
Proving Termination of Probabilistic Programs
Using Patterns

Javier Esparza1, Andreas Gaiser1?, and Stefan Kiefer2??

1 Institut für Informatik, Technische Universität München, Germany
{esparza,gaiser}@model.in.tum.de

2 Department of Computer Science, University of Oxford, United Kingdom
stefan.kiefer@cs.ox.ac.uk

Abstract. Proving programs terminating is a fundamental computer
science challenge. Recent research has produced powerful tools that can
check a wide range of programs for termination. The analog for prob-
abilistic programs, namely termination with probability one (“almost-
sure termination”), is an equally important property for randomized
algorithms and probabilistic protocols. We suggest a novel algorithm
for proving almost-sure termination of probabilistic programs. Our algo-
rithm exploits the power of state-of-the-art model checkers and termi-
nation provers for nonprobabilistic programs: it calls such tools within
a refinement loop and thereby iteratively constructs a “terminating pat-
tern”, which is a set of terminating runs with probability one. We report
on various case studies illustrating the effectiveness of our algorithm.
As a further application, our algorithm can improve lower bounds on
reachability probabilities.

1 Introduction

Proving program termination is a fundamental challenge of computer science.
Termination is expressible in temporal logic, and so checkable in principle by
LTL or CTL model-checkers. However, recent research has shown that special
purpose tools, like Terminator and ARMC [18, 4], and techniques like transition
invariants, can be dramatically more efficient [17, 20, 19].
The analog of termination for probabilistic programs is termination with prob-
ability one, or almost sure termination, abbreviated here to a.s.-termination.
Since a.s.-termination is as important for randomized algorithms and probabilis-
tic protocols as termination is for regular programs, the question arises whether
the very strong advances in automatic termination proving termination can be
exploited in the probabilistic case. However, it is not difficult to see that, with-
out further restricting the question, the answer is negative. The reason is that
termination is a purely topological property of the transition system associated

? Andreas Gaiser is supported by the DFG Graduiertenkolleg 1480 (PUMA).
?? Stefan Kiefer is supported by ad postdoctoral fellowship of the German Academic

Exchange Service (DAAD).

2

to the program, namely absence of cycles, but a.s.-termination is not. Consider
for instance the program

k = 1; while (0 < k) { if coin(p) k++ else k--}

where coin(p) yields 1 with probability 0 < p < 1, and 0 with probability
(1 − p). The program has the same executions for all values of p (only their
probabilities change), but it only terminates a.s. for p ≤ 1/2. This shows that
proving a.s.-termination requires arithmetic reasoning not offered by termination
provers.
The situation changes if we restrict our attention to weakly finite probabilis-
tic programs. Loosely speaking, a program is weakly finite if the set of states
reachable from any initial state is finite. Notice that the state space may be
infinite, because the set of initial states may be infinite. Weakly finite programs
are a large class, which in particular contains parameterized probabilistic pro-
grams, i.e., programs with parameters that can be initialized to arbitrary large
values, but are finite-state for every valuation of the parameters. One can show
that a.s.-termination is a topological property for weakly finite programs. If the
probabilistic program does not contain nondeterministic choices, then it termi-
nates a.s. iff for every reachable state s there is a path leading from s to a
terminating state, which corresponds to the CTL property AGEF end . (In the
nondeterministic case there is also a corresponding topological property.) As in
the nonprobabilistic case, generic infinite-state model checkers perform poorly
for these properties because of the quantifier alternation AGEF . In particular,
CEGAR approaches usually fail, because, crudely speaking, they tend to unroll
loops, which is essentially useless for proving termination.
In [1], Arons, Pnueli and Zuck present a different and very elegant approach that
reduces a.s.-termination of a probabilistic program to termination of a nondeter-
ministic program obtained with the help of a Planner. A Planner occasionally
and infinitely often determines the outcome of the next k random choices for
some fixed k, while the other random choices are performed nondeterministi-
cally. The planner approach is based on the following simple proof rule, with P
a probabilistic program and R a measurable set of runs of P :

Pr[R] = 1 Every r ∈ R is terminating
P terminates a.s.

In this paper we revisit and generalize this approach, with the goal of profiting
from recent advances on termination tools and techniques not available when
[1] was published. While we also partially fix the outcome of random choices,
we do so more flexibly with the help of patterns. A first advantage of patterns
is that we are able to obtain a completeness result for weakly finite programs,
which is not the case for Planners. Further, in contrast to [1], we show how to
automatically derive patterns for finite-state and weakly finite programs using
an adapted version of the CEGAR approach. Finally, we apply our technique to
improve CEGAR-algorithms for quantitative probabilistic verification [7, 8, 10,
5].
In the rest of this introduction we explain our approach by means of examples.
First we discuss finite-state programs and then the weakly finite case.

3

Finite-state programs. Consider the finite-state program FW shown on the left of
Fig. 1. It is an abstraction of part of the FireWire protocol [12]. Loosely speaking,

k = 0;

while (k < 100) {

old_x = x;

x = coin(p);

if (x != old_x) k++

}

c1 = ?; c2 = 2;

k = 0;

while (k < 100) {

old_x = x;

if (c1 > 0) {x = nondet(); c1--}

elseif (c2 = 2) { x = 0; c2--}

elseif (c2 = 1) { x = 1; c2--}

else /* c1 = 0 and c2 = 0 */ {c1 = ?; c2 = 2}}

if (x != old_x) k++

}

Fig. 1. The programs FW and FW’.

FW terminates a.s. because if we keep tossing a coin then with probability 1 we
observe 100 times two consecutive tosses with the opposite outcome (we even
see 100 times the outcome 01). More formally, let C = {0, 1}, and let us identify
a run of FW (i.e., a terminating or infinite execution) with the sequence of 0’s
and 1’s corresponding to the results of the coin tosses carried out during it.
For instance, (01)51 and (001100)50 are terminating runs of FW, and 0ω is a
nonterminating run. FW terminates because the runs that are prefixes of (C∗01)ω

have probability 1, and all of them terminate. But it is easy to see that these
are also the runs of the nondeterministic program FW’ on the right of Fig. 1
where c = ? nondeterministically sets c to an arbitrary nonnegative integer.
Since termination of FW’ can easily be proved with the help of ARMC, we have
proved a.s.-termination of FW.
We present an automatic procedure leading from FW to FW’ based on the notion
of patterns. A pattern is a subset of Cω of the form C∗w1C

∗w2C
∗w3 . . ., where

w1, w2, . . . ∈ C∗. We call a pattern simple if it is of the form (C∗w)ω. A pattern Φ
is terminating (for a probabilistic program P) if all runs of P that conform to Φ,
i.e., that are prefixes of words of Φ, terminate. In the paper we prove the following
theorems:

(1) For every pattern Φ and program P , the Φ-conforming runs of P have prob-
ability 1.

(2) Every finite-state program has a simple terminating pattern.

By these results, we can show that FW terminates a.s. by finding a simple termi-
nating pattern Φ, taking for P ′ a nondeterministic program whose runs are the
Φ-conforming runs of P , and proving that P ′ terminates. In the paper we show
how to automatically find Φ with the help of a finite-state model-checker (in our
experiments we use SPIN). We sketch the procedure using FW as example. First
we check if some run of FW conforms to Φ0 = Cω, i.e., if some run of FW is infi-
nite, and get v1 = 0ω as answer. Using an algorithm provided in the paper, we
compute a spoiler w1 of v1: a finite word that is not an infix of v1. The algorithm

4

yields w1 = 1. We now check if some run of FW conforms to Φ1 = (C∗w1)ω, and
get v2 = 1ω as counterexample, and construct a spoiler w2 of both v1 and v2:
a finite word that is an infix of neither vω1 nor vω2 . We get w2 = 01, and check
if some run of FW conforms to Φ2 = (C∗w2)ω. The checker finds no counterex-
amples, and so Φ2 is terminating. In the paper we prove that the procedure is
complete, i.e., produces a terminating pattern for any finite-state program that
terminates a.s.

Weakly finite programs. We now address the main goal of the paper: proving
a.s.-termination for weakly finite programs. Unfortunately, Proposition (2) no
longer holds. Consider the random-walk program RW on the left of Fig. 2, where
N is an input variable. RW terminates a.s., but we can easily show (by setting N

k = 1;

while (0 < k < N) {

if coin(p) k++ else k--

}

K = 2; c1 = ?; c2 = K;

k = 1

while (0 < k < N) {

if (c1 > 0) {

if nondet() k++ else k--; c1--

}

elseif (c2 > 0) {k--; c2--}

else {K++; c1 = ?; c2 = K}

}

Fig. 2. The programs RW and RW’

to a large enough value) that no simple pattern is terminating. However, there is
a terminating pattern, namely Φ = C∗00C∗000C∗0000 . . .: every Φ-conforming
run terminates, whatever value N is set to. Since, by result (1), the Φ-conforming
runs have probability 1 (intuitively, when tossing a coin we will eventually see
longer and longer chains of 0’s), RW terminates a.s. In the paper we show that
this is not a coincidence by proving the following completeness result:

(3) Every weakly finite program has a (not necessarily simple) terminating pat-
tern.

In fact, we even prove the existence of a universal terminating pattern, i.e., a
single pattern Φu such that for all weakly finite, a.s.-terminating probabilistic
programs all Φu-conforming runs terminate. This gives a universal reduction of
a.s.-termination to termination, but one that is not very useful in practice. In
particular, since the universal pattern is universal, it is not tailored towards
making the proof of any particular program simple. For this reason we propose
a technique that reuses the procedure for finite-state programs, and extends it
with an extrapolation step in order to produce a candidate for a terminating
pattern. We sketch the procedure using RW as example. Let RWi be the program
RW with N = i. Since every RWi is finite-state, we can find terminating patterns
Φi = (C∗ui)ω for a finite set of values of i, say for i = 1, 2, 3, 4, 5. We obtain
u1 = u2 = ε, u3 = 00, u4 = 000, u5 = 000. We prove in the paper that Φi is

5

not only terminating for RWi, but also for every RWj with j ≤ i. This suggests to
extrapolate and take the pattern Φ = C∗00C∗000C∗0000 . . . as a candidate for
a terminating pattern for RW. We automatically construct the nondeterministic
program RW’ on the right of Fig. 2. Again, ARMC proves that RW’ terminates,
and so that RW terminates a.s.
Related work. A.s.-termination is highly desirable for protocols if termination
within a fixed number of steps is not feasible. For instance, [3] considers the
problem of reaching consensus within a set of interconnected processes, some of
which may be faulty or even malicious. They succeed in designing a probabilistic
protocol to reach consensus a.s., although it is known that no deterministic al-
gorithm terminates within a bounded number of steps. A well-known approach
for proving a.s.-termination are Pnueli et al.’s notions of extreme fairness and
α-fairness [15, 16]. These proof methods, although complete for finite-state sys-
tems, are hard to automatize and require a lot of knowledge about the con-
sidered program. The same applies for the approach of McIver et al. in [11]
that offers proof rules for probabilistic loops in pGCL, an extension of Dijk-
stra’s guarded language. The paper [13] discusses probabilistic termination in
an abstraction-interpretation framework. It focuses on programs with a (single)
loop and proposes a method of proving that the probability of taking the loop k
times decreases exponentially with k. This implies a.s.-termination. In contrast
to our work there is no tool support in [13].
Organization of the paper. Sections 2 contains preliminaries and the syntax and
semantics of our model of probabilistic programs. Section 3 proves soundness
and completeness results for termination of weakly finite programs. Section 4
describes the iterative algorithm for generating patterns. Section 5 discusses
case studies. Section 6 concludes. For space reasons, a full discussion of nonde-
terministic programs and some missing proofs are omitted. They can be found
in the full version of the paper in [6].

2 Preliminaries

For a finite nonempty set Σ, we denote by Σ∗ and Σω the sets of finite and
infinite words over Σ, and set Σ∞ = Σ∗ ∪Σω.
Markov Decision Processes and Markov chains. A Markov Decision Pro-
cess (MDP) is a tuple M = (QA, QP , Init,→,LabA,LabP), where QA and QP
are countable or finite sets of action nodes and probabilistic nodes, Init ⊆ QA∪QP
is a set of initial nodes, and LabA and LabP are disjoint, finite sets of action
labels and probabilistic labels. Finally, the relation → is equal to →A ∪ →P ,
where →A ⊆ QA × LabA × (QA ∪ QP) is a set of action transitions, and
→P ⊆ QP × (0, 1]× LabP ×Q is a set of probabilistic transitions satisfying the
following conditions: (a) if (q, p, l, q′) and (q, p′, l, q′) are probabilistic transitions,
then p = p′; (b) the probabilities of the outgoing transitions of a probabilistic
node add up to 1. We also require that every node of QA has at least one suc-
cessor in →A. If QA = ∅ and Init = {qI} then we call M a Markov chain and
write M = (QP , qI ,→,LabP). We set Q = QA ∪QP and Lab = LabA ∪ LabP .

6

qa q1 q2 q3a1 〈τ, 1〉

〈c0,
1
2〉

〈c1,
1
2〉

〈τ, 1〉

a0

Fig. 3. Example MDP.

We write q l−→ q′ for (q, l, q′) ∈ →A, and q
l,p−→ q′ for (q, p, l, q′) ∈ →P (we skip p

if it is irrelevant). For w = l1l2 . . . ln ∈ Lab∗, we write q w−→ q′ if there exists a
path q = q0

w1−−→ q1
w2−−→ . . .

wn−−→ qn = q′.

Example 1. Figure 3 shows an example of a Markov Decision Process M =
({qa}, {q1, q2, q3}, Init,→,LabA,LabP), with action labels a0, a1, probabilistic
labels τ, c0, c1, and a single initial node qa.

Runs, paths, probability measures, traces. A run of an MDP M is an
infinite word r = q0l0q1l1 . . . ∈ (QLab)ω such that for all i ≥ 0 either qi

li,p−−→ qi+1

for some p ∈ (0, 1] or qi
li−→ qi+1. We call the run initial if q0 ∈ Init. We denote

the set of runs starting at a node q by RunsM(q), and the set of all runs starting
at initial nodes by Runs(M).
A path is a proper prefix of a run. We denote by PathsM(q) the set of all paths
starting at q. We often write r = q0

l0−→ q1
l1−→ q2

l2−→ . . . instead of r = q0l0q1 . . .
for both runs and paths, and skip the superscripts of Runs(·) and Paths(·) if the
context is clear.
We take the usual, cylinder-based definition of a probability measure Prq0 on
the set of runs of a Markov chain M starting at a state q0 ∈ Init (see e.g. [2] or
[6]) for details). For general MDPs, we define a probability measure PrSq0 with
respect to a strategy S. We may drop the subscript if the initial state is irrelevant
or understood.
The trace of a run r = q0

α0−→ q1
α1−→ . . . ∈ Runs(M), denoted by r̄, is the

infinite sequence α0α1 . . . ∈ Lab of labels. Given Σ ⊆ Lab, we define r̄|Σ as the
projection of r̄ onto Σ. Observe that r̄|Σ can be finite.

2.1 Probabilistic Programs

We model probabilistic programs as flowgraphs whose transitions are labeled
with commands. Since our model is standard and very similar to [10], we give
an informal but hopefully precise enough definition. Let Var be a set of variable
names over the integers (the variable domain could be easily extended), and let
Val be the set of possible valuations of Var, also called configurations. The set
of commands contains

– conditional statements, i.e., boolean combinations of expressions e ≤ e′,
where e, e′ are arithmetic expressions (e.g, x+ y ≤ 5 ∧ y ≥ 3);

7

– deterministic assignments x := e and nondeterministic assignments x :=
nondet() that nondeterministically assign to x the value 0 or 1;

– probabilistic assignments x := coin(p) that assign to x the value 0 or 1 with
probability p or (1− p), respectively.

A probabilistic program P is a tuple (L, I, ↪→, label,⊥,>), where L is a finite set
of control flow locations, I ⊆ Val is a set of initial configurations, ↪→ ⊆ L×L is
the flow relation (as usual we write l ↪→ l′ for (l, l′) ∈ ↪→, and call the elements
of ↪→ edges), label is a function that assigns a command to each edge, ⊥ is
the start location, and > is the end location. The following standard conditions
must hold: (i) the only outgoing edge of > is > ↪→ >; (ii) either all or none
of the outgoing edges of a location are labeled by conditional statements; if all,
then every configuration satisfies the condition of exactly one outgoing edge; if
none, then the location has exactly one outgoing edge; (iii) if an outgoing edge
of a location is labeled by an assignment, then it is the only outgoing edge of
this location. A location is nondeterministic if it has an outgoing edge labeled
by a nondeterministic assignment, otherwise it is deterministic. Deterministic
locations can be probabilistic or nonprobabilistic. A program is deterministic if
all its locations are deterministic.
Program Semantics. The semantics of a probabilistic program is an MDP.
Let P be a probabilistic program (L, I, ↪→, label,⊥,>), and let LD,LA denote
the sets of deterministic and nondeterministic locations of P . The semantics of
P is the MDP MP := (QA, QD, Init,→,LabA,LabP), where QA = LA × Val is
the set of nondeterministic nodes, QD = ((L \ LA) × Val) ∪ {>} is the set of
deterministic nodes, Init = {⊥} × I is the set of initial nodes, LabA = {a0, a1}
is the set of action labels, LabP = {τ, 0, 1} is the set of probabilistic labels, and
the relation → is defined as follows: For every node v = 〈l, σ〉 of MP and every
edge l ↪→ l′ of P

– if label(l, l′) = (x := coin(p)), then v
0,p−−→ 〈l′, σ[x 7→ 0]〉 and v

1,1−p−−−−→
〈l′, σ[x 7→ 1]〉;

– if label(l, l′) = (x := nondet()), then v
a0−→ 〈l′, σ[x 7→ 0]〉 and v

a1−→
〈l′, σ[x 7→ 1]〉;

– if label(l, l′) = (x := e), then v
τ,1−−→ 〈l′, σ[x → e(σ)]〉, where σ[x → e(σ)]

denotes the configuration obtained from σ by updating the value of x to the
expression e evaluated under σ;

– if label(l, l′) = c for a conditional c satisfying σ, then v
τ,1−−→ 〈l′, σ〉.

For each node v = 〈>, σ〉, v τ−→ > and > τ−→ >. ut
A program P = (L, I, ↪→, label,⊥,>) is called
– a.s.-terminating if PrSq [{r ∈ Runs(MP) | r reaches >}] = 1 for every strat-

egy S and every initial state q of MP ;
– finite if finitely many nodes are reachable from the initial nodes of MP ;
– weakly finite if Pb is finite for all b ∈ I, where Pb is obtained from P by

fixing b as the only initial node.

Assumption. We assume in the following that programs to be analyzed are de-
terministic. We consider nondeterministic programs only in Section 3.1.

8

3 Patterns

We introduce the notion of patterns for probabilistic programs. A pattern re-
stricts a probabilistic program by imposing particular sequences of coin toss
outcomes on the program runs. For the rest of the section we fix a prob-
abilistic program P = (L, I, ↪→, label,⊥,>) and its associated MDP MP =
(QA, QP , Init,→,LabA,LabP).
We write C := {0, 1} for the set of coin toss outcomes in the following. A pattern
is a subset of Cω of the form C∗w1C

∗w2C
∗w3 . . ., where w1, w2, . . . ∈ Σ∗. We say

the sequence w1, w2, . . . induces the pattern. Fixing an enumeration x1, x2, . . .
of C∗, we call the pattern induced by x1, x2, . . . the universal pattern. For a
pattern Φ, a run r ∈ Runs(MP) is Φ-conforming if there is v ∈ Φ such that r̄|C
is a prefix of v. We call a pattern Φ terminating (for P) if all Φ-conforming runs
terminate, i.e., reach >. We show the following theorem:

Theorem 2.

(1) Let Φ be a pattern. The set of Φ-conforming runs has probability 1. In par-
ticular, if Φ is terminating, then P is a.s.-terminating.

(2) If P is a.s.-terminating and weakly finite, then the universal pattern is ter-
minating for P .

(3) If P is a.s.-terminating and finite with n <∞ reachable nodes in MP , then
there exists a word w ∈ C∗ with |w| ∈ O(n2) such that C∗wCω is terminating
for P .

Part (1) of Theorem 2 is the basis for the pattern approach. It allows to ignore
runs that are not Φ-conforming, because they have probability 0. Part (2) states
that the pattern approach is “complete” for a.s.-termination and weakly finite
programs: For any a.s.-terminating and weakly finite program there is a termi-
nating pattern; moreover the universal pattern suffices. Part (3) refines part (2)
for finite programs: there is a short word such that C∗wCω is terminating.

Proof (of Theorem 2).
Part (1) (Sketch): We can show that the set of runs r that visit infinitely many
probabilistic nodes and do not have the form C∗w1C

ω is a null set. This result
can then easily be generalized to C∗w1C

∗w2 . . . C
∗wnC

ω. All runs conforming
Φ can then be formed as a countable intersection of such run sets.
Part (2): Let σ1, σ2, . . . be a (countable or infinite) enumeration of the nodes
in I. With Part (3) we obtain for each i ≥ 1 a word wi such that C∗wiCω is
a terminating pattern for P , if the only starting node considered is σi. By its
definition, the universal pattern is a subset of C∗wiCω for every i ≥ 1, so it is
also terminating.
Part (3) (Sketch): Since P is a.s.-terminating, for every node q there exists a
coin toss sequence wq, |wq| ≤ n, with the following property: a run that passes
through q and afterwards visits exactly the sequence wq of coin toss outcomes is
terminating. We build a sequence w such that for every state q every run that
passes through q and then visits exactly the sequence w is terminating. We start

9

⊥ l1 l2 >
x := nondet() y := coin(p) x 6= y?

x = y?

Fig. 4. Nondeterministic a.s.-terminating program without terminating pattern.

with w = wq for an arbitrary q 6= >. Then we pick a q′ 6= > such that for q′′ 6= q,
runs starting in q′′ and visiting exactly the probabilistic label sequence w lead
to q′. We set w = wqwq′ ; after visiting w, all runs starting from q and q′ end
in >. We iterate this until no more q′ can be found. We stop after at most n
steps and obtain a sequence w of length ≤ n2. ut

3.1 Nondeterministic Programs

For nondeterministic a.s.-terminating programs, there might not exist a termi-
nating pattern, even if the program is finite. Figure 4 shows an example. Let Φ
be a pattern and c1c2c3 . . . ∈ Φ. The run

〈⊥, σ0〉
ac1−−→ 〈l1, σ1〉

c1−→ 〈l2, σ′1〉
τ−→ 〈⊥, σ′1〉

ac2−−→ 〈l1, σ2〉
c2−→ 〈l2, σ′2〉

τ−→ 〈⊥, σ′2〉
ac3−−→ . . .

in MP is Φ-conforming but nonterminating.
We show that the concept of patterns can be suitably generalized to nondeter-
ministic programs, recovering a close analog of Theorem 2. Assume that the
program is in a normal form where nondeterministic and probabilistic locations
strictly alternate. This is easily achieved by adding dummy assignments. Writing
A := {a0, a1}, every run r ∈MP satisfies r|A∪C ∈ (AC)∞.
A response of length n encodes a mapping An → Cn in an “interleaved” fashion,
e.g., {a01, a10} is a response of length one, {a00a01, a00a11, a10a01, a10a11} is
a response of length two. A response pattern is a subset of (AC)ω of the form
(AC)∗R1(AC)∗R2(AC)∗ . . ., where R1, R2, . . . are responses. If we now define
the notions of universal and terminating response patterns analogously to the
deterministic case, a theorem very much like Theorem 2 can be shown. For
instance, let Φ = (AC)∗{a01, a10}(AC)ω. Then every Φ-conforming run of the
program in Fig. 4 has the form

〈⊥, σ0〉 → . . .→ q
ai−→ q′

1−i−−→ q′′ → >→ . . . for an i ∈ {0, 1}.

This implies that the program is a.s.-terminating. See [6] for the details.

4 Our Algorithm

In this section we aim at a procedure that, given a weakly finite program P ,
proves that P is a.s.-terminating by computing a terminating pattern. This
approach is justified by Theorem 2 (1). In fact, the proof of Theorem 2 (3)

10

constructs, for any finite a.s.-terminating program, a terminating pattern. How-
ever, the construction operates on the Markov chain MP , which is expensive
to compute. To avoid this, we would like to devise a procedure which operates
on P , utilizing (nonprobabilistic) verification tools, such as model checkers and
termination provers.
Theorem 2 (2) guarantees that, for any weakly finite a.s.-terminating program,
the universal pattern is terminating. This suggests the following method for
proving a.s.-termination of P : (i) replace in P all probabilistic assignments by
nondeterministic ones and instrument the program so that all its runs are con-
forming to the universal pattern (this can be done as we describe in Section 4.1
below); then (ii) check the resulting program for termination with a termina-
tion checker such as ARMC [18]. Although this approach is sound and complete
(modulo the strength of the termination checker), it turns out to be useless in
practice. This is because the crucial loop invariants are extremely hard to catch
for termination checkers. Already the instrumentation that produces the enu-
meration of C∗ requires a nontrivial procedure (such as a binary counter) whose
loops are difficult to analyze.
Therefore we devise in the following another algorithm which tries to compute a
terminating pattern C∗w1C

∗w2 . . . It operates on P and is “refinement”-based.
Our algorithm uses a “pattern checker” subroutine which takes a sequence
w1, w2, . . ., and checks (or attempts to check) whether the induced pattern is
terminating. If it is not, the pattern checker may return a lasso as counterexam-
ple. Formally, a lasso is a sequence

〈l1, σ1〉 → 〈l2, σ2〉 → . . .→ 〈lm, σm〉 → . . .→ 〈ln, σn〉 with 〈ln, σn〉 → 〈lm, σm〉

and 〈l1, σ1〉 ∈ Init. We call the sequence 〈lm, σm〉 → . . .→ 〈ln, σn〉 the lasso loop
of the lasso. Note that a lasso naturally induces a run in Runs(MP). If P is
finite, pattern checkers can be made complete, i.e., they either prove the pattern
terminating or return a lasso.
We present our pattern-finding algorithms for finite-state and weakly finite pro-
grams. In Section 4.1 we describe how pattern-finding and pattern-checking can
be implemented using existing verification tools.
Finite Programs. First we assume that the given program P is finite. The
algorithm may take a base word s0 ∈ C∗ as input, which is set to s0 = ε by
default. Then it runs the pattern checker on C∗s0C∗s0 . . . If the pattern checker
shows the pattern terminating, then, by Theorem 2 (1), P is a.s.-terminating.
Otherwise the pattern checker provides a lasso 〈l1, σ1〉 → . . . → 〈lm, σm〉 →
. . . → 〈ln, σn〉. Our algorithm extracts from the lasso loop a word u1 ∈ C∗,
which indicates a sequence of outcomes of the coin tosses in the lasso loop. If u1 =
ε, then the pattern checker has found a nonterminating run with only finitely
many coin tosses, hence P is not a.s.-terminating. Otherwise (i.e., u1 6= ε), let
s1 ∈ C∗ be a shortest word such that s0 is a prefix of s1 and s1 is not an infix
of uω1 . Our algorithm runs the pattern checker on C∗s1C

∗s1 . . . If the pattern
checker shows the pattern terminating, then P is a.s.-terminating. Otherwise
the pattern checker provides another lasso, from which our algorithm extracts

11

a word u2 ∈ C∗ similarly as before. If u2 = ε, then P is not a.s.-terminating.
Otherwise, let s2 ∈ C∗ be a shortest word such that s0 is a prefix of s2 and s2
is neither an infix of uω1 nor an infix of uω2 . Observe that the word s1 is an infix
of uω2 by construction, hence s2 6= s1. Our algorithm runs the pattern checker on
C∗s2C

∗s2 . . . and continues similarly. More precisely, in the i − th iteration we
choose si as a shortest word such that si is a prefix of si−1 and si is not an infix
of any of the words uω1 , . . . , u

ω
i , thus eliminating all lassos so far discovered.

The algorithm is complete for finite and a.s.-terminating programs:

Proposition 3. Let P be finite and a.s.-terminating. Then the algorithm finds
a shortest word w such that the pattern C∗wC∗w . . . is terminating, thus proving
termination of P .

In each iteration the algorithm picks a word sj that destroys all previously
discovered lasso loops. If the loops are small, then the word is short:

Proposition 4. We have |sj | ≤ |s0|+ 1 + log2 (|u1|+ · · ·+ |uj |).

The proofs for both propositions can be found in [6].

Weakly Finite Programs. Let us now assume that P is a.s.-terminating
and weakly finite. We modify our algorithm. Let b1, b2, . . . be an enumeration
of the set I of initial nodes. Our algorithm first fixes b1 as the only initial
node. This leads to a finite program, so we can run the previously described
algorithm, yielding a word w1 such that C∗w1C

∗w1 . . . is terminating for the
initial node b1. Next our algorithm fixes b2 as the only initial node, and runs the
previously described algorithm taking w1 as base word. As before, this establishes
a terminating pattern C∗w2C

∗w2 . . . By construction of w2, the word w1 is a
prefix of w2, so the pattern C∗w1C

∗w2C
∗w2 . . . is terminating for the initial

nodes {b1, b2}. Continuing in this way we obtain a sequence w1, w2, . . . such
that C∗w1C

∗w2 . . . is terminating. Our algorithm may not terminate, because it
may keep computing w1, w2, However, we will illustrate that it is promising
to compute the first few wi and then guess an expression for general wi. For
instance if w1 = 0 and w2 = 00, then one may guess wi = 0i. We encode
the guessed sequence w1, w2, . . . in a finite way and pass the obtained pattern
C∗w1C

∗w2 . . . to a pattern checker, which may show the pattern terminating,
establishing a.s.-termination of the weakly finite program P .

4.1 Implementing Pattern Checkers

Finite Programs. We describe how to build a pattern checker for finite pro-
grams P and patterns of the form C∗wC∗w . . . We employ a model checker
for finite-state nonprobabilistic programs that can verify temporal properties:
Given as input a finite program and a Büchi automaton A, the model checker
returns a lasso if there is a program run accepted by A (such runs are called
“counterexamples” in classical terminology). Otherwise it states that there is no
counterexample. For our case studies, we use the SPIN tool [9].

12

. . .
c = c1 c = c2 c = c3 c = cn−1 c = cn

true c = 2 c = 2 c = 2

true

Fig. 5. Büchi automaton A(w), for w = c1c2 . . . cn ∈ C∗. Note that the number of
states in A(w) grows linearly in |w|.

Given a finite probabilistic program P and a pattern Φ = C∗wC∗w . . ., we first
transform P into a nonprobabilistic program P ′ as follows. We introduce two
fresh variables c and term, with ranges {0, 1, 2} and {0, 1}, respectively, and add
assignments term = 0 and term = 1 at the beginning and end of the program,
respectively. Then every location l of P with label(l, l′) = x = coin(p) for a label
l′ is replaced by a nondeterministic choice and an if-statement as follows:

x = nondet();
if (x = 0) { c = 0; c = 2 } else { c = 1; c = 2 } end if;

In this way we can distinguish coin toss outcomes in a program trace by
inspecting the assignments to c. Now we perform two checks on the non-
probabilistic program P ′: First, we use SPIN to translate the LTL formula
G¬term ∧ FG(c 6∈ {0, 1}) into a Büchi automaton and check whether P ′ has a
run that satisfies this formula. If there is indeed a lasso, our pattern checker re-
ports it. Observe that by the construction of the LTL formula the lasso encodes
a nonterminating run in P that eventually stops visiting probabilistic locations.
So the lasso loop does not contain any coin tosses (and our algorithm will later
correctly report that P is not a.s.-terminating). Otherwise, i.e., if no run satisfies
the formula, we know that all nonterminating runs involve infinitely many coin
tosses. Then we perform a second query: We construct a Büchi automaton A(w)
that represents the set of infinite Φ-conforming runs, see Fig. 5. We use SPIN
to check whether P ′ has run that is accepted by A(w). If yes, then there is an
infinite Φ-conforming run, and our pattern checker reports the lasso. Otherwise,
it reports that Φ is a terminating pattern.
Weakly Finite Programs. Recall that for weakly finite programs, the pat-
tern checker needs to handle patterns of a more general form, namely Φ =
C∗w1C

∗w2 . . . Even simple patterns like C∗0C∗00C∗000 . . . cannot be repre-
sented by a finite Büchi automaton. Therefore we need a more involved instru-
mentation of the program to restrict its runs to Φ-conforming ones. Now our
pattern checker employs a termination checker for infinite-state programs. For
our experiments we use ARMC.
Given a weakly finite program P and a pattern Φ = C∗w1C

∗w2 . . ., we trans-
form P into a nonprobabilistic program PΦ as follows. We will use a command
x = ?, which nondeterministically assigns a nonnegative integer to x. Further
we assume that we can access the k-th letter of the i-th element of (wi)i∈N
by w[i][k], and |wi| by length(w[i]). We add fresh variables ctr, next and pos,
where ctr is initialized nondeterministically with any nonnegative integer and

13

x = nondet();

if (ctr <= 0)

if (pos > length(w[next])) { ctr = ?; pos = 1; next = next+1 }

else { x = w[next][pos]; pos = pos+1 }

else ctr = ctr-1

Fig. 6. Code transformation for coin tosses in weakly finite programs.

next and pos are both initialized with 1. If a run r is Φ-conforming, r̄|C is a
prefix of v1w1v2w2v3w3 . . ., with vi ∈ C∗. The variable ctr is used to “guess”
the length of the words vi; the individual letters in vi are irrelevant. We replace
every command c = coin(p) by the code sequence given in Fig. 6.
The runs in the resulting program PΦ correspond exactly to the Φ-conforming
runs in P . Then PΦ is given to the termination checker. If it proves termination,
we report “Φ is a terminating pattern for P”. Otherwise, the tool might either
return a lasso, which our pattern checker reports, or give up on PΦ, in which
case our pattern checker also has to give up.
In our experiments, a weakly finite program typically has an uninitialized inte-
ger variable N whose value is nondeterministically fixed in the beginning. The
pattern C∗w1C

∗ . . . C∗wNC
ω is then often terminating, which makes next ≤ N

an invariant in PΦ. The termination checker ARMC may benefit from this in-
variant, but may not be able to find it automatically (for reasons unknown to the
authors). We therefore enhanced ARMC to “help itself” by adding the invariant
next ≤ N to the program if ARMC’s reachability mode can verify the invariant.

5 Experimental evaluation

We apply our methods to several parameterized programs taken from the liter-
ature.3

– firewire: Fragment of FireWire’s symmetry-breaking protocol, adapted
from [12] (a simpler version was used in the introduction). Roughly speaking,
the number 100 of Fig. 1 is replaced by a parameter N .

– randomwalk: A slightly different version of the finite-range, one-dimensional
random walk used as second example in the introduction.

– herman: An abstraction of Herman’s randomized algorithm for leader elec-
tion used in [14]. It can be seen as a more complicated finite random walk,
with N as the walk’s length.

– zeroconf: A model of the Zeroconf protocol taken from [10]. The protocol
assigns IP addresses in a network. The parameter N is the number of probes
sent after choosing an IP address to check whether it is already in use.

– brp: A model adapted from [10] that models the well-known bounded re-
transmission protocol. The original version can be proven a.s.-terminating
with the trivial pattern Cω; hence we study an “unbounded” version, where

3 The sources can be found at http://www.model.in.tum.de/~gaiser/cav2012.html.

14

Name #loc Pattern words for Time i-th word of Time

N = 1, 2, 3, 4 (SPIN) guessed pattern (ARMC)

firewire 19 010 010 010 010 17 sec 010 001 min 36 sec

randomwalk 16 ε 02 03 04 23 sec 0i 001 min 22 sec

herman 36 010 0(10)2 0(10)3 0(10)4 47 sec 0(10)i 007 min 43 sec

zeroconf 39 03 04 05 06 20 sec 0i+2 026 min 16 sec

brp 57 00 00 00 00 19 sec 00 045 min 14 sec

Fig. 7. Constructed patterns of the case studies and runtimes.

arbitrarily many retransmissions are allowed. The parameter N is the length
of the message that the sender must transmit to the receiver.

Proving a.s.-termination. We prove a.s.-termination of the examples using
SPIN [9] to find patterns of finite-state instances, and ARMC [18] to prove
termination of the nondeterministic programs derived from the guessed pattern.
All experiments were performed on an Intel c© i7 machine with 8GB RAM. The
results are shown in Fig. 7. The first two columns give the name of the example
and its size. The next two columns show the words w1, . . . , w4 of the terminating
patterns C∗w1C

ω, . . . , C∗w4C
ω computed for N = 1, 2, 3, 4 (see Theorem 2(3)

and Section 4.1), and SPIN’s runtime. The last two columns give word wi in the
guessed pattern C∗w1C

∗w2C
∗w3 . . . (see Section 4.1), and ARMC’s runtime.

For instance, the entry 0(10)i for herman indicates that the guessed pattern is
C∗010C∗01010C∗0101010
We derive two conclusions. First, a.s.-termination is proved by very simple pat-
terns: the general shape is easily guessed from patterns for N = 1, 2, 3, 4, and
the need for human ingenuity is virtually reduced to zero. This speaks in fa-
vor of the Planner technique of [1] and our extension to patterns, compared to
other approaches using fairness and Hoare calculus [16, 11]. Second, the runtime
is dominated by the termination tool, not by the finite-state checker. So the
most direct way to improve the efficiency of our technique is to produce faster
termination checkers.
In the introduction we claimed that general purpose probabilistic model-checkers
perform poorly for a.s.-termination, since they are not geared towards this prob-
lem. To supply some evidence for this, we tried to prove a.s.-termination of the
first four examples using the CEGAR-based PASS model checker [7, 8]. In all
four cases the refinement loop did not terminate.4

Improving lower bounds for reachability. Consider a program of the
form if coin(0.8) {P1()} else {P2()} ERROR . Probabilistic model-checkers
compute lower and upper bounds for the probability of ERROR. Loosely speak-
ing, lower bounds are computed by adding the probabilities of terminating runs

4 Other checkers, like PRISM, cannot be applied because they only work for finite-
state systems.

15

of P1 and P2. However, since CEGAR-based checkers [7, 8, 10, 5] work with ab-
stractions of P1 and P2, they may not be able to ascertain that paths of the
abstraction are concrete paths of the program, leading to poor lower bounds.
Information on a.s.-termination helps: if e.g. P1 terminates a.s., then we already
have a lower bound of 0.8. We demonstrate this technique on two examples. The
first one is the following modification of firewire:

N = 1000; k = 0; miss = 0;
while (k < N) {
old_x = x; x = coin(0.5);
if (x = old_x) k++ else if (k < 5) miss = 1

}

For i ∈ {0, 1}, let pi be the probability that the program terminates with
miss = i. After 20 refinement steps PASS returns upper bounds of 0.032 for p0

and 0.969 for p1, but a lower bound of 0 for p1, which stays 0 after 300 iter-
ations. Our algorithm establishes that the loop a.s.-terminates, which implies
p0 + p1 = 1, and so after 20 iterations we already get 0.968 ≤ p1 ≤ 0.969.
We apply the same technique to estimate the probabilities p1, p0 that zeroconf
detects/does-not-detect an unused IP address. For N = 100, after 20 refinement
steps PASS reports an upper bound of 0.999 for p0, but a lower bound of 0 for p1,
which stays 0 for 80 more iterations. With our technique after 20 iterations we
get 0.958 ≤ p1 ≤ 0.999.

6 Conclusions

We have presented an approach for automatically proving a.s.-termination of
probabilistic programs. Inspired by the Planner approach of [1], we instrument a
probabilistic program P into a nondeterministic program P ′ such that the runs
of P ′ correspond to a set of runs of P with probability 1. The instrumentation
is fully automatic for finite-state programs, and requires an extrapolation step
for weakly finite programs. We automatically check termination of P ′ profiting
from new tools that were not available to [1]. While our approach maintains the
intuitive appeal of the Planner approach, it allows to prove completeness results.
Furthermore, while in [1] the design of the Planner was left to the verifier, we
have provided in our paper a CEGAR-like approach. In the case of parameter-
ized programs, the approach requires an extrapolation step, which however in our
case studies proved to be straightforward. Finally, we have also shown that our
approach to improve the game-based CEGAR technique of [7, 8, 10] for comput-
ing upper and lower bounds for the probability of reaching a program location.
While this technique often provides good upper bounds, the lower bounds are
not so satisfactory (often 0), due to spurious nonterminating runs introduced by
the abstraction. Our approach allows to remove the effect of these runs.
In future work we plan to apply learning techniques to pattern generation,
thereby inferring probabilistic termination arguments for large program in-
stances from small instances.

16

Acknowledgments. We thank the referees for helping us clarify certain aspects
of the paper, Corneliu Poppea and Andrey Rybalchenko for many discussions
and their help with ARMC, and Björn Wachter and Florian Zuleger for fruitful
insights on quantitative probabilistic analysis and termination techniques.

References

1. T. Arons, A. Pnueli, and L.D. Zuck. Parameterized verification by probabilistic
abstraction. In FoSSaCS, volume 2620 of LNCS, pages 87–102. Springer, 2003.

2. C. Baier and J.-P. Katoen. Principles of model checking. MIT Press, 2008.
3. G. Bracha and S. Toueg. Asynchronous consensus and broadcast protocols. J.

ACM, 32:824–840, October 1985.
4. B. Cook, A. Podelski, and A. Rybalchenko. Terminator: Beyond safety. In CAV,

volume 4144 of LNCS, pages 415–418. Springer, 2006.
5. J. Esparza and A. Gaiser. Probabilistic abstractions with arbitrary domains. In

SAS, volume 6887 of LNCS, pages 334–350. Springer, 2011.
6. J. Esparza, A. Gaiser, and S. Kiefer. Proving termination of proba-

bilistic programs using patterns. Technical report, 2012. Available at
http://arxiv.org/abs/1204.2932.

7. E. M. Hahn, H. Hermanns, B. Wachter, and L. Zhang. PASS: Abstraction refine-
ment for infinite probabilistic models. In Proc. of TACAS, pages 353–357, 2010.

8. H. Hermanns, B. Wachter, and L. Zhang. Probabilistic CEGAR. In Proc. of CAV,
pages 162–175, 2008.

9. G. Holzmann. The Spin Model Checker: Primer and Reference Manual. Addison-
Wesley Professional, first edition, 2003.

10. M. Kattenbelt, M. Z. Kwiatkowska, G. Norman, and D. Parker. Abstraction re-
finement for probabilistic software. In Proc. of VMCAI, pages 182–197, 2009.

11. A. McIver and C. Morgan. Developing and reasoning about probabilistic programs
in pGCL. In PSSE, pages 123–155, 2004.

12. A. McIver, C. Morgan, and Thai Son Hoang. Probabilistic termination in B. In
ZB2003, volume 2651 of LNCS, Turku, Finland, 2003. Springer.

13. D. Monniaux. An abstract analysis of the probabilistic termination of programs.
In SAS, volume 2126 of LNCS, pages 111–126. Springer, 2001.

14. T. Nakata. On the expected time for Herman’s probabilistic self-stabilizing algo-
rithm. Theoretical Computer Science, 349(3):475 – 483, 2005.

15. A. Pnueli. On the extremely fair treatment of probabilistic algorithms. In STOC,
pages 278–290. ACM, 1983.

16. A. Pnueli and L.D. Zuck. Probabilistic verification. Inf. Comput., 103:1–29, 1993.
17. A. Podelski and A. Rybalchenko. Transition invariants. In LICS, pages 32–41.

IEEE Computer Society, 2004.
18. A. Podelski and A. Rybalchenko. Armc: The logical choice for software model

checking with abstraction refinement. In PADL, volume 4354 of LNCS, pages
245–259. Springer, 2007.

19. A. Podelski and A. Rybalchenko. Transition invariants and transition predicate
abstraction for program termination. In TACAS, volume 6605 of LNCS, pages
3–10. Springer, 2011.

20. A. Rybalchenko. Temporal verification with transition invariants. PhD thesis,
2005.

