
Solving Fixed-Point Equations by Derivation Tree
Analysis?

Javier Esparza and Michael Luttenberger

Institut für Informatik, Technische Universität München, 85748 Garching, Germany
{esparza,luttenbe}@in.tum.de

Abstract. Systems of equations over ω-continuous semirings can be mapped to
context-free grammars in a natural way. We show how an analysis of the deriva-
tion trees of the grammar yields new algorithms for approximating and even com-
puting exactly the least solution of the system.

1 Introduction

We are interested in computing (or approximating) solutions of systems of fixed-point
equations of the form

X1 = f1(X1, X2, . . . , Xn)
X2 = f2(X1, X2, . . . , Xn)

...
Xn = fn(X1, X2, . . . , Xn)

where X1, X2, . . . , Xn are variables and f1, f2, . . . , fn are n-ary functions over some
common domain S. Fixed-point equations are a natural way of describing the equilib-
rium states of systems with n interacting components (particles, populations, program
points, etc.). Loosely speaking, the function fi describes the next state of the i-th com-
ponent as a function of the current states of all components, and so the solutions of the
system describe the equilibrium states. In computer science, a prominent example of
fixed-point equations are dataflow equations. In this case, the system is a program, the
components are the control points of the program, the common domain is some uni-
verse of data facts, and the fi’s describe the dataflow to (or from) the i-th control point
to all other control points in one program step (see e.g. [NNH99]).

Without further assumptions on the functions f1, . . . , fn and the domain S, little can
be said about the existence and computability of a solution. In the last years we have
studied polynomial systems (systems in which the fi’s are multivariate polynomials) in
which S is an ω-continuous semiring, a well-known algebraic structure [Kui97]. This
setting has the advantage that the system always has a least solution, a result usually
known as Kleene’s theorem [Kui97], which allows us to concentrate on the task of
approximating or computing it.

This paper surveys recent results [EKL07a,EKL07b,EKL08a,EKL10,Lut10] and
some work in progress [Lut]. The presentation emphasizes the connection between the
? This work was partially supported by the project “Polynomial Systems on Semirings: Founda-

tions, Algorithms, Applications” of the Deutsche Forschungsgemeinschaft.

algebraic study of equations and formal language theory. In fact, our main goal is to
show how equations can be mapped to context-free grammars in a natural way,1 and
how an analysis of the derivation trees of the grammars yields new algorithms for ap-
proximating and even computing the least solution of the equations.

The paper is structured as follows. After some preliminaries (Section 2), we intro-
duce a known result (Section 3): the least solution of a system is equal to the value of
its associated grammar, where the value of a grammar is defined as the sum of the val-
ues of its derivation trees, and the value of a derivation tree is defined as the (ordered)
product of its leaves. This connection allows us to approximate the least solution of a
system by computing the values of “approximations” to the grammar. Loosely speak-
ing, a grammar G1 approximates G2 if every derivation tree of G1 is a derivation tree
of G2 up to irrelevant details. We show that Kleene’s theorem, which not only proves
the existence of the least solution, but also provides an algorithm for approximating
it, corresponds to approximating G by grammars G[1], G[1], . . . where G[h] generates
the derivation trees of G of height h. We then introduce (Section 4) a faster approxi-
mation by grammars H [1], H [1], . . . where H [h] generates the derivation trees of G of
dimension h [EKL08a,EKL10]. We show that this approximation is a generalization of
Newton’s method for approximating the zero of a differentiable function, and present
a new result about its convergence speed when multiplication is commutative [Lut]2.
In the final part of the paper (Section 5) we apply the insights obtained from Newton’s
and Kleene’s approximation to different classes of idempotent semirings, i.e., semirings
in which the law a + a = a holds. We obtain approximation algorithms that actually
provide the exact solution after a finite number of steps.

2 Polynomial Equations Over Semirings

For the definition of polynomial systems we need a set S and two binary operations on
S, addition and multiplication, satisfying the usual associativity and distributivity laws:

Definition 1. A semiring is a tuple 〈S,+, ·, 0, 1〉, where (i) S is a set with 0, 1 ∈ S
called the carrier of the semiring, (ii) 〈S,+, 0〉 is a commutative monoid with neutral
element 0, (iii) 〈S, ·, 1〉 is a monoid with neutral element 1, (iv) 0 is an annihilator, i.e.
0 · a = a · 0 = 0 for all a ∈ S, and (v) multiplication distributes over addition from the
left and from the right.

When addition and multiplication are clear from the context, we identify a semiring
〈S,+, ·, 0, 1〉 with its carrier S . We also often write ab for a · b. A polynomial over
a semiring S is a finite sum of finite products of variables and semiring elements.
For instance, if X,Y denote variables and a, b, c ∈ S denote semiring elements, then
aY b+XYXc is a polynomial. Notice that multiplication is not required to be commu-
tative, and so we cannot represent a single polynomial in monomial form, i.e. as a finite
sum of products of the form aX1 · · ·Xm, where a ∈ S is a coefficient and X1 · · ·Xn is

1 We do not claim to be the first to come up with this connection. See e.g. [BR82,Boz99].
2 The proof has not yet been published, but we feel confident it is correct.

2

a product of variables. Things change for polynomial systems. In this case, we may in-
troduce auxiliary variables following the procedure used to put a context-free grammar
in Chomsky normal form; for instance, the univariate equation

X = aXb+XcX + e

which is not in monomial form, can be transformed into the multivariate system

X = aXY +XZ + e Y = b Z = cX

which simulates the original system w.r.t. the X-component. Although our results do
not require systems to be in monomial form, for this survey we always assume it to
simplify notation.

Polynomial systems over semirings may have no solution. For instance,X = X+1
has no solution over the reals. However, if we extend the reals with a maximal element
∞ (correspondingly adapting addition and multiplication so that these operations still
are monotone), we can consider∞ a solution of this equation. We restrict ourselves to
semirings with these “limit” elements.

Definition 2. Given a semiring S, define the binary relation v by

a v b :⇔ ∃d ∈ S : a+ d = b.

A semiring S is ω-continuous if (i) 〈S,v〉 is a ω-complete partial order, i.e., the supre-
mum supi∈N ai of any ω-chain a0 v a1 v . . . exists in S w.r.t. the partial order v on
S; and (ii) both addition and multiplication are ω-continuous in both arguments, i.e.,
for any ω-chain (ai)i∈N and semiring element a:

a+ sup
i∈N

ai = sup
i∈N

(a+ ai) and a · sup
i∈N

ai = sup
i∈N

(a · ai)

and symmetrically in the other argument.

We adopt the following convention:

If not stated otherwise, S denotes an ω-continuous semiring 〈S,+, ·, 0, 1〉.

In an ω-continuous semiring we can extend the summation operator
∑

from finite to
countable families (ai)i∈I by defining∑

i∈I
ai := sup

{∑
i∈F

ai | F ⊆ I, |F | <∞

}
.

It then can be shown that
∑

is still associative and multiplication distributes over
∑

from both the left and the right [DKV09]. Note that in a ω-continuous semiring S we
have 0 v a for all a ∈ S. Hence, the reals extended by ∞ do not constitute an ω-
continuous semiring w.r.t. the canonical order ≤, but the nonnegative reals do.

It is easy to see that Kleene’s fixed-point theorem applies to polynomial systems
over ω-continuous semirings:3

3 The theorem is often also attributed to Tarski. In fact, it can be seen as a slight extension of
Tarski’s fixed-point theorem for complete lattices [Tar55], or as a particular case of Kleene’s
first recursion theorem [Kle38].

3

Theorem 1 ([Kui97]). Every polynomial system X = f(X) over an ω-continuous
semiring has a least solution µf w.r.t. v, and µf is equal to the supremum of the
Kleene sequence:

0 v f(0) v f(f(0)) v . . . v f i(0) v f i+1(0) v . . . (1)

Observe that Kleene’s theorem not only guarantees the existence of the least fixed point,
but also provides a first approximation method, usually called fixed-point iteration.

3 From Equations to Grammars

We illustrate by means of examples how Kleene’s theorem allows us to connect poly-
nomial systems of equations with context-free grammars and the derivation trees asso-
ciated with them. For a formal presentation see e.g. [Boz99,EKL10,DKV09].

Consider the equation

X =
1
4
X2 +

1
4
X +

1
2

(2)

over the nonnegative reals extended by ∞, which is an ω-continuous semiring. The
equation is equivalent to (X − 1)(X − 2) = 0, and so its least solution is X = 1. We
introduce identifiers a, b, c for the coefficients, yielding the formal equation

X = f(X) := aX2 + bX + c . (3)

We say that (2) is an instance of (3). Formally, instances correspond to valuations. A
valuation is a mapping V : Σ → S, where Σ is the set of identifiers of the formal
equation (in our example Σ = {a, b, c}), and S is an ω-continuous semiring. So (2) is
the instance of (3) for the valuation where S are the nonnegative reals with∞, V (a) =
V (b) = 1/4, and V (c) = 1/2. We denote the instance for V by X = fV (X), and its
least solution by µfV .

We associate a context-free grammar with Equation (3) by reading every summand
of the right-hand side as a production:

G : X → aXX | bX | c , (4)

We denote by T (G) the set of derivation trees of G. We depict derivation trees in the
standard way as ordered finite trees and say that a derivation tree t ∈ T (G) yields a
word a1a2 . . . al ∈ Σ∗ if the i-th leaf from the left of t is labeled by ai. For instance,
the following trees t1, t2, t3, t4 yield the words c, bc, acc, abcc, respectively:

X

c

t1: X

b X

c

t2: X

a X

c

X

c

t3: X

a X

b X

c

X

c

t4:

. . .

4

Note that the grammar G for an univariate equation has only a single nonterminal, and
thus the axiom of G is clear. In the case of a multivariate polynomial system X =
f(X), we construct in the same way a context-free grammar G, but without an explicit
axiom. T (G) stands for the union of the sets T1(G), . . . , Tn(G) of derivation trees
corresponding to setting X1, . . . , Xn as axiom. In the following, we do not explicitly
distinguish between the univariate and the multivariate case, and adopt the convention:

Given a grammar G without explicit axiom, a result regarding G or T (G) is to
be understood as holding for any possible choice of the axiom.

A valuation V : Σ → S extends naturally to the derivation trees of G: for a tree t ∈
T (G) yielding a1a2 . . . al, we define

V (t) = V (a1) · V (a2) · . . . · V (al),

and for a set of trees T ⊆ T (G), we define V (T) =
∑
t∈T V (t). For instance, for the

trees t1, t2, t3, t4 shown in the picture above and the valuation mapping a, b, c to 1/4,
1/4, and 1/2, respectively, we get

V ({t1, t2, t3, t4}) = V (t1)+V (t2)+V (t3)+V (t4) = 1/2+1/8+1/16+1/64 = 45/64.

Now, as a last step, we can extend V to a valuation of the complete grammar.

Definition 3. Let G be the grammar of a formal polynomial system X = f(X), and
let V : Σ → S be a valuation over some ω-continuous semiring S. We define V (G) =
V (T (G)) =

∑
t∈T (G) V (t) over S.

The starting point of our paper is a well-known result stating that, given a formal poly-
nomial equation X = f(X) and a valuation V , the least solution of X = fV (X) is
equal to V (G) (see e.g. [Boz99], and, independently, [EKL10]; the essence of the re-
sult can be traced back to [BR82,Tha67,CS63]). In other words, the least solution can
be obtained by adding the values under V of all its derivation trees.

Theorem 2 ([Boz99,EKL10]). Let X = f(X) be a formal polynomial system with a
set Σ of formal identifiers, and let V : Σ → S be a valuation. Then:

µfV = V (G). (5)

By our convention, for a multivariate system Theorem 5 states that for every variable
Xi the Xi-component of µfV is given by the infinite sum of all evaluated derivation
trees derivable from Xi w.r.t. G.

We sketch a proof of this theorem for the particular case of equation (3). Let us “un-
fold” the grammar G of (4) by augmenting the nonterminal X with a counter keeping
track of the height of a derivation:

5

X〈1〉 → c
X [1] → X〈1〉

X〈2〉 → aX〈1〉X〈1〉 | bX〈1〉
X [2] → X〈2〉 | X [1]

X〈3〉 → aX〈2〉X〈2〉 | aX [1]X〈2〉 | aX〈2〉X [1] | bX〈2〉
X [3] → X〈3〉 | X [2]

...
X〈h〉 → aX〈h−1〉X〈h−1〉 | aX [h−2]X〈h−1〉 | aX〈h−1〉X [h−2] | bX〈h−1〉

X [h] → X〈h〉 | X [h−1]

...

Let G[h] (G〈h〉) be the grammar consisting of those “unfolded” rules whose left-hand
side is given by one of the variables of X [h] = {X〈0〉, X [0], . . . , X〈h〉, X [h]}, taking
X [h] (X〈h〉) as axiom.4 An easy induction shows the existence of a bijection between
T (G[h]) (T (G〈h〉)) and the trees of T (G) of height at most (exactly) h. In fact, it is easy
to see that G[h] (G〈h〉) and G are both unambiguous5, and the bijection just assigns to
a tree of T (G[h]) the unique tree of G yielding the same word. For instance, the tree of
G[3] shown on the left of the figure below is mapped to the tree of G of height 3 shown
on the right:

X [3]

X〈3〉

a X〈2〉

b X〈1〉

c

X [1]

X〈1〉

c

X

a X

b X

c

X

c

Hence, V (G[h]) (V (G〈h〉)) is the contribution to V (G) of the derivation trees of height
at most (exactly) h to V (G). It therefore suffices to show that fhV (0) = V (G[h]). Note
that by the extension of V to derivation trees, V (G[h]) and V (G〈h〉) can be computed
recursively as follows (with aV := V (a), bV := V (b), cV := V (c)):

V (G〈h〉) = aV V (G〈h−1〉)2 + aV V (G[h−2])V (G〈h−1〉)

+ aV V (G〈h−1〉)V (G[h−2]) + bV V (G〈h−1〉)

V (G[h]) = V (G[h−1]) + V (G〈h〉)

4 In the multivariate case, for every choice Z of the axiom of G, define G[h] (G〈h〉) analogously
with Z [h] (Z〈h〉) as axiom.

5 A grammar G is unambiguous if for every word w ∈ L(G) there is a unique derivation (tree)
w.r.t. G.

6

where V (G〈1〉) = cV and V (G[−1]) := V (G[0]) := 0.
Now, an easy induction proves the stronger claim that

fhV (0) = V (G[h]) and fhV (0) = fh−1
V (0) + V (G〈h〉)

and by Kleene’s theorem we get µfV = suph∈N f
h
V (0) = suph∈N V (G[h]) = V (G).

Notice that this proof not only reduces the problem of computing the least solution
of X = fV (X) to the problem of computing V (G), it also shows that:

Kleene’s approximation sequence is the result of evaluating
the derivation trees of G by increasing height.

4 Newton’s Approximation

In the last section we have constructed grammars G〈1〉, G〈2〉, . . . that, loosely speaking,
“partition” the derivation trees of G according to height. Formally, there is a bijection
between the derivation trees of G〈h〉 and the derivation trees of G of height exactly
h. Using these grammars we can construct grammars G[1], G[2], . . . such there is a bi-
jection between the derivation trees of G[h] and the derivation trees of G of height at
most h. The grammars G[h] allow us to iteratively compute approximations V (G[h]) to
V (G) = µfV .

We can transform this idea into a general principle for developing approximation al-
gorithms. Given a grammarG, we say that a sequence (G〈i〉)i∈N of grammars partitions
G if T (Gi) ∩ T (Gj) = ∅ for i 6= j, and there is a bijection between

⋃
i∈N T (G〈i〉) and

T (G) that preserves the yield, i.e., the yield of a tree is equal to the yield of its image un-
der the bijection.. Every sequence (G〈i〉)i∈N that partitionsG induces another sequence
(G[i])i∈N, defined as in the previous section, such that T (G[i]) =

⋃
j≤i T (G〈i〉). We

say that (G[i])i∈N converges to G. The following proposition follows easily from these
definitions.

Proposition 1. Let X = f(X) be a formal polynomial system with a set Σ of formal
identifiers, and letG be the context-free grammar associated to it. If a sequence (Gi)i∈N
of grammars converges to G, then

µfV = sup
i∈N

V (Gi) .

The unfolding of the last section assigns to every variable in the right-hand-side
of a production a lower index (height) than the variable on the left-hand-side, which
forbids any kind of unbounded recursion in the unfolded grammars. We now unfold
the grammar G so that nested-linear recursion is allowed [EKL08b,GMM10]. Again
we augment each variable X by a counter, yielding variables X〈i〉, X [i]. A derivation
starting from X〈i〉 (X [i]) allows for exactly i (at most i) nested-linear recursions. For
the grammar (4) we get:

7

X〈1〉 → c | bX〈1〉
X [1] → X〈1〉

X〈2〉 → aX〈1〉X〈1〉 | aX [1]X〈2〉 | aX〈2〉X [1] | bX〈2〉
X [2] → X〈2〉 | X [1]

...
X〈i〉 → aX〈i−1〉X〈i−1〉 | aX [i−1]X〈i〉 | aX〈i〉X [i−1] | bX〈i〉
X [i] → X〈i〉 | X [i−1]

...

It is instructive to compare the productions of X〈h〉 in Kleene’s approximation, and the
productions of X〈i〉 as defined above:

X〈h〉 → aX〈h−1〉X〈h−1〉 | aX [h−2]X〈h−1〉 | aX〈h−1〉X [h−2] | bX〈h−1〉

X〈i〉 → aX〈i−1〉X〈i−1〉 | aX [i−1]X〈i〉 | aX〈i〉X [i−1] | bX〈i〉

Let H [i] (H〈i〉) denote the grammar with axiom X [i] (X〈i〉) and consisting of those
productions “reachable” from X [i] (X〈i〉) in the above unfolding. As in the case of
Kleene approximation, we can easily show by induction that H [i] is unambiguous, and
that the mapping assigning to a tree of T (H [i]) the unique tree of G deriving the same
word is a bijection. Since every word of L(G) belongs to L(H [i]) for some i ∈ N, the
sequence (H [i])i∈N converges to G.

Again, we can compute V (H〈i〉) and V (H [i]) recursively where µX.g(X) denotes
the the least solution of the equation X = g(X) (again aV := V (a), . . .):

V (H〈i〉) := µX.(aVXV (H [i−1]) + aV V (H [i−1])X + bVX + aV V (H〈i−1〉)2)

V (H [i]) := V (H〈i〉) + V (H〈i−1〉)

where V (H〈1〉) := µX.(bVX + cV).
At this point the reader may ask whether any progress has been made: instead of

solving the polynomial system X = fV (X) we have to solve the polynomial systems
X = gi(X). However, these systems are linear, while X = fV (X) may be nonlin-
ear, and in ω-continuous semirings solving linear equations reduces to computing the
Kleene star a∗ :=

∑
i∈N a

i. So, for any ω-continuous semiring which allows for an
efficient computation of a∗, this approximation scheme becomes viable. For instance,
over the nonnegative reals we have a∗ = 1

1−a if a < 1 and a∗ =∞ otherwise. Thus, if
V is a valuation on the real semiring, then the solution of a linear equation can be easily
computed. For the equations above elementary arithmetic yields

V (G〈i〉) :=
aV V (G〈i−1〉)2

1− 2aV V (G[i−1])− bV
V (G[i]) := V (G〈i〉) + V (G[i−1]) (6)

with V (G[1]) = V (G〈1〉) :=
cV

1− bV
.

8

The following table compares the first approximations obtained by using the ap-
proximation schemes derived in this and the previos section for our example (2):

Kleene
V (G〈i〉) 1/2 3/8 105/1024 . . .
V (G[i]) 1/2 11/16 809/1024 . . .

Newton
V (H〈i〉) 2/3 4/15 16/255 . . .
V (H [i]) 2/3 14/15 254/255 . . .

(7)

It is now time to explain why we call this scheme Newton’s approximation. For every
valuation V over the reals, the least solution of X = fV (X) is a zero of the polynomial
g(X) = fV (X)−X = aVX

2 + (bV − 1)X + cV . Again, an easy induction shows:

V (H〈i〉) = − g(V (H [i−1]))
g′(V (H [i−1]))

V (H [i]) = − g(V (H [i−1]))
g′(V (H [i−1]))

+ V (H [i−1])

starting now from V (H〈0〉) = V (H [0]) = 0, where g′(X) denotes the derivative of g –
in our example: g′(X) = 2aVX + bV − 1. These equations are nothing but Newton’s
classical method for approximating the solution of g(X) = 0 starting at the point 0,
and this is not a coincidence: we have recently shown that this relation holds for every
polynomial equation X = fV (X) over the nonnegative reals [EKL10]. So this approx-
imation scheme generalizes Newton’s method to equations over arbitrary ω-continuous
semirings.

Recall that Kleene’s approximation corresponds to evaluating the derivation trees
of G by increasing height. The question whether we can charaterize Newton’s approxi-
mation in a similar way has been answered positively in [EKL10]. We need the notion
of dimension of a derivation tree.

Definition 4. Let t be a derivation tree. If t consists of a single node, then its dimension
is 1. Otherwise, let d be the maximal dimension of the children of t. If two or more
children have dimension d, then t has dimension d+ 1; otherwise, t has dimension d.

For instance, the derivation tree of the grammar (4) shown below on the left has di-
mension 3 (its second and third child have dimension 2, because both of them have two
children of dimension 1).

X

a X

a X

c

X

c

X

a X

c

X

c

X [3]

X〈3〉

a X〈2〉

a X〈1〉

c

X〈1〉

c

X〈2〉

a X〈1〉

c

X〈1〉

c

We can prove:

9

Theorem 3 ([EKL10]). For every i ≥ 1, there is a yield-preserving bijection between
T (H [i]) and the trees of T (G) of dimension at most i.

According to this theorem, the tree above must belong to T (H [3]) and indeed this is the
case, as shown by the derivation tree on the right. Note that along any path from the root
to a leaf the sequence of numbers in the superscripts drops atmost by one in each step.
One the other hand, moving from a leaf to the root, the superscript only increases from
i to i+ 1 at a given node if this very node has at least a second child with superscript i.
The superscripts in round (square) brackets happen just to be (an upper bound on) the
dimension of the corresponding subtree. So we conclude:

Newton’s approximation sequence is the result of evaluating
the derivation trees of G by increasing dimension.

4.1 Convergence of Newton’s method in commutative semirings

The convergence speed of Newton’s method over the reals is well-understood. In many
cases – for example (7) – it converges quadratically, which in computer science terms
means that the approximation error decreases exponentially in the number of iterations.
In this section we analyze the convergence speed valid for arbitrary commutative semi-
rings, i.e., semirings in which multiplication is commutative.

Recall that, by definition,

V (H [i]) =
∑

t∈T (H[i])

V (t) and V (G) =
∑

t∈T (G)

V (t) .

For every s ∈ S, let α[i](s) be the number of trees t ∈ T (H [i]) such that V (t) = s, if
the number is finite, and α[i](s) =∞ otherwise. Define α(s) similarly for T (G). Then
we have

V (H [i]) =
∑
s∈S

α[i](s)∑
i=1

s V (G) =
∑
s∈S

α(s)∑
i=1

s

with the convention
∑0
i=1 s = 0. We estimate the convergence speed of Newton’s

method by analyzing how fast the sequence (α[i](s))i∈N converges to α(s). Our result
shows that in a system of n equations after (kn+ 1) iterations of Newton’s method we
have α[kn+1](s) ≥ min{α(s), k}.

Theorem 4 ([Lut]). Let X = f(X) be a formal polynomial system with n equa-
tions, and let V be a valuation over a commutative ω-continuous semiring S. We have
α[k·n+1](s) ≥ min{α(s), k} for every s ∈ S and every k ∈ N.

We sketch the proof of the theorem for the (very) special case n = k = 1. We have to
show α[2](s) ≥ min{α(s), 1}, i.e., that α(s) > 0 implies α[2](s) > 0 or, equivalently,
that for every t ∈ T (G) some t′ ∈ T (H [2]) satisfies V (t) = V (t′). As T (H [2]) is in
bijection with the trees of T (G) of dimension at most 2, it suffices to prove that for
every t ∈ T (G) there is t′ ∈ T (G) of dimension at most 2 such that V (t′) = V (t).
If t has dimension 1 or 2, we take t′ = t. Otherwise, we explain how to proceed using
grammar (4) and the tree of dimension 3 deriving the word aaccacc:

10

X

a X

a X

c

X

c

X

a X

c

X

c

If we remove the dotted subtree (pump tree), the dimension of the second child of the
root decreases by 1, and we are left with the tree of dimension 2 shown below, on
the left. This tree only derives the word acacc, and so the idea is to reinsert the missing
subtree so that the result (i) is again a derivation tree w.r.t.G, and (ii) we do not increase
the dimension. If we achieve this, then the new tree derives a permutation w of acacacc
and, since the semiring is commutative, we have V (w) = V (aaccacc). Condition (i)
poses no problem in the univariate case, as as all inner nodes correspond to the same
variable (nonterminal). In order to satisfy condition (ii), it suffices to pick any subtree
derived from X of dimension 2 and replace the edge to its father by the missing dotted
subtree as shown below, on the right.

It can be shown that this reallocation of subtrees is also possible in the multivariate
case and allows to generate the required number of distinct derivations trees, although
additional care is needed in order to satisfy the two conditions.

X

a X

c

X

a X

c

X

c

X

a X

c

X

a X

c

X

a X

c

X

c

5 Derivation tree analysis for idempotent semirings

In the previous section, we have seen how to relocate subtrees of a derivation tree in
order to reduce its dimension. In commutative semirings, relocating subtrees preserves
the value of the tree, and we have used this fact to derive Theorem 4, a quantitative
meassure of the speed at which the Newton approximations V (H [i]) converge to V (G).
In particular, for k = 1 we obtain α[n+1](s) ≥ min{α(s), 1} or, equivalently,

For every tree t ∈ T (G) there is a tree t′ ∈ V (H [i]) such that V (t) = V (t′).

This has an important consequence for idempotent semirings, i.e., for semirings satis-
fying the identity a + a = a for every a ∈ S. For any valuation V over an idempotent
semiring, V (t) = V (t′) implies V (t) + V (t′) = V (t′). So for idempotent and com-
mutative ω-continuous semirings we get V (G) + V (H [n+1]) = V (H [n+1]), which
together with V (H [n+1]) v V (G) implies V (H [n+1]) = V (G). It follows:

11

Theorem 5 ([EKL10]). Let X = f(X) be a formal polynomial system with n equa-
tions. For every valuation V over an idempotent and commutative ω-continuous semi-
ring

µfV = V (H [n+1]) .

Intuitively, this result states that in order to compute µfV we can safely “forget” the
derivation trees of dimension greater than n + 1, which implies that Newton’s method
terminates after at most n+ 1 iterations.

In the rest of the section we study two further classes of idempotent ω-continuous
semirings for which a similar result can be proved: idempotence allows to “forget”
derivation trees, and compute the least solution exactly after finitely many steps.

5.1 1-bounded semirings

A semiring 〈S,+, ·, 0, 1〉 1-bounded if it is idempotent and a v 1 for all a ∈ S.
One-bounded semirings occur, for instance, in probabilistic settings when one is

interested in the most likely path between two nodes of a Markov chain. The probability
of a path is the product of the probabilities of its transitions, and we are interested
on the maximum over all paths. This results in an equation system over the Viterbi
semiring [DKV09] whose carrier is the interval [0, 1], and has max and · as addition
and multiplication operators, respectively.

We show that over 1-bounded semirings we may “forget” all derivation trees of
height greater than n. Fix a formal polynomial systemX = f(X) with n equations and
valuation V over a 1-bounded semiring. Let G be the associated context-free grammar.
G then has also n nonterminals. A derivation tree t ∈ T (G) is pumpable if it contains
a path from its root to one of its leaves in which some variable occurs at least twice.
Clearly, every tree of height at least n+1 is pumpable. It is well-known that a pumpable
tree t induces a pumpable factorization w = uvxyz of its yield w such that uvixyiz ∈
L(G) for every i ≥ 0. In particular, for every i ≥ 0 there is a derivation tree ti that (i)
yields uvixyiz, and (ii) is derived from the same axiom as t. Now we have

V (t) + V (t0) = V (w) + V (uxz)
= V (u)V (v)V (x)V (y)V (z) + V (u)V (x)V (z)
v V (u) 1 V (x) 1 V (z) + V (u)V (x)V (z) (1-boundedness)
= V (uxz) (idempotence)
= V (t0)

Repeating this procedere as long as possible, we eventually arrive from a pumpable
tree t to another tree t̂ of height at most n with V (t) + V (t̂) = V (t̂). So, denoting by
T [n](G) the trees of G of height at most n, we have

Theorem 6 ([EKL08a]). For X = f(X) a formal polynomial system in n variables,
G its associated grammar, and V any valuation over a 1-bounded semiring, we have:

µfV = V (T (G)) = V (T [n](G)) = V (G[n]) = fhV (0).

Since the Kleene sequence converges after at most n steps we can compute the least
solution even if the semiring is not ω-continuous.

12

5.2 Star-distributive semirings

In an ω-continuous semiring we can define the Kleene star operation by a∗ =
∑
i≥0 a

i,
where a0 = 1. A semiring 〈S,+, ·, 0, 1〉 is star-distributive if it is ω-continuous, idem-
potent, commutative, and (a+ b)∗ = a∗ + b∗ holds for every a, b ∈ S.

The tropical semiring 〈N,min,+,∞, 0〉 is a prominent example of star-distributive
semiring. Actually, any ω-continuous commutative and idempotent semiring in which
the natural orderv is total is star-distributive. Indeed, for any two elements a, b, assum-
ing w.l.o.g. a v b, which implies a∗ v b∗, we get:

(a+ b)∗ = a∗ = a∗ + b∗ .

Finally, for a last bit of motivation, a recent paper shows that the computation of sev-
eral types of provenance of datalog queries can be reduced to the problem of (in our
terminology) computing the least solution of a formal polynomial system over a com-
mutative semiring S [GKT07]. Specifically, in the case of the why-provenance S is also
idempotent and further augmented by the identity a2 = a for all a ∈ Σ. Clearly, such
semirings are star-distributive.

We show that idempotent together with commutativity and star-distributivity allows
us to forget most derivation trees of a grammar G associated with a formal polynomial
system. In fact, we do not use star-distributivity directly, but the following two identities
implied by it in conjunction with commutativity:

Proposition 2. If S is star-distributive, then for every a, b ∈ S

a∗ + b∗ = a∗b∗ and (ab∗)∗ = a∗ + ab∗.

Again, fix a formal polynomial system X = f(X) with n equations, and let G be the
grammar (without explicit axiom) associated to the system. Further, let V be a valuation
over some star-distributive semiring S. We have:

Proposition 3. Let t ∈ T (G) be a pumpable tree deriving a wordw with pumpable fac-
torization uvxyz. Then there are pumpable trees t1, . . . , tr ∈ T (G) (derived from the
same axiom as t) of height at most n+1 such that each ti has a pumpable factorization
uivixiyizi satisfying

V (w) v
r∑
i=1

∞∑
j=0

V (uiv
j
i xiy

j
i zi) . (8)

In essence, this proposition tells us that we only need to evaluate derivation trees of G
which are either of “unpumpable” (thus, of height at most n) or the result of pumping a
fixed factorization in a pumpable derivation tree of height at most n+ 1, while we may
“forget” the rest.

We sketch one case of the proof of the proposition. Fix a pumpable tree t with
pumpable factorization uvxyz as schematically described in Figure 1(a) where the mid-
dle (grey) and the lower (dark grey) part are derived from the same nonterminal, and
the top part (white) may be empty. If t has height at most n+ 1, we set t1 := t and are

13

zyxvu

(a)

zyxvz′y′x′v′u′

(b)

zyxvz′x′u′

(c)

zxz′y′x′v′u′

(d)

Fig. 1. “Unpumping” trees.

done. Otherwise, one of the three parts of t (white, grey, or dark grey) contains a subtree
of height at least n+1. Since G only has n variables, this subtree is also pumpable. We
only consider the case that the pumpable tree is on the left part of the white zone (other
cases are similar). Then there is a pumpable factorization of u, i.e. u = u′v′x′y′z′, as
shown in Figure 1(b), and we have u′(v′)ix′(y)iz′uvjxyjz ∈ L(G) for every i, j ≥ 0.
Applying the properties of star-distributive semirings we get

∑
i≥0

∑
j≥0

u′(v′)ix′(y′)iz′vjxyjz

= u′x′z′xz(v′y′)∗(vy)∗ (commutativity)

= u′x′z′xz((v′y′)∗ + (vy)∗) (a∗b∗ = a∗ + b∗)

=
∑
i≥0

u′(v′)ix′(y′)iz′xz +
∑
j≥0

u′x′z′vjxyjz

It is easy to see thatG has derivation trees t1 and t2 (schematically shown in Figure 1(c)
and (d)) with pumpable factorizations w1 = u1v1x1y1z1 and w2 = u2v2x2y2z2 given
by

u1 = u′x′z′ v1 = v x1 = x y1 = y z1 = z
u2 = u′ v2 = v′ x2 = x′ y2 = y′ z2 = z′xz

Therefore, we have

V (w) v
∞∑
j=0

V (u1v
j
1x1y

j
1z1) +

∞∑
j=0

V (u2v
j
2x2y

j
2z2)

14

If t1 and t2 have height at most n + 1, then we are done; otherwise, the step above is
iterated. This concludes the proof sketch.

Let us now see how to apply the proposition. Let L ⊆ L(G) be the language con-
taining

– the words derived by the “unpumpable” trees of G, and
– the words of the form uvjxyjz, where uvxyz is a pumpable factorization of a tree

of T (G) of height at most n+ 1.

Given w ∈ L(G), there are two possible cases: if w is derived by some “umpumpable”
tree, then w ∈ L, and so V (w) v V (L); if w is derived by some pumpable tree, then by
(8) we also have V (w) v V (L). So V (w) v V (L) holds for every w ∈ L(G). Since S
is idempotent, we get

V (G) =
∑
t∈T (G) V (t)

=
∑
w∈L(G) V (w) (idempotence)

v
∑
w∈L(G) V (L) (V (w) v V (L))

= V (L) (idempotence and ω-continuity)

Looking at the definition of L it is not difficult to show (see [EKL08a]) that it is sub-
sumed by the words of L(G) derived by the bamboos of T (G), a set of derivation trees
defined as follows:

Definition 5. A derivation tree t is a bamboo if there is a path leading from the root of
t to some leaf of t, the stem, such that the height of every subtree of t not containing a
node of the stem is at most n.

≤ n

≤ n

≤ n

≤ n

≤ n

≤ n

≤ n

≤ n

Fig. 2. An example of the structure of a bamboo: it consists of a stem of unbounded length from
which subtrees of height at most n sprout; on the right it is shown with its stem straightened.

Figure 2 illustrates the definition. The definition of “bamboo” directly leads to an un-
folding rule for G: in every rule we limit the recursion depth of all but one terminal

15

to n in the same way as we did in the case of the Kleene approximation. Notice that,
since V (G) = V (L) by idempotence, we do not need to ensure that each derivation
tree of the unfolded grammars uniquely corresponds to a derivation tree ofG. This very
much simplifies the definition of the unfolding. For instance, if G has nonterminals
{X,Y, Z, U, V }, then the productions

X → aXY | bZ | c

are unfolded to
X → aXY [5] | aX [5]Y | bZ | c

X [5] → aX [4]Y [4] | bZ [4] | c
· · ·

X [2] → aX [1]Y [1] | bZ [1] | c
X [1] → c

The structure of the grammar then again allows us to recursively compute the yield
of the derivations trees derived from any nonterminal which gives us an algorithm for
computing the least fixed point of any formal polynomial system w.r.t. any valuation
over some star-distributive semiring:

Theorem 7 ([EKL08a]). Let X = f(X) be formal polynomial system consisting of n
equations and let V be a valuation over a star-distributive semiring S.

Then µfV can be computed using n Kleene iteration steps and then solving a single
linear system over S.

This result can be used to compute the provenance of datalog queries over the tropical
semiring, a problem that was left open in [GKT07].

6 Conclusions

We have presented some old and some new links between computational algebra and
language theory. We have shown how the formal similarity between fixed-point equa-
tions and context-free grammars goes very far, and leads to novel algorithms.

The unfolding of grammars leading to Newton’s approximation has already found
some applications in verification [GMM10,EG11] and Petri net theory [GA11]. Theo-
rem 5 has lead to a simple algorithm for constructing an automaton whose language is
Parikh-equivalent to the language of a given context-free grammar [EGKL11]. Theorem
7 was used in [EKL08a] to improve the complexity bound of [CCFR07] for computing
the throughput of context-free grammars from O(n4) to O(n3).

An interesting question is whether the results we have obtained can be proved by
purely algebraic means, e.g. without using “tree surgery”. Further open questions con-
cern data structures and efficient algorithms for the approximation schemes we have
sketched.

Acknowledgments

Many thanks to Volker Diekert for his help with Theorem 4, to Rupak Majumdar
for pointing us to applications of semirings to the provenance problem in databases
[GKT07], and to Pierre Ganty for many discussions.

16

References

[Boz99] S. Bozapalidis. Equational elements in additive algebras. Theory Comput. Syst.,
32(1):1–33, 1999.

[BR82] J. Berstel and C. Reutenauer. Recognizable formal power series on trees. Theor.
Comput. Sci., 18:115–148, 1982.

[CCFR07] D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter. Efficient computation of
throughput values of context-free languages. In CIAA’07, LNCS 4783, pages 203–
213. Springer, 2007.

[CS63] N. Chomsky and M.P. Schützenberger. Computer Programming and Formal Systems,
chapter The Algebraic Theory of Context-Free Languages, pages 118 – 161. North
Holland, 1963.

[DKV09] M. Droste, W. Kuich, and H. Vogler. Handbook of Weighted Automata. Springer,
2009.

[EG11] J. Esparza and P. Ganty. Complexity of pattern-based verification for multithreaded
programs. In POPL, pages 499–510, 2011.

[EGKL11] J. Esparza, P. Ganty, S. Kiefer, and M. Luttenberger. Parikhs theorem: A simple and
direct automaton construction. Inf. Process. Lett., 111(12):614–619, 2011.

[EKL07a] J. Esparza, S. Kiefer, and M. Luttenberger. An extension of newton’s method to ω-
continuous semirings. In DLT, pages 157–168, 2007.

[EKL07b] J. Esparza, S. Kiefer, and M. Luttenberger. On fixed point equations over commutative
semirings. In STACS, pages 296–307, 2007.

[EKL08a] J. Esparza, S. Kiefer, and M. Luttenberger. Derivation tree analysis for accelerated
fixed-point computation. In DLT, pages 301–313, 2008.

[EKL08b] J. Esparza, S. Kiefer, and M. Luttenberger. Newton’s method for ω-continuous semi-
rings. In Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson,
Anna Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP (2), volume 5126 of Lecture
Notes in Computer Science, pages 14–26. Springer, 2008.

[EKL10] J. Esparza, S. Kiefer, and M. Luttenberger. Newtonian program analysis. J. ACM,
57(6):33, 2010.

[GA11] P. Ganty and M. Atig. Approximating Petri net reachability along context-free traces.
Technical report, arXiv:1105.1657v1, 2011.

[GKT07] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance semirings. In PODS, pages
31–40, 2007.

[GMM10] P. Ganty, R. Majumdar, and B. Monmege. Bounded underapproximations. In CAV,
pages 600–614, 2010.

[Kle38] S. C. Kleene. On notation for ordinal numbers. J. Symb. Log., 3(4):150–155, 1938.
[Kui97] W. Kuich. Handbook of Formal Languages, volume 1, chapter 9: Semirings and For-

mal Power Series: Their Relevance to Formal Languages and Automata, pages 609 –
677. Springer, 1997.

[Lut] M. Luttenberger. An extension of Parikh’s theorem. Technical report, Technische
Universität München, Institut für Informatik. Forthcoming.

[Lut10] M. Luttenberger. Solving Systems of Polynomial Equations: A Generalization of New-
ton’s Method. PhD thesis, Technische Universität München, 2010.

[NNH99] F. Nielson, H.R. Nielson, and C. Hankin. Principles of Program Analysis. Springer,
1999.

[Tar55] A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific J. Math.,
5(2):285–309, 1955.

[Tha67] J. W. Thatcher. Characterizing derivation trees of context-free grammars through a
generalization of finite automata theory. J. Comput. Syst. Sci., 1(4):317–322, 1967.

17

