
Model Checking Parameterized Asynchronous
Shared-Memory Systems

Antoine Durand-Gasselin1, Javier Esparza1, Pierre Ganty2, and Rupak Majumdar3

1TU Munich 2IMDEA Software Institute 3MPI-SWS

Abstract. We characterize the complexity of liveness verification for parame-
terized systems consisting of a leader process and arbitrarily many anonymous
and identical contributor processes. Processes communicate through a shared,
bounded-value register. While each operation on the register is atomic, there is no
synchronization primitive to execute a sequence of operations atomically.
We analyze the case in which processes are modeled by finite-state machines or
pushdown machines and the property is given by a Büchi automaton over the
alphabet of read and write actions of the leader. We show that the problem is
decidable, and has a surprisingly low complexity: it is NP-complete when all
processes are finite-state machines, and is PSPACE-hard and in NEXPTIME
when they are pushdown machines. This complexity is lower than for the non-
parameterized case: liveness verification of finitely many finite-state machines is
PSPACE-complete, and undecidable for two pushdown machines.
For finite-state machines, our proofs characterize infinite behaviors using existen-
tial abstraction and semilinear constraints. For pushdown machines, we show how
contributor computations of high stack height can be simulated by computations of
many contributors, each with low stack height. Together, our results characterize
the complexity of verification for parameterized systems under the assumptions of
anonymity and asynchrony.

1 Introduction

We study the verification problem for parameterized asynchronous shared-memory
systems [12,9]. These systems consist of a leader process and arbitrarily many iden-
tical contributors, processes with no identity, running at arbitrary relative speeds.The
shared-memory consists of a read/write register that all processes can access to perform
either a read operation or a write operation. The register is bounded: the set of values
that can be stored is finite. Read/write operations execute atomically but sequences of
operations do not: no process can conduct an atomic sequence of reads and writes while
excluding all other processes. In a previous paper [9], we have studied the complexity of
safety verification, which asks to check if a safety property holds no matter how many
contributors are present. In a nutshell, we showed that the problem is coNP-complete
when both leader and contributors are finite-state automata and PSPACE-complete when
they are pushdown automata.

In this paper we complete the study of this model by addressing the verification of
liveness properties specified as ω-regular languages (which in particular encompasses
LTL model-checking). Given a property like “every request is eventually granted” and a

ar
X

iv
:1

50
5.

06
58

8v
1 

 [
cs

.D
C

] 
 2

5 
M

ay
 2

01
5



system with a fixed number of processes, one is often able to guess an upper bound on
the maximal number of steps until the request is granted, and replace the property by
the safety property “every request is granted after at most K steps.” In parameterized
systems this bound can depend on the (unbounded) number of processes, and so reducing
liveness to safety, or to finitary reasoning, is not obvious. Indeed, for many parameterized
models, liveness verification is undecidable even if safety is decidable [8,13].

Our results show that there is no large complexity gap between liveness and safety
verification: liveness verification (existence of an infinite computation violating a prop-
erty) is NP-complete in the finite-state case, and PSPACE-hard and in NEXPTIME in
the pushdown case. In contrast, remember that liveness checking is already PSPACE-
complete for a finite number of finite-state machines, and undecidable for a fixed number
of pushdown systems. Thus, not only is liveness verification decidable in the param-
eterized setting but the complexity of the parameterized problem is lower than in the
non-parameterized case, where all processes are part of the input. We interpret this as
follows: in asynchronous shared-memory systems, the existence of arbitrarily many
processes leads to a “noisy” environment, in which contributors may hinder progress
by replying to past messages from the leader, long after the computation has moved
forward to a new phase. It is known that imperfect communication can reduce the power
of computation and the complexity of verification problems: the best known example are
lossy channel systems, for which many verification problems are decidable, while they
are undecidable for perfect channels (see e.g. [3,1]). Our results reveal another instance
of the same phenomenon.

Technically, our proof methods are very different from those used for safety verifica-
tion. Our previous results [9] relied on a fundamental Simulation Lemma, inspired by
Hague’s work [12], stating that the finite behaviors of an arbitrary number of contributors
can be simulated by a finite number of simulators, one for each possible value of the
register. Unfortunately, the Simulation Lemma does not extend to infinite behaviors, and
so we have to develop new ideas. In the case in which both leader and contributors are
finite-state machines, the NP-completeness result is obtained by means of a combination
of an abstraction that overapproximates the set of possible infinite behaviors, and a
semilinear constraint that allows us to regain precision. The case in which both leader
and contributors are pushdown machines is very involved. In a nutshell, we show that
pushdown runs in which a parameter called the effective stack height grows too much
can be “distributed” into a number of runs with smaller effective stack height. We then
prove that the behaviors of a pushdown machine with a bounded effective stack height
can be simulated by an exponentially larger finite-state machine.

Related Work. Parameterized verification has been studied extensively, both theoretically
and practically. While very simple variants of the problem are already undecidable [6],
many non-trivial parameterized models retain decidability. There is no clear “rule of
thumb” that allows one to predict what model checking problems are decidable, nor
their complexities, other than “liveness is generally harder than safety.” For example,
coverability for Petri nets—in which finite-state, identityless processes communicate via
rendezvous or global shared state— is EXPSPACE-complete, higher than the PSPACE-
completeness of the non-parameterized version, and verification of liveness properties
can be equivalent to Petri net reachability, for which we only know non-primitive re-

2



cursive upper bounds, or even undecidable. Safety verification for extensions to Petri
nets with reset or transfer, or broadcast protocols, where arbitrarily many finite-state
processes communicate through broadcast messages, are non-primitive recursive; live-
ness verification is undecidable in all cases [2,8,13]. Thus, our results, which show
simultaneously lower complexity than non-parameterized problems, as well as similar
complexity for liveness and safety, are quite unexpected.

German and Sistla [10] and Aminof et al. [4] have studied a parameterized model
with rendezvous as communication primitive, where processes are finite-state machines.
Model checking the fully symmetrical case—only contributors, no leaders—runs in
polynomial time (other topologies have also been considered [4]), while the asymmetric
case with a leader is EXPSPACE-complete. In this paper we study the same problems,
but for a shared memory communication primitive.

Population protocols [5] are another well-studied model of identityless asynchronous
finite-state systems communicating via rendezvous. The semantics of population proto-
cols is given over fair runs, in which every potential interaction that is infinitely often
enabled is infinitely often taken. With this semantics, population protocols compute
exactly the semilinear predicates [5]. In this paper we do not study what our model can
compute (in particular, we are agnostic with respect to which fairness assumptions are
reasonable), but what we can compute or decide about the model.

2 Formal Model: Non-Atomic Networks

In this paper, we identify systems with languages. System actions are modeled as symbols
in an alphabet, executions are modeled as infinite words, and the system itself is modeled
as the language of its executions. Composition operations that combine systems into
larger ones are modeled as operations on languages.

2.1 Systems as languages

An alphabet Σ is a finite, non-empty set of symbols. A word over Σ is a finite sequence
over Σ including the empty sequence denoted ε, and a language is a set of words.
An ω-word over Σ is an infinite sequence of symbols of Σ, and an ω-language is
a set of ω-words. We use Σ∗ (resp. Σω) to denote the language of all words (resp.
ω-words) over Σ. When there is no ambiguity, we use “words” to refer to words or
ω-words. We do similarly for languages. Let w be a sequence over some alphabet, define
dom(w) = {1, . . . , n} if w = a1a2 . . . an is a word; else (w is an ω-word) dom(w) denote
the set N \ {0}. Elements of dom(w) are called positions. The length of a sequence w
is defined to be sup dom(w) and is denoted |w|. We denote by (w)i the symbol of w at
position i if i ∈ dom(w), ε otherwise. Moreover, let (w)i.. j with i, j ∈ N and i < j denote
(w)i(w)i+1 . . . (w) j. Also (w)i..∞ denotes (w)i(w)i+1 . . . For words u, v ∈ (Σω ∪ Σ∗), we say
u is a prefix of v if either u = v or u ∈ Σ∗ and there is a w ∈ (Σω ∪ Σ∗) such that v = uw.

Combining systems: Shuffle. Intuitively, the shuffle of systems L1 and L2 is the system
interleaving the executions of L1 with those of L2. Given two ω-languages L1 ⊆ Σ

ω
1 and

L2 ⊆ Σ
ω
2 , their shuffle, denoted by L1 G L2, is the ω-language over (Σ1 ∪ Σ2) defined

3



as follows. Given two ω-words x ∈ Σω1 , y ∈ Σω2 , we say that z ∈ (Σ1 ∪ Σ2)ω is an
interleaving of x and y if there exist (possibly empty) words x1, x2, . . . , xi, . . . ∈ Σ

∗
1 and

y1, y2, . . . , yi, . . . ∈ Σ
∗
2 such that each x1x2 · · · xi is a prefix of x, and each y1y2 · · · yi is a

prefix of y, and z = x1y1x2y2 · · · xiyi · · · ∈ Σ
ω is anω-word. Then L1 G L2 =

⋃
x∈L1,y∈L2

x G
y, where x G y denotes the set of all interleavings of x and y. For example, if L1 = abω

and L2 = abω, we get L1 G L2 = (a + ab∗a)bω. Shuffle is associative and commutative,
and so we can write L1 G · · · G Ln or Gn

i=1 Li.

Combining systems: Asynchronous product. The asynchronous product of L1 ⊆ Σω1
and L2 ⊆ Σ

ω
2 also interleaves the executions but, this time, the actions in the common

alphabet must now be executed jointly. The ω-language of the resulting system, called
the asynchronous product of L1 and L2, is denoted by L1 ‖ L2, and defined as follows.
Let ProjΣ(w) be the word obtained by erasing from w all occurrences of symbols not
in Σ. L1 ‖ L2 is the ω-language over the alphabet Σ = Σ1 ∪ Σ2 such that w ∈ L1 ‖ L2
iff ProjΣ1

(w) and ProjΣ2
(w) are prefixes of words in L1 and L2, respectively. We abuse

notation and write w1 ‖ L2 instead of {w1} ‖ L2 when L1 = {w1}. For example, let
Σ1 = {a, c} and Σ2 = {b, c}. For L1 = (ac)ω and L2 = (bc)ω we get L1 ‖ L2 = ((ab+ba)c)ω.
Observe that the language L1 ‖ L2 depends on L1, L2 and also on Σ1 and Σ2. For example,
if Σ1 = {a} and Σ2 = {b}, then {aω} ‖ {bω} = (a + b)ω, but if Σ1 = {a, b} = Σ2, then
{aω} ‖ {bω} = ∅. So we should more properly write L1 ‖Σ1,Σ2 L2. However, since the
alphabets Σ1 and Σ2 will be clear from the context, we will omit them. Like shuffle,
asynchronous product is also associative and commutative, and so we write L1 ‖ · · · ‖ Ln.
Notice finally that shuffle and asynchronous product coincide if Σ1 ∩ Σ2 = ∅, but usually
differ otherwise. For instance, if L1 = abω and L2 = abω, we get L1 ‖ L2 = abω.

We describe systems as combinations of shuffles and asynchronous products, for
instance we write L1 ‖ (L2 G L3). In these expressions we assume that G binds tighter
than ‖, and so L1 G L2 ‖ L3 is the language (L1 G L2) ‖ L3, and not L1 G (L2 ‖ L3).

2.2 Non-atomic networks

A non-atomic network is an infinite family of systems parameterized by a number k. The
kth element of the family has k + 1 components communicating through a global store
by means of read and write actions. The store is modeled as an atomic register whose set
of possible values is finite. One of the k + 1 components is the leader, while the other k
are the contributors. All contributors have exactly the same possible behaviors (they are
copies of the same ω-language), while the leader may behave differently. The network is
called non-atomic because components cannot atomically execute sequences of actions,
only one single read or write.

Formally, we fix a finite set G of global values. A read-write alphabet is any set
of the form A × G, whereA is a set of read and write (actions). We denote a symbol
(a, g) ∈ A × G by a(g) and define G(a1, . . . , an) = {ai(g) | 1 ≤ i ≤ n, g ∈ G}.

We fix two languages D ⊆ Σω
D

and C ⊆ Σω
C

, called the leader and the contributor,
with alphabets ΣD = G(rd,wd) and ΣC = G(rc,wc), respectively, where rd, rc are called
reads and wc,wd are called writes. We write w? (respectively, r?) to stand for either wc

or wd (respectively, rc or rd). We further assume that Proj{r?(g),w?(g)}(D ∪ C) , ∅ holds
for every g ∈ G, else the value g is never used and can be removed from G.

4



rd(1)

rd(2)

rd(3)

# 2

1

3

w?(1)

w?(2)

w?(3)

rw?(2) w?(1)

w?(3)

rw?(1)

w?(2)
w?(3)

rw?(3)

w?(2)

w?(1)

wc(1)

wc(2)

wc(3)

rc(3)

rc(1)

rc(1)

rc(2)

rc(2)

rc(3)

Fig. 1. Transition systems describing languagesD, S, and C. We write rw?(g) = r?(g) ∪ w?(g) =

{rc(g), rd(g)} ∪ {wc(g),wd(g)}. The transition system for S is in state i ∈ {1, 2, 3} when the current
value of the store is i.

Additionally, we fix an ω-language S, called the store, over ΣD ∪ ΣC. It models
the sequences of read and write operations supported by an atomic register: a write
w?(g) writes g to the register, while a read r?(g) succeeds when the register’s current
value is g. Initially the store is only willing to execute a write. Formally S is defined as(∑

g∈G
(

w?(g) (r?(g))∗
))ω

+
(∑

g∈G
(

w?(g) (r?(g))∗
)∗ ∑

g∈G
(

w?(g) (r?(g))ω
))

and any
finite prefix thereof. Observe that S is completely determined by ΣD and ΣC. Figure 1
depicts a store with {1, 2, 3} as possible values as the language of a transition system.

Definition 1. Let D ⊆ Σω
D

and C ⊆ Σω
C

be a leader and a contributor, and let k ≥ 1.
The k-instance of the (D,C)-network is the ω-language N (k) = (D ‖ S ‖ Gk C)
where GkC stands for Gk

i=1 C. The (D,C)-network N is the ω-language N =
⋃∞

k=1N
(k).

We omit the prefix (D,C) when it is clear from the context. It follows easily from the
properties of shuffle and asynchronous product that N = (D ‖ S ‖ G∞C), where G∞C is
an abbreviation of

⋃∞
k=1 GkC.

Next we introduce a notion of compatibility between a word of the leader and a
multiset of words of the contributor (a multiset because several contributors may execute
the same sequence of actions). Intuitively, compatibility means that all the words can
be interleaved into a legal infinite sequence of reads and writes supported by an atomic
register—that is, an infinite sequence belonging to S. Formally:

Definition 2. Let u ∈ Σω
D

, and let M = {v1, . . . , vk} be a multiset of words over Σω
C

(possibly containing multiple copies of a word). We say that u is compatible with M iff
the ω-language (u ‖ S ‖ Gk

i=1 vi) is non-empty. When u and M are compatible, there
exists a word s ∈ S such that (u ‖ s ‖ Gk

i=1 vi) , ∅. We call s a witness of compatibility.

Example 1. Consider the network with G = {1, 2, 3} where the leader, store, and contrib-
utor languages are given by the infinite paths of the transition systems from Figure 1.
The only ω-word ofD is (rd(1)rd(2)rd(3))ω and the ω-language of C is (wc(1)rc(3)rc(1) +

wc(2)rc(1)rc(2) + wc(3)rc(2)rc(3))ω. For instance,D = (rd(1)rd(2)rd(3))ω is compatible
with the multiset M of 6 ω-words obtained by taking two copies of (w(1)r(3)r(1))ω,
(w(2)r(1)r(2))ω and (w(3)r(2)r(3))ω. The reader may be interested in finding another
multiset compatible withD and containing only 4 ω-words.

5



Stuttering property. Intuitively, the stuttering property states that if we take an ω-word
of a network N and “stutter” reads and writes of the contributors, going e.g. from
wd(1)rc(1)wc(2)rd(2) . . . to wd(1)rc(1)rc(1)wc(2)wc(2)wc(2)rd(2) . . ., the result is again
an ω-word of the network.

Let s ∈ S be a witness of compatibility of u ∈ Σω
D

and M = {v1, . . . , vk}. Pick a set I
of positions (viz. I ⊆ dom(s)) such that (s)i ∈ ΣC for each i ∈ I, and pick a number `i ≥ 0
for every i ∈ I. Let s′ be the result of simultaneously replacing each (s)i by (s)`i+1

i in s.

We have that s′ ∈ S. Now let vs = (s)
`i1
i1
· (s)

`i2
i2
· · ·, where i1 = min(I), i2 = min(I \ {i1}),

. . . It is easy to see that (u ‖ s′ ‖ vs G Gk
i=1 vi) , ∅, and so u is compatible with M ⊕ {vs},

the multiset consisting of M and vs, and s′ is a witness of compatibility.
An easy consequence of the stuttering property is the copycat lemma [9].

Lemma 1 (Copycat Lemma). Let u ∈ Σω
D

and let M be a multiset of words of Σω
C

. If u
is compatible with M, then u is also compatible with M ⊕ {v} for every v ∈ M.

2.3 The Model-checking Problem for Linear-time Properties
We consider the model checking problem for linear-time properties, that asks, given
a network N and an ω-regular language L, decide whether N ‖ L is non-empty. We
assume L is given as a Büchi automaton A over ΣD. Intuitively, A is a tester that observes
the actions of the leader; we call this the leader model checking problem.

We study the complexity of leader model checking for networks in which the read-
write ω-languages D and C of leader and contributor are generated by an abstract
machine, like a finite-state machine (FSM) or a pushdown machine (PDM). (We give
formal definitions later.) More precisely, given two classes of machines D, C, we study
the model checking problem MC(D, C) defined as follows:
Given: machines D ∈ D and C ∈ C, and a Büchi automaton A
Decide: Is NA = (L(A) ‖ L(D) ‖ S ‖ G∞L(C)) non-empty?

In the next sections we prove that MC(FSM, FSM) and MC(PDM, FSM) are NP-complete,
while MC(PDM, PDM) is in NEXPTIME and PSPACE-hard.

Example 2. Consider the instance of the model checking problem whereD and C are
as in Figure 1, and A is a Büchi automaton recognizing all words over ΣD containing
infinitely many occurrences of rd(1). SinceD is compatible with a multiset of words of
the contributors, NA is non-empty. In particular, N (4)

A , ∅.

Since ΣA = ΣD, we can replace A and D by a machine A×D with a Büchi acceptance
condition. The construction of A × D given A and D is standard. In what follows, we
assume that D comes with a Büchi acceptance condition and forget about A.

There are two natural variants of the model checking problem, where ΣA = ΣC, i.e.,
the alphabet of A contains the actions of all contributors, or ΣA = ΣD ∪ ΣC. In both
these variants, the automaton A can be used to simulate atomic networks. Indeed, if the
language of A consists of all sequences of the form (wd()rc()wc()rd())ω, and we design
the contributors so that they alternate reads and writes, then the accepting executions
are those in which the contributors read a value from the store and write a new value in
an atomic step. So the complexity of the model-checking problem coincides with the
complexity for atomic networks (undecidable for PDMs and EXPSPACE-complete for
FSMs), and we do not study it further.

6



3 MC(FSM, FSM) is NP-complete

We fix some notations. A finite-state machine (FSM) (Q, δ, q0) over Σ consists of a finite
set of states Q containing an initial state q0 and a transition relation δ ⊆ Q × Σ × Q. A
word v ∈ Σω is accepted by an FSM if there exists a sequence q1q2 · · · of states such

that (qi, (v)i+1, qi+1) ∈ δ for all i ≥ 0. We denote by q0
(v)1
−−→ q1

(v)2
−−→ · · · the run accepting

v. A Büchi automaton (Q, δ, q0, F) is an FSM (Q, δ, q0) together with a set F ⊆ Q of
accepting states. An ω-word v ∈ Σω is accepted by a Büchi automaton if there is a run

q0
(v)1
−−→ q1

(v)2
−−→ · · · such that q j ∈ F for infinitely many positions j. The ω-language of a

FSM or Büchi automaton A, denoted by L(A), is the set of ω-words accepted by A.
In the rest of the section we show that MC(FSM, FSM) is NP-complete. Section 3.1

defines the infinite transition system associated to a (FSM,FSM)-network. Section 3.2
introduces an associated finite abstract transition system. Section 3.3 states and proves
a lemma (Lemma 3) characterizing the cycles of the abstract transition system that,
loosely speaking, can be concretized into infinite executions of the concrete transition
system. Membership in NP is then proved using the lemma. NP-hardness follows from
NP-hardness of reachability [9].

3.1 (FSM,FSM)-networks: Populations and transition system

We fix a Büchi automaton D = (QD, δD, q0D, F) over ΣD and an FSM C = (QC , δC , q0C)
over ΣC. A configuration is a tuple (qD, g, p), where qD ∈ QD, g ∈ G∪ {#}, and p: QC →

N assigns to each state of C a natural number. Intuitively, qD is the current state of D; g
is a value or the special value #, modelling that the store has not been initialized yet, and
no process read before some process writes; finally, p(q) is the number of contributors
currently at state q ∈ QC . We call p a population of QC , and write |p| =

∑
q∈QC

p(q) for
the size of p. Linear combinations of populations are defined componentwise: for every
state q ∈ QC , we have (k1 p1 + k2 p2)(q) := k1 p1(q) + k2 p2(q). Further, given q ∈ QC ,
we denote by q the population q(q′) = 1 if q = q′ and q(q′) = 0 otherwise, i.e., the
population with one contributor in state q and no contributors elsewhere. A configuration
is accepting if the state of D is accepting, that is whenever qD ∈ F. Given a set of
populations P, we define (qD, g, P) := {(qD, g, p) | p ∈ P}.

The labelled transition system TS = (X,T, X0) associated toNA is defined as follows:
– X is the set of all configurations, and X0 ⊆ X is the set of initial configurations, given

by (q0D, #, P0), where P0 = {kq0C | k ≥ 1};
– T = TD ∪ TC , where
• TD is the set of triples

(
(qD, g, p) , t , (q′D, g

′, p)
)

such that t is a transition of D,
viz. t ∈ δD, and one of the following conditions holds: (i) t = (qD,wd(g′), q′D);
or (ii) t = (qD, rd(g), q′D), g = g′.

• TC is the set of triples
(
(qD, g, p) , t , (qD, g′, p′)

)
such that t ∈ δC , and one

of the following conditions holds: (iii) t = (qC ,wc(g′), q′C), p ≥ qC, and p′ =

p− qC + q′
C

; or (iv) t = (qC , rc(g), q′C), p ≥ qC, g = g′, and p′ = p− qC + q′
C

.
Observe that |p| = |p′|, because the total number of contributors of a population
remains constant. Given configurations c and c′, we write c

t
−→c′ if (c, t, c′) ∈ T .

7



We introduce a notation important for Lemma 3 below. We define ∆(t) := p′− p. Observe
that ∆(t) = 0 in cases (i) and (ii) above, and ∆(t) = −qC + qC

′ in cases (iii) and (iv). So
∆(t) depends only on the transition t, but not on p.

3.2 The abstract transition system

We introduce an abstraction function α that assigns to a set P of populations the set of
states of QC populated by P. We also introduce a concretization function γ that assigns
to a set Q ⊆ QC the set of all populations p that only populate states of Q. Formally:

α(P) = {q ∈ QC | p(q) ≥ 1 for some p ∈ P}
γ(Q) = {p | p(q) = 0 for every q ∈ QC \ Q} .

It is easy to see that α and γ satisfy γ(α(P)) ⊇ P and α(γ(Q)) = Q, and so α and γ form
a Galois connection (actually, a Galois insertion). An abstract configuration is a tuple
(qD, g,Q), where qD ∈ QD, g ∈ G ∪ {#}, and Q ⊆ QC . We extend α and γ to (abstract)
configurations in the obvious way. An abstract configuration is accepting when the state
of D is accepting, that is whenever qD ∈ F.

Given TS = (X,T, X0), we define its abstraction αTS = (αX, αT, αX0) as follows:
– αX = QD × (G ∪ {#}) × 2QC is the set of all abstract configurations.
– αX0 = (q0D, #, α(P0)) = (q0D, #, {q0C}) is the initial configuration.
– ( (qD, g,Q), t, (q′D, g

′,Q′) ) ∈ αT iff there is p ∈ γ(Q) and p′ such that

(qD, g, p)
t
−→ (q′D, g

′, p′) and Q′ = α({p′ | ∃p ∈ γ(Q) : (qD, g, p)
t
−→ (q′D, g

′, p′)}).
Observe that the number of abstract configurations is bounded by K = |QD| · |G|+ 1 ·2|QC |.
Let us point out that our abstract transition system resembles but is different from that
of Pnueli et al.[14]. We write a

t
−→α a′ if (a, t, a′) ∈ αT . The abstraction satisfies the

following properties:

(A) For each ω-path c0
t1
−→ c1

t2
−→ c2 · · · of TS, there exists an ω-path a0

t1
−→α a1

t2
−→α

a2 · · · in αTS such that ci ∈ γ(ai) for all i ≥ 0.
(B) If (qD, g,Q)

t
−→α (q′D, g

′,Q′), then Q ⊆ Q′.
To prove this claim, consider two cases:
• t ∈ δD. Then (qD, g, p)

t
−→ (q′D, g

′, p) for every population p (because only the

leader moves). So (qD, g,Q)
t
−→α (q′D, g

′,Q).

• t ∈ δC . Consider the population p = 2
∑

q∈Q q ∈ γ(Q). Then (qD, g, p)
t
−→

(qD, g′, p′), where p′ = p− qC + qC
′. But then p′ ≥

∑
q∈Q q, and so α({p′}) ⊇ Q,

which implies (qD, g,Q)
t
−→α (qD, g′,Q′) for some Q′ ⊇ Q.

So in every ω-path a0
t1
−→α a1

t2
−→α a2 · · · of αTS, where ai = (qDi, gi,Qi), there is an

index i at which the Qi stabilize, that is, Qi = Qi+k holds for every k ≥ 0. However, the
converse of (A) does not hold: given a path a0

t1
−→α a1

t2
−→α a2 · · · of αTS, there may be no

path c0
t1
−→ c1

t2
−→ c2 · · · in TS such that ci ∈ γ(ai) for every i ≥ 0. Consider a contributor

machine C with two states q0, q1 and one single transition t = (q0,wc(1), q1). Then αTS
contains the infinite path (omitting the state of the leader, which plays no role):

(#, {q0})
t
−→α (1, {q0, q1})

t
−→α (1, {q0, q1})

t
−→α (1, {q0, q1}) · · ·

8



However, the transitions of TS are of the form (1, k0q0+k1q1)
t
−→ (1, (k0−1)q0+(k1+1)q1),

and so TS has no infinite paths.

3.3 Realizable cycles of the abstract transition system

We show that the existence of an infinite accepting path in TS reduces to the existence
of a certain lasso path in αTS. A lasso path consists of a stem and a cycle. Lemma 2
shows how every abstract finite path (like the stem) has a counterpart in TS. Lemma 3
characterizes precisely those cycles in αTS which have an infinite path counterpart in TS.

Lemma 2. Let (qD, g,Q) be an abstract configuration of αTS reachable from
(q0D, #, α(P0)) (= αX0). For every p ∈ γ(Q), there exists p̂ such that (qD, g, p̂) is reach-
able from (q0D, #, P0) and p̂ ≥ p.

Lemma 2 does not hold for atomic networks. Indeed, consider a contributor with tran-

sitions q0
wc(1)
−−−−→ q1

rc(1):wc(2)
−−−−−−−→ q2

rc(2):wc(3)
−−−−−−−→ q3, where rc(i) : wc( j) denotes that the read

and the write happen in one single atomic step. Then we have (omitting the state of the
leader, which does not play any rôle here):

(#, {q0})
wc(1)
−−−−→α (1, {q0, q1})

rc(1):wc(2)
−−−−−−−→α (2, {q0, q1, q2})

rc(2):wc(3)
−−−−−−−→α (3, {q0, . . . , q3}) .

Let p be the population putting one contributor in each of q0, . . . , q3. This population
belongs to γ({q0, . . . , q3}) but no configuration (3, p̂) with p̂ > p is reachable from
any population that only puts contributors in q0, no matter how many. Indeed, after
the first contributor moves to q2, no further contributor can follow, and so we cannot
have contributors simultaneously in both q2 and q3. On the contrary, in non-atomic
networks the Copycat Lemma states that what the move by one contributor can always
be replicated by arbitrarily many.

We proceed to characterized the cycles of the abstract transition system that can
be “concretized”. A cycle of αTS is a path a0

t1
−→α a1

t2
−→α a2 · · ·

tn−1
−−→α an such that

an = a0. A cycle is realizable if there is an infinite path c0
t′1
−→ c1

t′2
−→ c2 · · · of TS such

that ck ∈ γ(a(k mod n)) and t′k+1 = t(k+1 mod n) for every k ≥ 0.

Lemma 3. A cycle a0
t1
−→α a1

t2
−→α a2 · · ·

tn
−→α an of αTS is realizable iff

∑n
i=1 ∆(ti) = 0.

Theorem 1. MC(FSM, FSM) is NP-complete.

Proof. NP-hardness follows from the NP-hardness of reachability [9]. We show member-
ship in NP with the following high-level nondeterministic algorithm whose correctness
relies on Lemmas 2 and 3:

1. Guess a sequence Q1, . . . ,Q` of subsets of QC such that Qi ( Qi+1 for all i, 0 < i < `.
Note that ` ≤ |QC |.

2. Compute the set Q = QD × (G∪ {#})× {{q0C},Q1, . . . ,Q`} of abstract configurations
and the set T of abstract transitions between configurations of Q.

3. Guess an accepting abstract configuration a ∈ Q, that is, an a = (qD, g,Q) such that
qD is accepting in D.

9



4. Check that a is reachable from the initial abstract configuration (q0D, #, {q0C}) by
means of abstract transitions of T .

5. Check that the transition system with Q and T as states and transitions contains a
cycle a0

t1
−→α a1 · · · an−1

tn
−→α an such that n ≥ 1, a0 = an = a and

∑n
i=1 ∆(ti) = 0.

We show that the algorithm runs in polynomial time. First, because the sequence guessed
is no longer than |QC |, the guess can be done in polynomial time. Next, we give a
polynomial algorithm for step (5):

– Compute an FSA1 A�
a over the alphabet δD ∪ δC with Q as set of states, T as set of

transitions, a as initial state, and {a} as set of final states.
– Use the polynomial construction of Seidl et al. [15] to compute an (existential)

Presburger formula Ω for the Parikh image of L(A�
a ). The free variables of Ω are in

one-to-one correspondence with the transitions of δD ∪ δC . Denote by xt the variable
corresponding to transition t ∈ δD ∪ δC .

– Compute the formula
Ω′ = Ω ∧

∧
qc∈Qc

(∑
tgt(t)=qc

xt =
∑

src(t)=qc
xt

)
∧

∑
t∈δD∪δC

xt > 0
where tgt and src returns the target and source states of the transition passed in

argument. Ω′ adds to Ω the realizability condition of Lemma 3.
– Check satisfiability of Ω′. This step requires nondterministic polynomial time be-

cause satisfiability of an existential Presburger formula is in NP [11]. ut

4 MC(PDM, FSM) is NP-complete

A pushdown system (PDM) P = (Q, Γ, δ, q0) over Σ consists of a finite set Q of states
including the initial state q0, a stack alphabet Γ including the bottom stack symbol
⊥, and a set of rules δ ⊆ Q × Σ × Γ × Q × (Γ\{⊥} ∪ {pop}) which either push or pop
as explained below. A PDM-configuration qw consists of a state q ∈ Q and a word
w ∈ Γ∗ (denoting the stack content). For q, q′ ∈ Q, a ∈ Σ, γ, γ′ ∈ Γ, w,w′ ∈ Γ∗, we
say a PDM-configuration q′w (resp. q′γ′γw) a-follows qγw if (q, a, γ, q′, pop) ∈ δ, (resp.
(q, a, γ, q′, γ′) ∈ δ); we write qw

a
−→ q′w′ if q′w′ a-follows qw, and call it a transition. A

run c0
(v)1
−−→ c1

(v)2
−−→ . . . on a word v ∈ Σω is a sequence of PDM-configurations such that

c0 = q0⊥ and ci
(v)i+1
−−−−→ ci+1 for all i ≥ 0. We write c

∗
−→ c′ if there is a run from c to c′.

The language L(P) of P is the set of all words v ∈ Σω such that P has a run on v.
A Büchi PDM is a PDM with a set F ⊆ Q of accepting states. A word is accepted by

a Büchi PDM if there is a run on the word for which some state in F occurs infinitely
often along the PDM-configurations. The following lemma characterizes accepting runs.

Lemma 4. [7] Let c be a configuration. There is an accepting run starting from c if
there are states q ∈ Q, q f ∈ F, a stack symbol γ ∈ Γ such that c

∗
−→ qγw for some w ∈ Γ∗

and qγ
∗
−→ q f u

∗
−→ qγw′ for some u,w′ ∈ Γ∗.

1 A finite-state automaton (FSA) is an FSM which decides languages of finite words. Therefore
an FSA is an FSM with a set F of accepting states.

10



We now show MC(PDM, FSM) is decidable, generalizing the proof from Section 3. Fix
a Büchi PDM P = (QD, ΓD, δD, q0D, F), and a FSM C = (QC , δC , q0C). A configuration
is a tuple (qD,w, g, p), where qD ∈ QD, w ∈ Γ∗D is the stack content, g ∈ G ∪ {#}, and p
is a population. Intuitively, qDw is the PDM-configuration of the leader. We extend the
definitions from Section 3 like accepting configuration in the obvious way.

We define a labeled transition system TS = (X,T, X0), where X is the set of con-
figurations including the set X0 = (q0D,⊥, #, P0) of initial configurations, and the
transition relation T = TD ∪ TC , where TC is as before and TD is the set of triples(
(qD,w, g, p), t, (q′D,w

′, g′, p)
)

such that t is a transition (not a rule) of D, and one of the

following conditions holds: (i) t = (qDw
wd(g′)
−−−−→ q′Dw′); or (ii) t = (qDw

rd(g)
−−−→ q′Dw′) and

g = g′. We define the abstraction αTS of TS as the obvious generalization of the ab-
straction in Section 3. An accepting path of the (abstract) transition system is an infinite
path with infinitely many accepting (abstract) configurations. As for MC(FSM, FSM), not
every accepting path of the abstract admits a concretization, but we find a realizability
condition in terms of linear constraints. Here we use again the polynomial construc-
tion of Seidl et al. [15] mentioned in the proof of Theorem 1, this time to compute an
(existential) Presburger formula for the Parikh image of a pushdown automaton.

Theorem 2. MC(PDM, FSM) is NP-complete.

5 MC(PDM, PDM) is in NEXPTIME

We show how to reduce MC(PDM, PDM) to MC(PDM, FSM). We first introduce the notion of
effective stack height of a PDM-configuration in a run of a PDM, and define, given a
PDM C, an FSM Ck that simulates all the runs of C of effective stack height k. Then we
show that, for k ∈ O(n3), where n is the size of C, the language (L(D) ‖ S ‖ G∞L(C)) is
empty iff (L(D) ‖ S ‖ G∞L(Ck)) is empty.

5.1 A FSM for runs of bounded effective stack height

Consider a run of a PDM that repeatedly pushes symbol on the stack. The stack height of
the configurations2 is unbounded, but, intuitively, the PDM only uses the topmost stack
symbol during the run. To account for this we define the notion of effective stack height.

Definition 3. Let ρ = c0
(v)1
−−→ c1

(v)2
−−→ · · · be an infinite run of a PDM on ω-word v,

where ci = qiwi. The dark suffix of ci in ρ, denoted by ds(wi), is the longest suffix of
wi that is also a proper suffix of wi+k for every k ≥ 0. The active prefix ap(wi) of wi is
the prefix satisfying wi = ap(wi) · ds(wi). The effective stack height of ci in ρ is |ap(wi)|.
We say that ρ is effectively k-bounded (or simply k-bounded for the sake of readability)
if every configuration of ρ has an effective stack height of at most k. Further, we say
that ρ is bounded if it is k-bounded for some k ∈ N. Finally, an ω-word of the PDM
is k-bounded, respectively bounded, if it is the word generated by some k-bounded,
respectively bounded, run (other runs for the same word may not be bounded).

2 For readability, we write “configuration” for “PDM-configuration.”

11



Intuitively, the effective stack height measures the actual memory required by the
PDM to perform its run. For example, repeatedly pushing symbols on the stack produces
a run with effective stack height 1. Given a position in the run, the elements of the stack
that are never popped are those in the longest common suffix of all subsequent stacks.
The first element of that suffix may be read, therefore only the longest proper suffix is
effectively useless, so no configuration along an infinite run has effective stack height 0.

Proposition 1. Every infinite run of a PDM contains infinitely many positions at which
the effective stack height is 1.

Proof. Let p0w0 −→ p1w1 −→ p2w2 −→ · · · be any infinite run. Notice that |wi| ≥ 1 for
every i ≥ 0, because otherwise the run would not be infinite. Let X be the set of positions
of the run defined as: i ∈ X iff |wi| ≤ |w j| for every j > i. Observe that X is infinite,
because the first configuration of minimal stack height, say pkwk belongs to it, and so
does the first configuration of minimal stack height of the suffix pk+1wk+1 −→ · · · , etc. By
construction, the configuration at every position in X has effective stack height 1. ut

In a k-bounded run, whenever the stack height exceeds k, the k + 1-th stack symbol
will never become the top symbol again, and so it becomes useless. So, we can construct
a finite-state machine Pk recognizing the words of L(P) accepted by k-bounded runs.

Definition 4. Given a PDM P = (Q, Γ, δ, q0), the FSM Pk = (Qk, δk, q0k), called the
k-restriction of P, is defined as follows: (a) Qk = Q ×

⋃k
i=1 Γ

i (a state of Pk consists of
a state of P and a stack content no longer than k); (b) q0k = (q0,⊥); (c) δk contains a
transition (q, (w)1..k)

a
−→ (q′, (w′)1..k) iff qw

a
−→ q′w′ is a transition (not a rule) of P.

Theorem 3. Given a PDM P, w admits a k-bounded run in P iff w ∈ L(Pk).

5.2 The Reduction Theorem

We fix a Büchi PDM D and a PDM C. By Theorem 3, in order to reduce MC(PDM, PDM)
to MC(PDM, FSM) it suffices to prove the following Reduction Theorem:

Theorem 4 (Reduction Theorem). Let N = 2|QC |
2|ΓC | + 1, where QC and ΓC are the

states and stack alphabet of C, respectively. Let CN be the N-restriction of C. We have:(
L(D) ‖ S ‖ G∞L(C)

)
, ∅ iff

(
L(D) ‖ S ‖ G∞L(CN)

)
, ∅ . (†)

There are PDMs D, C for which (†) holds only for N ∈ Ω(|QC |
2|ΓC |).

Theorems 4 and 2 provide an upper bound for MC(PDM, PDM). PSPACE-hardness of
the reachability problem [9] gives a lower bound.

Theorem 5. MC(PDM, PDM) is in NEXPTIME and PSPACE-hard. If the contributor is a
one counter machine (with zero-test), it is NP-complete.

The proof of Theorem 4 is very involved. Given a run of D compatible with a finite
multiset of runs of C, we construct another run of D compatible with a finite multiset of
N-bounded runs of CN . (Here we extend compatibility to runs: runs are compatible if
the words they accept are compatible.)

12



The proof starts with the Distributing lemma, which, loosely speaking, shows how
to replace a run of C by a multiset of “smaller” runs of C without the leader “noticing”.
After this preliminary result, the first key proof element is the Boundedness Lemma.
Let σ be an infinite run of D compatible with a finite multiset R of runs of C. The
Boundedness Lemma states that, for any number Z, the first Z steps of σ are compatible
with a (possibly larger) multiset RZ of runs of CN . Since the size of RZ may grow with Z,
this lemma does not yet prove Theorem 4: it only shows that σ is compatible with an
infinite multiset of runs of CN . This obstacle is overcome in the final step of the proof.
We show that, for a sufficiently large Z, there are indices i < j such that, not σ itself,
but the run (σ)1..i

(
(σ)i+1.. j

)ω for adequate i and j is compatible with a finite multiset of
runs of CN . Loosely speaking, this requires to prove not only that the leader can repeat
(σ)i+1.. j infinitely often, but also that the runs executed by the instances of CN while the
leader executes (σ)i+1.. j can be repeated infinitely often.

The Distributing Lemma. Let ρ = c0
a1
−→ c1

a2
−→ c2

a3
−→ · · · be a (finite or infinite) run of

C. Let ri be the PDM-rule of C generating the transition ci−1
ai
−→ ci. Then ρ is completely

determined by c0 and the sequence r1r2r3 . . . Since c0 is also fixed (for fixed C), in the
rest of the paper we also sometimes write ρ = r1r2r3 . . . This notation allows us to speak
of dom(ρ), (ρ)k, (ρ)i.. j and (ρ)i..∞.

We say that ρ distributes to a multiset R of runs of C if there exists an embedding
function ψ that assigns to each run ρ′ ∈ R and to each position i ∈ dom(ρ′) a position
ψ(ρ′, i) ∈ dom(ρ), and satisfies the following properties:

– (ρ′)i = (ρ)ψ(ρ′,i). (A rule occurrence in ρ′ is matched to another occurrence of the
same rule in ρ.)

– ψ is surjective. (For every position k ∈ dom(ρ) there is at least one ρ′ ∈ R and a
position i ∈ dom(ρ′) such that ψ(ρ′, i) = k, or, informally, R “covers” ρ.)

– If i < j, then ψ(ρ′, i) < ψ(ρ′, j). (So ψ(ρ′, 1)ψ(ρ′, 2) · · · is a scattered subword of ρ.)

Example 3. Let ρ be a run of a PDM P. Below are two distributions R and S of ρ =

rarbrbrcrcrc. On the left we have R = {ρ′1, ρ
′
2, ρ
′
3}, and its embedding function ψ; on the

right S = {σ′1, σ
′
2, σ

′
3}, and its function ψ′.

ψ 1 2 3
ρ′1 1 6
ρ′2 1 2 5
ρ′3 1 3 4

1 2 3 4 5 6
ρ = ra rb rb rc rc rc

ρ′1 = ra rc

ρ′2 = ra rb rc

ρ′3 = ra rb rc

ψ′ 1 2 3 4
σ′1 1 4
σ′2 1 2 4 5
σ′3 1 3 5 6

1 2 3 4 5 6
ρ = ra rb rb rc rc rc

σ′1 = ra rc

σ′2 = ra rb rc rc

σ′3 = ra rb rc rc

Lemma 5 (Distributing lemma). Let u ∈ L(D), and let M be a multiset of words of
L(C) compatible with u. Let v ∈ M and let ρ an accepting run of v in C that distributes
to a multiset R of runs of C, and let MR the corresponding multiset of words. Then
M 	 {v} ⊕ MR is also compatible with u.

The Boundedness Lemma. We are interested in distributing a multiset of runs of C into
another multiset with, loosely speaking, “better” effective stack height.

Fix a run ρ of C and a distribution R of ρ with embedding function ψ. In Example 3,
(ρ)1..4 is distributed into (ρ′1)1..1, (ρ′2)1..2 and (ρ′3)1..3. Assume ρ is executed by one con-
tributor. We can replace it by 3 contributors executing ρ′1, ρ

′
2, ρ
′
3, without the rest of the

13



network noticing any difference. Indeed, the three processes can execute ra immediately
after each other, which for the rest of the network is equivalent to the old contributor
executing one ra. Then we replace the execution of (ρ)2..4 by (ρ′2)2(ρ′3)2..3.

We introduce some definitions allowing us to formally describe such facts. Given
k ∈ dom(ρ), we denote by c(ρ, k) the configuration reached by ρ after k steps. We
naturally extend this notation to define c(ρ, 0) as the initial configuration. We denote
by lastψ(ρ′, i) the largest position k ∈ dom(ρ′) such that ψ(ρ′, k) ≤ i (similarly if none
exists, we fix lastψ(ρ′, i) = 0). Further, we denote by cψ(ρ′, k) the configuration reached
by ρ′ after k steps of ρ, that is, the configuration reached by ρ′ after the execution of
lastψ(ρ′, k) transitions; formally, cψ(ρ′, k) = c(ρ′, lastψ(ρ′, k)).

Example 4. Let ρ, R, and ψ as in Example 3. Assuming that the PDM P has one sin-
gle state p, stack symbols {⊥, α} such that the three rules ra, rb and rc are given by
ra : p⊥ → pα⊥, rb : pα → pαα, and rc : pα → p, then we have c(ρ, 5) = pα⊥. Fur-
ther, lastψ(ρ′1, 5) = 1, lastψ(ρ′2, 5) = 3, and lastψ(ρ′3, 5) = 3. Finally, cψ(ρ′1, 5) = pα⊥,
cψ(ρ′2, 5) = pα⊥, and cψ(ρ′3, 5) = pα⊥.

Given Z ∈ dom(ρ) and K ∈ N, we say that a distribution R of ρ is (Z,K)-bounded if for
every ρ′ ∈ R and for every i ≤ Z, the effective stack height of cψ(ρ′, i) is bounded by K.
Further, we say that R is synchronized if for every configuration c(ρ, i) with effective
stack height 1 and for every ρ′ ∈ R, cψ(ρ′, i) = c(ρ, i) (same control state and same stack
content), and also has effective stack height 1.3 The Boundedness Lemma states that
there is a constant N, depending only on C, such that for every run ρ of C and for every
Z ∈ dom(ρ) there is a (Z,N)-bounded and synchronized distribution RZ of ρ. The key of
the proof is the following lemma.

Lemma 6. Let N = 2|QC |
2|ΓC | + 1. Let ρ be a run of C and Z ∈ dom(ρ) be the first

position of ρ such that c(ρ,Z) is not N-bounded. Then there is a (Z,N)-bounded and
synchronized distribution of ρ.

Proof sketch. We construct a (Z,N)-bounded and synchronized distribution
{ρa, ρb} of ρ. Let αN+1αN · · ·α1w0 be the stack content of c(ρ,Z). Define
{
−→p 1,
←−p 1,
−→p 2,
←−p 2, . . . ,

−→p N ,
←−p N} ⊆ dom(ρ) such that for each i, 1 ≤ i ≤ N

we have c(ρ,−→p i) and c(ρ,←−p i) are the configurations immediately after the sym-
bol αi in c(ρ,Z) is pushed, respectively popped and such that the stack con-
tent of each configuration between −→p i (included) and ←−p i (excluded) equals
wpαiαi−1 · · ·α1w0 for some wp ∈ Γ∗C . We get c(ρ,−→p i) = qiαiαi−1 . . . α0w0 and
c(ρ,←−p i) = q′iαi−1 . . . α0w0 for some qi, q′i ∈ QC . Observe that the following holds:
−→p 1 < · · · <

−→p N−1 <
−→p N < Z <←−p N <←−p N−1 < · · · <

←−p 1.
Since N = 2|QC |

2|ΓC | + 1, by the pigeonhole principle we find q, α, q′ and three
indices 1 ≤ j1 < j2 < j3 ≤ N such that by letting w1 = α j1−1 · · ·α1, w2 = α j2−1 · · ·α j1
and w3 = α j3−1 · · ·α j2 , we have:

ρ = (ρ)1..−→p j1
[qαw1] (ρ)−→p j1+1..

−→p j2
[qαw2w1] (ρ)−→p j2+1..

−→p j3
[qαw3w2w1]

(ρ)−→p j3+1..
←−p j3

[q′w3w2w1] (ρ)←−p j3+1..
←−p j2

[q′w2w1] (ρ)←−p j2+1..
←−p j1

[q′w1] (ρ)←−p j1+1..∞
.

3 Notice that the effective stack height of a configuration depends on the run it belongs to, and so
c(ρ, i) = cψ(ρ′, i) does not necessarily imply that they have the same effective stack height.

14



Here, the notation indicates that we reach configuration [qαw1] after (ρ)1..−→p j1
, the

configuration [qαw2w1] after (ρ1..−→p j2
, etc.

Now define ρa from ρ by simultaneously deleting (ρ)−→p j1+1..
−→p j2

and (ρ)←−p j2+1..
←−p j1

. We
similarly define ρb by deleting (ρ)−→p j2+1..

−→p j3
and (ρ)←−p j3+1..

←−p j2
. The following shows that ρa

defines a legal run since it is given by
(ρ)1..−→p j1

[qαw1] (ρ)−→p j2+1..
−→p j3

[qαw3w1](ρ)−→p j3+1..
←−p j3

[q′w3w1] (ρ)←−p j3+1..
←−p j2

[q′w1] (ρ)←−p j1+1..∞
.

A similar reasoning holds for ρb. Finally, one can show that {ρa, ρb} is a (Z,N)-bounded
and synchronized distribution of ρ.

Lemma 7 (Boundedness Lemma). Let N = 2|QC |
2|ΓC | + 1, and let ρ be a run of C.

For every Z ∈ dom(ρ) there is an (Z,N)-bounded and synchronized distribution RZ of ρ.

The proof is by induction on Z. The distribution ψZ+1,RZ+1 is obtained from ψZ ,RZ

by distributing each run ρ′ of RZ to a (ψZ(ρ′,Z)+1,N)-bounded run (applying Lemma 6).
Proof sketch of Theorem 4. Given a run σ of D compatible with a finite multiset M of
runs of C, we construct another run τ of D, and a multiset R of N-bounded runs of CN

such that τ and R are compatible as well. We consider only the special case in which
M has one single element ρ (and one single copy of it). Since σ is compatible with ρ,
we fix a witness π ∈ S such that π ∈ σ G ρ. We construct a “lasso run” out of π of the
form λ1[λ2]ω. It suffices to find two positions in π where the content of the store is the
same, the corresponding configurations of the leader are the same, and similarly for each
contributor; the fragment between these two positions can be repeated (is “pumpable”).

Given a position i of π, let iρ and iσ denote the corresponding positions in ρ and
σ.4 Further, for every Z let RZ be a (Z,N)-bounded and synchronized distribution of ρ
with embedding function ψ (which exists by the Boundedness Lemma). Let RZ(iρ) =

{cψ(η, iρ) | η ∈ RZ} denote the multiset of configurations reached by the runs of RZ after i
steps of π. Using Proposition 1 and that (i) the store has a finite number of values, (ii) RZ

is (Z,N)-bounded, and (iii) there are only finitely many active prefixes of length at most
N, we can apply the pigeonhole principle to find a sufficiently large number Z and three
positions i < j < k ≤ Z in π satisfying the following properties:
(1) The contents of the store at positions i and k of π coincide.
(2) The configurations c(σ, iσ) and c(σ, kσ) of the leader have effective stack height 1,

same topmost stack symbol and same control state. Further, σ enters and leaves
some accepting state between iσ and kσ.

(3) The configuration c(ρ, jρ) has effective stack height 1.
(4) For every configuration of RZ(iρ) there is a configuration of RZ(kρ) with the same

control state and active prefix, and vice versa.
Condition (4) means that, after removing the dark suffixes, RZ(iρ) and RZ(kρ) contain
the same pruned configurations, although possibly a different number of times (same
set, different multisets). If we obtain the same multiset, then the fragment of π between
positions i and k is pumpable by (1) and (2), and we are done. Otherwise, we use (3)
and the fact that RZ is synchronized (which had not been used so far) to obtain a new
distribution in which the multisets coincide. This is achieved by adding new runs to RZ .

4 Position p in π defines position pσ in σ such that (σ)1..pσ = ProjΣD ((π)1..p), similarly pρ is
defined as satisfying (ρ)1..pρ = ProjΣC ((π)1..p).

15



References

1. Abdulla, P.A., Bertrand, N., Rabinovich, A., Schnoebelen, P.: Verification of probabilistic
systems with faulty communication. Information and Computation 202(2), 105–228 (2005)

2. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.K.: General decidability theorems for infinite-
state systems. In: LICS ’96. pp. 313–321. IEEE Computer Society (1996)

3. Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. Information and
Computation 127(2), 91–101 (1996)

4. Aminof, B., Kotek, T., Rubin, S., Spegni, F., Veith, H.: Parameterized model checking of
rendezvous systems. In: CONCUR ’14: Proc. 25th Int. Conf. on Concurrency Theory. LNCS,
vol. 8704, pp. 109–124. Springer (2014)

5. Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of population
protocols. Distributed Computing 20(4), 279–304 (2007)

6. Apt, K.R., Kozen, D.C.: Limits for automatic verification of finite-state concurrent systems.
Information Processing Letters 22(6), 307 – 309 (1986)

7. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata: Application
to model-checking. In: CONCUR ’97: Proc. 8th Int. Conf. on Concurrency Theory. LNCS,
vol. 1243, pp. 135–150. Springer (1997)

8. Esparza, J., Finkel, A., Mayr, R.: On the verification of broadcast protocols. In: LICS ’99. pp.
352–359. IEEE Computer Society (1999)

9. Esparza, J., Ganty, P., Majumdar, R.: Parameterized verification of asynchronous shared-
memory systems. In: CAV ’13: Proc. 23rd Int. Conf. on Computer Aided Verification. LNCS,
vol. 8044, pp. 124–140. Springer (2013)

10. German, S.M., Sistla, A.P.: Reasoning about systems with many processes. Journal of ACM
39(3), 675–735 (1992)

11. Grädel, E.: Subclasses of presburger arithmetic and the polynomial-time hierarchy. Theor.
Comput. Sci. 56, 289–301 (1988)

12. Hague, M.: Parameterised pushdown systems with non-atomic writes. In: Proc. of FSTTCS’11.
LIPIcs, vol. 13, pp. 457–468. Schloss Dagstuhl (2011)

13. Meyer, R.: On boundedness in depth in the pi-calculus. In: In Procedings of IFIP TCS 2008.
IFIP, vol. 273, pp. 477–489. Springer (2008)

14. Pnueli, A., Xu, J., Zuck, L.D.: Liveness with (0, 1, infty)-counter abstraction. In: CAV ’02:
Proc. 14th Int. Conf. on Computer Aided Verification. LNCS, vol. 2404, pp. 107–122. Springer
(2002)

15. Verma, K.N., Seidl, H., Schwentick, T.: On the complexity of equational horn clauses. In:
CADE ’05: 20th Int. Conf. on Automated Deduction. LNCS, vol. 1831, pp. 337–352. Springer
(2005)

16



6 Appendix

6.1 Proofs of Section 3

Proof (of Lemma 2). The proof is by induction on the length of the abstract path of αTS
from αX0 = (q0D, #, α(P0)) = (q0D, #, {q0C}) to the configuration (qD, g,Q).

The base case corresponds to (qD, g,Q) = (q0D, #, {q0C}). For every p ∈ γ({q0C}) we
can just take p̂ = p.

For the inductive case (in which the abstract path has n > 0 transitions), let
(q1D, g1,Q1)

t
−→α (qD, g,Q) be the last transition of the path, and assume t ∈ TC (in

the case t ∈ TD we have Q1 = Q and the result follows immediately from the induction
hypothesis). Let qC and qC

′ be the source and target state of t, respectively. It follows
from the definition of −→α that:

Q = α
( {

p′ | ∃p ∈ γ(Q1) : p ≥ qC ∧ p′ = p− qC + qC
′} ) . (1)

By (B) and (1) we have Q = Q1 ∪ {qC
′}. If q′C ∈ Q1 then we again get Q1 = Q, and the

result follows from the induction hypothesis. So assume q′C < Q1. Given an arbitrary
population p ∈ γ(Q), let d = p(qC

′) and consider the population p1 = p− dqC
′ + dqC.

We have p1(q′C) = d − d = 0, and so p1 ∈ γ(Q1). By induction hypothesis, there
exists p̂1 ∈ γ(Q1) such that p̂1 ≥ p1 and (q1D, g1, p̂1) is reachable from X0 in TS. Since
p̂1 ≥ p1 ≥ dqC, the mapping p̂ = p̂1 − dqC + dqC

′ is non-negative, and therefore a
population. Now let d contributors of p̂1 execute t ∈ δC (which is always possible in a
non-atomic network). We then have

(q1D, g1, p̂1)
td

−→ (qD, g, p̂1 − dqC + dqC
′) = (qD, g, p̂)

and we are done. ut

Proof (of Lemma 3). (⇒) Assume the cycle is realizable. Then there is an infinite path
c0

t1
−→ c1

t2
−→ c2 · · · of TS such that c0 ∈ γ(a0), . . . , cn−1 ∈ γ(an−1) and ck ∈ γ(a(k mod n))

for every k ≥ n, and the transitions match. Let pi be the population of ci. Since the
number of contributors of a population remains constant across transitions, we have
|pi| = |p0| for every i ≥ 0. Since there are only finitely many different populations of a
given size, by the pigeonhole principle there exist k1 < k2 such that pk1n = pk2n. Since

pk2n = pk1n +

k2n∑
i=(k1n)+1

∆(ti) ,

the sum on the right-hand-side is equal to 0. Since
k2n∑

i=(k1n)+1

∆(ti) = (k2 − k1)
n∑

i=1

∆(ti)

we get
∑n

i=1 ∆(ti) = 0.
(⇐) Let ai = (qDi, gi,Qi) for every 0 ≤ i ≤ n. By (B) we have Q0 ⊆ Q1 ⊆ · · · ⊆ Qn = Q0,
and so all the Qi are equal to Q0. Let p0 =

∑
q∈Q0

nq and let pi = p0 +
∑i−1

k=1 ∆(tk) for

17



every 1 ≤ i ≤ n. Then pi is a population for every 0 ≤ i ≤ n, since |
∑i−1

k=1 ∆(tk)| ≤ p0.

Moreover c0
t1
−→ c1

t2
−→ c2 · · ·

tn
−→ cn is a path of TS and, since

∑n
i=1 ∆(ti) = 0, we have

cn = c0. So c0
t0
−→ c1 · · ·

tn
−→ cn is a cycle of TS that can be iterated arbitrarily often, which

implies that a0
t1
−→α a1

t2
−→α a2 · · ·

tn
−→α an is realizable. ut

Proof (of Theorem 1). In the main text we show that the algorithm runs in nondetermin-
istic polynomial time. We now prove that it is sound and complete. Then we prove that
the problem is NP-hard.
Soundness. The algorithm clearly computes a cycle of αTS satisfying the assumptions of
Lemma 3. So the cycle is realizable. Let c0

t0
−→ c1 · · · be the realization of the cycle, and

let c0 = (qD0, g0, p0). Since a = a0 is reachable from the initial abstract configuration, by
Lemma 2 there exists a configuration c′0 = (qD0, g0, p̂0) reachable from (q0D, #, P0) such
that p̂0 ≥ p0. So the sequence (t0 . . . tn)ω can also be executed from c′0. Since the cycle
visits some accepting state QD infinitely often, TS has an accepting path.

Completeness. Let c0
t1
−→ c1

t2
−→ c2 · · · be an ω-path of TS on which the Büchi automaton

accepts. Since the number of contributors in the populations of the path stays constant,
there exist, by the pigeonhole principle, two positions i1 < i2 such that ci1 = ci2 , and

they are accepting. Clearly, we have
∑i2

k=i1
∆(ti) = 0, hence c0

t1
−→ c1

t2
−→ c2 · · · ci1−1

ti1
−→

(ci1

ti1+1
−−−→ ci1+1 · · ·

ti2
−→ ci2 )ω is also an accepting ω-path of TS. By (A) the path has a

counterpart in the abstraction αTS, that is, there exists an ω-path a0
t1
−→α a1

t2
−→α · · · in

αTS such that ci ∈ γ(ai) for all i ≥ 0. Notice that (i) the sequence of transitions fired
along these two paths is the same, and (ii) the states of D and the Büchi automaton A
coincide in ci and ai for all i and so the abstract path is also accepting. For each i ≥ 0,
let ai = (qDi, gi,Qi). We know from (B) that Qi ⊆ Qi+1, and so there is a sequence
Q′1 ( Q′2 ( . . . ( Q′` such that for every i ≥ 0 we have Qi = Q′j for some 1 ≤ j ≤ `.
It follows that every abstract configuration of the path belongs to the set Q, and every
transition to the set T .

Let i after which the Qi stabilize, that is, Qi = Qi+k holds for every k ≥ 0. Therefore,
there exist numbers i, j such that ai = ai+ j and some abstract configuration between
ai and ai+ j is accepting. So the transition system with Q as states and T as transitions
contains a configuration a reachable from the initial abstract configuration, and a cycle
starting and ending at a.
Hardness. NP-hardness follows from the NP-hardness of the safety problem [9], which
asks given a finite-state machine D for the leaderD and C for the contributor C—both of
which are languages of finite words—whether there exists a word of the (D,C)-network
N that ends with an occurrence of wd($). We say that N is safe iff it contains no such
word. Remark that, for the safety problem, C is assumed to be prefix-closed, hence every
state of C is accepting. Also, we assume without loss of generality that every word ofD
ends with wd($). The reduction goes as follows, given an instance of the safety problem
turnD into a ω-language by appending it rd($)ω. We also turn C into a ω-language by
appending it wc(#)ω where # < G is the corrupted value nobody else can read. At the
machine level this is done by adding to each accepting state of D a selfloop labeled
with action rd($) and interpretingD as a Büchi automaton. On the other hand since C is

18



prefix closed we have that all its states are accepting. We turn C into a FSM by dropping
F—the set of accepting states—and by adding a self-loop labelled wc(#) to each state.
This concludes the hardness proof. ut

6.2 Proofs of Section 4

Proof (of Theorem 2). Hardness follows from the NP-hardness for MC(FSM, FSM). The
non-deterministic polynomial time algorithm is essentially the same as that of Theorem 1,
except that we have pushdown systems instead of finite-state systems. As before, we
guess a sequence Q1, . . . ,Q` of subsets of QC such that Qi ( Qi+1 for all i, 0 <
i < ` ≤ |QC |. We construct a Büchi PDM whose states Q are abstract configurations
QD × (G ∪ {#}) × {{q0C},Q1, . . . ,Q`}, whose stack alphabet is ΓD, whose initial state is
q0 = (q0D,⊥, #, {q0C}), whose accepting states are accepting abstract configurations (i.e.
where A is accepting), and whose transitions are defined to mimic αTS.

Next, we guess an abstract configuration q and a stack symbol γ. We check if there
is a word that takes q0⊥ to qγw for some w ∈ Γ∗D. This check is equivalent to pushdown
reachability and can be performed in polynomial time [7]. We construct a PDA5 P�

qγ
over finite words that accepts a word u ∈ Σ∗ if there is a run on u from the starting
configuration qγ to a configuration qγw′ for some w′ ∈ Γ∗D that passes through an
accepting abstract configuration. The PDA P�

qγ can be computed in polynomial time.
Finally, we check if there is a word accepted by the pushdown automaton whose

“weight” is 0. For this check, as before, we compute an (existential) Presburger formulaΩ
for the Parikh image of L(P�

qγ). The free variables of Ω are in one-to-one correspondence
with the transitions of the automaton. We thus adopt the convention that xt denotes the
variable corresponding to transition t ∈ δD∪δC . We compute Ω′ by adding |QC | variables
and |QC | constraints, one per state in qc ∈ QC:

∑
tgt(t)=qc

xt =
∑

src(t)=qc
xt where tgt and

src returns the target and source states of the transition passed in argument. Add also
the constraints

∑
t∈δD∪δC

xt > 0 to prevent 0 to be returned as a trivial solution. Finally,
we check satisfiability of Ω′ and accept if Ω′ is satisfiable. This step is in NP because
satisfiability of an existential Presburger formula is in NP [11].

To see that the algorithm is sound, notice that the algorithm accepts if there is a
(pushdown) lasso such that the cyclic part has 0 weight. For an initial population that is
large enough (essentially, cubic in the size of the PDM), we can execute the operations
on the path to the lasso and then execute the cycle to come back to the same configuration
as the starting point of the lasso. This lasso can be pumped infinitely often to produce an
accepting run of the Büchi PDM.

For completeness, we use Lemma 4 to deduce that from an accepting run of the
Büchi PDM, we can find a lasso-shaped path as defined above. By a similar pigeonhole
argument as that of Lemma 3, we conclude that we can find a cyclic path whose weight
is 0. ut

5 A pushdown automaton (PDA) is a PDM which decides languages of finite words. We define a
PDA as a PDM with a set F of accepting states.

19



6.3 Proofs of Section 5

Proof (of Theorem 3). We first prove that if v admits an effectively k-bounded run ρ in

P then w also admits a run in Pk. Let ρ = q0w0
(v)1
−−→ q1w1

(v)2
−−→ · · · , and let ap(i), resp.

ds(i), denote the active prefix, resp. dark suffix, of wi. Recall that a state of Pk is a pair
(q, s), where q is a state of P and s is a non-empty stack content of length at most k.

For every i ≥ 0, we inductively define (qi, ap(i)ui) where ui is a possibly empty prefix

of ds(i) and we show that (qi, ap(i)ui)
(v)i+1
−−−−→ (qi+1, ap(i + 1)ui+1) is a transition of Pk.

We define u0 = ε. Observe that ap(0) = ⊥ and ds(0) = ε, therefore the initial state of
Pk is in the desired form. For the definition of ui+1, assuming that ui is already defined,
we consider three cases:

– The transition qiwi
(v)i+1
−−−−→ qi+1wi+1 pops a symbol γ.

Then qi γv
(v)i+1
−−−−→ qi+1v is a transition of P for every v, and so, in particular, qi γap(i +

1)ui
(v)i+1
−−−−→ qi+1 ap(i + 1)ui is a transition of P. Moreover, by the definition of an

active prefix, we have ap(i) = γap(i + 1) and thus ds(i) = ds(i + 1) therefore ui

is also a prefix of ds(i + 1). By induction hypothesis, |ap(i)ui| ≤ k, which implies
|ap(i + 1)ui| < k. Setting ui+1 to be ui we thus obtain that |ap(i + 1)ui+1| ≤ k and

finally that (qi, ap(i)ui)
(v)i+1
−−−−→ (qi+1, ap(i + 1)ui+1) is a transition of Pk.

– The transition qiwi
(v)i+1
−−−−→ qi+1wi+1 pushes a symbol γ, and |ap(i)ui| < k.

Then qiap(i)ui
(v)i+1
−−−−→ qi+1γap(i)ui is a transition of P. Since |ap(i)ui| < k, we have

|γap(i)ui| ≤ k, hence (qi, ap(i)ui)
(v)i+1
−−−−→ (qi+1, γap(i)ui) is also a transition of Pk. If γ

is popped later on, then ap(i + 1) = γ ap(i); so qi ap(i)ui
(v)i+1
−−−−→ qi+1 ap(i + 1)ui is a

transition of P, and we set ui+1 to ui. If γ is never popped, then ap(i + 1) = γ, and we
let ui+1 to be ap(i)ui. In both cases, we find that |ap(i + 1)ui+1| ≤ k and hence that

(qi, ap(i)ui)
(v)i+1
−−−−→ (qi+1, ap(i + 1)ui+1) is a transition of Pk.

– The transition qiwi
(v)i+1
−−−−→ qi+1wi+1 pushes a symbol γ, and |ap(i)ui| = k.

Then qiap(i)ui
(v)i+1
−−−−→ qi+1γap(i)ui is a transition of P. Observe that since |ap(i)ui| = k

we have |γap(i)ui| = k + 1. First we show that |ui| > 0, if |ui| = 0, then |ap(i)| = k,
and more importantly ds(i) is the largest proper suffix of all the (w j) j≥i, and since wi

is a proper suffix of wi+1, ds(i) is also the largest proper suffix of all the (w j) j≥i+1,
therefore γap(i) = ap(i + 1), so |ap(i + 1)| = k + 1 contradicting the hypothesis that
the run is effectively k-bounded.

We can therefore write ui = u′iγ
′. Since |γap(i)ui| = k + 1, (qi, ap(i)ui)

(v)i+1
−−−−→

(qi+1, (γap(i)ui)1..k) is a transition of Pk. If γ is popped later on, then ap(i+1) = γ ap(i)
and ui+1 = u′i . If γ is never popped, then ap(i + 1) = γ, and ui+1 = (ap(i)ui)1..k−1.

In both cases we conclude that |ap(i + 1)ui+1| ≤ k, hence that (qi, ap(i)ui)
(v)i+1
−−−−→

(qi+1, ap(i + 1)ui+1) is a transition of Pk.
Now we show that if v admits a run in Pk, then it admits an effectively k-bounded

run ρ′ in P. Let ρ = (q0,w0)
(v)1
−−→ (q1,w1)

(v)2
−−→ · · · be a run of Pk for v such that |wi| ≤ k

for every i ≥ 0. We inductively construct w′0,w
′
1, . . . such that ρ′ = (q0,w0w′0)

(v)1
−−→

20



(q1,w1w′1)
(v)2
−−→ · · · is a run of P satisfying the following invariant:

|wi+1w′i+1| − |wiw′i | ≥ |wi+1| − |wi|, for all i ≥ 0 . (2)

We start by defining w′0 = ε, which trivially satisfies (2). Assume (q0,w0w′0)
(v)1
−−→

· · ·
(v)i+1
−−−−→ (qi,wiw′i) is a run of P satisfying (2), and consider the transition (qi,wi)

(v)i+1
−−−−→

(qi+1,wi+1) of Pk. By the definition of the transitions of Pk, there are two possible cases:

– qiwi
(v)i+1
−−−−→ qi+1wi+1 is a transition of P.

Then qiwiw′i
(v)i+1
−−−−→ qi+1wi+1w′i is also a transition of P, and we can take w′i+1 to be

w′i , and (2) is satisfied as |wi+1w′i+1| − |wiw′i | = |wi+1| − |wi|

– qiwi
(v)i+1
−−−−→ qi+1wi+1γ is a transition of P.

Then |wi| = |wi+1| = k, and qiwiw′i
(v)i+1
−−−−→ qi+1wi+1γw′i is a transition of P. So setting

w′i+1 to γw′i satisfies (2) as |wi+1w′i+1| − |wiw′i | = |wi+1| − |wi| + 1
The induction is concluded, now we explain the meaning of equation (2). First remark
that performing a telescope sum, we obtain that for any i, j > 0, |wi+ jw′i+ j| − |wiw′i | ≥
|wi+ j|− |wi|. Since |wi+ j| ≤ k and |wi| ≥ 1, we obtain |wi+ jw′i+ j|− |wiw′i | ≥ 1−k. Informally
it means that the number of symbols in the stack at any position after i can’t be much
smaller (much meaning k) than at position i. Thus, at every position i, we never eventually
pop the k top symbols of the stack at that position, as this would yield a configuration
after i whose stack would be too small and contradict the inequality. Therefore the run
ρ′ is effectively k-bounded. ut

Proof (of Lemma 5, the Distributing Lemma). Since u is compatible with M, there
exists a witness s ∈ L(S) such that s ∈ (u ‖ Gw∈Mw). Since ΣC ∩ ΣD = ∅, we have
(u ‖ Gw∈Mw) = (u G Gw∈Mw), and so s ∈ (u G Gw∈Mw). Therefore there exists an
interleaving function, i.e. a bijection I :

∐
w∈u⊕M dom(w) → dom(s), that assigns to

each position in each word in u ⊕ M a corresponding position in s with the same action.
Further, the interleaving function satisfies i < j ∈ dom(w) iff I(w, i) < I(w, j).

For example, if u = wd(1) and M = {w1,w2}, where w1 = rc(1)wc(2)rc(1) and
w2 = rc(2)wc(1), then we can take s = wd(1)rc(1)wc(2)rc(2)wc(1)rc(1), with I(w1, 1) = 2,
I(w1, 2) = 3, I(w1, 3) = 5, I(w2, 1) = 4, I(w2, 2) = 5.

We have to show that, given v ∈ M, a run ρ of C accepting a word v, and a distribution
R of ρ accepting a multiset MR of words, then M 	 {v} ⊕ MR is compatible with u.

Let ψ be the embedding function of the distribution R. We construct a word s′

witnessing that u and M 	 {v} ⊕ MR are compatible. The word s′ is a stuttering of s, that
is, it is obtained from s by repeating some letters of s; since, by definition of the store,
S is closed under stuttering, we have s′ ∈ S. Let s = a1a2 . . ., and let i be a position
of s such that I(v, j) = i for some j ∈ dom(v) (so, loosely speaking, position j in the
interleaving s comes from the word v ∈ M). Further, let k be the number of runs in R
such that some position in them is mapped to position j by the embedding function ψ
(intuitively, k is the number of runs in R executing the action at position j. Then we
replace ai by ak

i (that is, by the word ai . . . ai of length k).
For example, if we distribute w1 above to {rc(1)wc(2),wc(2)rc(1),wc(2)}, then we get

s′ = wd(1)rc(1)(wc(2)wc(2)wc(2))rc(2)wc(1)rc(1).

21



We clearly have a one-to-one correspondence between positions in s′ and positions
in u ⊕ M 	 v ⊕ MR. ut

Proof of the Boundedness Lemma. Before proving Lemma 6 and the Boundedness
lemma we give an example of two distributions of a finite run that decrease the effective
stack height, one of them being moreover synchronized.

Example 5. Consider the two distributions R and S of ρ = rarbrbrcrcrc in Example 3.
Further assume that the PDM P has one single state p, stack symbols {⊥, α} such that the
three rules ra, rb and rc are given by ra : p⊥ → pα⊥, rb : pα → pαα, and rc : pα → p.
Figure 2 graphically depicts the stack contents of the configurations of the runs (the
control state is always p), and their respective effective stack heights.

0 1 2 3 4 5 6
ρ : ⊥ α⊥ αα⊥ ααα⊥ αα⊥ α⊥ ⊥

e.s.h. 1 2 3 4 3 2 1
ρ′1 : ⊥ α⊥ ⊥

e.s.h. 1 2 1
ρ′2 : ⊥ α⊥ αα⊥ α⊥

e.s.h. 1 1 2 1
ρ′3 : ⊥ α⊥ αα⊥ α⊥

e.s.h. 1 1 2 1

0 1 2 3 4 5 6
ρ : ⊥ α⊥ αα⊥ ααα⊥ αα⊥ α⊥ ⊥

e.s.h. 1 2 3 4 3 2 1
σ′1 : ⊥ α⊥ ⊥

e.s.h. 1 2 1
σ′2 : ⊥ α⊥ αα⊥ α⊥ ⊥

e.s.h. 1 2 3 2 1
σ′3 : ⊥ α⊥ αα⊥ α⊥ ⊥

e.s.h. 1 2 3 2 1

Fig. 2. Configurations and effective stack heights of the distributions of Example 3.

We observe that ρ is effectively 4-bounded. The distribution R is (Z, 2)-bounded for
every 1 ≤ Z ≤ 6, because the configurations cψ(ρ′j, i) have effective stack height at most
2 for every 1 ≤ j ≤ 3 and every 1 ≤ i ≤ 6. The distribution is not synchronized. Indeed,
the configuration c(ρ, 6) = p⊥ has effective stack height 1, but cψ(ρ′2, 6) = pα⊥ , c(ρ, 6).
The distribution S is (Z, 3)-bounded for every 1 ≤ Z ≤ 6 and synchronized. Remark that
in each of {σ′i}i=1,2,3 at positions lastψ(σ′i , 0) and lastψ(σ′i , 6) (the only two positions at
which ρ has effective stack height 1), the stack content is ⊥ thus effective stack height is
1.

Proof (of Lemma 6). For convenience, when we want to denote that, say, in a run
ρ the configurations reached after (ρ)1..i and (ρ)1.. j are c and c′, we write ρ =

(ρ)1..i [c] (ρ)i+1.. j [c′] (ρ) j+1..∞.
We construct a (Z,N)-bounded and synchronized distribution {ρa, ρb} of ρ. Let

αN+1αN · · ·α1w0 be the stack content of c(ρ,Z). Define {−→p 1,
←−p 1,
−→p 2,
←−p 2, . . . ,

−→p N ,
←−p N} ⊆

dom(ρ) such that for each i, 1 ≤ i ≤ N we have c(ρ,−→p i) and c(ρ,←−p i) are the configu-
rations immediately after the symbol αi in c(ρ,Z) is pushed, respectively popped and
such that the stack content of each configuration between −→p i (included) and ←−p i (ex-
cluded) equals wpαiαi−1 · · ·α1w0 for some wp ∈ Γ

∗
C . We get c(ρ,−→p i) = qiαiαi−1 . . . α0w0

and c(ρ,←−p i) = q′iαi−1 . . . α0w0 for some qi, q′i ∈ QC . Observe that the following holds:
−→p 1 < · · · <

−→p N−1 <
−→p N < Z <←−p N <←−p N−1 < · · · <

←−p 1.

22



Since N = 2|QC |
2|ΓC | + 1, by the pigeonhole principle we find q, α, q′ and three

indices 1 ≤ j1 < j2 < j3 ≤ N such that by letting w1 = α j1−1 · · ·α1, w2 = α j2−1 · · ·α j1
and w3 = α j3−1 · · ·α j2 , we have:

ρ = (ρ)1..−→p j1
[qαw1] (ρ)−→p j1+1..

−→p j2
[qαw2w1] (ρ)−→p j2+1..

−→p j3
[qαw3w2w1]

(ρ)−→p j3+1..
←−p j3

[q′w3w2w1] (ρ)←−p j3+1..
←−p j2

[q′w2w1] (ρ)←−p j2+1..
←−p j1

[q′w1] (ρ)←−p j1+1..∞
.

Now define ρa from ρ by simultaneously deleting (ρ)−→p j1+1..
−→p j2

and (ρ)←−p j2+1..
←−p j1

. We sim-
ilarly define ρb by deleting (ρ)−→p j2+1..

−→p j3
and (ρ)←−p j3+1..

←−p j2
. The following shows that ρa

defines a legal run since it is given by

(ρ)1..−→p j1
[qαw1] (ρ)−→p j2+1..

−→p j3
[qαw3w1](ρ)−→p j3+1..

←−p j3
[q′w3w1] (ρ)←−p j3+1..

←−p j2
[q′w1] (ρ)←−p j1+1..∞

.

A similar reasoning holds for ρb. We conclude by proving two claims.

{ρa, ρb} is a distribution of ρ. The embedding function ψ for ρa (again, the case of ρb is
analogous) is given by

ψ(ρa, i) =


i for 1 ≤ i ≤ −→p j1

i + (−→p j2 −
−→p j1 ) for −→p j1 + 1 ≤ i ≤ ←−p j2 − (−→p j2 −

−→p j1 )
i + (←−p j1 −

←−p j2 ) + (−→p j2 −
−→p j1 ) for←−p j2 − (−→p j2 −

−→p j1 ) + 1 ≤ i

{ρa, ρb} is a (Z,N)-bounded and synchronized distribution of ρ. Since the effective
stack height of every configuration of ρa (resp. ρb) up to position lastψ(ρa,Z) (resp.
lastψ(ρb,Z)) is at most N, the distribution is (Z,N)-bounded. Finally, observe that we
have c(ρ, i) = cψ(ρa, i) = cψ(ρb, i) for every i ≤ −→p j1 and every i ≥ ←−p j1 . Since all
configurations of ρ of effective stack height 1 are in these two areas, the distribution is
synchronized. ut

In order to prove the Boundedness Lemma (Lemma 7), we introduce a definition that
allows us to “nest” distributions (that is, to distribute a run into several runs, and then
distribute one of these runs again into several runs), while preserving the properties of
synchronization and boundedness.

Definition 5. Let R, ψ be a distribution of ρ. Let ρ′ ∈ R, and let R′, ψ′ be a distribution
of ρ′. The composition of R, ψ and R′, ψ′ is the distribution R 	 {ρ′} ⊕ R′, ψ′′ of ρ, where
the embedding function ψ′′ is defined as follows:

– ψ′′(r, i) = ψ(r, i) for every r ∈ R 	 {ρ′}, and
– ψ′′(r, i) = ψ(ρ′, ψρ′ (r, i)) for every r ∈ R′.

The following lemma proves that the composition of distributions is not ill-defined,
that is, that the composition of distributions is indeed a distribution of ρ.

Lemma 8. Let R, ψ be a distribution of ρ. Let ρ′ ∈ R and let R′, ψ′ be a distribution of
ρ′. The composition R 	 {ρ′} ⊕ R′, ψ′′ is a distribution of ρ.

Proof. We need to show that ψ′′ satisfies the three properties of an embedding function.

23



– (ρ′′)i = (ρ)ψ′′(ρ′′,i).
If ρ′′ ∈ R 	 {ρ′}, then, as ψ is a distribution of ρ, we have (ρ′′)i = (ρ)ψ(ρ′′,i). By defi-
nition of ψ′′, we get ψ′′(ρ′′, i) = ψ(ρ′′, i). If ρ′′ ∈ R′, then, since ψ′ is a distribution,
(ρ′′)i = (ρ′)ψ′(ρ′′,i). Since ψ is a distribution (ρ′) j = (ρ)ψ(ρ′, j). Taking j = ψ′(ρ′′, i), we
get (ρ′′)i = (ρ′)ψ′(ρ′′,i) = (ρ)ψ(ρ′,ψ′(ρ′′,i)) = (ρ)ψ′′(ρ′′,i). So, for every ρ′′ ∈ R 	 {ρ′} ⊕ R′,
we finally obtain (ρ′′)i = (ρ)ψ′′(ρ′′,i).

– Surjectivity.
If k ∈ dom(ρ), we first exploit the surjectivity of ψ: either there exists ρ′′ ∈ R 	 {ρ},
and some i ∈ dom(ρ′′) such that ψ(ρ′′, i) = k (which means that ψ′′(ρ′′, i) = k) or
there is some j ∈ dom(ρ′) such that ψ(ρ′, j) = k. In the latter case, we then exploit
the fact that ψρ′ is a distribution of ρ′, and deduce that there exists ρ′′ ∈ R′ and
i ∈ dom(ρ′′) such that ψ′(ρ′′, i) = j; hence we have ψ(ρ′, ψ′(ρ′′, i)) = k, and so
ψ′′(ρ′′, i) = k.

– Monotonicity.
For every ρ′′ ∈ R 	 {ρ′}, from the monotonicity of ψ we obtain that ψ′′(ρ′′, i) <
ψ′′(ρ′′, j) for every i < j . If ρ′′ ∈ R′, first we derive from the monotonicity of ψ′

that ψρ′(ρ′′, i) < ψρ′(ρ′′, j) holds for every i < j. Then, by monotonicity of ψ, we
obtain ψ(ρ′, ψ′(ρ′′, i)) < ψ(ρ′, ψ′(ρ′′, j)), and so ψ′′(ρ′′, i) < ψ′′(ρ′′, j). ut

Lemma 9. Let σ be a run of D, and let M ⊕ {ρ} be a multiset of runs of C compatible
with σ. Let R, ψ be a (Z,N)−bounded synchronized distribution of ρ. For every ρ′ ∈ R, let
Rρ′ , ψρ′ be a (ψ(ρ′,Z) + 1,N)−bounded synchronized distribution of ρ′. Then

⊕
ρ′∈R Rρ′

is a (Z + 1,N)−bounded synchronized distribution of ρ.

Proof. By repeated application of Lemma 8, ρ can be distributed to
⊕

ρ′∈R Rρ′ . Let
Ψ be the corresponding embedding function, obtained also by repeated application of
Lemma 8. We have to prove that

⊕
ρ′∈R Rρ′ , Ψ is a synchronized and (Z + 1,N)-bounded

distribution.
We first show that

⊕
ρ′∈R Rρ′ , Ψ is synchronized. Assume that the effective stack

height of c(ρ, i) is 1. Let ρ′′ ∈
⊕

ρ′∈R Rρ′ , and let ρ′ be the element of R it corresponds
to.

We have to show that lastΨ (ρ′′, i) = lastψρ′ (ρ
′′, lastψ(ρ′, i)) (which we easily deduce

from the fact that lastΨ (ρ′′, i) = lastΨ (ρ′′, ψ(ρ′, lastψ(ρ′, i))). Since ψ is synchronized,
we deduce that cΨ (ρ′′, i) is the same configuration as cψ(ρ′, i) = c(ρ′, lastψ(ρ′, i)) and
has effective stack height 1. Since ψρ′ is synchronized, c(ρ′, lastψ(ρ′, i)) is the same
configuration as cψρ′ (ρ

′′, lastψ(ρ′, i)) = c(ρ′′, lastψρ′ (ρ
′′, lastψ(ρ′, i))).

We now prove that
⊕

ρ′∈R Rρ′ , Ψ is (Z + 1,N)-bounded. Again, we pick ρ′′ ∈⊕
ρ′∈R Rρ′ , and let ρ′ be the corresponding element of R. We have to show that

cΨ (ρ′′, i) has effective stack height at most N for every 0 ≤ i ≤ Z + 1. Since
lastψ(ρ′,Z + 1) ≤ lastψ(ρ′,Z) + 1, by monotonicity we deduce that lastΨ (ρ′′,Z + 1) ≤
lastψρ′ (ρ

′′, lastψ(ρ′,Z) + 1) and we are done. ut

Proof (of Lemma 7, the Boundedness Lemma). The proof is by induction on Z. If Z = 1
then R0 = {ρ}, because the first configuration of a run has effective height at most 2
(if the first rule was a push, and that symbol will be later popped). Since by definition
N ≥ 2, we get that ρ is (1,N)-bounded.

24



For the induction step, assume that some distribution RZ−1 of ρ is (Z − 1,N)-bounded
and synchronized, and let ψ be the embedding function of the distribution. If RZ−1 is also
(Z,N)-bounded, we take RZ = RZ−1, and we are done. Otherwise, there is ρ′ ∈ RZ−1 such
that cψ(ρ′, 0), . . . , cψ(ρ′,Z − 1) are effectively N-bounded, but cψ(ρ′,Z) is not.

Informally, this means that the Z-th transition of ρ was distributed to ρ′. Let Zρ′ be
that position in ρ′; formally Z = ψ(ρ′,Zρ′ ) (if no such Zρ′ exists, cψ(ρ′,Z − 1) = cψ(ρ,Z)).
Since Zρ′ is the first position of ρ′ whose configuration is not N-bounded, we have that
c(ρ′, 0), . . . , c(ρ′,Zρ′ − 1) are N-bounded, but c(ρ′,Zρ′) is not. We apply Lemma 6 to
each such ρ′ and Zρ′ , and get (Zρ′ ,N)-bounded and synchronized distributions for those
ρ′: Rρ′ = {ρ′a, ρ

′
b}. Let RZ be the distribution obtained by replacing in RZ−1 every bad run

ρ′ by Rρ′ . Then RZ is an (Z,N)-bounded and synchronized distribution of ρ. ut

Example 6. We give an example showing that that the bound on the effective stack
height used in the Boundedness Lemma is optimal: for any smaller bound, the lemma is
no longer true.

We build a PDM with k1 + k2 + 1 states and with stack alphabet {⊥} ∪ [1, k3], where
k1, k2, k3 are distinct prime numbers. With the k1 first states, we build a circuit that pushes
the word (1 . . . k3)k1 onto the stack. After that, the PDM leaves this circuit, and enters
another one, consisting of k2 states, that pops k2 stack symbols. The PDM can only leave
this circuit from its first state, and only when ⊥ is the topmost stack symbol; if and when
this condition holds, the PDM moves to the last state, from where it writes victory in the
store. It should be clear that, in order to reach the last state, the stack of the PDM must
reach a height of at least (1 + k1k2k3) symbols. Therefore, no run reaching the last state
can be distributed into runs exhibiting a lower effective stack height.

We now show that we can further improve this example so as to show that a single
instance of the contributor run in parallel with a special leader may reach the last state,
but at least two instances of its N-restriction are required, for at least one of them
reaching that state.

It is possible for the leader to be informed whenever a contributor takes a loop (once
in each loop the contributor informs the leader through the store and pauses until it
receives acknowledgment through the store). Then the contributor asks permission before
entering in the last state. If the leader only grants permission if he was informed exactly a
multiple of k4 times of the entrance of some contributor in some loop, then if there is only
one contributor, he may reach the victory state by growing a 1 + k1k2k3k4-sized stack,
which is too large for its N-restriction. Therefore a single instance of the N-restricted
contributor does not suffice. At least two are required for an accepting run. ut

Proof of the Reduction Theorem. Finally, we give the proof of the Reduction Theorem.

Proof (of Theorem 4). Let w be a word of L(D) and let M a be multiset of words of C
compatible with w. Let s be a witness of compatibility, and let I be the corresponding
interleaving function (as introduced in the proof of the Distributing lemma). Recall that
s is an interleaving of w and M, that I(w, i) is the position of s at which we find the i-th
letter of w, and that I(v, j) is the position of s at which we find the j-th letter of v, for
every v ∈ M.

Let σ be an accepting run of w, and let R be a multiset of runs accepting each element
of the multiset M. The proof follows three steps:

25



(1) We find a sequence of positions of s corresponding to actions of the leader, such that
both the run of the leader and s can be pumped between any two such positions.

(2) We take a position far enough in this sequence, say Z, and distribute all the runs
of R into a multiset RZ, such that every run of RZ is N-bounded up to position Z.
We show the existence of two positions, say X,Y , both smaller thanZ, satisfying
the following condition. Take the multisets of configurations of the runs of RZ at
positions X and Y , and “prune” them by removing their dark suffixes. Let CX and
CY be the resulting multisets of pruned configurations. Then CX and CY have the
same support (that is, they contain the same elements, although not necessarily the
same number of times).

(3) We show that by adding more runs to RZ, we can obtain a new distribution for which
the multisets CX and CY not only have the same support, but are equal. We then show
that the runs executed by the leader and by the contributors of this new distribution
between positions X and Y can be pumped. This yields a word w1wω

2 ∈ L(D) (where
w2 is the word executed by the leader between positions X and Y) compatible with
a multiset of words of the form {v11vω21, . . . , v1nvω2n} (where v21, . . . v2n are the runs
executed by the contributors between positions X and Y), and for which we can find
a witness of compatibility of the form s1sω2 , where s1 is an interleaving of w1 and
{v11, . . . , v1n}, and s2 is an interleaving of w2 and {v21, . . . , v2n}

Step (1). Since σ is an infinite run of D, by Proposition 1 it contains infinitely many
positions of effective stack height 1. By the pigeonhole principle, from this sequence of
positions we can extract an infinite subsequence of configurations with the same control
state and topmost stack symbol. Since σ is also an accepting run of the Büchi automaton
A, we can further extract from this sequence an infinite subsequence such that between
any two positions an accepting state of A is visited. Let (bi) denote the image of this
last infinite sequence by I. That is, (bi) denotes the infinite sequence of positions of s
obtained by the procedure above.

Now from (bi) we extract a subsequence (ci) such that between any two elements of
it, every run of R reaches a configuration with effective stack height 1. More formally,
for every i and for every ρ ∈ R, there exists pi,ρ ∈ dom(ρ) such that c(ρ, pρ,i) has effective
stack height 1 and ci < I(ρ, pρ,i) < ci+1. Since, by Proposition 1, every run of R reaches
infinitely often such configurations, (ci) exists. This gives us our sequence of positions
in s.

Step (2). Let t = |M|2|QC ||ΓC |
|QC |

2 |ΓC |+1
+ 1, and let Z = ct (that is, Z is the position of

the t-th element of the sequence (ci)). For each run ρ ∈ R, let Zρ denote an element of
dom(ρ) such that I(ρ,Zρ) ≥ Z. By Lemma 7, we can distribute each run ρ ∈ R into a
(Zρ,N)−bounded multiset Rρ (with embedding function ψρ).

For every i ≥ 1, let qρ,i be the largest position of dom(ρ) such that I(ρ, qρ,i) ≤ ci, and
let Rρ(qρ,i) = {cψρ (τ, qρ,i) | τ ∈ Rρ} be the multiset of configurations of Rρ at the position
corresponding to qρ,i. We denote by αρ(i) the result of removing the dark suffixes of the
configurations of Rρ(qρ,i). We call the result pruned configurations.

If i ≤ t, then, by the definition of Rρ, all the active prefixes of Rρ(qρ,i) are N-bounded.
So the pruned configurations of αρ(i) consist of a control state and a stack content of
length at most N, and therefore the number of possible pruned configurations is bounded
by |QC ||ΓC |

|QC |
2 |ΓC |+1. It follows that that the number of possible sets (not multisets!) of

26



pruned configurations is strictly smaller than t. So by the pigeonhole principle we find
two elements cl and cr of the sequence (ci), where l < r ≤ t, such that αρ(l) and αρ(r)
have the same support for every ρ, (i.e. the sets are equal though the multisets may not
be).

Step (3). We show how to modify the distributions Rρ so that the multisets αρ(l) and
αρ(r) not only have same support, but are equal. Observe that, even though the multisets
are not equal, they have the same cardinality. We introduce new runs in the distribution
to “balance” these multisets. Denote by α the common support of αρ(l) and αρ(r). For
every a ∈ α, we find two runs ρl

a and ρr
a in Rρ such that cψρ (ρ

l
a, qρ,l) and cψρ (ρ

r
a, qρ,r) have

pruned configuration a.
Now we define a new distribution of ρ to a multiset Rρ ⊕ {ρa,a′ | a, a′ ∈ α} with

embedding function ψ′ρ. The run ρa,a′ is such that the pruned configuration cψ′ρ (ρa,a′ , qρ,l)
is a and cψ′ρ(ρa,a′ , qρ,r) is a′ : informally ρa,a′ does as ρl

a up to position ψρ(ρl
a, pρ,l), and

then as ρr
a′ from ψρ(ρr

a′ , pρ,l). Formally, ψ′ρ is the same as ψρ over each τ ∈ Rρ, and
ψ′ρ(ρa,a′ , i) = ψρ(ρl

a, i) when i ≤ ψρ(ρl
a, pρ,l) and ψ′ρ(ρa,a′ , i) = ψρ(ρr

a, i − ψρ(ρ
l
a, pρ,l) +

ψρ(ρr
a′ , pρ,l)) when i > ψρ(ρl

a, pρ,l). Observe that since c(ρ, pρ,l) has effective stack height
1, it is exactly the same configuration as cψρ(ρ

l
a, pρ,l) and cψρ(ρ

r
a′ , pρ,l). It is also the

same configuration as cψ′ρ(ρa,a′ , pρ,l). So ρa,a′ is a run of C, and ψ′ρ is a synchronized
(Zρ,N)-bounded distribution of ρ. By adding to Rρ sufficiently many instances of the
appropriate ρa,a′ , we obtain a new distribution R′ρ of ρ, such that the two multisets αρ(l)
and αρ(r) are the same.

By the Distribution Lemma, the word w is compatible with the words of the runs⊕
ρ∈R R′ρ. Let π be a witness of compatibility. Consider the fragment of π between the

positions corresponding to cl and cr in π. The content of the store is the same at these
two positions. Also, recall that we chose the (ci) so that the projection of the fragment
onto the actions of the leader can be repeated infinitely often. Denote by w	 the run of
the leader consisting of repeating the subrun between positions corresponding to cl and
cr. Finally, for each R′ρ, the multiset of pruned configurations of R′ρ at positions cl and cr

is the same, each run in R′ρ has effective stack height 1 at cl and cr, and is N-bounded on
that fragment. This does not mean that for every run τ ∈ Rρ the pruned configuration
will be the same at those positions, but that there exists a permutation µ of Rρ such that
the pruned configuration of τ at position cl is the same as µ(τ) at position cr. Denoting
`τ = (τ)cψ′ρ (τ,pρ,l)+1..cψ′ρ (τ,pρ,r), we get that the multiset {(τ)1..cψ′ρ (τ,pρ,l)`τ`µ(τ)`µ2(τ) . . . | τ ∈

R′ρ, ρ ∈ R} is a multiset of N-bounded runs, that is compatible with w	. This concludes
the proof. ut

27


	Model Checking Parameterized Asynchronous Shared-Memory Systems

