. The (irreflexive) transitive closure of F ′ is called the causal relation (denoted
by <). The reflexive and transitive closure of F ′ is denoted by ≤. A node x is causally related to
y if there exists a path from x to y. The co-relation co ⊆ B × B is defined in the following way:
(b1, b2) ∈ co ⇔ (b1 6< b2 ∧ b2 6< b1 ∧ ¬(b1#b2)), i.e. two conditions are called concurrent, if they are
not causally related and if they are not in conflict. A set B ′ ⊆ B of an occurrence net is called co-set if
its elements are pairwise in co-relation.

2.0.3. Branching Processes

A branching process of a net system Σ = (P, T, F,M0) is a labelled occurrence net containing informa-
tion about both concurrency and conflicts. The conditions and events of the branching process are taken
from two sets B and E of names which are inductively defined as follows:

• ⊥ ∈ E , where ⊥ is a special symbol,

• if e ∈ E , then (p, e) ∈ B for every p ∈ P ,

• if X ⊆ B, then (t,X) ∈ E for every t ∈ T .

A branching process of Σ is defined by two subsets B ⊆ B and E ⊆ E of these sets of names. Later
in the definition of branching processes we use these names in the following way: Minimal conditions
(p,⊥) ∈ B of the branching process are those where p carries initially a token, i.e. p ∈ M0. The label of
a condition (p, e) ∈ B is p, and its unique input event is e. The label of an event (t,X) ∈ E is t, and X

is the set of its input conditions. Since branching processes are completely determined with this notation
by their sets of conditions and events, we represent them as a pair (B,E).

The set of finite branching processes of a net system Σ with M0 = {p1, . . . , pn} is inductively
defined as follows:

• ({(p1,⊥), . . . , (pn,⊥)}, ∅) is a branching process of Σ.

• If (B,E) is a branching process, t is a transition, and X ⊆ B is a co-set labelled by places from
•t, then (B ∪ {(p, e) | p ∈ t•}, E ∪ {e}) is also a branching process of Σ, where e = (t,X). If
e 6∈ E, then e is called a possible extension of (B,E).

The set of all branching processes of Σ is obtained by declaring that the union of any finite or infinite
set of branching processes is also a branching process, where union of branching processes is defined
componentwise on conditions and events. Since branching processes are closed under union, there is a
unique maximal branching process. We call it the unfolding of Σ. In the following we write the labelling
as a projection h : (B∪E) 7→ (P ∪T), such that h((x, y)) = x. For reasons of clarity we write b instead
of (p, e) for conditions, and e instead of (t,X) for events.

2.0.4. Configurations and Cuts

A configuration C of a branching process β = (B,E) is a set of events satisfying the following two
conditions: (i) C is causally closed, i.e. e ∈ C ⇒ ∀e′ ≤ e : e′ ∈ C and (ii) C is conflict-free, i.e.
∀e, e′ ∈ C : ¬(e#e′).

A maximal co-set B ′ ⊆ B with respect to set inclusion is called a cut. Let C be a finite configuration,
and Cut(C) = (Min(β) ∪ C•) \ •C . Then Cut(C) is a cut. In particular, the set of places {h(b) | b ∈
Cut(C)} is a reachable marking denoted by Mark(C).

For an event e we define the local configuration [e] by the set of all events e′ such that e′ ≤ e. Then
we call e a cut-off event of a branching process β if β contains a local configuration [e′] ≺ [e] such
that the corresponding markings are equal, i.e. Mark([e]) = Mark([e′]). ≺ denotes a total order on
the configurations of β. See [ERV96] for more details on total orders on configurations of branching
processes.

A branching process β of a net system is called complete finite prefix if and only if for every reachable
marking M there exists a configuration C in β without any cut-off event such that (i) Mark(C) = M (i.e.
M is represented in β) and (ii) for every transition t enabled by M there exists a configuration C ∪ {e}
such that e 6∈ C and e is labelled by t.

Figure 1 shows a 1-safe net system and its complete finite prefix, where e3, e5, e7, e8, e10 and e12

are cut-off events.

p1 p3 p5

p2 p4 p6

t1 t2 t3 t4 t5 t6

tnew

e12t5

b12p6

e11t6

b11p5

e9t4

b10p4

e10t3

b9p6

e8t5

b8p3

e4t2

b7p2

e7t1

b5p4

e5t3

e2t4

b6p5

e6t6

b4p6

e3t5

e1t6

b3p5 b2p3 b1p1

Figure 1. A net system and its complete finite prefix

3. Different methods for reachability checking

As mentioned in the introduction we investigate the reachability problem of 1-safe Petri nets using com-
plete finite prefixes. We will now define our understanding of the reachability problem more precisely.

Definition 3.1. Reachability problem for 1-safe Petri nets

The reachability problem is as follows: Given a net system (P, T, F,M0) and a partial marking
P ′

par = (P 1
par, P

0
par), is there a marking M reachable from M0 (i.e. ∃σ : M0

σ
→ M) such that for

every p ∈ (P 1
par ∪ P 0

par) : M(p) = Mpar(p) holds. 3.1

In other words we consider two subsets P 1
par and P 0

par of places and want to check if there exists
a reachable marking which puts a token into each place of P 1

par and puts no token into places of P 0
par.

One might ask why we consider subset reachability instead of only 1-place reachability which would
suffice in the following way: One could insert the complements of the places of P0

par into the net. Then
a new transition could be added which takes a token from each of these complements and from each
place of P 1

par and adds one token to an extra place pnew. Solving the reachability problem for pnew

would suffice for deciding the reachability problem for the original subsets of places. Indeed, this is
the approach we are using within the on-the-fly verification. However, this method has one drawback.
The prefix has to be calculated again for every property and the prefix generation takes a lot more time
than the real reachability check. So, the usual idea of the unfolding based approaches is that one has
to generate the prefix of the net system only once. Once this prefix exists it can be reused for the
reachability check of arbitrary markings. With subset reachability the prefix of the net system has to
be calculated only once for all algorithms CheckLin, Mcsmodels and CheckCo, and can be reused for
arbitrary markings. Furthermore, the algorithms CheckLin and Mcsmodels do not have to make use of
additional complementary places.

Theorem 3.1. NP-completeness of the reachability problem

The reachability problem for 1-safe Petri nets using prefixes is NP-complete.

The proof is presented in Appendix A. In the following we briefly review methods based on linear
programming [Mel98] and logic programs [Hel99], and introduce a new method using a graph theo-
retic approach. Moreover, we present an on-the-fly verification technique as mentioned by McMillan
[McM92].

3.1. Using linear programming: CheckLin

Melzer [Mel98] has introduced a method for checking the reachability of a marking based on linear
programming. The basic concept of this method is the so-called marking equation that can be used
as an algebraic representation of the set of reachable markings of an acyclic net. Given a marking M

reachable from the initial marking M0 and a place p, the number of tokens of p in M can be calculated as
the number of tokens p carries in M0 plus the difference of tokens added by the input places and removed
by the output places. This leads to the following equation: M(p) = M0(p)+Σt∈•p#t−Σt∈p•#t, where
#t denotes the number of occurrences of t in an occurrence sequence σ. Usually this equation is written
in the form M = M0 + N·

→
σ , where

→
σ= (#t1, . . . ,#tn)t is called the Parikh vector of σ and N

denotes the incidence matrix of N , a P × T matrix given by N(p, t) = F (t, p) − F (p, t). Additionally,
we formulate a set of restrictions: for each place pi ∈ P 1

par we add the restriction M(pi) ≥ 1, and for
each pi ∈ P 0

par we add M(pi) ≤ 0. Usually the restriction for all places of the marking is given in the
matrix form A · M ≥ b.

In [Mel98] it has been proven that for a given net system Σ = (P, T, F,M0) the restriction A·M ≥ b

holds for a marking reachable from M0 if and only if the equations M ′ = Min(β) + N
′ · X and

h(A) ·M ′ ≥ b have a solution for M ′ and X , where β denotes the prefix of Σ, N′ denotes the incidence
matrix of β, and h denotes the labelling function.

Consider the net in Figure 1 and the partial marking P ′
par = ({p2, p4, p6}, ∅). To check if P ′

par

is a reachable marking, we formulate a corresponding restriction, i.e. M(p2) ≥ 1 and M(p4) ≥ 1
and M(p6) ≥ 1. Using the projection h this restriction can be transferred to markings M ′ of the pre-
fix. Knowing that h(b7) = p2, h(b5) = h(b10) = p4 and h(b4) = h(b9) = h(b12) = p6 we get the
restriction M ′(b7) ≥ 1 and M ′(b5) + M ′(b10) ≥ 1 and M ′(b4) + M ′(b9) + M ′(b12) ≥ 1. Addi-
tionally, for each condition we add its marking equation. For instance, the marking equation for b4 is
M ′(b4) = X(e1) − X(e2) − X(e3). Finally, cut-off events can be eliminated because all reachable
markings are reachable without firing them. The system of linear inequalities looks like this:

M ′(b1) = 1 − X(e4)

M ′(b2) = 1 − X(e2)

M ′(b3) = 1 − X(e1)

M ′(b4) = X(e1) − X(e2) − X(e3)

M ′(b5) = X(e2) − X(e4) − X(e5)

M ′(b6) = X(e2) − X(e6)

M ′(b7) = X(e4) − X(e7)

M ′(b8) = X(e4) − X(e9)

M ′(b9) = X(e6) − X(e8) − X(e9)

M ′(b10) = X(e9) − X(e10)

M ′(b11) = X(e9) − X(e11)

M ′(b12) = X(e11) − X(e12)

M ′(b7) ≥ 1

M ′(b5) + M ′(b10) ≥ 1

M ′(b4) + M ′(b9) + M ′(b12) ≥ 1

X(e3) = 0

X(e5) = 0

X(e7) = 0

X(e8) = 0

X(e10) = 0

X(e12) = 0

On the left side the marking equation of the prefix is shown, and on the right side first the three inequal-
ities of the restriction and below them the equalities for the elimination of the cut-off events are shown.

It can easily be seen that M ′ = {b7, b10, b12} with X = (1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0)t yields the de-
sired solution. In [KK00] Khomenko and Koutny have introduced a further development of this method
but unfortunately we have no experimental results of their approach for the reachability problem which
would be comparable with our experimental results.

3.1.1. Complexity of CheckLin

The elimination of the cut-off events reduces the number of binary variables and simplifies the inequality
system. Therefore the complexity of this method is exponential in the number of non-cut-off events, i.e.
let |E| be the number of non-cut-off events of the prefix then CheckLin solves the reachability problem
in time O(2|E|).

3.2. Using logic programming: Mcsmodels

Heljanko [Hel99] has presented a method for reachability checking of complete finite prefixes using logic
programs with stable model semantics. The main idea of this approach is to translate the problem into a
rule based logic program and to check if there exists a stable model. This method reduces the reachability
problem to SAT. The algorithm uses the Smodels tool which is an implementation of a constraint based
logic programming framework developed to find stable models of a logic program. We show an example
to give an idea of the reduction to SAT, but due to space limitations we refer the reader to [Hel99] for
more details.

Consider the net in Figure 1 and the partial marking P ′
par = ({p2, p4, p6}, ∅). We show, how we can

reduce the reachability problem to SAT for this example. First define a variable for each condition and
for every non-cut-off event of the prefix, e.g. b1, . . . , b12 and e1, e2, e4, e6, e9, e11. The cut-off events
e3, e5, e7, e8, e10 and e12 can be omitted because each reachable marking can be reached without firing
cut-off events. For each condition there is a rule stating when it holds a token. For example, b4 holds a
token if and only if e1 has fired and e2 has not fired (b4 ↔ e1 ∧ ¬e2). Then we need rules describing
the causal relation, for instance, a firing of e2 has to be preceded by a firing of e1 (e2 → e1). Finally, we
need one rule for each place in the marking, i.e. one rule for p2, p4 and p6. For instance, the rule for p6

is b4 ∨ b9 ∨ b12, because p6 holds a token whenever one of these conditions holds a token. Altogether,
the partial marking P ′

par is reachable if and only if the rules are satisfiable.

b1 ↔ ¬e4 b4 ↔ e1 ∧ ¬e2 b7 ↔ e4 b10 ↔ e9

b2 ↔ ¬e2 b5 ↔ e2 ∧ ¬e4 b8 ↔ e4 ∧ ¬e9 b11 ↔ e9 ∧ ¬e11

b3 ↔ ¬e1 b6 ↔ e2 ∧ ¬e6 b9 ↔ e6 ∧ ¬e9 b12 ↔ e11

e2 → e1 e9 → e4 ∧ e6 b7

e4 → e2 e11 → e9 b5 ∨ b10

e6 → e2 b4 ∨ b9 ∨ b12

3.2.1. Complexity of Mcsmodels

Let |B| be the number of conditions and |E| the number of events of the prefix. Since Mcsmodels uses a
variable for each condition and event it solves the reachability problem in time O(2 |B|+|E|).

3.3. A new graph theoretic algorithm: CheckCo

Basically, our algorithm uses the co-relation, which is defined on the set of conditions of a prefix. Gen-
erally, two conditions are in co-relation if and only if they are not causally related and not in conflict.
In the implementation of Römer [Röm00] the co-relation is calculated during the unfolding process and
can directly be used as input for our algorithm. In [Mel98] it has been shown that the reachability of a
partial marking can be checked using the result of Theorem 3.2.

Theorem 3.2. Reachability of partial markings [Mel98]

Let (P, T, F,M0) be a 1-safe net, (B,E) its prefix, and P′
par = (P 1

par, ∅) a partial marking. P ′
par

is reachable if and only if there exists a co-set B ′ ⊆ B such that for every p ∈ P 1
par there exists a

b ∈ B′ with h(b) = p.

By means of the previous example we show, how we can use the co-relation to decide the reachability
of partial markings. Consider the net system and its prefix depicted in Figure 1. In this case the co-
relation of the prefix is the symmetrical closure of the set

{(b1, b2), (b1, b3), (b1, b4), (b1, b5), (b1, b6), (b1, b9), (b2, b3), (b2, b4), (b5, b6), (b5, b9), (b6, b7),
(b6, b8), (b7, b8), (b7, b9), (b7, b10), (b7, b11), (b7, b12), (b8, b9), (b10, b11), (b10, b12)}

Suppose we want to know if the partial marking ({p2, p4, p6}, ∅) is reachable. According to Theorem 3.2
the marking is reachable if there exist conditions corresponding to p2, p4 and p6 which are all pairwise
in co-relation. Considering {b7, b10, b12} it can be seen that the above marking is reachable because
(b7, b10) ∈ co, (b7, b12) ∈ co, (b10, b12) ∈ co, and h(b7) = p2, h(b10) = p4, h(b12) = p6.

The search for a possible solution corresponds to the graph theoretic problem of finding a k-clique
in a k-partite graph. We will explain this in more detail below. Let us construct a k-partite graph in the
following way:

Algorithm: Construction of the k-partite graph Gk = (V,E)
Let N = (P, T, F) be a net and P ′

par = ({p1, p2, . . . , pk}, ∅) a partial marking. Let (B,E) be a complete
finite prefix of N and co ⊆ B × B the co-relation.

(i) For each pi ∈ {p1, p2, . . . , pk} calculate the set of conditions Bi = {bi1 , bi2 , . . . , bim} with
h(bij) = pi for all 1 ≤ j ≤ m.

(ii) Let V :=
⋃

1≤i≤k Bi.

(iii) Draw an arc between bim , bjn ∈ V with i 6= j if (bim , bjn) ∈ co, i.e. draw an arc between two
nodes if they are in co-relation and belong to different Bi’s. (This means that no two elements in
Bi are connected by an arc).

We show the construction of Gk for the net and the prefix shown in Figure 1 and the partial marking
P ′

par = ({p2, p4, p6}, ∅). The sets Bi of conditions can be deduced directly from the prefix: B1 = {b7},
B2 = {b5, b10} and B3 = {b4, b9, b12}. We draw arcs only between nodes which are in co-relation and
belong to different Bi’s. Because of the symmetry of the co-relation we draw undirected arcs between
the nodes (b7, b10), (b7, b9), (b7, b12), (b5, b9), (b10, b12). Figure 2 shows the graph G3. The nodes b7, b10

and b12 build a 3-clique, and therefore we can conclude that the partial marking P ′
par = ({p2, p4, p6}, ∅)

b7
b4

b9

b12

b5

b10

Figure 2. 3-partite graph G3

p1

t1

p2

p3

t2

p4

p1

t1

pc
1

p2

pc
2

p3

t2

pc
3

p4

pc
4 b1p1

e1t1

b6p2b5pc
1

b2pc
2 b3p3

e2t2

b8p4b7pc
3

b4pc
4

Figure 3. A net system extended with complementary places and its prefix

is reachable. Generally speaking, a partial marking P ′
par = (P 1

par, ∅) is reachable if and only if the
k-partite graph Gk has a k-clique.

3.3.1. Concept of complementary places

The method explained above does not work if the partial marking under consideration includes places
which should not carry a token. For example, in Figure 3 one might want to know whether there is a
reachable marking in which the place p2 carries a token and the place p4 carries no token. We cannot
decide it using only the co-relation and to cope with this problem we introduce complementary places.

Definition 3.2. Complementary place

Let (P, T, F,M0) be a net system and p ∈ P a place. A place pc ∈ P is called complement of p if
and only if

(i) ∀t ∈ T : ((p, t) ∈ F ∨ (pc, t) ∈ F) ⇒ ((t, pc) ∈ F ⇔ (t, p) 6∈ F)

(ii) ∀t ∈ T : ((t, p) ∈ F ∨ (t, pc) ∈ F) ⇒ ((pc, t) ∈ F ⇔ (p, t) 6∈ F)

(iii) M0(p
c) = 1 − M0(p) 3.2

Loosely speaking, a place p carries a token if and only if its complementary place pc does not carry a
token. Then it is clear that a partial marking P ′

par = ({p1, . . . , pk}, {pk+1, . . . , pn}) is reachable if and
only if the corresponding marking P ′′

par = ({p1, . . . , pk, p
c
k+1, . . . , pc

n}, ∅) is reachable.
In the example of Figure 3 the problem of checking the reachability of the partial marking ({p2}, {p4})

can be reduced to constructing a net with complementary places and checking the reachability of the
partial marking ({p2, p

c
4}, ∅) which is possible using only the co-relation. Figure 3 shows a net, its mod-

ification with complementary places and the corresponding prefix. Using the prefix of the modified net it
can be seen that the partial marking ({p2}, {p4}) is reachable because the conditions b6 with h(b6) = p2

and b4 with h(b4) = pc
4 are in co-relation.

The complement pc of a place p can be added as follows: the preset of pc is the postset of p and
the postset of pc is the preset of p. But this may lead into trouble in the special case that place p has a
side-loop, i.e. a transition that is both in the preset and in the postset. Figure 4 (left side) illustrates such

p1

t1

p2 t2

t3

p3

p1

t1

pc
1

p2 t2

t3

pc
2

p3 pc
3

p1

t1

pc
1

p2 t2

t3

pc
2

p3 pc
3

Figure 4. A net system with side-loop, a net system with complementary places

p3 pc
3

t

p1 p2

et

b1p1 b2p2 b3pc
3

Figure 5. Parts of a 1-safe Petri net and its unfolding

a situation. The central part of Figure 4 shows the construction of pc
2 according to the fashion described

above. It can be seen that transition t2 can never fire. This is an undesired behaviour and therefore the
arcs between transition t2 and place pc

2 have to be deleted. Figure 4 (right side) shows the corrected
system. Generally speaking, we only connect a complementary place with a transition if the transition is
not part of a side-loop.

Note, that using this concept the expressive power of the unfolding technique still remains because
inserting complementary places does not restrict the concurrent behaviour of a net system.

3.3.2. Inserting complementary conditions into the unfolded prefix

All verification techniques described in previous sections are based on the unfolding technique and take
as input a complete finite prefix of a net system. The main advantage of unfolding based techniques
compared to other techniques is that once a prefix has been calculated it may be reused for checking
many different properties. Since our approach for reachability checking using the co-relation requires
information about complementary places we have suggested in [ES00] to insert the complements of
all places into the net system and then to unfold it. But a problem arises from adding complementary
places because the prefix construction times of the nets increase. As one can see in [ES00] the prefix
construction times of the nets with all complements are up to ten to twenty times larger than the prefix
construction times of the nets without additional complements.

This effect is not astonishing, and we will explain it by means of an example. Consider the fragments
of a 1-safe Petri net and its unfolding as depicted in Figure 5. The unfolding algorithm of [ERV96] works
as follows: An event e projected to the transition t (h(e) = t) can be inserted into the unfolding if there
exists a co-set of conditions which correspond to the input places of transition t. With regard to our
example this means that event e with h(e) = t can be added if there exist three conditions b1, b2 and
b3 with h(b1) = p1, h(b2) = p2, h(b3) = pc

3 which are all pairwise in co-relation. This corresponds to

the CLIQUE problem mentioned in previous sections and the greater the number of input places of t the
greater the number of possible co-sets. The calculation of the co-relation and the combinatorical search
for the existence of a suitable co-set are the main cost factors of the unfolding procedure.

To cope with this problem we introduce a new approach for inserting complementary conditions
into the unfolded prefix. The main idea is to unfold the original net and then to insert the neccessary
complements into the prefix. An advantage of this approach is that the algorithm is based on exactly the
same prefix as the verification techniques described in previous sections. Therefore our new approach
is an improvement of [ES00], and we will explain it by means of Figure 5. Suppose that the prefix for
the net (without place pc

3) has been constructed, and now we are interested in inserting complementary
conditions for place p3 into the unfolded prefix. First of all, for each event eo corresponding to an
output transition of p3 we add a new condition b labelled with pc

3 to the postset of eo. In a second
step we have to extend the preset of each event ei corresponding to an input transition of p3 by exactly
one of the conditions labelled with pc

3. In Appendix B we have proven that either the input event of
this condition (b3 in Figure 5) is contained in the local configurations of the input events of b1 and
b2 or the condition b3 is contained in the initial marking of the prefix β, i.e. •b3 ⊆ ([•b1] ∪ [•b2]) or
b3 ∈ Min(β). Finally, we have to calculate the co-relation between the conditions corresponding to pc

3

and the conditions corresponding to the other places in the marking.

3.3.3. Outline of CheckCo

Input: Net system Σ = (P, T, F,M0) and a partial marking P ′

par = ({p1, . . . , pk}, {pk+1, . . . , pn}).

Output: NO or YES

begin

β = Unfold(Σ);

Replace P ′

par by ({p1, . . . , pk, pc
k+1

, . . . , pc
n}, ∅);

forall pi ∈ {pc
k+1

, . . . , pc
n} do

InsertConditions(β); od;

forall bi labelled by pi ∈ {pc
k+1

, . . . , pc
n} do

CalculateCoRelation(); od;

forall pi ∈ {p1, . . . , pk, pc
k+1

, . . . , pc
n} do

Calculate(Bi); od;

/ ∗ ∀bij
∈ Bi : h(bij

) = pi ∗ /

L := ∅;

Check(1);

output (NO);
end

proc Check(int count)

j := 1;

while j ≤ |Bcount| do
L := L ∪ {bcountj

};

if all elements of L are pairwise in

co − relation then
if |L| = |P 1

par ∪ P 0
par| then

output (YES);
exit;

else Check(count + 1); endif ;

endif ;

L := L \ {bcountj
};

j := j + 1;

od

end Check

CheckCo works as follows: First we unfold the net system into a complete finite prefix. The co-
relation has been automatically constructed during the unfolding process. Then we read the partial
marking and replace each place p with Mpar(p) = 0 by its complement pc. For each place pi ∈
{pc

k+1, . . . , p
c
n} its corresponding conditions will be added to the prefix, and the co-relation will be

calculated for these conditions. Then for each place in the marking the corresponding conditions in the
prefix will be searched. The marking is reachable if there exists a clique of conditions, one for each place
in the marking, such that these conditions are pairwise in co-relation. This part is implemented in the
procedure Check. The set L yields the desired clique if there is one.

Let us consider again the net system of Figure 1. We want to check if the partial marking P ′
par =

({p2, p4}, {p5}) is reachable. First we would have to insert new conditions for the complementary place
of p5 into the prefix, but it can be seen that p6 is already the complement of p5, and so nothing has to
be done. Instead we can check if the partial marking P ′′

par = ({p2, p4, p6}, ∅) is reachable. For that,
we have to calculate the sets Bi (1 ≤ i ≤ 3). We obtain B1 = {b7} with h(b7) = p2, B2 = {b5, b10}
with h(b5) = h(b10) = p4 and B3 = {b4, b9, b12} with h(b4) = h(b9) = h(b12) = p6. Now we can
invoke the procedure Check(1). In the first step we set L = {b7} and call Check(2). Now we have to
test if all elements of L = {b7, b5} are in co-relation. Apparently this is not the case and so we try
L = {b7, b10}. These elements are co-related and we can call Check(3). L = {b7, b10, b4} is no solution
because (b7, b4) 6∈ co, L = {b7, b10, b9} is no solution because (b10, b9) 6∈ co, but L = {b7, b10, b12}
yields the desired clique (see Figure 2). Then according to Theorem 3.2 the partial marking P ′′

par =
({p2, p4, p6}, ∅) is reachable and hence the partial marking P ′

par = ({p2, p4}, {p5}) is also reachable.

3.3.4. Complexity of CheckCo

Let (P, T, F,M0) be a net system, β = (B,E) its corresponding prefix, co ⊆ B ×B the co-relation and
P ′

par = (P 1
par, P

0
par) a partial marking. There exists a parameterized function Mpar : (P 1

par ∪ P 0
par) 7→

{0, 1} that maps the places of the partial marking onto 0 and 1. Each place of P 1
par ∪ P 0

par corresponds

to at most |B| conditions in the prefix which leads to |B||P
1
par∪P 0

par| possible solutions. Then we need at
most |P 1

par∪P 0
par|

2 comparisons for checking if the conditions of one possible solution are in pairwise co-
relation. Inserting complementary conditions and the calculation of the co-relation can be done in time
O(|B|2 · |E|). Altogether, this leads to a complexity of O(|B||P

1
par∪P 0

par | · |P 1
par ∪ P 0

par|
2 + |B|2 · |E|).

Since |B| and |E| are usually much larger than |P 1
par ∪P 0

par| this is a significant improvement compared
to the complexities of CheckLin and Mcsmodels.

3.4. On-the-fly verification: OnTheFly

In [ERV96] the authors present an efficient algorithm for constructing a complete finite prefix of 1-safe
Petri nets. Knowing that all reachable markings of the net are coded in its prefix [McM92] we can verify
the reachability of a partial marking during calculation of the prefix in the following way: Let P′

par =
({p1, . . . , pk}, {pk+1, . . . , pn}) be the partial marking to be checked. We insert the complements of the
places pk+1, . . . , pn into the net and check the partial marking P ′′

par = ({p1, . . . , pk, p
c
k+1, . . . , p

c
n}, ∅).

This can be done in a way first suggested by McMillan [McM92]. We insert a new transition tnew into
the original net in such a way that •tnew = {p1, . . . , pk, p

c
k+1, . . . , p

c
n}. Then we start the unfolding

algorithm described in [ERV96]. The algorithm stops if an event e with h(e) = tnew can be inserted into
the prefix. At this point we can conclude that the marking P′

par is reachable, otherwise the prefix will be
generated completely.

We explain this method by means of an example. Consider the net in Figure 1 and the partial marking
P ′

par = ({p2, p3, p6}, ∅). Figure 1 (consider the dotted lines) illustrates the modified net system and its
prefix. The algorithm stops at the dotted line, because the next event that can be inserted has the places
p2, p3 and p6 in its preset. Therefore the reachability of P ′

par is proven.

3.4.1. Complexity of OnTheFly

Let |T | be the number of transitions of the original net, r the number of reachable markings and ξ the
maximum fan-in/fan-out of transitions. The unfolding procedure of [ERV96] solves the reachability
problem in time O(|T | · rξ).

4. Comparison of the algorithms

In this section we compare the four approaches and try to deduce a rule describing the situations in
which one algorithm is more suitable than the others. We confirm our statements by practical results.
For our tests we used a representative subset of Corbett’s examples [Cor94] on randomly generated
“meaningful” markings. These examples are also used in [MR97, Hel99]. In the following we briefly
explain how “meaningful” markings were generated.

OnTheFly Mcsmodels CheckLin CheckCo n

tUnf - 15.64 15.64 15.64 -
R2 3.46 0.74 13.72 1.78 6

key(3) R4 2.99 1.05 15.41 2.21 9
tavg R6 5.71 1.47 15.15 4.08 4

N4 16.93 1.79 8.15 2.41 2

tUnf - 3.69 3.69 3.69 -

R2 1.04 0.43 4.19 0.63 7

elevator(3) R4 1.61 0.56 4.28 0.69 3
tavg R6 3.01 0.84 6.10 0.87 2

N4 5.57 0.31 2.53 0.65 1

tUnf - 7.73 7.73 7.73 -

R2 0.17 0.45 30.73 1.08 -
dpd(7) R4 0.25 0.50 29.92 1.43 -

tavg R6 0.28 0.54 30.48 2.59 -

N4 8.08 2.47 24.54 1.32 2

tUnf - 14.75 14.75 14.75 -

R2 0.22 0.66 28.28 1.61 -

dph(6) R4 0.37 0.83 33.65 3.58 -
tavg R6 0.51 1.03 40.07 5.80 -

N4 15.47 2.38 34.63 1.85 2

tUnf - 54.76 54.76 54.76 -

R2 0.39 1.33 27.39 4.12 -

furnace(3) R4 1.27 1.30 36.09 5.66 -
tavg R6 4.52 1.50 30.68 17.06 19

N4 57.00 8.91 27.75 5.61 2

tUnf - 5.52 5.52 5.52 -
R2 0.20 0.30 14.28 0.73 -

over(5) R4 0.28 0.34 15.13 0.90 -
tavg R6 0.32 0.36 15.72 1.14 -

N4 6.17 0.57 14.04 0.78 1

Originally, Corbett’s exam-
ples are modelled as communicat-
ing finite automata and they are
translated from these into Petri
nets. The translation procedure
yields a division of the nets into
components where each compo-
nent can carry at most one to-
ken. For this reason, it would
be useless to test markings which
include two or more places be-
longing to the same component
because such markings are not
reachable. To avoid the genera-
tion of such markings, our mark-
ing generator works as follows:
First we determine the number of
components and for each com-
ponent the number of its places.
Then we randomly choose k of
the components (where k is the
size of the generated marking). For each of the chosen components we randomly select one of its places.
Note that the size of the markings is bounded by the number of components of the net system, but this is
not a big restriction.

We present results for partial markings with 2, 4 and 6 places. The average verification times are
all based on at least 20 different markings. All computations were carried out on the same machine, a
SUN SPARC20 with 96 MByte of RAM. CheckLin uses CPLEXTM (version 6.5.1) as its underlying
MIP-solver, and Mcsmodels uses Smodels as constraint programming framework.

First we compare the three methods Mcsmodels, CheckLin and CheckCo because they all use the
same prefix as input. The unfolding times are shown in row tUnf . The times tavg in the table show the
average time needed for verification without the unfolding time. The rows R2, R4, R6 show tests with
reachable markings of size 2, 4, and 6. The row N4 shows the results for unreachable markings with 4
places. Apparently, the table shows that in most cases the algorithm Mcsmodels yields the fastest verifi-
cation times independently of the marking size and independently of whether the markings are reachable
or not (in some cases CheckCo seems to be faster for unreachable markings). So, in a second step, we
only need to compare Mcsmodels with the on-the-fly method OnTheFly. The OnTheFly algorithm stops
the unfolding process if a cut is found which represents the marking under consideration, otherwise it

calculates the prefix completely. Therefore it needs for reachable markings at most the unfolding time
of the complete prefix. In the case that the markings are unreachable, OnTheFly takes at least the com-
plete unfolding time. With this knowledge we guess that on-the-fly verification is more suitable than
Mcsmodels for checking reachable markings. On the other hand it seems useful to prefer Mcsmodels for
unreachable markings. Indeed, the results seem to confirm this suspicion. If we look at the results for
reachable markings, the OnTheFly algorithm is always faster than Mcsmodels for the systems dpd(7),
dph(6) and over(5). However, for systems like key(3) and elevator(3) the opposite holds. In these cases
we can compute the smallest integer n such that n · OnTheF lytavg ≥ tUnf + (n · Mcsmodelstavg).
Then n denotes a breakpoint from which it is more efficient to use Mcsmodels instead of OnTheFly.
More precisely, if we test n or more markings the total time of Mcsmodels (also including the unfolding
time) is smaller than the total time of OnTheFly. The values for n are listed in the last column of the
table. A look at the times for unreachable markings (rows N4) confirms our assumption that one should
prefer Mcsmodels as verification technique because for most systems the breakpoint n is 2 (meaning that
Mcsmodels is faster than OnTheFly even for only two markings).

OnTheFly Mcsmodels

Mcsmodels

reachable
not

reachable

Figure 6. Suggestion

Figure 6 summarizes the results. At any rate, if one guesses
that the markings to be checked are unreachable, Mcsmodels
should be preferred. OnTheFly is an efficient technique for the ver-
ification of reachable markings, but there may exist a breakpoint
from which on it is better to use Mcsmodels. This breakpoint, if
any exists, is very different for the considered systems and depends
on the size of the marking.

5. Conclusions

We have presented a new algorithm for reachability checking based on net unfoldings using a graph
theoretic technique. Moreover, we have reviewed an on-the-fly verification technique and two methods
for reachability checking using linear programming and logic programming with stable model seman-
tics. By means of Corbett’s examples we have discussed the different algorithms and suggested which
algorithms are most suitable for various reachability checking tasks.

5.0.2. Acknowledgements

We would like to thank Stefan Römer for valuable comments and suggestions to this work.

References

[Cor94] J. C. Corbett. Evaluating Deadlock Detection Methods, 1994.

[ER99] J. Esparza and S. R ömer. An Unfolding Algorithm for Synchronous Products of Transition Systems.
In Concur’99, pages 2 – 20. Springer-Verlag, 1999.

[ERV96] J. Esparza, S. R ömer, and W. Vogler. An Improvement of McMillan’s Unfolding Algorithm. In
TACAS’96, LNCS 1055, pages 87 – 106. Springer-Verlag, 1996.

[ES00] J. Esparza and C. Schr öter. Reachability Analysis Using Net Unfoldings. In H. D. Burkhard, L. Czaja,
A. Skowron, and P. Starke, editors, Workshop of Concurrency, Specification & Programming, vol-
ume II of Informatik-Bericht 140, pages 255 – 270. Humboldt-Universit ät zu Berlin, 2000.

[Hel99] K. Heljanko. Using Logic Programs with Stable Model Semantics to Solve Deadlock and Reachability
Problems for 1–Safe Petri Nets. In TACAS’99, LNCS 1579, pages 240–254. Springer-Verlag, 1999.

[KK00] V. Khomenko and M. Koutny. Verification of Bounded Petri Nets Using Integer Programming. Tech-
nical Report CS-TR-711, Department of Computing Science, University of Newcastle upon Tyne,
2000.

[KKTT96] A. Kondratyev, M. Kishinevsky, A. Taubin, and S. Ten. A Structural Approach for the Analysis of Petri
nets by Reduced Unfoldings. In ICATPN’96, LNCS 1091, pages 346–365. Springer-Verlag, 1996.

[McM92] K. L. McMillan. Using Unfoldings to Avoid the State Explosion Problem in the Verification of Asyn-
chronous Circuits. In CAV’92, LNCS 663, pages 164 – 174. Springer-Verlag, 1992.

[Mel98] S. Melzer. Verifikation verteilter Systeme mittels linearer - und Constraint-Programmierung. PhD
thesis, Technische Universit ät M ünchen, 1998.

[MR97] S. Melzer and S. R ömer. Deadlock Checking Using Net Unfoldings. In CAV’97, LNCS 1254, pages
352 – 363. Springer-Verlag, 1997.

[Ray86] M. Raynal. Algorithms For Mutual Exclusion, 1986.

[R öm00] S. R ömer. Theorie und Praxis der Netzentfaltungen als Grundlage f̈ur die Verifikation nebenl̈aufiger
Systeme. PhD thesis, Tech. Univ. M ünchen, 2000.

A. Proof of NP-completeness of the reachability problem

First we prove NP-hardness of the reachability problem by reducing from the SAT-problem for boolean
formulae in conjunctive normal form to the reachability problem in polynomial time. Let ϕ be a formula
in conjunctive normal form with variables x1, . . . , xn and clauses c1, . . . , cm. We construct a Petri net
(Nϕ,M0ϕ) with Nϕ = (Pϕ, Tϕ, Fϕ) in the following way: Nϕ contains

• a place pxi
for each variable xi such that •pxi

= ∅ and p•xi
= {txi

, txi
};

• a place pjl
for each clause cj and each literal l of cj such that •pjl

= {tl} and p•jl
= {tjl

};

• a place pcj
for each clause cj such that •pcj

=
⋃

l∈cj
{tjl

} and p•cj
= ∅.

M0ϕ puts one token on each place pxi
, and no token elsewhere. However, one problem arises from this

construction. The generated net is not 1-safe because it may happen that two transitions tjl
and tjm fire

independently, and both of them put a token on the place pcj
. This undesired behaviour can be repaired

with a new place which ensures that only one of the transitions can fire. Therefore

• add a place prj
for each clause cj such that •prj

= ∅ and p•rj
=

⋃
l∈cj

{tjl
}.

M0ϕ puts one token on each place prj
. Now we have constructed a 1-safe net with the property that the

formula ϕ is satisfiable if and only if the net (Nϕ,M0ϕ) has a reachable marking which puts one token
on each place pcj

. Figure 7 shows an example for the net (Nϕ,M0ϕ) with ϕ = (x1∨x2∨x3)∧(x1∨x2).
Now we have to show how we can construct the prefix βϕ from the net (Nϕ,M0ϕ) in polynomial time.

pc1

t1x1
t1x2

t1x3

p1x1
p1x2

p1x3

pr1

t2x1
t2x2

pc2

p2x1
p2x2

pr2

tx1
tx1

px1

tx2
tx2

px2

tx3
tx3

px3

pc1x1

pc1x2

pc1x3

pc2x1

pc2x2

Figure 7. Net (Nϕ, M0ϕ
) with ϕ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2)

But this is an easy task because we only have to do minor changes to transform (Nϕ,M0ϕ) into βϕ.
Recalling the definition of occurrence nets we see that the net (Nϕ,M0ϕ) only violates the property that
all conditions must not have more than one event in their preset. It can be seen that only the places pcj

have more than one transition in their presets. This can be changed if we duplicate these places. More
precisely:

• replace each place pcj
by k = |•pcj

| places, i.e. a place pcjl
for each literal l ∈ cj such that

•pcjl
= {tjl

} and p•cjl
= ∅.

The dotted lines in Figure 7 show the modified net. Surely, this net is the desired prefix and consequently
the formula ϕ is satisfiable if and only if the prefix has a reachable marking such that for each place pcj

in the original net there is a token on exactly one of its corresponding places pcjl
.

We have successfully proven NP-hardness for the reachability problem. The second step consists of
proving that the problem is in NP. This can be done by reduction from the reachability problem to SAT or
another NP-complete problem. In sections 3.1 and 3.2 we have presented two methods which reduce the
reachability problem to the problem of solving a linear inequation system [Mel98] and to SAT [Hel99].

B. Proof for complementary conditions

The net fragment depicted in Figure 5 serves as basis for the following proof. We have to show that there
exists exactly one condition b3 with h(b3) = pc

3 which is in co-relation with b1 and b2 and that b3 is
contained in the cut which is induced by the history of the conditions b1 and b2. Therefore the proof is
divided into two parts:

(i) if {b1, b2, b3} is a co-set then •b3 ⊆ ([•b1] ∪ [•b2]) or b3 ∈ Min(β).

(ii) if (b1, b2) ∈ co then there exists at most one event b3 with h(b3) = pc
3 such that {b1, b2, b3} is a

co-set.

Proof of part (i):

(a) b3 ∈ Min(β): trivial case

(b) b3 6∈ Min(β): then there exists a condition b ∈ •(•b3) with h(b) = p3. From the 1-safeness of the
net follows that (b, b1) 6∈ co or (b, b2) 6∈ co. Without loss of generality we assume (b, b2) 6∈ co.
Then they have to be in conflict or causally related.

(b1) b#b2 (b and b2 are in conflict): then b2 and b3 are also in conflict but this is in contradiction
to (b2, b3) ∈ co.

(b2) b2 < b (b and b2 are causally related): then b2 < b3 and this is in contradiction to (b2, b3) ∈
co.

(b3) b < b2: There are two cases:

(b3i) there exist two events e1, e2 ∈ b• such that e1 ∈ [•b2] and e2 ∈ •b3. From this follows
directly b2#b3 and this is in contradiction to (b2, b3) ∈ co.

(b3ii) there exist an event e ∈ b• such that e ∈ [•b2] and e ∈ •b3. But this is the expected
result.

Proof of part (ii):
Assumption: There exist two conditions b3, b4 with h(b3) = h(b4) = pc

3 and two co-sets C1 = {b1, b2, b3},
C2 = {b1, b2, b4}.
From the 1-safeness of the net follows directly (b3, b4) 6∈ co. But then they have to be in conflict or
causally related. We have to prove these two cases:

(a) b3#b4 (b3 and b4 are in conflict): from part (i) of the proof follows directly:
(C1 co-set ⇒ •b3 ⊆ ([•b1] ∪ [•b2])) and (C2 co-set ⇒ •b4 ⊆ ([•b1] ∪ [•b2]))

(a1) •b3, •b4 ⊆ [•b1]: this is a contradiction because two events which are in conflict cannot
belong to the same local configuration. (•b3, •b4 ⊆ [•b2] Analogous)

(a2) •b3 ⊆ [•b1], •b4 ⊆ [•b2]: then b1 and b2 are in conflict but this is a contradiction to the
assumption that C1 and C2 are co-sets. (•b3 ⊆ [•b2], •b4 ⊆ [•b1] Analogous)

(b) b3 < b4 (b3 and b4 are causally related): from part (i) of the proof follows directly:
C1 co-set ⇒ •b3 ⊆ ([•b1] ∪ [•b2]) ∨ b3 ∈ Min(β)
C2 co-set ⇒ •b4 ⊆ ([•b1] ∪ [•b2])
further there exists an event e such that e ∈ b•3 and e ∈ [•b4]. But from e ∈ ([•b1] ∪ [•b2]) follows
directly b3 < b1 or b3 < b2. But this is a contradiction to the assupmtion that C1 is a co-set.
(b4 < b3 Analogous)

