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Abstract

In Chapter 4 of [2], Book and Otto solve a number of word problems for monadic
string-rewriting systems using an elegant automata-based technique. In this note we
observe that the technique is also very interesting from a pedagogical point of view,
since it provides a uniform solution to several elementary problems on context-free
languages.

1 Introduction

In Chapter 4 of their book “String-Rewriting Systems” [2], Book and Otto
study so-called monadic string rewriting systems. These are sets of rewriting
rules of the form o« — 3, where a, § € ¥* for some finite alphabet X, satisfying
la| > |B| and || < 1. The rule @ — 3 allows to rewrite « into 5.

Among other results, Book and Otto show that the set of descendants of a

regular set L of strings — i.e., the set of strings that can be derived from the
elements of L through repeated application of the rewriting rules — is also
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regular ' ; moreover, they provide an elegant algorithm to compute it. The
input to the algorithm is a nondeterministic finite automaton (NFA) accepting
L, and the output is another NFA accepting the descendants of L.

There is a tight relationship between monadic string rewriting systems and
context-free grammars. Given a context-free grammar G = (V, T, P, S) with-
out e-productions and unit productions, theset R={a — A| (A —> o) € P}
is a monadic string rewriting system over the alphabet V' UT. Loosely speak-
ing, R is obtained by “reversing” the productions of G'. The set of descendants
of a language L C (VUT)* in R is the set of predecessors of L in G, i.e., the set
of strings from which some word of L is derivable through repeated application
of the productions.

The similarity between monadic string rewriting systems and context-free
grammars was already observed by Book and Otto in [2]. In particular, they
remark that the algorithm for the computation of descendants could be ap-
plied to problems on context-free grammars, but do not elaborate on this
point. The purpose of this note is to show that the algorithm indeed leads to
elegant and uniform solutions for the membership, emptiness and finiteness
problems of context-free grammars, among others.

2 Preliminaries

We use the notations of [11] for finite automata and context-free grammars.
Given an NFA M = (Q,%,6,qo, F'), where § C Q x X x @, we define the
transition relation §: (Q x ¥*) — 29 by:

o (g, ¢) = {q},
 (q,a) ={q'| (¢g;a,¢) € 0}, and R
e 0(q,wa) ={p|p€d(r,a) for some state r € (g, w) }

We often denote ¢’ € S(q, a) by ¢ 2 ¢

Given a context-free grammar G = (V,T, P, S), we denote ¥ = V UT. We
define two relations = and = between strings in ¥*. If A — 3 is a production
of P and « and «y are any strings in ¥*, then aAy = af7. The string oAy is
an immediate predecessor of a3y. The relation = is the reflexive and transitive
closure of =. If & = 3, then « is a predecessor of 5. Given L C X*, we define

pre(L) ={a e X" |3 € Lwitha= [}

1 This result had also been obtained by Biichi in a different framework. See Sec-
tion 6.



pre'(L) is inductively defined by pre®(L) = L and pre'*' (L) = pre(pret(L)).
Finally, we define pre*(L) = U;>o pre'(L), or, equivalently,

pre*(L) ={a € ¥* |38 € L witha =}

3 Computation of pre*

Let G = (V,T, P,S) be a context-free grammar, and let M be an NFA rec-
ognizing a regular set L(M) C X*. We wish to construct another NFA A, -
recognizing pre*(L(M)). Book and Otto’s idea (translated into context-free
grammars) is to exhaustively perform the following operation, starting with
M as current NFA: If A — « is a production, and in the current NFA we have
g -2 ¢, then we add a new transition ¢ -4+ ¢’. The algorithm terminates,
because the number of states of the NFA remains constant, and there is an
upper bound to the number of transitions of an NFA with a fixed number of
states and a fixed alphabet. Observe that the new NFA M. has the same
states, initial state and final states as M it differs from M only in its transition
relation, which we denote by dpye-.

Algorithm 1

Input: G = (V,T,P,S), M = (Q,%,9,q, F)
Output: -

rel < 6;
repeat
for g, €Q, A—>p€Pdo
if ¢ € rel(q,B) then rel < rel U{(q,A,q¢')} fi
od
until rel does not change any more;
return rel

We apply the algorithm to an example. Consider the context-free grammar
S — AS | SA| a, A — b and the NFA of Figure 1 having only the transitions
drawn with thicker lines. Assume that for each pair of states (¢, q’) the for
loop examines all productions of the grammar in the order above. Then the
transitions labeled by 1 in Figure 1 are added in the first iteration of the
repeat-until loop. The second iteration adds the transitions g; -+ ¢;, derived
from ¢ < ¢ 4 q1, and ¢u -5 ¢, derived from ¢ 4 ¢ —% ¢o. They are
labeled by 2 in Figure 1. The third iteration adds go -+ ¢y, derived from
g2 4 ¢1 = ¢; and labeled by 3 in the figure. Nothing is added in the fourth
iteration, and the algorithm terminates.



Fig. 1. Ilustration of Algorithm 1

The correctness of Algorithm 1 follows immediately from the following two
lemmata:

Lemma 1 pre*(L(M)) C L(Mpe-).

PROOF. Let M; be the NFA computed by the algorithm after ¢ executions
of the repeat-until loop (M, = M), and let — be the transition relation
of M;. Since L(M;) C L(M,,), it suffices to prove pre*(L(M)) C L(M;) for
every 1 > 0.

We proceed by induction on i. The case ¢ = 0 is trivial because L(M) C L(M,)
and pre®(L(M)) = L(M). For the step from i to 7 + 1, let a be an arbitrary
word of pre*™'(L(M)). By the definition of pre, there exist words ay, ap and
a production A — 3 such that a = a;Aay and a;Bay € pre'(L(M)). By
induction hypothesis, ay8as € L(M;). Therefore, there exist states ¢, ¢ such
that

@ g2 g 2 q;

for some final state gy. So we have
HCIEN A ! o2y
Y 337 4757 4 5 U
which implies & = oy Aoy € L(M;41). O

Lemma 2 L(My.-) C pre*(L(M)).

PROOF. For all j > 0, let N; be the NFA obtained after the algorithm
has added j transitions to the input automaton M, and let - denote the
transition relation of N;. Since L(Mp,.+) is the union of all the sets L(N;), it
suffices to prove L(N;) C pre*(L(M)) for every j > 0.

We proceed by induction on j. The case j = 0 is trivial because Ny = M. For
the step from j to 7 + 1, assume that N, is obtained from N; through the
addition of a new transition q; - ¢o. Let a be an arbitrary word of L(N;1).



If « is accepted by Nj, then, by the induction hypothesis, o € pre*(L(M)). If
« is not accepted by N;, then we have o = oy A A ... Aoy, and

a1 A a2 A A a
9 570 73572 0 757 R0 J7 R

for some final state g;. Since there exists a production A — 3 such that
Q1 % g2, we have

and therefore N; accepts o/ = a1fasf... fay,. By the induction hypothesis,
o € pre*(L(M)). Since a = o, we have « € pre*(L(M)). O

The running time of Algorithm 1 is easy to estimate. Let p be the number
of productions of G, let [ be the maximal length of the right hand side of
a production, and let s be the number of states of M. Since the transitions
added by the algorithm to d,,.+ are labelled by variables appearing on the left
hand side of a production, &+ contains at most O(p - s?) elements. So the
repeat-until loop is executed O(p-s?) times. The for loop is executed O (p-s?)
times. Checking whether ¢' € rel(g, 8) holds can be done by simulating the
NFA (Q,3, rel,q, F) on input 3, which requires O(l - s*) time (see [1], pp.
327-329). Adding an element to rel takes O(1) time (assume for instance that
rel is stored as a bit matrix). So the running time is O(l - p* - s%).

Algorithm 2

Input: G = (V,T,P,S), M = (Q,T,6,q, F)
Output: J,.- as defined above

1 rel < 0; trans < §;

2 for every A >ec€ P, g€ Q

3 add (g, 4, q) to trans;

4 for every A > a€ P, q,¢ € Q

5 if (¢, a,q") € § then add (¢, A, ¢') to trans;
6 for every ¢, € Q, A€V

7 direct(q, A, ¢') < 0; impl(q, A, q') < 0;

8 for every A B€ P,q,qd €Q

9 add (q, A, q') to direct(q, B,q")

10 for every A - BC € P, q,¢,q" € Q

11 add (¢',C,¢") — (g, A, q") to impl(q, B,q');
12 add (¢, B,q") — (¢, A, q") to impl(q,C,q)
13 while trans # ()

14 pop t from trans; add t to rel;

15 append direct(t) to trans;

16 while impl(t) # ()

17 pop t' — t" from impl(t);



18 if t' € rel then add t” to trans
19 else add t” to direct(t')
20 return rel

4 Improving the complexity

Algorithm 1 is very simple, but very inefficient. In this section we present a new
algorithm, Algorithm 2, with a running time of O(p-s3). It works for grammars
whose productions are of the foorm A — BC, A — B, A — a,or A — ¢, i.e.,
grammars in Chomsky normal form extended with unit productions and e-
productions. Observe that any grammar can be transformed into an equivalent
grammar of this form. The number of productions of the new grammar is linear
in the size of the old grammar, and the transformation can be performed in
linear time?.

We first observe that productions of the form A — a or A — € can only
contribute new transitions to the input NFA during the first iteration of
the repeat-until loop. In Algorithm 2 they are processed in an initialisa-
tion phase. It remains to deal properly with productions of the form A — B
and A — BC.

The main idea is to avoid recomputing information. If, say, we have A — BC
and we find out during the execution of the algorithm that (¢, B, ¢') belongs
t0 Oprer, then we store the following information: If (¢’, C, ¢”) belongs to dpye-,
then so does (g, A, ¢"). This implication can be used at a later point if it turns
out that (¢',C,¢") indeed belongs to dppex.

A transition ¢ that is known to belong to d,.- is first stored in a FIFO-list
trans. When, at a later point, ¢ is taken from trans, the information that can
be extracted from the fact that ¢ belongs to d,.+ is computed, and then ¢ is
added to the final result rel. A transition may be added several times to trans,
but this does no harm.

For each triple ¢ = (g, 4,¢") two FIFO-lists are used. The first one, called
direct(t) contains transitions that are known to belong to d,,.~ in case ¢t belongs
to Oprex. The second one, called impl(t), contains implications of the form
t1 — ty that are known to hold in case ¢ belongs to d,..«. An implication
t1 — to is read ‘if t; belongs to dp,.~ then so does 5’

2 For these grammars the check ¢' € rel (g, B) is easier, since 8 has length at most
2, and so Algorithm 1 requires O(p? - s°) time.



The correctness of the algorithm follows from the following facts, of which we
sketch the proof:

(1) After termination rel C 0.+ holds.

This follows from the fact that the conjunction of the following statements

is an invariant:

e The transitions of trans and rel belong to dpyex.

o If ¢t € direct(t') and t' € ppe, then t € Gppe.

o Ift' = t" cimpl(t) and t,t' € Oprex, then t" € §ppex.

Let us show that this conjunction, call it I, is invariant under the execution

of line 19, the proofs for the other lines being similar or simpler. It suffices

to show that if ¢’ € dpye~, then t” € pe«. By I and line 14, t € 6ppe-. By 1

and line 17, if ' € 0,,+ then t € 0ppex.

(2) After termination d..« C rel holds.

We recall that d,,¢- is defined as the smallest relation containing § that is

closed under the rule for addition of new transitions. So dp,.« C rel follows

from the following facts:

e If t € 4, then ¢ is eventually added to rel.

See lines 1, 14.

e If A — ¢ € P then (¢, A,q) is eventually added to rel for every state gq.
See lines 3, 14.

e If A—a€ P and (qa,q) €4, then (g, A, q') is eventually added to rel.
See lines 5, 14.

e If A~ B e P and (¢q,B,¢) € rel, then (g, A, ¢') is eventually added to
rel.

If (¢, B,q') € rel, then (g, B, ¢') has been popped from trans at some point
(line 14). Since (q, A,q") € direct(q, B,q') (line 9), (¢, A, q') is eventually
added to trans (line 16), and to rel (line 14).

e If A— BC € P and (¢, B,q') and (¢, C, ¢") belong to rel, then (g, A, q")
is eventually added to rel.

Assume (¢, B, ¢') is added to rel after (¢',C,¢") (the other case is analo-
gous). (¢, B, ¢') is popped from trans and added to rel at some point (line
14). Since (¢',C,q") — (¢, A,q") € impl(q, B,q') (line 11), the implica-
tion (¢',C,q¢") — (¢, A, ¢") is popped as well (line 17); since at this point
(¢, C,q") has already been added to rel, (¢, A, q") is eventually added to
trans (line 18), and later to rel (line 14).

(3) The algorithm terminates.

We make the following observations:

e During the execution of the outer while-loop the impl lists only lose
elements (line 17).

e Transitions flow from the impl lists to trans either directly (line 18) or via
the direct lists (lines 19 and 15). No other transitions are added to trans,
or to the direct lists.

This implies that only finitely many transitions can be added to trans, and

so the outer while-loop can only be executed finitely many times.



In order to determine the time and space complexity, let p and s be the
number of productions of G and states of M, respectively. We assume that
each variable and terminal of G appears in at least one production (otherwise
they can be removed in linear time), and so G has size O(p).

The add, pop, and append operations can be performed in constant time. All
the steps before the outer while-loop can be executed in time O(p - s?). In
order to estimate the running time of the outer while-loop, we add one further
observation to those of part (3) above:

e Right before the execution of the outer while-loop the trans, direct, and
impl lists contain together O(p - s*) elements.

It follows from (3) and this new observation that at most O(p - s*) elements
flow through trans during the execution of the algorithm 3, which implies that
lines 14 and 15 are executed O(p - s3) times. Since the impl lists only lose
elements, lines 17, 18, 19 are also executed O(p - s*) times. So each line in the
body of the outer while-loop is executed O(p- s*) times. Since each line takes
constant time, the total running time is O(p - s°).

We finish the section with a small remark. Algorithm 2 remains correct —and
has the same asymptotic time complexity—after removing anyone (but only
one!) of the lines 11, 12, or 19. The proof is left to the interested reader.

5 Applications

We show that several standard problems on context-free grammars, for which
textbooks often give independent algorithms, can be solved using Algorithm 2.

Let G = (V,T, P, S) be a context-free grammar of size g. In order to avoid
redundant symbols in G it is convenient to compute the set of useless variables
([11], p. 88). Recall that X € V is useful if there is a derivation S = a X3 = w
for some «, f and w, where w is in 7. Otherwise it is useless. To decide if
X is useless, observe that X is useful if and only if S € pre*(T*XT*) and
X € pre*(T*). Compute the automata accepting pre*(T*XT*) and pre*(T*)
using Algorithm 2, and check if they accept S and X, respectively. Since the
automata for 7*X7T™ and T* have a constant number of states, it can be
determined in linear time if X is useful.

Nullable variables have to be identified when eliminating e-productions ([11],
p. 90). A variable X is nullable if X = €. To decide the nullability of a variable

3 An element may flow through ¢rans more than once. We count them as different
elements.



observe that X is nullable if and only if X € pre*({e}), which leads to a linear
algorithm.

Consider now the membership problem: given a word w € T™* of length n, is
w generated by G7 To solve it, compute the automaton accepting pre*({w}),
and check if it accepts S. Since there is an automaton with n + 1 states recog-
nizing {w}, the complexity of the algorithm is O(n?) (for a fixed grammar).
This is also the complexity of the CYK-algorithm usually taught to under-
graduates [11,12].

To decide if L(G) is contained in a given regular language L, observe that
L(G) C L is equivalent to L(G) N L = @, which is equivalent to S ¢ pre*(L).
If L is presented as a deterministic finite automaton with s states, L(G) C L
can be decided by computing a deterministic automaton for L in O(s) time,
and checking whether S ¢ pre*(L) in O(p - s*) time.

Similarly, to decide if L(G) and L are disjoint, check whether S ¢ pre*(L) in
O(p- s3) time.

To decide if L(G) is empty, check whether L(G) is contained in the empty
language, which is regular. The automaton for L has one state, and so the
algorithm is linear.

To decide if L(QG) is infinite, assume that G' has no useless symbols (otherwise
apply the algorithm above), and use the following characterization (see for
instance [11], Theorem 6.6): L(G) is infinite if and only if there exists a variable
X and strings o, 8 € ¥* with o # € such that X = aXf. This is the case
if and only if X € pre*(XTXX* UX*XXT). This condition can be checked in
linear time for each variable X, and so infiniteness can be checked in quadratic
time.

6 History

The history of this paper may be interesting to the reader. The regularity of
pre*(L) for a regular language L seems to have been first observed by Biichi
in his work on regular canonical systems (see [5] and Chapter 5 of [6]), and
has been rediscovered many times in sligtly different contexts, for instance by
Caucal in [7] and by Book and Otto in [2].

In 1996, Bouajjani and Maler addressed the model checking problem for push-
down automata [3] and provided a solution based on the regularity of pre*(L),
which they had learnt about in Book and Otto’s text [2]. Esparza and Ross-
manith, who learnt about the regularity of pre*(L) from Bouajjani, read [2].



Their attention was attracted to a remark stating that the regularity of pre*(L)
could be applied to problems on context-free grammars. They observed in [9]
that this was indeed the case: a number of classical problems (those consid-
ered in the previous section) could be reduced to the computation of the set
of predecessors of suitable regular languages. However, they were only able to
provide an O(p - s*) algorithm for the computation of pre*(L).

Independently of Bouajjani and Maler, Finkel, Willems and Wolper also stud-
ied in 1996 the model checking problem for pushdown automata. They pro-
vided a model checking procedure based on a saturation algorithm [10]. When
Esparza read this paper, he observed that the saturation algorithm could be
adapted to the computation of pre*(L), leading to an improved complexity
bound of O(p - s3).

Finally, an anonymous referee has pointed out that an algorithm running
in O(p - s®) time can also be obtained by reducing the problem of comput-
ing pre*(L) to HORNSAT, the satisfiability problem for propositional Horn
clauses. The reduction proceeds as follows. Define a set of boolean variables
B = {X(g, | ¢,¢' € Q,A € V}. For each production of the grammar construct
a set of Horn clauses with the following intended meaning: in the least model
of the set of clauses, X;}I, is true if and only if (¢, A, ¢") € pre-. For instance,
for a production A — BC we construct the set

{_|XqB;/ V _|qu;qu V X(g/l | q, q,,q” (& Q}

Other productions are dealt with similarly. The construction yields a total
of O(p - s*) clauses. Dowling and Gallier present in [8] two algorithms that
compute the minimal model in linear time, and so we obtain an O(p- s®) time
algorithm.

Interestingly, in [8] HORNSAT is solved by reduction to the emptiness problem
for context-free grammars, which is one of the applications of our algorithm.
So Algorithm 2 can also be used to solve HORNSAT, and in fact it does so in
linear time.

7 Conclusions

In our opinion, our adaptation of Biichi’s and Book and Otto’s result has a
number of pedagogical merits that make it very suitable for an undergraduate
course on formal languages and automata theory: it is appealing and easy
to understand, its correctness proof is simple, it applies the theory of finite
automata to the study of context-free languages, and it provides a unified view
of several standard algorithms.
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