
Monotonic Set-Extended Prefix Rewriting and
Verification of Recursive Ping-Pong Protocols

Giorgio Delzanno1, Javier Esparza2? and Jǐŕı Srba3??

1 Dipartimento di Informatica e Scienze dell’Informazione
Università di Genova, Italy

2 Institut für Formale Methoden der Informatik
Universität Stuttgart, Germany

3 BRICS? ? ?, Department of Computer Science
Aalborg University, Denmark

Abstract. Ping-pong protocols with recursive definitions of agents, but
without any active intruder, are a Turing powerful model. We show that
under the environment sensitive semantics (i.e. by adding an active in-
truder capable of storing all exchanged messages including full analysis
and synthesis of messages) some verification problems become decidable.
In particular we give an algorithm to decide control state reachability, a
problem related to security properties like secrecy and authenticity. The
proof is via a reduction to a new prefix rewriting model called Mono-
tonic Set-extended Prefix rewriting (MSP). We demonstrate further ap-
plicability of the introduced model by encoding a fragment of the ccp
(concurrent constraint programming) language into MSP.

1 Introduction

Motivation and related work. In recent years there has been an increasing interest
in formal analysis of cryptographic protocols. Even under the perfect encryption
hypothesis (an intruder cannot exploit weaknesses of the encryption algorithm
itself) a number of protocols presented in the literature were flawed, which esca-
lated the need for automatic verification of protocol properties like secrecy and
authenticity. Unfortunately, the general problem for fully featured languages
like the spi-calculus [1] is undecidable and hence finding a decidable yet rea-
sonably expressive subset of such Turing-powerful formalisms is desirable. We
contribute to this area by investigating the decidability borderline for protocols
with a restricted set of cryptographic primitives while still preserving complex
control-flow structures and with no restriction on the length of messages.

Recently, in [4, 12, 13] this kind of study has been carried out for models
of cryptographic protocols with the basic ping-pong behaviour as introduced

? Partially supported by the DFG project “Algorithms for Software Model Checking”.
?? Partially supported by the research center ITI, project No. 1M0021620808, and by

the grant MSM 0021622419 of Ministry of Education, Czech Republic.
? ? ? Basic Research In Computer Science, Danish National Research Foundation.

by Dolev and Yao [10]. In a ping-pong protocol a message is a single piece
of data (plain text) possibly encrypted with a finite sequence of keys. Agents
are memory-less. The ping-pong communication mechanism can be naturally
modelled using prefix rewriting over finite words. The connection is based on
the idea of representing a piece of data d encrypted, e.g., with k1, k2 and then
k3, as the word k3k2k1d. On reception of a message, an agent can only apply a
finite sequence of keys to decrypt the message, and then use another sequence of
keys applied to the decrypted message to forge the reply. For example the prefix
rewrite rule k3k2 → k4 transforms k3k2k1d into k4k1d (the suffix k1d of the first
word is copied into the reply).

In [9] Dolev, Even and Karp showed that secrecy properties are decidable in
polynomial time for finite ping-pong protocols under an environment sensitive
semantics (active attacker) used to model possibly malicious agents. (Where fi-
nite means that the length of all computations is syntactically bounded.) In the
context of cryptographic protocols, the aim of the attacker is to augment his/her
initial knowledge by listening on the communication channels, e.g., to learn some
of the secrets exchanged by the honest agents. A general way of defining active
attackers was introduced by Dolev and Yao in [10], now commonly known as the
Dolev-Yao intruder model. In this model, the communication among the agents
is asynchronous. The attacker can store and analyze all messages exchanged
among the agents using the current set of compromised keys. The attacker can
also synthesize new messages starting from the stored messages and compro-
mised keys. In [4] Amadio, Lugiez and Vanackère extended the result of [9] by
showing that secrecy is decidable in polynomial time for ping-pong protocols
with replication. The replication operator !P is peculiar of process algebraic lan-
guages. The agent !P can generate an arbitrary number of identical copies of P
operating in parallel. This work was later extended to protocols with a limited
use of pairing [3, 8].

A more powerful way of extending the class of finite ping-pong protocols is
to allow for recursive process definitions, as in CCS. Loosely speaking, recur-
sion allows to define processes with arbitrary flow-graphs; the finite case [10,
9] corresponds to acyclic graphs. Recursive definitions are more powerful than
replicative ones, in particular recursive protocols are not memory-less any more
as every agent can be seen as an automaton with finite memory. This enables
to verify not only secrecy but also authenticity. The combination of ping-pong
behaviour with recursive definitions and finite memory enables us to encode sev-
eral protocols studied in the literature, including features like a limited notion
of pairing, public key encryption and others.

A process algebra for recursive ping-pong protocols was introduced in [12, 13]
where it was proved that the resulting model (without any notion of an attacker)
is Turing powerful.

Novel contribution. The results from [12, 13] were obtained for protocols in the
absence of an attacker. In this paper, we show that, maybe surprisingly, the
control state reachability problem for recursive ping-pong protocols in the pres-
ence of a Dolev-Yao intruder is decidable (in particular, this new model is no

longer Turing powerful). Since secrecy/authenticity properties can be reduced
to the control state reachability problem by adding new control points that can
be reached if and only if secrecy/authenticity is violated, this also implies the
decidability of these properties.

Our main decidability result is consistent with the results on tail-recursive
cryptographic protocols from [3]. Indeed the necessary (but not sufficient) con-
ditions defined in [3] (locality, linearity and independency) for decidability of
control state reachability are all satisfied by recursive ping-pong protocols.

Methodology: reduction to a new computational model. In order to achieve this
result, we first introduce a new model called Monotonic Set-extended Prefix
rewriting system (MSP). Configurations in MSPs have the form (p, T) where
p is a control state and T is a set of words (the current store or pool). MSP rules
enrich prefix rewrite rules with the update of the control state. Control states
are partially ordered, and a state update can only lead to states that are greater
or equal than the current one, like for instance in weak Büchi automata [17,
14], or weak Process Rewrite Systems (wPRSs) [16]. Furthermore, when a rule
is applied to a word w in the current store T with the result w′, both w and w′

are included in the new store. Thus, the store can only grow monotonically. In
our application to ping-pong protocols, T represents the current knowledge of
the attacker (modulo analysis and synthesis). More generally, it can be viewed
as a monotonic store used for agent communication in languages like ccp [19].

Technical contribution. As a main technical contribution, we will show that
known results on prefix rewrite systems, namely the efficient representation
of predecessor sets of words in prefix rewriting by nondeterministic finite au-
tomata [5], can be used to decide the control state reachability problem for MSPs.
Furthermore, we will demonstrate how to reduce the control state reachability
problem for recursive ping-pong protocols with Dolev-Yao attacker model to the
control state reachability problem for MSPs. This reduction gives us an EXP-
TIME algorithm to decide the control state reachability problem for recursive
ping-pong protocols. We also show that the problem is NP-hard. Closing the gap
between both results is left for future research. Finally, we also demonstrate that
an (infinite) fragment of the concurrent constraint programming language [19]
can be naturally encoded into our MSP formalism.

Note: A full version of the paper, including complete proofs and examples of
the modelling power of ping-pong protocols, is available as a BRICS technical
report at http://www.brics.dk/publications/ .

2 Facts about Prefix Rewriting on Words

Let us first state some standard facts about prefix rewriting.
Let Γ be a finite alphabet. A prefix rewriting system is a finite set R of rules

such that R ⊆ Γ ∗ × Γ ∗. For an element (v, w) ∈ R we usually write v −→ w.

The system R generates a transition system via the standard prefix rewriting.

(v −→ w) ∈ R, t ∈ Γ ∗

vt −→R wt

Proposition 1 (see, e.g., [6, 11]). Let T ⊆ Γ ∗ be a regular set of words. Then
the sets preR(T) def= {u′ ∈ Γ ∗ | ∃u ∈ T. u′ −→R u} and pre∗R(T) def= {u′ ∈
Γ ∗ | ∃u ∈ T. u′ −→∗

R u} are also regular sets. Moreover, if T is given by a
nondeterministic finite automaton A then we can in polynomial time construct
the automata for preR(T) and pre∗R(T) of polynomial size w.r.t. to A.

3 Monotonic Set-Extended Prefix Rewriting

In this section we shall introduce a new computational model called Monotonic
Set-extended Prefix rewriting (MSP). First, we provide its definition and then
we argue for the decidability of control state reachability in MSP.

Let Γ be a finite alphabet and let Q be a finite set of control states together
with a partial ordering relation ≤⊆ Q×Q. By p < q we denote that p ≤ q and
p 6= q. A monotonic set-extended prefix rewriting system (MSP) is a finite set R
of rules of the form pv −→ qw where p, q ∈ Q such that p ≤ q and v, w ∈ Γ ∗.

Assume a fixed MSP R. A configuration of R is a pair (p, T) where p ∈ Q
and T ⊆ Γ ∗. The semantics is given by the following rule.

(pv −→ qw) ∈ R, vt ∈ T

(p, T) −→R (q, T ∪ {wt})
Let (p0, T0) be an initial configuration of MSP R such that T0 6= ∅ is a regular

set and let pG ∈ Q. The control state reachability problem is to decide whether
(p0, T0) −→∗

R (pG, T) for some T .
We will demonstrate the decidability of control state reachability for MSPs.

From now on assume a fixed MSP R with an initial configuration (p0, T0) and
a goal control state pG. We proceed in three steps. First, we give some prelimi-
naries on the relationship between MSPs and prefix rewriting systems. Then we
introduce several notions: control path, π-scheme, and feasibility of a π-scheme.
We show that the control state reachability problem reduces to the feasibility
problem of π-schemes. Finally, we give an algorithm for feasibility of π-schemes,
and give an upper bound on the complexity of the control state reachability
problem.

Preliminaries. Given a rule r = pv → qw of R, we denote by u1 −→r u2 the
fact that qu2 can be obtained from pu1 by applying r, i.e., that there is t ∈ Γ ∗

such that u1 = vt and u2 = wt. Furthermore, for every state p ∈ Q we define
the set Rp of rules from R that start from p and do not change the control

state, i.e., Rp
def= {pv −→ pw | (pv −→ pw) ∈ R}, and write v −→∗

Rp
w to

denote that there is a sequence v −→r1 v1 −→r2 . . . −→rn
w such that ri ∈ Rp

for every i ∈ {1, . . . , n}. We have the following obvious connection between
(p, T) −→∗

Rp
(p, T ′) and v −→∗

Rp
w.

Lemma 1. If (p, T) −→∗
Rp

(p, T ′) then for every w ∈ T ′ there is v ∈ T such
that v −→∗

Rp
w.

Control paths and π-schemes. Assume a given MSP R. A control path is a
sequence π = p0r1p1r2p2 . . . pn−1rnpn, where n ≥ 0, satisfying the following
properties:

– pi ∈ Q for i ∈ {0, . . . , n} and rj ∈ R for every j ∈ {1, . . . n},
– p0 < p1 < p2 < · · · < pn, and
– for every j ∈ {1, . . . n}, rj is a rule of the form pj−1v −→ pjw for some v

and w.

Note that the length of π is bounded by the length of the longest chain in (Q,≤).
An execution of R starting at (p0, T0) conforms to π if the sequence of rules used
in it belongs to the regular expression E(π) = R∗

p0
r1R

∗
p1

. . . R∗
pn−1

rn (for n = 0,
to the regular expression ε). Obviously, pG is reachable from (p0, T0) if and only
if there is a control path π = p0r1 . . . rn−1pn such that pn = pG and some
execution of R ending in pG conforms to π.

In the next lines, we will need to distinguish more precisely to which words
the rules from a control path are applied in a particular computation of R. For
this we introduce the notions of a π-scheme and feasibility of π-schemes.

A π-scheme is a labelled directed acyclic graph S = (N,E, λ) where N
is a finite set of nodes, E ⊆ N × N is a set of edges, and λ : E → X is
a function that assigns to each edge e an element λ(e) from the set X =
{R∗

p0
, r1, R

∗
p1

, . . . , R∗
pn−1

, rn}. Moreover, S satisfies the following properties (where

n l−→n′ denotes that S has an edge from n to n′ labelled by l):

(a) every node has at most one predecessor (i.e., S is a forest) and there are no
isolated nodes,

(b) for every i ∈ {1, . . . , n}, there is exactly one edge labelled by ri, and
(c) for every path n0

l1−−→n1 . . .nk−1
lk−−→nk leading from a root to a leaf, the

sequence l1 . . . lk can be obtained from E(π) by deleting 0 or more, but not
all, of r1, r2, . . . , rn, and there are no two different paths with the same
sequence of labels.

Figure 1 shows a π-scheme for the control path π = p0r1 . . . p3r4p4. Intuitively, a
π-scheme describes what type of words were necessary to perform the changes of
control states described by a given control path. In our example, the first upper
chain means that in order to employ the rule r4 which changes a control state p3

into p4, we need to take some word from the initial pool T0, modify it possibly
by the rules from R∗

p0
, . . . , R∗

p3
(in this order) and finally use the resulting word

to enable the application of the rule r4. In general, the situation can be more
complicated as demonstrated in the lower part of Figure 1 for the remaining
rules r1, r2 and r3. A word resulting from an initial word taken from the set T0

and possibly modified by R∗
p0

is used to enable the application of the rule r1.
The resulting word is later on necessary for both the application of the rule r2

and r3.

•
R∗

p0 // •
R∗

p1 // •
R∗

p2 // •
R∗

p3 // •
r4 // •

•
R∗

p2 // •
r3 // •

R∗
p3 // •

•
R∗

p0 // •
r1 // •

R∗
p1 44iiiiiii

R∗
p1

**UUUUUUU

•
r2

// •
R∗

p2

// •
R∗

p3

// •

Fig. 1. A π-scheme for π = p0r1 . . . r4p4

Two π-schemes are isomorphic if they are equal up to renaming of the
nodes. Note that every π-scheme is finite and there are only finitely many non-
isomorphic π-schemes. We obtain a very rough upper bound on the number of
π-schemes for a given control path π.

Lemma 2. Let π = p0r1p1r2p2 . . . rnpn be a control path. There are at most
nO(n) π-schemes up to isomorphism.

We shall now formally define feasibility of π-schemes. A π-scheme is feasible
from T ⊆ Γ ∗ if there is a function f : N → Γ ∗ such that

(d) if n is a root, then f(n) ∈ T , and

(e) if n
R∗

pi−−−→n′, then f(n) −→∗
Rpi

f(n′), and if n ri−−→n′, then f(n) −→ri
f(n′).

Intuitively, the function f determines which particular words are used in order
to realize a given π-scheme by some concrete execution in R.

Proposition 2. Let π be a control path. There is an execution of R starting
from (p0, T0) and conforming to π iff some π-scheme is feasible from T0.

Proposition 2 and Lemma 2 lead to the following algorithmic idea for deciding
if there is a set T such that (p0, T0) −→∗

R (pG, T):

– enumerate all control paths π = p0r1 . . . rnpn such that pn = pG (their
number is finite, because the length of a control path is bounded by the
length of the longest ≤-chain in Q),

– for each control path π, enumerate all π-schemes (their number is finite by
Lemma 2), and

– for each π-scheme S, decide if S is feasible.

Checking feasibility of π-schemes. To check feasibility of a π-scheme S, we first
need to define the feasibility of a node n for a word v ∈ Γ ∗. Let n be a node of
S, and let Nn denote the set of all descendants of n. We say that n is feasible
for v ∈ Γ ∗ if there is a function fn : Nn → Γ ∗ satisfying condition (e) of the
definition of feasibility of a π-scheme, and such that fn(n) = v. Now, let W (n)
denote the set of all words v such that n is feasible for v. By Proposition 2, S is
feasible from a set T ⊆ Γ ∗ iff T ∩W (n) 6= ∅ for every root n of S.

An apparent complication to compute the set W (n) is the fact that it may
be infinite, which prevents us from enumerating its elements in finite time. We
solve this problem by showing that W (n) is always a regular language, and that
it is possible to effectively construct a nondeterministic automaton recognizing
it. The key is the following characterization of W .

Proposition 3. Let n be a node of a π-scheme S, then

W (n) = Γ ∗ ∩
⋂

n
Rp

∗

−−−→n′

pre∗Rp
(W (n′)) ∩

⋂
n

r−→n′

prer(W (n′))

where prer(T) def= pre{v−→w}(T) such that r is of the form pv −→ qw.

Notice that if n is a leaf then W (n) = Γ ∗. Let n0 and n1 be the upper
and lower root in the π-scheme of Figure 1. If we abbreviate the expression
pre∗Rpi

(pre∗Rpi+1
(. . . (pre∗Rpj

(T)) . . .) to pre∗i...j(T) for i ≤ j, we get

W (n0) = pre∗0123(prer4
(Γ ∗))

W (n1) = pre∗0
(
prer1

(
pre∗12(prer3

(pre∗3(Γ
∗))) ∩ pre∗1(prer2

(pre∗23(Γ
∗)))

))
.

Proposition 3 allows us to compute W (n) bottom-up, starting at the leaves
of S, and computing W (n) after having computed W (n′) for every immediate
successor of n. By Proposition 1, the pre∗ and pre operations preserve regu-
larity, and are effectively computable. Since regular languages are closed under
intersection, W (n) is effectively computable.

Hence control state reachability of monotonic set-extended prefix rewriting
systems is decidable.

Theorem 1. Control state reachability of monotonic set-extended prefix rewrit-
ing systems is decidable.

Finally, we also establish a singly exponential upper bound of the running
time of the algorithm.

Proposition 4. Let R be an MSP over a finite alphabet Γ and a set of control
states (Q,≤) and let c be the length of the longest ≤-chain. Let m be the maxi-
mum over all p, q ∈ Q, p 6= q, of the number of rules of the form pv −→ qw in R.
Let T0 ⊆ Γ ∗ be a regular set of words represented by a nondeterministic automa-
ton of size a. We can decide if there is a set T such that (p0, T0) −→∗

R (pG, T)
for a given control state pG in deterministic time (|Q|+ m + |Γ |)O(c) · a.

4 Recursive Ping-Pong Protocols

In this section we define the class of recursive ping-pong protocols.
Let K be a set of symmetric encryption keys. A word w ∈ K∗ naturally repre-

sents an encrypted message with the outer-most encryption on the left hand-side.

For example k1k2k represents the plain text message (key) k encrypted first by
the key k2, followed by the key k1. In the usual notation k1k2k hence stands
for {{k}k2}k1 . The analysis of a set of messages T ⊆ K∗ is the least set A(T)
satisfying

A(T) = T ∪ {w | kw ∈ A(T), k ∈ K ∩A(T)}. (1)

The synthesis of a set of messages T ⊆ K∗ is the least set S(T) satisfying

S(T) = T ∪ {kw | w ∈ S(T), k ∈ K ∩ S(T)}. (2)

Lemma 3. Let n be a natural number, T ⊆ K∗ and let Qi ∈ {A,S} for all i,
1 ≤ i ≤ n. It holds that Q1(Q2(. . . (Qn(T)) . . .)) ⊆ S(A(T)).

Proof. This standard fact (see also [4, Prop. 2.1]) follows directly from the fol-
lowing straightforward laws: S(S(T)) = S(T); A(A(T)) = A(T); A(S(T)) ⊆
S(A(T)); and T1 ⊆ T2 implies S(T1) ⊆ S(T2). ut

The set of compromised keys C(T) ⊆ K for a given set T ⊆ K∗ of messages is
defined by C(T) def= K ∩ A(T). A recursive ping-pong protocol is a finite set ∆
of process definitions over a finite set Const of process constants such that for
every P ∈ Const the set ∆ contains exactly one process definition of the form

P
def=

∑
i∈I

[?viB .!wiB].Pi

where I is a finite index set such that Pi ∈ Const and vi, wi ∈ K∗ for all i ∈ I.
We shall denote the empty sum as Nil. The intuition is that for any i ∈ I the
process P can input a message of the form vit ∈ K∗, output wit, and behave as
Pi. The symbol ’?’ represents the input prefix, ’!’ the output prefix, and ’B’ the
rest (suffix) of the communicated message.

A configuration of a ping-pong protocol ∆ is a pair (P, T) where P ∈ Const
and T ⊆ K∗. The set T is also called a pool. The reduction semantics is defined
by the following rule.

P
def=

∑
i∈I

[?viB .!wiB].Pi, i ∈ I, vit ∈ S(A(T))

(P, T) −→∆ (Pi, T ∪ {wit})

Definition 1. Let (P0, T0) be a given initial configuration such that T0 6= ∅ is
a regular set and let PG ∈ Const. The control state reachability problem is to
decide whether (P0, T0) −→∗

∆ (PG, T) for some T .

Example 1. Let ∆ be a protocol consisting of P0
def= [?k1k2B .!k2k1B].P1, P1

def=
[?k2k1B .!k∗k2B].P2, and P2

def= Nil. Let T0 = {k∗, k1k2} be the initial pool
in which k∗ is the only compromised key. Then, (P0, T0) −→∆ (P1, T1) −→∆

(P2, T2) where T1 = T0 ∪ {k2k1}, and T2 = T1 ∪ {k∗k2}. At control point P2

(but not before) the attacker can learn the keys k1 and k2. Indeed, he can use
the compromised key k∗ to extract k2 from the last message k∗k2 exchanged

in the protocol, and k2 to extract k1 from the message k2k1. Thus, we have
that C(T2) = {k∗, k1, k2}. Suppose that messages are always terminated by
the symbol ⊥. In order to test if the attacker has uncovered, e.g., the key k1,
we can add (using +) to each process definition the observer process defined as
[?k1⊥B.!k1⊥B].Error . Reachability of the control state Error denotes a violation
of secrecy for our protocol.

Remark 1. Since we allow nondeterminism in the definitions of process con-
stants, the control state reachability problem for a parallel composition of re-
cursive ping-pong processes can be reduced (using a standard product con-
struction) to control state reachability for a single recursive process. For ex-
ample assume that Const = {P1, P2, P

′
2} such that P1

def= [?k1 B .!k2B].P1,
P2

def= [?k1B .!B].P ′
2 + [?k2B .!B].P2, and P ′

2
def= [?k1k2B .!k2k1B].P2.

The parallel composition P1 ‖ P2 as defined e.g. in [3] can be modelled by
the following protocol with Const = {(P1, P2), (P1, P

′
2)}, where

(P1, P2)
def= [?k1B .!k2B].(P1, P2) + [?k1B .!B].(P1, P

′
2) + [?k2B .!B].(P1, P2)

(P1, P
′
2)

def= [?k1B .!k2B].(P1, P
′
2) + [?k1k2B .!k2k1B].(P1, P2) .

Note that by applying the reduction above, there is a possible exponential
state-space explosion (however, it is exponential only in the number of parallel
agents; in many protocols this number is fixed and small). In what follows we
measure our complexity results in terms of the flat (single process) system.

5 Translating Recursive Ping-Pong Protocols to MSP

In this section we provide a reduction from control state reachability for recursive
ping-pong protocols to control state reachability for MSP.

There are two main problems: (i) How can the analysis and synthesis be
captured by prefix rewriting rules? and (ii) How to ensure that the control state
unit is monotonic even for arbitrary recursive ping-pong protocols?

We shall now provide answers to these problems. Intuitively, problem (i) can
be solved by keeping track of the set of compromised keys. The set of compro-
mised keys grows monotonically and can be stored as a part of the control state.
The rules for analysis and synthesis can then use the knowledge of the currently
compromised keys and once a new compromised key is discovered, the control
state unit is updated accordingly. Problem (ii) is more challenging. We can-
not simply store the current process constant in the control state as this would
destroy monotonicity (we allow arbitrary recursive behaviour in the protocol).
Instead, we observe that a recursive ping-pong protocol is essentially a directed
graph where nodes are process constants and edges are labelled by actions of
the form α = [?vB .!wB]. Once a certain action was taken due to some message
present in the pool then it is permanently enabled also any time in the future
(messages added to the pool T are persistent). Assume that there is a cycle of
length ` (counting the number of edges) in the graph such that all the actions

α1, . . . , α` on this cycle were already taken in the past. Then it is irrelevant in
exactly which process constant on the cycle we are as we can freely move along
the cycle as many times as needed. This essentially means that we can replace
such a cycle with !(α1) ‖ · · · ‖!(α`) where ! is the operator of replication. This
observation can be further generalized to strongly connected components in the
graph.

Let ∆ be a recursive ping-pong protocol with a set of process constants
Const and encryption keys K. We shall formally demonstrate the reduction men-
tioned above. First, we introduce some notation. Let T def= {(P, αi, Pi) | P ∈
Const, P

def=
∑

i∈I αi.Pi, i ∈ I} be a set of directed edges between process con-
stants labelled by the corresponding actions. Let E ⊆ T . We write P =⇒E P ′

whenever there is some α such that (P, α, P ′) ∈ E. Assume that P ∈ Const and
E ⊆ T . We define a strongly connected component in E represented by a process
constant P as Scc(P,E) def= {P ′ ∈ Const | P =⇒∗

E P ′ ∧ P ′ =⇒∗
E P}.

Let us now define an MSP R. The alphabet is Γ
def= K ∪ {⊥} where ⊥ is a

fresh symbol representing the end of messages. The control states of R are of
the form 〈S, E, C〉 where

– S ⊆ Const is the current strongly connected component,
– E ⊆ T is the set of already executed edges, and
– C ⊆ K is the set of compromised keys.

There are four types of rules in R called (analz), (synth), (learn) and (comm).
The first three rules represent intruder’s capabilities and the fourth rule models
the communication with the environment.

(analz) 〈S, E, C〉k −→ 〈S, E,C〉ε for all k ∈ C
(synth) 〈S, E, C〉ε −→ 〈S, E, C〉k for all k ∈ C
(learn) 〈S, E, C〉k⊥ −→ 〈S, E, C ∪ {k}〉k⊥ for all k ∈ K
(comm) 〈S, E, C〉v −→ 〈Scc(P ′, E′), E′, C〉w where E′ = E ∪ {(P, α, P ′)}

whenever there exists P ∈ S and
(P, α, P ′) ∈ T such that
α = [?vB .!wB]

It is easy to define an ordering on states such that R is monotonic. The second
and third component in the control states are non-decreasing w.r.t. ⊆ and T
and K are finite sets. For a fixed second coordinate E the strongly connected
components (i.e. the values that the first coordinate S in the control state can
take) form a directed acyclic graph. Let T ⊆ K∗. By T⊥ we denote the set
{w⊥ | w ∈ T}, i.e., the end symbol ⊥ is appended to every message from T .

Lemma 4. Let P0, P ∈ Const and T0 ⊆ K∗. If (P0, T0) −→∗
∆ (P, T) for some T

then (〈{P0}, ∅, ∅〉, T⊥0) −→∗
R (〈S, E, C〉, T ′⊥) for some S, E, C and T ′ such that

P ∈ S and T⊥ ⊆ T ′⊥.

We will now proceed to prove the other implication. In order to do that we
will need the following straightforward proposition which essentially says that
(i) messages are persistent and once a certain step from a process constant P
in the protocol was possible in the past then it is permanently enabled also in
any future configuration in the control location P , and (ii) that the set C in the
control state is always a subset of the compromised keys.

Proposition 5. If (〈{P0}, ∅, ∅〉, T⊥0) −→∗
R (〈S, E, C〉, T⊥) for some S, E, C and

T then (i) for any (P, α, P ′) ∈ E there is some T ′ such that (P, T) −→∆ (P ′, T ′)
by using the transition (P, α, P ′), and (ii) C ⊆ C(T).

Lemma 5. Let P0 ∈ Const and T0 ⊆ K∗. If we have (〈{P0}, ∅, ∅〉, T⊥0) −→∗
R

(〈S, E,C〉, T⊥) for some S, E, C and T then for all P ∈ S also (P0, T0) −→∗
∆

(P, T ′) such that T ⊆ S(A(T ′)).

The next theorem states the correctness of our reduction and follows directly
from Lemma 4 and Lemma 5.

Theorem 2. Let P0, P ∈ Const and T0 ⊆ K∗. It holds that (P0, T0) −→∗
∆ (P, T)

for some T if and only if (〈{P0}, ∅, ∅〉, T⊥0) −→∗
R (〈S, E, C〉, T ′⊥) for some S, E,

C and T ′ such that P ∈ S.

Hence control state reachability for recursive ping-pong protocols is reducible
to control state reachability for monotonic set-extended prefix rewriting systems,
which is decidable by Theorem 1. We also obtain the following complexity upper
bound.

Corollary 1. Control state reachability for recursive ping-pong protocols is de-
cidable in deterministic time 2O(n4) ·a where n is the size of the protocol written
as a string and a is the size of a nondeterministic automaton representing the
pool T0.

Finally, we show that control state reachability for recursive ping-pong pro-
tocols is at least NP-hard.

Theorem 3. Control state reachability of recursive ping-pong protocols is NP-
hard.

Proof. By reduction from the satisfiability problem of boolean formulae in CNF.
Let C = C1 ∧ C2 ∧ . . . ∧ Ck be a formula over boolean variables x1, . . . , xn such
that for all i, 1 ≤ i ≤ k, Ci is a disjunction of literals. We shall construct a
ping-pong protocol ∆ where Const

def= {X1, . . . , Xn+1, Y1, . . . , Yk+1} and K =
{C1, . . . , Ck,⊥}. Let for all i, 1 ≤ i ≤ n, ti be the sequence of keys Ci1Ci2 · · ·Ci`

such that 1 ≤ i1 < i2 < · · · < i` ≤ k and Ci1 , Ci2 , . . . , Ci`
are all the clauses

where xi occurs positively, and let fi be the sequence of keys Ci1Ci2 · · ·Ci`
such

that 1 ≤ i1 < i2 < · · · < i` ≤ k and Ci1 , Ci2 , . . . , Ci`
are all the clauses where xi

occurs negatively. The set ∆ of process definitions is given as follows.

Xi
def= [?⊥B .!ti⊥B].Xi+1 + [?⊥B .!fi⊥B].Xi+1 for all i, 1 ≤ i ≤ n

Xn+1
def= [?⊥B .!⊥B].Y1

Yi
def= [?CiB .!B].Yi+1 +

∑
1≤j<i

[?CjB .!B].Yi for all i, 1 ≤ i ≤ k

It is now easy to observe that the given formula C is satisfiable if and only if
(X1, {⊥}) −→ ∗(Yk+1, T) for some T . The computation from (X1, {⊥}) starts by
going through the sequence of control constants X1, . . . , Xn+1 where for every i,
1 ≤ i ≤ n, there is a choice, whether ti⊥ or fi⊥ (but not both) is added to the
pool of messages. This corresponds to selecting a truth assignment. Then the
control constant is changed from Xn+1 to Y1 without modifying the pool and the
second (verification) phase starts. The move from Yi to Yi+1 is possible only if
the key Ci is present somewhere in the pool (which means that the corresponding
clause is satisfied). The second summand in the definition of Yi enables to remove
duplicate clauses from the messages in order to access Ci. The control constant is
not changed if the second summand of Yi is used. Observe that the operations of
analysis and synthesis cannot add any of the keys C1, . . . , Ck to the pool, unless
the protocol does it itself. Hence we can reach the control constant Yk+1 if and
only if it was possible to satisfy all the clauses by the given truth assignment
generated during the first phase. ut

6 MSP and Concurrent Constraint Programming

We shall now outline some further applicability of our model of monotonic set-
extended prefix rewriting. The MSP model shares some similarities with the ccp
(concurrent constraint programming) language [19]. The ccp language is based
on the notion of a monotonic store which is used by a collection of agents as a
common blackboard to communicate by means of two primitives: ask to query
the store without removing information, and tell to add information to the store.

This feature of the ccp semantics is similar in spirit to the way we defined
the semantics of MSP. In an MSP configuration (p, T) the component T can be
viewed as the current store. Since prefix rules never remove information from T ,
we can view them as a special case of the ask and tell operations. To make the
connection between ccp and MSP more informal, we define next a fragment of
ccp whose semantics can be directly encoded in MSP.

For this purpose, given a finite alphabet A, we will consider an instance of
the ccp framework in which the constraint store is a set of strings T ⊆ A∗.
Furthermore, we consider only one type of constraint formula of the form v · x
where v is a string and x is a variable. If T is a set of strings (the current store),
then T |= v · x via the binding x w if vw ∈ T .

Concerning the syntax of our ccp instance, we will restrict ourselves to pro-
cesses defined as follows. A process declaration is defined as p ← A where p is
a process constant taken from a finite set P , and A is an agent. Agents (and
actions) are defined by the following grammar.

A ::= stop | Σk
i=1 Acti

Act ::= ask(v · x)→ p | ask(v · x)→ tell(w · x)→ p

Given a finite set of declarations D = {D1, . . . , Dn}, a process P is defined as
the (bounded) parallel compositions of ` agents, i.e., P = A1 || . . . || A`. We
assume that || is associative and commutative. The operational semantics of a
process P is defined in accordance with the semantics of ccp. Configurations are
pairs 〈P, T 〉 where P is a process and T is a store. The transition relation is
defined as follows.

1. 〈P1||P2, T 〉 → 〈P ′
1||P2, T

′〉 if 〈P1, T 〉 → 〈P ′
1, T

′〉
2. 〈p, T 〉 → 〈A, T 〉 if p← A ∈ D
3. 〈Σk

i=1Acti, T 〉 → 〈p, T 〉 if Acti = ask(v · x)→ p and vz ∈ T for 1 ≤ i ≤ k

4. 〈Σk
i=1Acti, T 〉 → 〈p, T ∪ {wz}〉 if Acti = ask(v · x)→ tell(w · x)→ p

and vz ∈ T for 1 ≤ i ≤ k

Remark 2. The seemingly nonstandard action ask(v ·x)→ tell(w ·x)→ p can be
in full ccp encoded as ask(v · x)→ ∃n.

(
tell(w · x & tok(n)) || ask(tok(n))→ p

)
where tok(x) is a new type of constraint with one argument x.

Following the reduction schemes of the recursive definition of ping-pong pro-
cesses, we know that we can extract a set of partially ordered locations from the
parallel control flow graph of n recursive processes (by using the idea of strongly
connected components). Under this assumption, we can focus our attention on
the way we can model ccp agents and actions. Actions can be naturally mapped
into prefix rules:

– The definition a ← ask(v · x) → b for the i-th thread is mapped to a rule
like pv → qv in which p and q are related by the change of the local state of
the i-th thread from a to b.

– The definition a← ask(v ·x)→ tell(w ·x)→ b for the i-th thread is mapped
to a rule like pv → qw in which p and q are related by the change of the
local state of the i-th thread from a to b.

Although quite limited with respect to the original ccp model (e.g. it is not pos-
sible to spawn new processes), this instance is still nontrivial since the constraint
store can grow unboundedly during the execution of a process.

The decidability of the control reachability problem for this instance of the
ccp framework follows then from our result for MSP. Further extensions of the
restricted ccp formalism are left for future work.

7 Conclusion

We proved that the control state reachability problem for recursive ping-pong
protocols with Dolev-Yao attacker is decidable in deterministic exponential time.
This result may seem surprising when one observes that recursive ping-pong
protocols without any attacker are Turing powerful [12, 13]. However, a similar
phenomenon occurs in FIFO-channel systems (automata whose transitions may
add or retrieve items from channels, modelled as unbounded queues): if the

channels are perfect, then the model is Turing powerful, but if one assumes that
the channels are lossy, i.e., that the queues can spontaneously lose messages,
then several important verification problems become decidable [7, 2].

We have used our results to prove (in the full version of the paper, available
as a BRICS technical report) the authenticity of Woo and Lam’s protocol; to
find a flaw in Otway and Rees’ key distribution protocol and prove secrecy of a
corrected version for arbitrarily many sessions; and to prove secrecy of Bull and
Otway’s recursive authentication protocol. To the best of our knowledge, no other
method in the literature can deal simultaneously with these three problems in a
fully automatic way. The approach of Rusinowitch and Turuani [18] can be used
to prove authenticity of Woo and Lam’s protocol, and Küsters has used regular
transducers to automatically verify Bull and Otway’s protocol [15]. However,
these techniques can only deal with a bounded number of protocol sessions.
In order to find the flaw in Otway and Rees’ protocol they have to guess the
right number of sessions, and they cannot directly prove secrecy of the corrected
version. The replicative calculus of Amadio, Lugiez and Vanackère [4] can be used
to model protocols with an unbounded number of sessions. However, the model
over-approximates the semantics, i.e., there are executions of the model that do
not correspond to executions of the protocol. Due to this over-approximation
the secrecy or authenticity analysis can report false attacks.

Since our technique does not over-approximate the semantics, it is strictly
more powerful than that of [4], at the price of a higher complexity (the algorithm
of [4] runs in polynomial time), and it is incomparable with the techniques of
[18, 15]. On the one hand, it provides an exact analysis for an arbitrary number
of sessions; on the other hand, it is restricted to prefix rewriting, which can only
deal with very restricted forms of pairing. Our model also allows only a bounded
number of nonces. The distinguishing feature of our technique seems to be the
possibility to model open-ended protocols with messages of unbounded length,
in combination with an unrestricted (cyclic) communication structure.

Our work also opens several venues for further research. MSPs are a rather
natural computational model, which may have further applications, in particu-
lar in the area of coordination-based languages. To demonstrate this, we have
presented an encoding of a fragment of the ccp language into MSP.

Acknowledgments. The second and the third author acknowledge a support from
the Alexander von Humboldt Foundation.

References

1. M. Abadi and A.D. Gordon. A bisimulation method for cryptographic protocols.
Nordic Journal of Computing, 5(4):267–303, 1998.

2. P.A. Abdulla and B. Jonsson. Verifying programs with unreliable channels. Infor-
mation and Computation, 127(2):91–101, 1996.

3. R.M. Amadio and W. Charatonik. On name generation and set-based analy-
sis in the Dolev-Yao model. In Proceedings of the 13th International Conference

on Concurrency Theory (CONCUR’02), volume 2421 of LNCS, pages 499–514.
Springer-Verlag, 2002.

4. R.M. Amadio, D. Lugiez, and V. Vanackère. On the symbolic reduction of processes
with cryptographic functions. Theoretical Computer Science, 290(1):695–740, Oc-
tober 2002.

5. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown au-
tomata: Application to model-checking. In Proceedings of the 8th International
Conference on Concurrency Theory (CONCUR’97), volume 1243 of LNCS, pages
135–150. Springer-Verlag, 1997.

6. J.R. Büchi. Regular canonical systems. Arch. Math. Logik u. Grundlagenforschung,
6:91–111, 1964.

7. G. Cécé, A. Finkel, and S. Purushothaman Iyer. Unreliable channels are easier to
verify than perfect channels. Information and Computation, 124(1):20–31, 1996.

8. H. Comon, V. Cortier, and J. Mitchell. Tree automata with one memory, set
constraints, and ping-pong protocols. In Proceedings of the 28th International
Colloquium on Automata, Languages and Programming (ICALP’01), volume 2076
of LNCS, pages 682–693. Springer-Verlag, 2001.

9. D. Dolev, S. Even, and R.M. Karp. On the security of ping-pong protocols. Infor-
mation and Control, 55(1–3):57–68, 1982.

10. D. Dolev and A.C. Yao. On the security of public key protocols. Transactions on
Information Theory, IT-29(2):198–208, 1983.

11. J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms for
model checking pushdown systems. In Proceedings of the 12th International Con-
ference on Computer Aided Verification (CAV’00), volume 1855 of LNCS, pages
232–247. Springer-Verlag, 2000.

12. H. Hüttel and J. Srba. Recursive ping-pong protocols. In Proceedings of the 4th
International Workshop on Issues in the Theory of Security (WITS’04), pages
129–140, 2004.

13. H. Hüttel and J. Srba. Recursion vs. replication in simple cryptographic proto-
cols. In Proceedings of the 31st Annual Conference on Current Trends in Theory
and Practice of Informatics (SOFSEM’05), volume 3381 of LNCS, pages 175–184.
Springer-Verlag, 2005.

14. O. Kupferman and M. Vardi. Weak alternating automata are not that weak. ACM
Transactions on Computational Logic, 2(3):408–429, 2001.

15. R. Küsters. On the decidability of cryptographic protocols with open-ended data
structures. In Proceedings of the 13th International Conference on Concurrency
Theory (CONCUR’02), volume 2421 of LNCS, pages 515–530. Springer-Verlag,
2002.

16. M. Křet́ınský, V. Řehák, and J. Strejček. Extended process rewrite systems: Ex-
pressiveness and reachability. In Proceedings of the 15th International Conference
on Concurrency Theory (CONCUR’04), volume 3170 of LNCS, pages 355–370.
Springer-Verlag, 2004.

17. D.E. Muller, A. Saoudi, and P.E. Schupp. Weak alternating automata give a simple
explanation of why most temporal and dynamic logics are decidable in exponential
time. In Proceedings of the 3rd Annual IEEE Symposium on Logic in Computer
Science (LICS’88), pages 422–427. IEEE Computer Society Press, 1988.

18. M. Rusinowitch and M. Turuani. Protocol insecurity with a finite number of
sessions and composed keys is NP-complete. TCS: Theoretical Computer Science,
299, 2003.

19. V.A. Saraswat. Concurrent Constraint Programming. The MIT Press, Cambridge,
Massachusetts, 1993.

