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Abstract. We introduce FPsolve, an implementation of generic algo-
rithms for solving fixpoint equations over semirings. We first illustrate
the interest of generic solvers by means of a scenario. We then succinctly
describe some of the algorithms implemented in the tool, and provide
some implementation details.

1 Introduction

We present FPsolve1, a solver for algebraic systems of equations first introduced
in [?]. These are systems of equations of the form

X1 = f1(X1, X2, . . . , Xn) · · · Xn = fn(X1, X2, . . . , Xn)

where f1, . . . , fn are polynomials in the variables X1, X2, . . . , Xn. The coeffi-
cients of the polynomials can be elements of any semiring satisfying some weak
conditions, which ensure that there exists a unique smallest solution. FPsolve
implements a number of generic algorithms, i.e. algorithms parametric in the
semiring operations of addition and multiplication, plus possibly the Kleene star
operation.

Algebraic systems naturally arise in various settings:

– The language of a context-free grammar like X → aXX | b is the least
solution of the equation X = aXX+ b over the semiring whose elements are
languages, with union and concatenation of languages as sum and product.

– Shortest-paths problems on finite graphs and on some infinite graphs, like
those generated by weighted pushdown automata, can be reduced to solving
fixed-point equations over a semiring having the possible edge weights as
elements [7,16].

– Data-flow equations associated to many intra- and interprocedural dataflow
analyses are fixed-point equations over complete lattices [13], which can often
be recast as equations on semirings [16,6].

– Authorization problems (like, for instance, the authorization problem for the
SPKI/SDSI authorization system), can be recast as a reachability problem
in weighted pushdown automata [12], and thus to algebraic systems [6].

? This work was funded by the DFG project “Polynomial Systems on Semirings: Foun-
dations, Algorithms, Applications”

1 Freely available from https://github.com/mschlund/FPsolve.
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– Computing the reputation of a principal in a reputation system (a system in
which principals can recommend other principals, and rules are used to com-
pute reputation out of a set of direct recommendations) reduces to solving
an algebraic system [5].

– Evaluating a Datalog query can be reformulated as the problem of deciding
whether a non-terminal of a context-free grammar is productive or not, and
so it also amounts to solving a system of equations. Moreover, several prob-
lems concerning the computation of provenance information, an important
research topic in database theory, reduces to solving an associated algebraic
system over different semirings. [11]

The paper is structured as follows. Section 2 motivates by means of a scenario
the interest of generic solvers for algebraic systems. Section 3 describes the basic
algorithms and data structures used in FPsolve . Finally, Section 4 briefly
describes the implementation.

2 Scenario: A Recommendation System

We succinctly describe SDSIRec, a recommendation system inspired by the
SDSI authorization system [12], and very close to the reputation system de-
scribed in [5].

SDSIRec distinguishes customers (denoted by x, y, z) and products (denoted
by p). Given a collection of individual recommendations of products by cus-
tomers, SDSIRec computes an aggregated customer rating for each product.
Individual recommendations are described in SDSIRec by means of rules of the
form:

x.Rec
w−−→ p (1)

x.Trust
w−−→ y (2)

The term x.Rec denotes the fuzzy set of all products recommended by customer
x. The rule x.Rec

w−−→ p denotes that p belongs to x.Rec with weight w, i.e., that
x recommends p with “rating” w. Analogously, x.Trust denotes the fuzzy set of
all customers (whose recommendations are) trusted by x. The set of all weights,
denoted by S, contains the special weight 0, which explicitly states that p resp. y
does not belong to x.Rec resp. x.Trust; assigning a rule the weight 0 is equivalent
to removing the rule from the input.

Besides direct recommendation and direct trust, SDSIRec also takes into
account indirect recommendation of products via trust in other customers. For
instance, consider the following scenario:

Jesse.Trust
w1−−→Walt

Walt.Rec
w2−−→FPsolve

Since Walt recommends FPsolve with weight w2, and Jesse trusts the recom-
mendations of Walt (his former high-school teacher) with weight w1, SDSIRec



infers that Jesse indirectly recommends FPsolve with some weight w1 � w2,
where � abstracts from the concrete way how the weights should be combined
into a new weight. The operator must satisfy 0 � w = 0 = w � 0, so that the
interpretation of 0 as a non-existing rule is preserved. The inference is modeled
be the following (hard coded) rules:

x.Trust
λ−→x.Trust.Trust (3)

x.Rec
µ−→x.Trust.Rec (4)

Rule (3) states that the set of customers trusted by x contains the set of cus-
tomers trusted by customers trusted by x. Analogously, rule (4) states that the
set of products recommended by x contains all products recommended by cus-
tomers trusted byx. As these rules may lead to cycles, i.e. x might trust herself,
thereby recommending to herself the products recommended by her, SDSIRec
allows one to specify discount factors λ and µ to dampen resp. penalize these
effects. The special weight 1 (required to satisfy w�1 = w = 1�w) can be used
to disable this discounting. SDSIRec then treats the rules (1) to (4) as rewrite
rules in the sense of a pushdown system [16]. For instance, we get

Jesse.Rec
µ−→Jesse.Trust.Rec

w1−−→Walt.Rec
w2−−→FPsolve

Jesse.Rec
µ−→Jesse.Trust.Rec

λ−→Jesse.Trust.Trust.Rec
w1−−→Walt.Trust.Rec

The first “path” with weight µ � w1 � w2 captures that Jesse indirectly rec-
ommends FPsolve. The second path is an example of a path that cannot be
extended to a recommendation of p: Since Walt trusts nobody (as specified by
the input system), SDSIRec can never rewrite Walt.Trust to Walt.

In order to compute to what extent p belongs to x.Rec SDSIRec finally
aggregates the weight of the (possibly infinitely many) paths leading from x.Rec
to p. We use ⊕ to denote the operator that is used to aggregate the weights
of different paths. It is well-known that if 〈S,⊕,�,0,1〉 forms an ω-continuous
semiring, then the problem of aggregating over all possible paths can be recast as
computing the least solution of an algebraic system (see below) [9,16,6]. Recall
that 〈S,⊕,�,0,1〉 is a semiring if ⊕ and � are associative and have neutral
elements 0 and 1, respectively, ⊕ is commutative, � distributes over ⊕, and any
product with 0 as factor evaluates to 0. Given a, b ∈ S, we say a v b if there is
c ∈ S such that a + c = b. A semiring is naturally ordered if the relation v is a
partial order. An ω-continuous semiring is a naturally ordered semiring extended
by an infinite summation-operator

∑
that satisfies some natural properties. In

particular, for every sequence (ai)i≥0 the supremum sup{
∑

0≤i≤k ai | k ∈ N}
w.r.t. v exists, and is equal to

∑
i∈N ai [14].

Let Rxp and Txy be variables standing for the total weights with which x
recommends p or trusts y, and let rxp, txy denote the weights of the direct rec-

ommendation, or the direct trust of x in p and y, respectively (i.e. x.Rec
rxp−−−→ p

resp. x.Trust
txy−−−→ y).



If 〈S,⊕,�,0,1〉 is an ω-continuous semiring, then the total weights are the
unique smallest solution w.r.t. v of the following algebraic system (cf. [9,16,6])

Rxp = rxp ⊕
⊕
y

µ� Txy �Ryp for all consumers x, products p

Txy = txy ⊕
⊕
z

λ� Txz � Tzy for all consumers x, y

The key point of our argumentation is that in an application like the above we
are interested in solving the same set of equations over many different semirings.
Even further, users of the system may be interested in first defining their own
semiring, and then solving the system. To illustrate this, let us examine several
different interpretations of “weight”, all of them very natural:

Weights as scores. The most natural interpretation of weights is perhaps as
scores. A consumer x gives a product p or another consumer Y a score, corre-
sponding to its degree of satisfaction with p, or its degree of trust in the recom-
mendations of Y . If we assume that scores are real numbers in the interval [0, 1],
and choose ⊕ and ⊗ as sum and product of real numbers, we obtain the prob-
abilistic semiring. Then Rxp represents the total weight of all recommendation
paths leading from x to p. If we choose the Viterbi semiring 〈[0, 1],max, ·, 0, 1〉
instead, then Rxp returns the weight of the strongest recommendation path.

Weights as expire times. Direct recommendations and trust, represented by rules
of types (1) and (2,) can (and should) have an expire time. If we choose ⊕ to be
the maximum and � the minimum over the reals, then Rxp returns the earliest
time at which all recommendation paths from x to p will have expired.

Weights as provenance information. If a system user does not trust some con-
sumers, she may wish to compute, for each recommendation path from x to p,
the set of consumers in the path. Or she may want to know the set of consumers
visited along the recommendation path of maximal weight. Such provenance
information can be computed within the semiring framework. For this it is con-
venient to treat all non-zero parameters rxp, txy, λ, µ as formal parameters (free
variables).

– To compute for each path the set of consumers involved, one can use the
Why-semiring, well-known in provenance theory. Semiring elements are sets
of sets of consumers. We set rxp = {{x}} and txy = {{x, y}} (and treat λ as
{{λ}} and µ as {{µ}}), and define:
• {X1, . . . , Xn} � {Y1, . . . , Yn} := {X1 ∪ Y1, x1 ∪ Y2, . . . , Xn ∪ Ym}, and
• {X1, . . . , Xn} ⊕ {Y1, . . . , Yn} := {X1, . . . , Xn, Y1, . . . , Ym}.

– If we wish to compute the provenance of the recommendation of maximal
weight, we can use the following semiring: as semiring elements we choose
the pairs (α,X), where α ∈ [0, 1] and X is a set of consumers. We set
txy = (w, {x, y}) with w ∈ (0, 1], and analogously for rxp. The abstract
operators are instantiated as follows:



• (α1, X1)� (α2, X2) := (α1α2, X1 ∪X2), and
• (α1, X1)⊕ (α2, X2) := (max{α1, α2}, if α1 ≥ α2 then X1 else X2)

These examples show that, instead of creating new tools for each new semiring,
it can be better to implement a generic tool, with generic algorithms applicable
to any semiring, or at least to any semiring in a broad class.

3 Algorithms and Data Structures

The two main generic schemes implemented in FPsolve for the approxima-
tion (and sometimes exact computation) of the least solution of an algebraic
system are classical fixpoint iteration and Newton’s method. Following [15,10],
we introduce them as procedures that “unfold” the algebraic system up to a
certain depth which allows both to unify and at the same time simplify their
presentation.

Classical fixed-point iteration. Given an algebraic system of equationsX = F (X)
over an ω-continuous semiring, Kleene’s theorem states that the system has a
unique least solution µF with respect to the natural order v, and that µF is the
supremum of the sequence F (0), F 2(0), . . . , F i(0) [14]. So µF can be approxi-
mated by computing successive elements of the sequence. If the semiring further
satisfies the ascending chain property (for every ω-chain a1 v a2 v . . . eventually
ak = ak+1 = ak+2 = . . .) then µF = F i(0) for some i ≥ 0, and so µF can be
effectively computed.

As explained in e.g. [15], an algebraic system can be associated a context-free
grammar. For instance, for the system

X = a�X �X ⊕ b (5)

we obtain the grammar
X → aXX | b (6)

Conversely, we assign to a derivation tree of the grammar a value in the semiring,
given by the product of its leaves (the ordered product if the semiring is not
commutative); further, we assign to a set of derivation trees the sum of the
values of its elements. The following result can be proved by a simple induction
on k:

F k(0) is the sum over the set of all derivation trees of the grammar of
height less than k.

Building on this observation, for every k we “unfold” (5) into an acyclic system
over variables X<h and X=h for every h ≤ k, such that the solutions of X<h

and X=h are the values of the derivation trees of height less than h and equal
to h, respectively. For this, we obviously have to set

X<0 = 0 X=0 = b and X<h+1 = X<h ⊕X=h for all h ∈ N (7)



In order to obtain the defining equation of X=h we observe that the trees of
height h can be partitioned into those whose left subtree has height h− 1, and
those whose left subtree has height strictly smaller than h − 1 and whose right
subtree has height h−1, i.e. we partition by means of the first position from the
right at which a subtree of height exactly h− 1 is rooted. This leads to

X=h = a�X<h �X=h−1 ⊕ a�X=h−1 �X<h−1. (8)

We can see the unfolding up to depth k as a symbolic representation of F k(0),
which implicitly uses subterm sharing (arithmetic circuit). When the coefficients
of the algebraic system (a, b in our example) are formal parameters, we can
efficiently compute F k(0) for different values a, b, by just plugging them into the
unfolded system.

Newton’s method. Newton’s method for arbitrary ω-continuous semirings, as
described in [9], can be much faster than Kleene iteration. It is shown in [10]
that the method can also be presented as an unfolding of the algebraic system:
This time, the system is unfolded w.r.t. the Strahler number or dimension of
its associated derivation trees (see [10,15]). The dimension of a rooted tree t is
defined as the height of the largest perfect binary tree that is a minor of t.

Consider again equation (5). We split X into a family of variables X<d and
X=d for d ∈ N. The solutions of the unfolded system for X<d and X=d will now
be the value of the derivation trees of dimension less than d, and equal to d,
respectively. Just as before, we have

X<0 = 0 X=0 = b and X<d+1 = X<d ⊕X=d for all d ∈ N. (9)

In order to derive the defining equation of X=d, observe that there are three
possible cases for a tree of dimension d: either the left subtree has dimension d,
and the right subtree has dimension at most d−1; or vice versa; or both subtrees
have dimension exactly d − 1 (this is the case in which the root of the minor
coincides with the root of the tree). So we get

X=d = a�X=d �X<d ⊕ a�X<d �X=d ⊕ a�X=d−1 �X=d−1. (10)

However, this unfolding does not represent an arithmetic circuit as it is not yet
acyclic: X=d appears on both sides of the equation. But equation (10) is linear
in X=d, and so, if multiplication is commutative, we can replace it by (with
1⊕ 1 = 2)

X=d = 2� a�X=d �X<d ⊕ a�X=d−1 �X=d−1 (11)

and use Kleene’s theorem [14] to replace it by

X=d =
(
2� aX<d

)∗ � a� (X=d−1)2 (12)

where the Kleene star is defined, as usual, by x∗ :=
∑
k∈N x

k (and is well defined
for any ω-continuous semiring).2 The new system is acyclic, i.e. an arithmetic

2 In the noncommutative case, one may resort to an instance of the semiring of contexts
in order to obtain a rational tree expression.



circuit w.r.t. ⊕, �, and ∗, and as in the previous case, can be used as a com-
pact symbolic representation of the d-th Newton approximation, useful when a, b
are formal parameters (see Fig. 1 for an example). In particular, every Newton
approximation can be represented by means of a rational expression.

To actually compute the solution for particular values of a and b, we can then
use straight-forward constant propagation going from bottom (X=0, X<0) to top
(X<d). However, for this the Kleene star x∗ must be effectively computable in
the given semiring representation. This is indeed the case for several important
semirings. The simplest example is the probability semiring, where for every
rational number x ∈ [0, 1) we have x∗ = 1/(1 − x). Tropical semirings are
another example. For instance, over the integers extended by least (−∞) and
greatest element (+∞) , with addition given by min and multiplication given
by + (on Z), we have x∗ = 0 if x ≥ 0 and x = −∞ otherwise. A third example
is the semiring of semilinear sets of vectors with components in N ∪ {∞}, with
X ⊕ Y := X ∪ Y , and X � Y := {x+ y | x ∈ X, y ∈ Y }.

Connection to Newton’s method over the reals. Applying Newton’s method to
g(X) := f(X)−X = aX2−X + b (interpreted over the reals) starting form the
initial approximation X = 0 we obtain the sequence:

X0 := 0 Xd+1 = Xd −
g(Xd)

g′(Xd)
= Xd −

aX2
d −Xd + b

2aXd − 1
= Xd +

aX2
d −Xd + b

1− 2aXd
.

Setting Yd := Xd+1 −Xd this can be written as

Yd = 2aXdYd + (aX2
d −Xd + b).

Straight-forward induction now shows that over the nonnegative reals the val-
ues of Xd and X<d resp. Yd and X=d coincide [10]. In particular, the defining
equation of X=d can be seen as the generalization of the derivative of aX2 in
the noncommutative case.

Multivariate case. Both unfoldings immediately generalize to the setting of mul-
tiple variables X,Y, . . .. As mentioned above, in the univariate case we use the
fact that the solution of an equation X = aX + b is given by a∗b. In the multi-
variate case, when the semiring is commutative, we have to deal with systems of
linear equations X = AX +B for a matrix A and a vector B over the semiring.
It is well known that the solution is given by A∗B, where A∗ =

∑∞
i=0A

i, and
matrix multiplication is defined as for the natural or the real numbers, but re-
placing sum and product by the operations of the semiring being considered. In
the next section, we describe the two algorithms for computing A∗ implemented
in FPsolve.

3.1 Solving Linear Equations

As mentioned above, solving a linear equation amounts to computing A∗ for a
given square matrix A over a semiring. Given a matrix A, the algorithms returns



a matrix whose elements are semiring expressions over the semiring operations
and the Kleene star. So, intuitively, the algorithms reduce the problem of com-
puting the star of a matrix to computing the star of semiring elements.

FPsolve implements both the well-known Floyd-Warshall algorithm, and
the recursive divide-and-conquer approach.

Generalized Floyd-Warshall The Floyd-Warshall algorithm for solving the
all-pairs-shortest-path problem in weighted (finite) graphs carries directly over
to the setting of generic ω-continuous semirings, even if addition ⊕ is not idem-
potent (cf. [7]). (In fact, it suffices when the semiring 〈S,⊕,�,0,1〉 is closed but
not necessarily ω-continuous.) The following description is an optimized variant
of the algorithm in [7] which reduces the number of semiring operations required.

input : Matrix A ∈ Sn×n over a semiring S.
output: Reflexive-transitive closure A∗.

B := A
for k = 1 . . . n do

Bk,k := B∗k,k
for i = 1 . . . n, i 6= k do

Bi,k = Bi,k �Bk,k
for j = 1 . . . n, j 6= k do

Bi,j := Bi,j ⊕Bi,k �Bk,j
end

end
for j = 1 . . . n,j 6= k do

Bk,j = Bk,k �Bk,j
end

end
return B

Algorithm 1: Generalized Floyd-Warshall algorithm over semirings.

From the description of the algorithm it is easy to count that the total number
of semiring operations (i.e. +, ·,∗) needed is T (n) = 2n3 − 2n2 + n ∈ Θ(n3).

Divide-and-conquer This algorithm recursively applies the formula for com-
puting the Kleene star of a 2× 2-matrix:

M =

[
A B
C D

]
M∗ =

[
F αG∗

G∗β G∗

]
with

α = A∗B
β = CA∗

G = D + Cα
F = αG∗β + A∗

.

Given a n× n-matrix M (n > 2), the entries A,B,C,D become submatrices of
M to which the algorithm is then applied recursively; the recursion stops when
either n = 2 or n = 1. A formal proof of correctness (for any Conway semiring)
goes back to Ésik and Kuich (cf. [7]).



Altogether we need two recursive calls, six matrix multiplications (the term
αG∗ appears twice and thus needs to be evaluated only once), and two matrix
additions. Hence, the number of operations needed by this algorithm can be
expressed by the recurrence relation 3

T (n) = 2T
(n

2

)
+ 6

[
2
(n

2

)3
−
(n

2

)2]
+ 2

(n
2

)2
= 2T

(n
2

)
+

3

2
n3 − n2

Which can be solved exactly (setting T (n) = 1 and n = 2l) resulting in T (n) =
2n3 − 2n2 + n ∈ Θ(n3). Hence this algorithm uses the same number of opera-
tions as Floyd-Warshall. Both algorithms need n3 − 2n2 + n additions, n3 − n
multiplications, and n Kleene stars.

Symbolic solving Recall our initial example

X = a�X �X ⊕ b

and its unfolding w.r.t. dimension for an arbitrary d ∈ N (assuming � is com-
mutative)

X=d = 2� a�X=d �X<d ⊕ a�X=d−1 �X=d−1

As X<d = X<d−1⊕X=d−1, every iteration of Newton’s method essentially con-
sists of solving this linear equation after substituting for the variables X<d and
X=d−1 the already computed solution. Analogously, in the multivariate setting
essentially the same linear equation system has to be solved over and over again.
FPsolve thus allows to first compute a symbolic solution of the linear system
by treating X<d and X=d−1 as formal parameters which allows to share common
subexpressions and thus obtain a succinct symbolic representation of a Newton
approximation. This allows to efficiently evaluate a Newton approximation of an
algebraic system for several different semiring interpretations.

Consider the generic linear equation system(
x
y

)
=

(
a b
c d

)
·
(
x
y

)
+

(
e
f

)
Treating a, . . . , f as formal parameters over some semiring, the (symbolic) solu-
tion of this system is given by(

x
y

)
=

(
a∗b(ca∗b⊕ d)∗ca∗e⊕ a∗b(ca∗b⊕ d)∗f ⊕ a∗e

(ca∗b⊕ d)∗ca∗e⊕ (ca∗b⊕ d)∗f

)
where we have omitted the � for readability.

3 Note that multiplying two n×n matrices requires n3−n2 operations (via the school-
book method – we cannot use e.g. Strassen’s algorithm as we lack a difference oper-
ator!).



Fig. 1. Succinctly represent-
ing all terms of the prod-
uct A∗ · (e, f)T via a BDD-
like sharing of subexpres-
sions. By reversing the direc-
tion of all edges this can be
read as an arithmetic circuit
with output gates colored in
grey.

The internal representation of these terms is shown
in Fig. 1: FPsolve stores the expressions as part
of an “abstract syntax DAG” (reversing the direc-
tion of the edges we obtain an arithmetic circuit
with gates for addition, multiplication, and Kleene
star) similar to BDD libraries like CUDD, where
we have colored the x- resp. y-component in light
resp. dark grey; this representation allows to re-
duce both the memory consumption, and the re-
evaluation of identical subterms.

In this simple 2 × 2 case the concrete recursive
approach (as stated above) computes 10 semiring
operations, the same if the symbolic solution is com-
puted (using the same recursive algorithm). This
holds in general if all elements of the input matrix
are different. However, in general input matrices
can have the same element in many different po-
sitions, then even the recursive algorithm will com-
pute some identical subexpressions multiple times
(that occur in different execution branches) since it
cannot guess them a priori. In this case, symbolic
solving allows for a global subexpression detection
after the whole matrix-star has been computed.

Although the symbolic approach significantly
reduces the number of semiring operations needed,
the overhead from computing and storing the sym-
bolic solution is not always negligible. This is partic-
ularly true for numeric semirings (like the semiring
of positive reals) that are implemented using ma-
chine precision floating point numbers – for these
the semiring operations are so fast that the over-
head outweighs the benefits of symbolic solving.

We therefore give the user the freedom of choice whether to use the concrete
(i.e. in every iteration) or symbolic (i.e. solve once then plug in in every iteration)
method of solving linear equations.

3.2 Decomposition into strongly-connected components

To efficiently process large algebraic systems, FPsolve supports a decomposi-
tion of the system into strongly connected components (SCCs). To make this
precise recall the definition of dependency graph: Its nodes are the variables oc-
curring in the algebraic system; its edges are induced by the defining equations:
we have an edge from variable X to variable Y if Y occurs in the defining equa-
tion of X. X depends on Y if there is a path from X to Y in the dependency
graph. To determine the value of variable X it then suffices to determine the val-
ues of all variables on which X depends. Using Tarjan’s algorithm we therefore



partition the dependency graph into SCCs, and process these SCCs in reverse
topological ordering (“bottom up”). In particular when using Newton’s method
this can lead to a noticeable speed-up in the computation of the Kleene star.

4 Implementation

Currently, FPsolve comprises roughly 8, 000 lines of C++. The code can be
obtained freely from https://github.com/mschlund/FPsolve. We use several
existing frameworks and libraries:

– CPPUnit for writing unit-tests.
– boost for IO-tasks (parsing, command-line arguments).
– Genepi, Mona, and Lash for representing semilinear sets via NDDs.
– libfa for representing elements of “lossy” semirings (i.e. semirings satisfying

1 v a for any semiring element a 6= 0 – this generalizes the downward closure
of languages) as finite automata.

FPsolve features data structures for commutative as well as non-commutative
polynomials, different solvers (semi-naive fixpoint iteration, Newton’s method),
and several predefined semirings (semilinear sets, real numbers, tropical and
boolean semiring) as well as some generic constructions (via C++ templates) to
build new semirings from existing ones like the direct product of two semirings
or the semiring of matrices over some semiring.

The focus of our library is to provide generic algorithms and to be easily
extensible. One of our goals was to make it easy for users to write their own
semiring-constructions or tailor the generic solving algorithms to their needs.

The library consists of three main parts:

– Data structures (polynomials, matrices, BDD-like DAG-structure to support
subterm sharing)

– Semirings (semilinear sets, positive real numbers, why semiring, generic
product semiring, . . . )

– Solvers (Kleene solver, Newton solver)

Figure 2 shows a simplified view of the main structure of our library. Observe
that many classes are templated which produces efficient code due to compile-
time polymorphism.

4.1 Invocation of the Standalone Solver

FPsolve also includes a callable solver and a parser for equation systems that
demonstrates the use of the library.

To apply the standalone solver, one has to describe the algebraic system as a
BNF-style context-free grammar. Variables of the system are enclosed in angle
brackets, multiplication is not explicitly written, the addition x+ y is written as
x | y. To solve the following system over the reals

X = 0.5XY + 0.5 Y = 0.3Y + 0.7X

we would create a text file test.g containing:

https://github.com/mschlund/FPsolve


Commutative Polynomial

SR:Semiring

Non commutative Polynomial

SR:Semiring

Semiring

Float Tuple

T1:Semiring
T2:Semiring

Free SemilinSet

NewtonSolver

SR:Semiring
LinSolver:LSType
Poly:Polynomial

LSType

SymbolicLinSolver ConcreteLinSolver

Fig. 2. A (simplified) part of our architecture.

<X> ::= 0.5 <X> <Y> | 0.5;

<Y> ::= 0.3 <Y> | 0.7 <X>;

The simplest invocation of the tool is then

$ ./fpsolve -f test.g --float

This minimal set of parameters specifies

1. the input file containing the algebraic system (-f test.g).
2. the semiring over which the system and its constants (like 0.3) are to be

interpreted (here --float ).

The tool outputs:

$ ./fpsolve -f test.g --float

Newton Concrete

Iterations: 3

Solving time: 0 ms (196 us)

X == 0.875

Y == 0.875

By default, the number of Newton iterations for a system of n equations is
n + 1 – for commutative, idempotent semirings this suffices to compute the
exact solution [8].

A more sophisticated use of the tool’s options would be the following:

$ ./fpsolve -f test.g --float -i 10 -s newtonSymb

Newton Symbolic

Iterations: 10

Solving time: 0 ms (536 us)

X == 0.999023

Y == 0.999023



Here, we select

1. the number of iterations (-i 10)
2. the solving algorithm to use (switch -s), possible choices are newtonSymb,

newtonConc, kleene.

For larger equation systems there is the possibility to decompose the system into
SCCs and solve them bottom-up (switch --scc).

4.2 Custom Semirings and Extensions

It is very easy and straightforward to extend our library with new semirings, it
merely requires three steps:

– Implement all semiring operations (addition ⊕, multiplication �, star ∗)
– Define a constructor that takes a string-argument (effectively a small parser)
– Add a new command-line switch to the main-method together with a call to

the solving function.

The second point delegates the IO/parsing task for semiring-elements to the
implementer. This enables us to parse equation systems into the most general
intermediate format (non-commutative polynomials over the free semiring) and
then to map these to the user-defined semiring. Since our input-parser takes quite
some time to compile (due to boost::spirit and templates), by this approach
we avoid to touch the parser and the need for recompilation.

The semiring operations �,⊕ (+ and *) are implemented in the abstract
base-class Semiring using += and *=. Any new semiring should be derived from
the abstract class StarableSemiring and has to implement the three operations
*=, +=,star(). Take for instance the “MaxProvenance” semiring from the end
of Section 2 consisting of pairs (α,X) of real numbers and sets of variables with

(α1, X1)� (α2, X2) := (α1α2, X1 ∪X2)
(α1, X1)⊕ (α2, X2) := (max{α1, α2}, if α1 ≥ α2 then X1 else X2)

(α,X)∗ := (1, ∅)

To implement this simple semiring, we derive from StarableSemiring the new
class MaxProvSR with members weight and prov storing α (e.g. as a float) and
X (e.g. as a set<>), respectively. What remains is then to implement the three
operators *=, +=,star(). For instance, the addition-assignment operator could
be implemented as

MaxProvSR MaxProvSR::operator+=(const MaxProvSR& elem)

{

if(this->weight < elem.weight) {

this->weight = elem.weight;

this->prov = elem.prov;

}

return *this;

}



Inheritance then takes care of the implementation of the addition operator. Im-
plementing the remaining two operators is just as straight-forward. To make the
semiring available in the command line tool, a corresponding switch and a parser
for reading semiring elements from the input have to implemented in addition.

To check our claim of “easy extendability”, we made a rather naive imple-
mentation of the Why-semiring for this paper which took about two hours (until
all bugs were eliminated4). Once a new semiring is defined and the main-method
is adapted, all solvers just work out-of-the-box to solve algebraic systems like
the following (file test/grammars/bintrees.g):

<X> ::= a<X><X> | c;

$ ./fpsolve --why -f ../test/grammars/bintrees.g

Newton Concrete

Iterations: 2

Solving time: 0 ms (214 us)

X == {{a,c},{c}}

$ ./fpsolve --why -f ../test/grammars/bintrees.g -s kleene -i 2

Kleene solver

Iterations: 2

Solving time: 0 ms (281 us)

X == {{a,c},{c}}

5 Conclusions and Related Tools

We have introduced FPsolve, an implementation of generic algorithms for solv-
ing fixpoint equations on semirings. The algorithms are parametric on the semi-
ring. New semirings can be easily added by defining implementations of the sum,
product and (possibly) Kleene star operations.

As mentioned in the introduction, many program analysis problems can be
reduced to solving fixpoint equations on semirings. This has lead to a number
of implementations and tools. An early effort is the Fixpoint-Analysis Machine
for solving systems of boolean fixpoint equations [17]. The tool can deal with
hierarchical and alternating fixpoints, but is not parametric on the equation
domain. The Weighted Pushdown Systems Library and Weighted Automata
Library (see [16,3,2]), and Goblint (see [4,1] implement many sophisticated
algorithms for semirings satisfying the ascending chain condition.

While FPsolve is currently an academic tool, we have illustrated its po-
tential interest outside theoretical computer science by means of an application
scenario, namely a recommendation system. Genericity allows the users of the
system to aggregate the information given by individual recommendations in
different, personalized ways, by defining their own semiring.

4 We developed a small collection of unit-tests (also generic tests that can be instan-
tiated with any semiring) and encourage any user who implements new semirings to
use and adapt them during development.
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