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Abstract. When dealing with linear temporal logic properties in the
setting of e.g. games or probabilistic systems, one often needs to express
them as deterministic omega-automata. In order to translate LTL to de-
terministic omega-automata, the traditional approach first translates the
formula to a non-deterministic Büchi automaton. Then a determiniza-
tion procedure such as of Safra is performed yielding a deterministic
ω-automaton. We present a direct translation of the (F,G)-fragment of
LTL into deterministic ω-automata with no determinization procedure
involved. Since our approach is tailored to LTL, we often avoid the typ-
ically unnecessarily large blowup caused by general determinization al-
gorithms. We investigate the complexity of this translation and provide
experimental results and compare them to the traditional method.

1 Introduction

The ω-regular languages play a crucial role in formal verification of linear time
properties, both from a theoretical and a practical point of view. For model-
checking purposes one can comfortably represent them using nondeterministic
Büchi automata (NBW), since one only needs to check emptiness of the in-
tersection of two NBWs corresponding to the system and the negation of the
property, and NBWs are closed under intersection. However, two increasingly
important problems require to represent ω-regular languages by means of de-
terministic automata. The first one is synthesis of reactive modules for LTL
specifications, which was theoretically solved by Pnueli and Rosner more than
20 years ago [PR88], but is recently receiving a lot of attention (see the refer-
ences below). The second one is model checking Markov decision processes (see
e.g. [BK08]), where impressive advances in algorithmic development and tool
support are quickly extending the range of applications.

It is well known that NBWs are strictly more expressive then their deter-
ministic counterpart, and so cannot be determinized. The standard theoretical
solution to this problem is to translate NBW into deterministic Rabin automata
(DRW) using Safra’s construction [Saf88] or a recent improvement by Piterman
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[Pit06]. However, it is commonly accepted that Safra’s construction is difficult
to handle algorithmically due to its “messy state space” [Kup12]. Many pos-
sible strategies for solving this problem have been investigated. A first one is
to avoid Safra’s construction altogether. A Safraless approach that reduces the
synthesis problem to emptiness of nondeterministic Büchi tree automata has
been proposed in [KV05,KPV06]. The approach has had considerable success,
and has been implemented in [JB06]. Another strategy is to use heuristics to
improve Safra’s construction, a path that has been followed in [KB06,KB07]
and has produced the ltl2dstar tool [Kle]. Finally, a third strategy is to search
for more efficient or simpler algorithms for subclasses of ω-regular languages.
A natural choice is to investigate classes of LTL formulas. While LTL is not as
expressive as NBW, the complexity of the translation of LTL to DRW still has
22Θ(n)

complexity [KR10]. However, the structure of NBWs for LTL formulas
can be exploited to construct a symbolic description of a deterministic parity
automaton [MS08]. Fragments of LTL have also been studied. In [AT04], single
exponential translations for some simple fragments are presented. Piterman et
al. propose in [PPS06] a construction for reactivity(1) formulas that produces
in cubic time a symbolic representation of the automaton. The construction has
been implemented in the ANZU tool [JGWB07].

Despite this impressive body of work, the problem cannot yet be consid-
ered solved. This is particularly so for applications to probabilistic model check-
ing. Since probabilistic model checkers need to deal with linear arithmetic, they
profit much less from sophisticated symbolic representations like those used in
[PPS06,MS08], or from the Safraless approach which requires to use tree au-
tomata. In fact, to the best of our knowledge no work has been done so far in
this direction. The most successful approach so far is the one followed by the
ltl2dstar tool, which explicitly constructs a reduced DRW. In particular, the
ltl2dstar has been reimplemented in PRISM [KNP11], the leading probabilistic
model checker.

However, the work carried in [KB06,KB07] has not considered the devel-
opment of specific algorithms for fragments of LTL. This is the question we
investigate in this paper: is it possible to improve on the results of ltl2dstar
by restricting attention to a subset of LTL? We give an affirmative answer by
providing a very simple construction for the (F,G)-fragment of LTL, i.e., the
fragment generated by boolean operations and the temporal operators F and
G. Our construction is still double exponential in the worst case, but is algo-
rithmically very simple. We construct a deterministic Muller automaton for a
formula ϕ of the fragment with a very simple state space: boolean combinations
of formulas of the closure of ϕ. This makes the construction very suitable for
applying reductions based on logical equivalences: whenever some logical rule
shows that two states are logically equivalent, they can be merged. (This fact
is also crucial for the success of the constructions from LTL to NBW.) Since
the number of Muller accepting sets can be very large, we also show that the
Muller condition of our automata admits a compact representation as a gener-
alized Rabin acceptance condition. We also show how to efficiently transform



this automaton to a standard Rabin automaton. Finally, we report on an im-
plementation of the construction, and present a comparison with ltl2dstar. We
show that our construction leads to substantially smaller automata for formulas
expressing typical fairness conditions, which play a very important rôle in proba-
bilistic model checking. For instance, while ltl2dstar produces an automaton with
over one million states for the formula

∧3
i=1(GFai → GFbi), our construction

delivers an automaton with 1560 states.

2 Linear Temporal Logic

This section recalls the notion of linear temporal logic (LTL) [Pnu77].

Definition 1 (LTL Syntax). The formulae of the (F,G)-fragment of linear
temporal logic are given by the following syntax:

ϕ ::= a | ¬a | ϕ ∧ ϕ | ϕ ∨ ϕ | Fϕ | Gϕ

where a ranges over a finite fixed set Ap of atomic propositions.

We use the standard abbreviations tt := a ∨ ¬a, ff ; = a ∧ ¬a. We only have
negations of atomic propositions, as negations can be pushed inside due to the
equivalence of Fϕ and ¬G¬ϕ.

Definition 2 (LTL Semantics). Let w ∈ (2Ap)ω be a word. The ith letter of
w is denoted w[i], i.e. w = w[0]w[1] · · · . Further, we define the ith suffix of w as
wi = w[i]w[i+1] · · · . The semantics of a formula on w is then defined inductively
as follows:

w |= a ⇐⇒ a ∈ w[0]
w |= ¬a ⇐⇒ a /∈ w[0]
w |= ϕ ∧ ψ ⇐⇒ w |= ϕ and w |= ψ

w |= ϕ ∨ ψ ⇐⇒ w |= ϕ or w |= ψ

w |= Fϕ ⇐⇒ ∃ k ∈ N : wk |= ϕ

w |= Gϕ ⇐⇒ ∀ k ∈ N : wk |= ϕ

We define a symbolic one-step unfolding U of a formula inductively by the
following rules, where the symbol X intuitively corresponds to the meaning of
the standard next operator.

U(a) = a

U(¬a) = ¬a
U(ϕ ∧ ψ) = U(ϕ) ∧ U(ψ)
U(ϕ ∨ ψ) = U(ϕ) ∨ U(ψ)

U(Fϕ) = U(ϕ) ∨XFϕ

U(Gϕ) = U(ϕ) ∧XGϕ

Example 3. Consider ϕ = Fa∧GFb. Then U(ϕ) = (a∨XFa)∧(b∨XFb)∧XGFb.



3 Deterministic Automaton for the (F,G)-fragment

Let ϕ be an arbitrary but fixed formula. In the following, we construct a deter-
ministic finite ω-automaton that recognizes the words satisfying ϕ. The definition
of the acceptance condition and its variants follow in the subsequent sections.
We start with a construction of the state space. The idea is that a state cor-
responds to a formula that needs to be satisfied when coming into this state.
After evaluating the formulae on the propositions currently read, the next state
will be given by what remains in the one-step unfold of the formula. E.g. for
Example 3 and reading a, the successor state needs to satisfy Fb ∧GFb.

In the classical syntactic model constructions, the states are usually given by
sets of subformulae of ϕ. This corresponds to the conjunction of these subformu-
lae. The main difference in our approach is the use of both conjunctions and also
disjunctions that allow us to dispose of non-determinism in the corresponding
transition function. In order to formalize this, we need some notation.

Let F and G denote the set of all subformulae of ϕ of the form Fψ and
Gψ, respectively. Further, all temporal subformulae are denoted by a shorthand
T := F ∪G. Finally, for a set of formulae Ψ , we denote XΨ := {Xψ | ψ ∈ Ψ}.

We denote the closure of ϕ by C(ϕ) := Ap∪{¬a | a ∈ Ap}∪XT. Then U(ϕ) is
a positive Boolean combination over C(ϕ). By states(ϕ) we denote the set 22C(ϕ)

.
Each element of states(ϕ) is a positive Boolean function over C(ϕ) and we often
use a positive Boolean formula as its representative. For instance, the definition
of U is clearly independent of the choice of representative, hence we abuse the
notation and apply U to elements of states(ϕ). Note that | states(ϕ)| ∈ O(22|ϕ|

)
where |ϕ| denotes the length of ϕ.

Our state space has two components. Beside the logical component, we also
keep track of one-step history of the word read. We usually use letters ψ, χ when
speaking about the former component and α, β for the latter one.

Definition 4. Given a formula ϕ, we define A(ϕ) = (Q, i, δ) to be a determin-
istic finite automaton over Σ = 2Ap given by

– the set of states Q = {i} ∪
(

states(ϕ)× 2Ap
)

– the initial state i;
– the transition function

δ = {
(
i, α, 〈U(ϕ), α〉

)
| α ∈ Σ}∪{

(
〈ψ, α〉, β, 〈succ(ψ, α), β〉

)
| 〈ψ, α〉 ∈ Q, β ∈ Σ}

where succ(ψ, α) = U(next(ψ[α 7→ tt, Ap \ α 7→ ff ]) where next(ψ′) removes
X’s from ψ′ and ψ[T 7→ tt, F 7→ ff ] denotes the equivalence class of formulae
where in ψ we substitute tt for all elements of T and ff for all elements of
F .

Intuitively, a state 〈ψ, α〉 of Q corresponds to the situation where ψ needs to be
satisfied and α is being read.



Example 5. The automaton for Fa with Ap = {a} is depicted in the following
figure. The automaton is obviously unnecessarily large, one can expect to merge
e.g. the two states bearing the requirement tt as the proposition a is irrelevant
for satisfaction of tt that does not even contain it. For the sake of simplicity, we
leave all possible combinations here and comment on this in Section 8.

istart 〈a ∨XFa, {a}〉

〈a ∨XFa, ∅〉

〈tt, {a}〉

〈tt, ∅〉

{a}

∅

{a}

∅
a

∅

{a}

∅

∅

{a}

The reader might be surprised or even annoyed by the fact that the logical
structure of the state space is not sufficient to keep enough information to decide
whether a run ρ is accepting. In order to ensure this, we remember one-step
history in the state. Why is that? Consider ϕ = GF(a ∧ Fb). Its unfold is then

XGF(a ∧ Fb) ∧
(
XF(a ∧ Fb) ∨

(
a ∧ (b ∨XFb)

))
(∗)

Then moving under {a} results into the requirement GF(a∧Fb)∧
(
F(a∧Fb)∨Fb

)
for the next step where the alternative of pure Fb signals progress made by not
having to wait for an a. Nevertheless, the unfold of this formula is propositionally
equivalent to (∗). This is indeed correct as the two formulae are temporally
equivalent (i.e. in LTL semantics). Thus, the information about the read a is not
kept in the state and the information about this partial progress is lost! And
now the next step under both {b} and ∅ again lead to the same requirement
GF(a ∧ Fb) ∧ F(a ∧ Fb). Therefore, there is no information that if b is read,
then it can be matched with the previous a and we already have one satisfaction
of (infinitely many required satisfactions of) F(a ∧ Fb) compared to reading ∅.
Hence, the runs on ({a}{b})ω and ({a}∅)ω are the same while the former should
be accepting and the latter rejecting. However, this can be fixed by remembering
the one-step history and using the acceptance condition defined in the following
section.

4 Muller Acceptance Condition

In this section, we introduce a Muller acceptance condition. In general, the num-
ber of sets in a Muller condition can be exponentially larger than the size of the
automaton. Therefore, we investigate the particular structure of the condition. In
the next section, we provide a much more compact whilst still useful description
of the condition. Before giving the formal definition, let us show an example.



Example 6. Let ϕ = F(Ga∨Gb). The corresponding automaton is depicted be-
low, for clarity, we omit the initial state. Observe that the formula stays the same
and the only part that changes is the letter currently read that we remember
in the state. The reason why is that ϕ can neither fail in finite time (there is
always time to fulfill it), nor can be partially satisfied (no progress counts in this
formula, only the infinite suffix). However, at some finite time the argument of
F needs to be satisfied. Although we cannot know when and whether due to Ga
or Gb, we know it is due to one of these (or both) happening. Thus we may shift
the non-determinism to the acceptance condition, which says here: accept if the
states where a holds are ultimately never left, or the same happens for b. The
commitment to e.g. ultimately satisfying Ga can then be proved by checking
that all infinitely often visited states read a.

〈U(ϕ), ∅〉 〈U(ϕ), {a}〉

〈U(ϕ), {b}〉 〈U(ϕ), {a, b}〉

∅

{a}

{b}
{a, b}

{a}

∅

{b} {a, b}

{b}

∅
{a}

{a, b}

{a, b}

∅

{a}

{b}

We now formalize this idea. Let ϕ be a formula and A(ϕ) = (Q, i, δ) its corre-
sponding automaton. Consider a formula χ as a Boolean function over elements
of C(ϕ). For sets T, F ⊆ C(ϕ), let χ[T 7→ tt, F 7→ ff ] denote the formula where tt
is substituted for elements of T , and ff for F . As elements of C(ϕ) are considered
to be atomic expressions here, the substitution is only done on the propositional
level and does not go through the modality, e.g. (a∨XGa)[a→ ff ] = ff ∨XGa,
which is equivalent to XGa in the propositional semantics.

Further, for a formula χ and α ∈ Σ and I ⊆ T, we put I |=α χ to denote
that

χ[α ∪ I 7→ tt, Ap \ α 7→ ff ]

is equivalent to tt in the propositional semantics. We use this notation to describe
that we rely on a commitment to satisfy all formulae of I.

Definition 7 (Muller acceptance). A set M ⊆ Q is Muller accepting for a
set I ⊆ T if the following is satisfied:

1. for each (χ, α) ∈M , we have XI |=α χ,
2. for each Fψ ∈ I there is (χ, α) ∈M with I |=α ψ,
3. for each Gψ ∈ I and for each (χ, α) ∈M we have I |=α ψ.

A set F ⊆ Q is Muller accepting (for ϕ) if it is Muller accepting for some I ⊆ T.



The first condition ensures that the commitment to formulae in I being
ultimately satisfied infinitely often is enough to satisfy the requirements. The
second one guarantees that each F-formula is unfolded only finitely often and
then satisfied, while the third one guarantees that G-formulae indeed ultimately
hold. Note that it may be impossible to see the satisfaction of a formula directly
and one must rely on further promises, formulae of smaller size. In the end,
promising the atomic proposition is not necessary and is proven directly from
the second component of the state space.

4.1 Correctness

Given a formula ϕ, we have defined a Muller automaton A(ϕ) and we let the
acceptance conditionM(ϕ) = {M1, . . . ,Mk} be given by all the Muller accepting
sets Mi for ϕ. Every word w : N → 2Ap induces a run ρ = A(ϕ)(w) : N → Q
starting in i and following δ. The run is thus accepting and the word is accepted
if the set of states visited infinitely often Inf(ρ) is Muller accepting for ϕ. Vice
versa, a run ρ = i(χ1, α1)(χ2, α2) · · · induces a word Ap(ρ) = α1α2 · · · . We now
prove that this acceptance condition is sound and complete.

Theorem 8. Let ϕ be a formula and w a word. Then w is accepted by the
deterministic automaton A(ϕ) with the Muller condition M(ϕ) if and only if
w |= ϕ.

We start by proving that the first component of the state space takes care of
all progress or failure in finite time.

Proposition 9 (Local (finitary) correctness). Let w be a word and A(ϕ)(w) =
i(χ0, α0)(χ1, α1) · · · the corresponding run. Then for all n ∈ N, we have w |= ϕ
if and only if wn |= χn.

Proof (Sketch). The one-step unfold produces a temporally equivalent (w.r.t. LTL
satisfaction) formula. The unfold is a Boolean function over atomic propositions
and elements of XT. Therefore, this unfold is satisfied if and only if the next
state satisfies next(ψ) where ψ is the result of partial application of the Boolean
function to the currently read letter of the word. We conclude by induction. ut

Further, each occurrence of satisfaction of F must happen in finite time. As
a consequence, a run with χi 6≡ ff is rejecting if and only if satisfaction of some
Fψ is always postponed.

Proposition 10 (Completeness). If w |= ϕ then Inf(A(ϕ)(w)) is a Muller
accepting set.

Proof. Let us show that M := Inf(A(ϕ)(w)) is Muller accepting for

I := {ψ ∈ F | w |= Gψ} ∪ {ψ ∈ G | w |= Fψ}

As a technical device we use the following. For every finite Boolean combina-
tion ψ of elements of the closure C, there are only finitely many options to satisfy



it, each corresponding to a subset of C. Therefore, if wi |= ψ for infinitely many
i ∈ N then at least one of the options has to recur. More precisely, for some sub-
set α ⊆ Ap there are infinitely many i ∈ N with wi |= ψ ∪α∪ {¬a | a ∈ Ap \α}.
For each such α we pick one subset Iχ,α ⊆ T such that for infinitely many i,
after reading wi = w[0] · · ·w[i] we are in state (χ, α) and wi |= ψ ∪XIχ,α, and
Iχ,α |=α ψ. We say that we have a recurring set Iχ,α modelling ψ (for a state
(χ, α)). Obviously, the recurring sets for all states are included in I, i.e. Iχ,α ⊆ I
for every (χ, α) ∈ Q.

Let us now proceed with proving the three conditions of Definition 7 for M
and I.

Condition 1. Let (χ, α) ∈M . Since w |= ϕ, by Proposition 9 wi |= χ whenever
we enter (χ, α) after reading wi, which happens for infinitely many i ∈ N. Hence
we have a recurring set Iχ,α modelling χ. Since Iχ,α |=α χ, we get also I |=α χ
by Iχ,α ⊆ I.

Condition 2. Let Fψ ∈ I, then w |= GFψ. Since there are finitely many
states, there is (χ, α) ∈ M for which after infinitely many entrances by wi it
holds wi |= ψ by Proposition 9, hence we have a recurring set Iχ,α modelling ψ
and conclude as above.

Condition 3. Let Gψ ∈ I, then w |= FGψ. Hence for every (χ, α) ∈ M
infinitely many wi leading to (χ, α) satisfy wi |= ψ by Proposition 9, hence we
have a recurring set Iχ,α modelling ψ and conclude as above. ut

Before proving the opposite direction of the theorem, we provide a property
of Muller accepting sets opposite to the previous proposition.

Lemma 11. Let ρ be a run. If Inf(ρ) is Muller accepting for I then Ap(ρ) |= Gψ
for each ψ ∈ I ∩ F and Ap(ρ) |= Fψ for each ψ ∈ I ∩G.

Proof. Denote w = Ap(ρ). Let us first assume ψ ∈ I ∩ F and wj 6|= ψ for
all j ≥ i ∈ N. Since ψ ∈ I ∩ F, for infinitely many j, ρ passes through some
(χ, α) ∈ Inf(ρ) for which I |=α ψ. Hence, there is ψ1 ∈ I which is a subformula
of ψ such that for infinitely many i, wi 6|= ψ1. If ψ1 ∈ F, we proceed as above;
similarly for ψ1 ∈ G. Since we always get a smaller subformula, at some point
we obtain either ψn = Fβ or ψn = Gβ with β a Boolean combination over Ap
and we get a contradiction with the second or the third point of Definition 7,
respectively. ut

In other words, if we have a Muller accepting set for I then all elements of I
hold true in wi for almost all i.

Proposition 12 (Soundness). If Inf(A(ϕ)(w)) is a Muller accepting set then
w |= ϕ.

Proof. Let M := Inf(A(ϕ)(w)) be a Muller accepting set for some I. There is
i ∈ N such that after reading wi we come to (χ, α) and stay in Inf(A(ϕ)(w)) from
now on and, moreover, wi |= ψ for all ψ ∈ I by Lemma 11. For a contradiction,
let w 6|= ϕ. By Proposition 9 we thus get wi 6|= χ. By the first condition of
Definition 7, we get I |=α χ. Therefore, there is ψ ∈ I such that wi 6|= ψ, a
contradiction. ut



5 Generalized Rabin Condition

In this section, we investigate the structure of the previously defined Muller
condition and propose a new type of acceptance condition that compactly, yet
reasonably explicitly captures the accepting sets.

Let us first consider a fixed I ⊆ T and examine all Muller accepting sets for I.
The first condition of Definition 7 requires not to leave the set of states {(χ, α |
I |=α χ)}. Similarly, the third condition is a conjunction of |I∩G| conditions not
to leave sets {(χ, α) | I |=α ψ} for each Gψ ∈ I. Both conditions thus together
require that certain set (complement of the intersection of the above sets) is
visited only finitely often. On the other hand, the second condition requires to
visit certain sets infinitely often. Indeed, for each Fψ the set {(χ, α) | I |=α ψ}
must be visited infinitely often.

Furthermore, a set is accepting if the conditions above hold for some set I.
Hence, the acceptance condition can now be expressed as a positive Boolean
combination over Rabin pairs in a similar way as the standard Rabin condition
is a disjunction of Rabin pairs.

Example 13. Let us consider the (strong) fairness constraint ϕ = FGa ∨GFb.
Since each atomic proposition has both F and G as ancestors in the syntactic
tree, it is easy to see that there is only one reachable element of states(ϕ) and
the state space of A is {i} ∪ 2{a,b}, i.e. of size 1 + 22 = 5. Furthermore, the
syntactic tree of U(ϕ) = XFGa∨ (XGa∧a)∨ (XGFb∧ (XFb∨ b)) immediately
determines possible sets I. These either contain Ga (possibly with also FGa or
some other elements) or GFb,Fb. The first option generates the requirement to
visit states with ¬a only finitely often, the second one to visit b infinitely often.
Thus the condition can be written as

({q | q |= ¬a}, Q) ∨ (∅, {q | q |= b})

and is in fact a Rabin acceptance condition.

We formalize this new type of acceptance condition as follows.

Definition 14 (Generalized Rabin Automaton). A generalized Rabin au-
tomaton is a (deterministic) ω-automaton A = (Q, i, δ) over some alphabet Σ,
where Q is a set of states, i is the initial state, δ : Q × Σ → Q is a transition
function, together with a generalized Rabin condition GR ∈ B+(2Q×2Q). A run
ρ of A is accepting if Inf(ρ) |= GR, which is defined inductively as follows:

Inf(ρ) |= ϕ ∧ ψ ⇐⇒ Inf(ρ) |= ϕ and Inf(ρ) |= ψ

Inf(ρ) |= ϕ ∨ ψ ⇐⇒ Inf(ρ) |= ϕ or Inf(ρ) |= ψ

Inf(ρ) |= (F, I) ⇐⇒ F ∩ Inf(ρ) = ∅ and I ∩ Inf(ρ) 6= ∅

The generalized Rabin condition corresponding to the previously defined
Muller condition M can now be formalized as follows.



Definition 15 (Generalized Rabin Acceptance). Let ϕ be a formula. The
generalized Rabin condition GR(ϕ) is

∨
I⊆T

({(χ, α) | I 6|=α χ ∧
∧

Gψ∈I

ψ}, Q
)
∧
∧

Fω∈I

(
∅, {(χ, α) | I |=α ω}

)
By the argumentation above, we get the equivalence of the Muller and the

generalized Rabin conditions for ϕ and thus the following.

Proposition 16. Let ϕ be a formula and w a word. Then w is accepted by the
deterministic automaton A(ϕ) with the generalized Rabin condition GR(ϕ) if
and only if w |= ϕ.

Example 17. Let us consider a conjunction of two (strong) fairness constraints
ϕ = (FGa ∨GFb) ∧ (FGc ∨GFd). Since each atomic proposition is wrapped
in either FG or GF, there is again only one relevant element of states(ϕ) and
the state space of A is {i} ∪ 2{a,b,c,d}, i.e. of size 1 + 24 = 17. From the previous
example, we already know the disjunctions correspond to (¬a,Q) ∨ (∅, b) and
(¬c,Q) ∨ (∅, d). Thus for the whole conjunction, we get a generalized Rabin
condition (

(¬a,Q) ∨ (∅, b)
)
∧
(

(¬c,Q) ∨ (∅, d)
)

6 Rabin Condition

In this section, we briefly describe how to obtain a Rabin automaton from A(ϕ)
and the generalized Rabin condition GR(ϕ) of Definition 15. For a fixed I, the
whole conjunction of Definition 15 corresponds to the intersection of automata
with different Rabin conditions. In order to obtain the intersection, one has first
to construct the product of the automata, which in this case is still the original
automaton with the state space Q, as they are all the same. Further, satisfying

(G,Q) ∧
∧

f∈F :=I∩F
(∅, Ff )

amounts to visiting G only finitely often and each Ff infinitely often. To check
the latter (for a non-empty conjunction), it is sufficient to multiply the state
space by F with the standard trick that we leave the fth copy once we visit Ff
and immediately go to the next copy. The resulting Rabin pair is thus(

G×F , Ff̄ × {f̄}
)

for an arbitrary fixed f̄ ∈ F .
As for the disjunction, Rabin condition is closed under it as it simply takes

the union of the pairs when the two automata have the same state space. In our
case, one can multiply the state space of each disjunct corresponding to I by all



J ∩ F for each J ∈ 2T \ {I} to get the same state space for all of them. We thus
get a bound for the state space ∏

I⊆T
|I ∩ F| · |Q|

Example 18. The construction of Definition 15 for the two fairness constraints
Example 17 yields

(¬a ∨ ¬c,Q) ∨ (¬a, d) ∨ (¬c, b) ∨
(
(∅, b) ∧ (∅, d)

)
where we omitted all pairs (F, I) for which we already have a pair (F ′, I ′) with
F ⊆ F ′ and I ⊇ I ′. One can eliminate the conjunction as described above at the
cost of multiplying the state space by two. The corresponding Rabin automaton
thus has 2 · 1 · |{i} ∪ 2Ap| = 34 states. (Of course, for instance the initial state
need not be duplicated, but for the sake of simplicity of the construction we
avoid any optimizations.)

For a conjunction of three conditions, ϕ = (FGa ∨GFb) ∧ (FGc ∨GFd) ∧
(FGe∨GFf), the right components of the Rabin pairs correspond to tt, b, d, f, b∧
d, b ∧ f, d ∧ f, b ∧ d ∧ f . The multiplication factor to obtain a Rabin automaton
is thus 2 · 2 · 2 · 3 = 24 and the state space is of the size 24 · 1 · (1 + 26) = 1560.

7 Complexity

In this section, we summarize the theoretical complexity bounds we have ob-
tained.

The traditional approach first translates the formula ϕ of length n into a
non-deterministic automaton of size O(2n). Then the determinization follows.
The construction of Safra has the complexity mO(m) where m is the size of the
input automaton [Saf88]. This is in general optimal. The overall complexity is
thus

2n·O(2n) = 2O(2n+logn)

The recent lower bound for the whole LTL is 22Ω(n)
[KR10]. However, to be more

precise, the example is of size less than 2O(2n). Hence, there is a small gap. To
the authors’ best knowledge, there is no better upper bound when restricting to
automata arising from LTL formulae or from the full (F,G)-fragment. (There
are results on smaller fragments [AT04] though.) We tighten this gap slightly as
shown below. Further, note that the number of Rabin pairs is O(m) = O(2n).

Our construction first produces a Muller automaton of size

O(22|T|
· 2|Ap|) = O(22n+n) ⊆ 2O(2n)

which is strictly less than in the traditional approach. Moreover, as already
discussed in Example 13, one can consider an “infinitary” fragment where every
atomic proposition has in the syntactic tree both Fand Gas some ancestors.
In this fragment, the state space of the Muller/generalized Rabin automaton



is simply 2Ap (when omitting the initial state) as for all α ⊆ Ap, we have
succ(ϕ, α) = ϕ. This is useful, since for e.g. fairness constraints our procedure
yields exponentially smaller automaton.

Although the size of the Muller acceptance condition can be potentially expo-
nentially larger than the state space, we have shown it can be compactly written
as a disjunction of up to 2n of conjunctions each of size at most n.

Moreover, using the intersection procedure we obtain a Rabin automaton
with the upper bound on the state space

|F|2
|T|
· |Q| ∈ n2n · 2O(2n) = 2O(logn·2n) = 2O(2n+log logn) ( 2O(2n+logn)

thus slightly improving the upper bound. Further, each conjunction is trans-
formed into one pair, we are thus left with at most 2|T| ∈ O(2n) Rabin pairs.

8 Experimental Results and Evaluation

We have implemented the construction of the state space of A(ϕ) described
above. Further, Definition 15 then provides a way to compute the multiplication
factor needed in order to get the Rabin automaton. We compare the sizes of this
generalized Rabin automaton and Rabin automaton with the Rabin automaton
produced by ltl2dstar. Ltl2dstar first calls an external translator from LTL to
non-deterministic Büchi automata. In our experiments, it is LTL2BA [GO01]
recommended by the authors of ltl2dstar. Then it performs Safra’s determiniza-
tion. Ltl2dstar implements several optimizations of Safra’s construction. The
optimizations shrink the state space by factor of 5 (saving 79.7% on average on
the formulae considered here) to 10 (89.7% on random formulae) [KB06]. Our
implementation does not perform any ad hoc optimization, since we want to eval-
uate whether the basic idea of the Safraless construction is already competitive.
The only optimizations done are the following.

– Only the reachable part of the state space is generated.
– Only atomic propositions relevant in each state are considered. In a state

(χ, α), a is not relevant if χ[a 7→ tt] ≡ χ[a 7→ ff ], i.e. if for every valuation,
χ has the same value no matter which value a takes. For instance, let Ap =
{a, b} and consider χ = U(Fa) = Fa∨ a. Then instead of having four copies
(for ∅, {a}, {b}, {a, b}), there are only two for the sets of valuations {∅, {b}}
and {{a}, {a, b}}. For its successor tt, we only have one copy standing for
the whole set {∅, {a}, {b}, {a, b}}.

– Definition 15 takes a disjunction over I ∈ 2T. If I ⊆ I ′ but the set of states
(χ, α) with I |=α χ and I ′ |=α χ are the same, it is enough to consider
the disjunct for I only. E.g. for U(G(Fa ∨ Fb)), we only consider I either
{G(Fa ∨ Fb),Fa} or {G(Fa ∨ Fb),Fb}, but not their union.
This is an instance of a more general simplification. For a conjunction of
pairs (F1, I1) ∧ (F2, I2) with I1 ⊆ I2, there is a single equivalent condition
(F1 ∪ F2, I1).



Table 1 shows the results on formulae from BEEM (BEnchmarks for Ex-
plicit Model checkers)[Pel07] and formulae from [SB00] on which ltl2dstar was
originally tested [KB06]. In both cases, we only take formulae of the (F,G)-
fragment. In the first case this is 11 out of 20, in the second 12 out of 28. There
is a slight overlap between the two sets. Further, we add conjunctions of strong
fairness conditions and a few other formulae. For each formula ϕ, we give the
number | states(ϕ)| of distinct states w.r.t. the first (logical) component. The
overall number of states of the Muller or generalized Rabin automaton follows.
The respective runtimes are not listed as they were less than a second for all
listed formulae, with the exception of the fifth formula from the bottom where
it needed 3 minutes (here ltl2dstar needed more than one day to compute the
Rabin automaton). In the column GR-factor, we describe the complexity of the
generalized Rabin condition, i.e. the number of copies of the state space that are
created to obtain an equivalent Rabin automaton, whose size is thus bounded
from above by the column Rabin. The last column states the size of the state
space of the Rabin automaton generated by ltl2dstar using LTL2BA.

Table 1. Experimental comparison to ltl2dstar on formulae of [Pel07], [SB00], fairness
constraints and some other examples of formulae of the “infinitary” fragment

Formula states Muller/GR GR-factor Rabin ltl2dstar

G(a ∨ Fb) 2 5 1 5 4
FGa ∨ FGb ∨GFc 1 9 1 9 36
F(a ∨ b) 2 4 1 4 2
GF(a ∨ b) 1 3 1 3 4
G(a ∨ b ∨ c) 2 4 1 4 3
G(a ∨ Fb) 2 5 1 5 4
G(a ∨ F(b ∨ c)) 2 5 1 5 4
Fa ∨Gb 3 7 1 7 5
G(a ∨ F(b ∧ c)) 2 5 1 5 4
(FGa ∨GFb) 1 5 1 5 12
GF(a ∨ b) ∧GF(b ∨ c) 1 5 2 10 12

(FFa ∧G¬a) ∨ (GG¬a ∧ Fa) 2 4 1 4 1
(GFa) ∧ FGb 1 5 1 5 7
(GFa ∧ FGb) ∨ (FG¬a ∧ ¬b) 1 5 1 5 14
FGa ∧GFa 1 3 1 3 3
G(Fa ∧ Fb) 1 5 2 10 5
Fa ∧ Fb 4 8 1 8 4
(G(b ∨GFa) ∧G(c ∨GF¬a)) ∨Gb ∨Gc 4 18 2 36 26
(G(b ∨ FGa) ∧G(c ∨ FG¬a)) ∨Gb ∨Gc 4 18 1 18 29
(F(b ∧ FGa) ∨ F(c ∧ FG¬a)) ∧ Fb ∧ Fc 4 18 1 18 8
(F(b ∧GFa) ∨ F(c ∧GF¬a)) ∧ Fb ∧ Fc 4 18 1 18 45

(FGa ∨GFb) 1 5 1 5 12
(FGa ∨GFb) ∧ (FGc ∨GFd) 1 17 2 34 17527V3

i=1(GFai → GFbi) 1 65 24 1 560 1 304 706

(
V5

i=1 GFai) → GFb 1 65 1 65 972

GF(FaGFbFG(a ∨ b)) 1 5 1 5 159
FG(Fa ∨GFb ∨ FG(a ∨ b)) 1 5 1 5 2918
FG(Fa ∨GFb ∨ FG(a ∨ b) ∨ FGb) 1 5 1 5 4516



While the advantages of our approach over the general determinization are
clear for the infinitary fragment, there seem to be some drawbacks when “fini-
tary” behaviour is present, i.e. behaviour that can be satisfied or disproved after
finitely many steps. The reason and the patch for this are the following. Consider
the formula Fa and its automaton from Example 5. Observe that one can easily
collapse the automaton to the size of only 2. The problem is that some states
such as 〈a ∨ XFa, {a}〉 are only “passed through” and are equivalent to some
of their successors, here 〈tt, {a}〉. However, we may safely perform the following
collapse. Whenever two states (χ, α), (χ′, α) satisfy that χ[α 7→ tt, Ap \ α 7→ ff ]
is propositionally equivalent to χ′[α 7→ tt, Ap \α 7→ ff ] we may safely merge the
states as they have the same properties: they are bisimilar with the same set of
atomic propositions satisfied. Using these optimizations, e.g. the automaton for
Fa ∧ Fb has size 4 as the one produced by ltl2dstar.

Next important observation is that the blow-up from generalized Rabin to
Rabin automaton (see the column GR-factor) corresponds to the number of
elements of F that have a descendant or an ancestor in G and are combined with
conjunction. This follows directly from the transformation described in Section 6
and is illustrated in the table.

Thus, we may conclude that our approach is competitive to the determiniza-
tion approach and for some classes of useful properties such as fairness con-
straints or generally the infinitary properties it shows significant advantages.
Firstly, the state space of the Rabin automaton is noticeably smaller. Secondly,
compact generalized Rabin automata tend to be small even for more complex
formulae. Thirdly, the state spaces of our automata have a clear structure to be
exploited for further possible optimizations, which is more difficult in the case
of determinization. In short, the state space is less “messy”.

9 Discussion on Extensions

Our approach seems to be extensible to the (X,F,G)-fragment. In this setting,
instead of remembering the one-step history one needs to remember n last steps
(or have a n-step look-ahead) in order to deal with formulae such as GF(a∧Xb).
Indeed, the acceptance condition requires to visit infinitely often a state provably
satisfying a ∧ Xb. This can be done by remembering the last n symbols read,
where n can be chosen to be the nesting depth of Xs. We have not presented
this extension mainly for the sake of clarity of the construction.

Further, one could handle the positive (X,U)-fragment, where only atomic
propositions may be negated as defined above. These formulae are purely “fini-
tary” and the logical component of the state space is sufficient. Indeed, the
automaton simply accepts if and only if tt is reached and there is no need to
check any formulae that we had committed to.

For the (U,G)-fragment or the whole LTL, our approach would need to be
significantly enriched as the state space (and last n symbols read) is not sufficient
to keep enough information to decide whether a run ρ is accepting only based on
Inf(ρ). Indeed, consider a formula ϕ = GF(a∧ bUc). Then reading {a, b} results



in the requirement GF(a ∧ bUc) ∧
(
F(a ∧ bUc) ∨ (bUc)) which is, however,

temporally equivalent to ϕ (their unfolds are propositionally equivalent). Thus,
runs on ({a, b}{c}∅)ω and ({a, b}∅{c})ω have the same set of infinitely often
visited states. Hence, the order of visiting the states matters and one needs the
history. However, words such as ({a, b}{b}n{c})ω vs. ({b}n{c})ω show that more
complicated structure is needed than last n letters. The conjecture that this
approach is extensible to the whole LTL is left open and considered for future
work.

10 Conclusions

We have shown a direct translation of the LTL fragment with operators F and
G to deterministic automata. This translation has several advantages compared
to the traditional way that goes via non-deterministic Büchi automata and then
performs determinization. First of all, in our opinion it is a lot simpler than the
determinization and its various non-trivial optimizations. Secondly, the state
space has a clear logical structure. Therefore, any work with the automata or
further optimizations seem to be conceptually easier. Moreover, many optimiza-
tions are actually done by the logic itself. Indeed, logical equivalence of the
formulae helps to shrink the state space with no further effort. In a sense, the
logical part of a state contains precisely the information that the semantics of
LTL dictates, see Proposition 9. Thirdly, the state space is—according to the
experiments—not much bigger even when compared to already optimized de-
terminization. Moreover, very often it is considerably smaller, especially for the
“infinitary” formulae; in particular, for fairness conditions. Furthermore, we have
also given a very compact deterministic ω-automaton with a small and in our
opinion reasonably simple generalized Rabin acceptance condition.

Although we presented a possible direction to extend the approach to the
whole LTL, we leave this problem open and will focus on this in future work.
Further, since only the obvious optimizations mentioned in Section 8 have been
implemented so far, there is space for further performance improvements in this
new approach.
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