Model Checking LTL using Constraint
Programming*

Javier Esparza and Stephan Melzer

Institut fur Informatik, Arcisstrafie 21
Technische Universitat Minchen, D-80333 Minchen, Germany
e-mail: {esparza,melzers}@informatik.tu-muenchen.de

Abstract. The model-checking problem for 1-safe Petri nets and linear-
time temporal logic (LTL) consists of deciding, given a 1-safe Petri net
and a formula of LTL, whether the Petri net satisfies the property en-
coded by the formula. This paper introduces a semidecision test for this
problem. By a semidecision test we understand a procedure which may
answer ‘yes’, in which case the Petri net satisfies the property, or ‘don’t
know’. The test is based on a variant of the so called automata-theoretic
approach to model-checking and on the notion of T-invariant. We anal-
yse the computational complexity of the test, implement it using 2lp — a
constraint programming tool, and apply it to two case studies.

This paper is a (very) abbreviated version of [6].

1 Introduction

Linear-time temporal logic (LTL) is a well-known formalism for specifying prop-
erties of concurrent systems. The problem of deciding if a concurrent system
satisfies a LTL formula is called the model-checking problem (of LTL). In [16]
Vardi and Wolper introduced an eutomata-theoretic approach to this problem.
The approach assumes that there exists a semantic mapping which associates
to a concurrent system sys a finite (labelled) transition system A,,,. It asks the
verifier to perform the following three tasks [9, 16]:

— Build a Biichi automaton A- 4 for the negation of the formula ¢ to be checked.
A~y accepts exactly all infinite sequences that violate the formula ¢.

— Construct a Biichi automaton A,, called the product of Ay, and A-4. A,
accepts all the infinite computations of A;,, that are accepted by A-4, ie.,
all infinite computations of A,,, that violate ¢.

— Check whether the product automaton A, is empty, i.e., whether it accepts
no infinite sequences. Ay, satisfies ¢ iff A, is empty.

The main problem of this approach is the well-known state-explosion phe-
nomenon: the size of the transition system A,,, can grow exponentially in the
size of sys. Several suggestions have been made to solve or at least palliate this
problem: the transition system A, can be replaced by a trace automaton [9],

* This work is supported by the Sonderforschungsbereich SFB-342 A3.

and the size of A,y can be reduced by means of different techniques like stubborn
sets [14], sleep sets [9], or others.

In this paper we introduce still another technique to avoid the state-explosion,
which can be applied when the system is modelled as a 1-safe Petri net. The
technique is a semidecision test, that is, a procedure which may answer ‘yes’,
in which case the property to be checked holds, or ‘don’t know’. A semidecision
test has interest only if for relevant case studies it answers ‘yes’ and performs
faster than exact methods. We provide evidence in this direction in the form of
a complexity analysis and two case studies.

For systems modelled as Petri nets the transition system A,,; is just the
well-known reachability graph. An straightforward application of the automata-
theoretic approach would proceed by (1) building the reachability graph, and
by (2) constructing the product automaton; it would obviously suffer from the
state explosion problem. The first (minor) contribution of this paper is to show
that step (2) can be performed before step (1). More specifically, we describe
several ways of constructing a ‘product Biichi net’ IV, from a Petri net Ny, and
a Bichi automaton A 4. Using this construction it is immediate to reduce the
model-checking problem to a certain ‘net emptiness’ problem, very similar to the
emptiness problem of Biichi automata. We select the construction of the product
Biichi net most suitable for our semidecision test. The test is based on the notion
of T-invariant, and can be seen as a generalization of the ad-hoc proof method
introduced and applied in [7]. We show that the test can be implemented in the
framework of constraint programming [12] using the constraint programming
tool 2lp [13]. Finally, we apply the test to a leader election and to a snapshot
algorithm.

The paper is organised as follows. Section 2 describes the main components
of the automata-theoretic approach to model-checking, tailored for the case in
which the system is modelled by a Petri net. Section 3 shows how to construct
the product Buchi nets. Section 4 introduces the test for net emptiness. Section
5 contains the implementation in 2lp. Section 6 is devoted to the case studies.

The paper is an abbreviated version of [6]. The reader can find there the
proofs of the results, a detailed description of the case studies, and additional
results.

2 The automata-theoretic approach to model-checking

2.1 Transition systems

A labelled transition system is a fourtuple (Act, @, A, q0), where Act is an alpha-
bet of actions, @ is a set of states, A C Q) x Act x @ is a set of transitions, and
qo € @ 1is the initial state.

A full run of a labelled transition system is an infinite sequence qoagqiaiqs . ..
such that (¢;,a;,¢;+1) € A for every i > 0. We also denote a full run by ¢q 2,
q1 = q2

When labelled transition systems are used as semantics of some process alge-
bra only the labels of the transitions carry useful information; the intermediate

states are usually irrelevant. We speak in this case of an action-based seman-
tics. In action-based semantics the following definition is useful: An infinite

sequence agaias ... of actions of 7 is an action run if there exists a full run
g0 =2 q1 =5 g5 =2 ... The action language Lo(T) of T is the set of all action
runs.

When labelled transition systems are used as semantics of languages with
variables, the information about the actual values of the variables is encoded
into the states; the labels of the transitions are usually irrelevant. We speak
in this case of a state-based semantics. In state-based semantics the following
definition is useful: An infinite sequence qgq1qs ... of states of 7 is a state run if
there exists a full run gy —= q1 —— ¢5 The state language Ls(T) of T is the
set of all state runs.

For state-based semantics it is convenient to use (unlabelled) transition sys-
tems instead of carrying a useless action set Act around. An (unlabelled) transi-
tion system is a tuple (@, A, q0), where A C @ x Q. It can be seen as a particular
case of labelled transition system in which all transitions carry the same label.

In the paper we use L(7) to denote any of L,(7) or Ls(7T).

2.2 Linear-time Temporal Logic

Let ¥ be a finite alphabet, and let II be a set of propositions over X, i.e., a
set of mappings with © as domain and the set {{rue, false} as range. The set
of formulae of linear-time propositional temporal logic (LTL) over the set IT is
inductively defined as follows:

— if ¢ € IT then ¢ is a formula
— if ¢ and 9 are formulae then so are ¢ A1y, ¢, Xé and ¢ U .

We make use of the abbreviations ¢ V ¢ = =(=¢ A =), ¢ Vb = =(=¢ U —¢),
o¢p = truel ¢ and O¢ = — o =¢. An interpretation of an LTL-formula is an
infinite word & € X*. In order to formally define the satisfaction relation = of
LTL, let £(0) denote the first element of €, and let £ (x) = &(x + i) denote the
suffix of ¢ starting at position 7. We have:

— ¢ Ewfor me ITif w(£(0)) = true.

— ¢ = ¢ if not € |= 6.
—{FEoANYiIfEE ¢ and € =9

—EEXgif ¢ =g

—¢(EUyifAeN : €D EyandVj<i: V) g

The language L(¢) of a formula ¢ over IT is the set of all words of ¢ that
satisfy ¢.

2.3 LTL on transition systems

We wish to use LTL to describe properties of both the action-based and the
state-based semantics of a labelled transition system 7 = (Act, @, A, q0). In

the case of action-based semantics, we take X' = Act. IT is therefore a set of
propositions on the set of actions, and the language L(¢) of a formula ¢ is a set
of action runs. We say that 7 satisfies ¢ if Lo(7) C L(¢), i.e., if every action
run of 7 satisfies ¢. In state-based semantics, we take X = @, and so IT is a
set of propositions on the set of states. Analogously, we say that 7 satisfies ¢ if
Ls(T) C L(9).

2.4 Biuichi Automata

Let ¢ be a formula of LTL over a set of propositions IT. A labelled Bichi au-
tomaton over Il is a tuple A = ('ZH,Q,A,QO,F), where @) is a finite set of
states, A C Q x 27 x Q is the transition relation, qo € Q is the initial state, and
F C @ is the set of accepting states. An accepting run of A is an infinite sequence
o = qolloq11T1qa . .. such that (g;, IT;, ¢;41) € A for every ¢ > 0, and some state
of F' appears infinitely often in 0. A accepts an infinite word agaias ... € X% if
there exists an accepting run ¢gllgq1111qs . .. such that a; satisfies every predi-
cate of I1;, for every i > 0.

We define the language L(A) of a labelled Biichi automaton A as the set of
infinite words accepted by A.

We have the following important result:

Theorem 1 [15]. Let ¢ be a formula of LTL. There exists a Bichi automaton
A such that L(¢) = L(A)

In the sequel we use Ay to denote a Biichi automaton satisfying L(¢) =
L(Ay), which we assume has been constructed using some algorithm, for instance
the one described in [8].

We also use unlabelled Biichi automata, which are tuples A = (Q, A, qo, F),
where A C) x . They can be seen as a special case of labelled Biichi automata
in which all transitions are labelled by the empty set of propositions.

The nonemptiness problem for a labelled or unlabelled Buchi automaton A
consists of deciding whether L(A) is nonempty. The problem is NLOGSPACE-
complete [15].

2.5 Product automata

Let 7,y be a finite labelled transition system, and let ¢ be a formula over the
actions or the states of 7,,,. The automata-based procedure to check if 7y,
satisfies ¢ consists of the following steps:

— Build a labelled Biichi automaton A4 which accepts L(—¢).
— Build an unlabelled Biichi automaton A, called the product of 7, and Ay,
which is empty iff L(Z,,,) N L(—¢) = 0.
— Check whether L(A,) is nonempty.
Clearly, L(Ap) is empty iff L(Z,ys) N L(—¢) = 0 iff L(Tys) C L(¢) iff Tyys
satisfies ¢.

The following two subsections show how to construct A, for action-based
and state-based semantics.

Action-based semantics Let T, = (Actsys, Qsys, Asys, dosys) be a labelled
transition system, and let Ay = (27, Q-4, A=y, ons, Fagp) be the labelled Biichi
automaton corresponding to the negation of ¢, where I7 is a set of propositions
on Actsy,. The product automaton of 7y, and A-4 is the unlabelled Biichi
automaton A, = (Q, 4, qo, F) given by

- Q = sts X Q—|¢>a

— A is the smallest set such that if (¢1,a,¢2) € Asys, (71, {m1,..., 7}, 12) €
Ay, and a satisfies @; for every 1 < i < n, then ((¢1,71),(g2,72)) € A.

- qo = (quysa q0ﬂ¢)a

- F= sts X Fm#,.

It follows immediately from this definition that A, is empty if and only if
the set Lo(Zoys) N L(A-g) = La(Tsys) N L(—¢) is also empty.

State-based semantics Let 75y, = (Qsys, Asys, qosys) be an unlabelled tran-
sition system, and let A_y = (277, Q-4, Ay, Goms, Fap) be the labelled Biichi
automaton corresponding to the negation of ¢, where I7 is a set of proposi-
tions on ys. The product automaton of 7;y, and A4 is the unlabelled Biichi
automaton A, = (Q, A, qo, F) given by

- Q = sts X Q—|¢>a

— Ais the smallest set such that if (¢1, ¢2) € Asys, (71, {71,...,Tn}, r2) € Ay
and q; satisfies m; for every 1 <i < n, then ((¢1,71),(q2,72)) € 4,

— o = (q05ysa q0ﬂ¢),

— F= sts X Fﬂ¢.

The only difference with the former definition is the fact that the propositions
m; are now evaluated on the state g1, and not on the action a.

Again, it follows immediately from this definition that A, is empty if and
only if the set Ly(7,ys) N L(A-p) is also empty.

3 Lifting the automata-theoretic model-checking method
to Petri nets

3.1 Multiset Notation

A multiset over a set X is a mapping p : XtoIN. The operations union, inter-
section, sum, and difference on multisets are defined in the usual way (see for
instance [1]). The set of multisets over X is denoted by M(X).

A labelled Peiri net is a tuple N = (Act, P,T, My) where Act is a set of
actions, P is a finite set of places, T C (M(P) x Act x M(P)) is a set of
transitions, and My € M(P) is a marking. For a transition ¢ = (P, Q) we
sometimes call P (resp. @) the preset (resp. posisel) and write *¢ (resp. #°).
Multisets of places are called markings, and My is called the initial marking of

N.

Notions like enabled transition, firing, reachable marking, 1-safe Petri net
(also called safe or 1-bounded Petri net), incidence matrix, T-invariant and P-
component (also called S-component) are defined as usual (see for instance [5]).

M —L M’ denotes that transition ¢ occurs at marking M yielding M’. A

finite or infinite sequence My to, M, iR Ms .. .1s called an occurrence sequence.
M % M' for a € ¥ denotes that there exists a transition ¢ = (Py,a, Py) such
that M — M’

A full run of a Petri net is an infinite sequence MyagMiai; Msas . .. such that
M; =2 M; 41 for every ¢ > 0. We also denote a full run by My S0oM, 2
Ms Notice that for every full run there exists an underlying occurrence se-
quence.

An infinite sequence agaias ... of actions is an action run if there exists a
full run My =% M; 2% M, The action language Lo(N) of N is the set of
all action runs. An infinite sequence MyM; Ms ... of markings is a state run if
there exists a full run My =% My —% M, The state language Ls(N) of N is
the set of all state runs.

As usual, unlabelled Petri nets are obtained from labelled ones by dropping
the labelling of transitions. So an unlabelled Petri net is a tuple (P, T, Mg) where
T C M(P)x M(P).

If we are only interested in the structure of a Petri net, then we omit My and
call (P,T') just a net.

3.2 LTL on 1l-safe Petri nets

We define when a 1-safe Petri net satisfies a formula of LTL. In action-based
semantics I7 is a set of propositions on the set of actions of the Petri net. As for
transition systems, we say that a net N satisfies a formula ¢ if L,(N) C L(¢),
i.e., if every action-based run of N satisfies ¢.

The state-based case is more interesting. For transition systems, we let 17
be a set of propositions on the set of states. Since the states of a Petri net
are 1ts reachable markings, for Petri nets we should take I7 as an arbitrary
set of propositions on the set of markings. However, we restrict ourselves to
propositions m,, where p is a place of the net, with the following interpretation:
a marking M satisfies 7, iff it marks the place p. We say that a net N satisfies
a formula ¢ if L;(N) C L(o).

It is easy to see that this restriction has no important consequences: the two
logics we obtain (one with arbitrary propositions over markings, the other with
the restricted set), have the same expressive power for 1-safe Petri nets [6].

3.3 Biichi Nets

The product of a Buchi automaton and a 1-safe Petri net is going to be a Buchi
net, the net counterpart of the unlabelled product Biichi automaton defined in
Section 2.5.

A Biichi net is a tuple N = (P, T, My, F'), where (P, T, M) is an unlabelled
Petri net and F is a subset of P. An accepting run of N is astate run MqgM; M> . ..
such that some place of F' appears in infinitely many markings M;. N is nonempty
if it has an accepting run.

The nonemptiness problem for a Biichi net N = (P, T, Mg, F') is the problem
of deciding if N is nonempty. It is easy to show that the problem is PSPACE-
complete [6].

3.4 Product nets in action-based semantics

It is easy to lift the definition of the product automaton to the Petri net case.

Let Noys = (Actsys, Psys, Tsys, Mosys) be a 1-safe Petri net, and let A, =
(27, Q-4, Ag, Qoms, Fap) be the Biichi automaton corresponding to the nega-
tion of ¢, where IT is a set of propositions on Actsy,.

Definition 2. The product Biichi net N, = (P, T, My, F') of Ny, and A~y is
given by

- P:PsysUQﬂ¢a

— T'is the smallest set satisfying: if (P1, a, P2) € Tyys and (q1, {m1,..., T}, q2) €
Ay, and 7;(a) holds for every 1 <7< n, then (P14 {q1}, Po+{q2})) €T,

- My = MOsys + {qoﬂﬁ}a

- =TI

The following theorem is easy to prove:

Theorem 3 [6]. Let Ny, be a I-safe Petri net, and let A-, be the Bichi au-
tomaton corresponding to the negation of a property ¢. Let Np, be as in Definition
2. N, 1is 1-safe and Ny, satisfies ¢ off Np s empty.

This same result holds for the other definitions of product we are going
to present in the rest of this section (Definitions 2, 4, 5 and 9), and so the
corresponding theorems are omitted. The theorems and their proofs can be found

in [6].

3.5 Product nets in state-based semantics

We fix an unlabelled 1-safe Petri net Nyys = (Psys, Toys, Mosys). We assume that
the set /T of propositions on the markings of N,y used to construct formulae of
LTL contains only predicates m, which hold iff the place p is marked. Clearly,
we can (and will) identify the proposition 7, and the place p. With this identi-
fication, the Biichi automaton A-4 for the negation of a formula ¢ has the form
A = (277, Q-4 Aag, Q0-g, Frp)-

Our goal is to construct a product Biichi net satisfying the following property:
the product net can move from a marking (M1, ¢1) to (Mas, ¢2) iff:

(1) Nsys can move from M; to My,

2) there exists (q1, R, q2) € ALy, and
() q1, q 3]
(3) M; marks every place of R.

We show two different constructions. This first one is similar to that shown
in section 2.5 for transition systems. The key idea is the following: if (Py, P2) is a
transition of the Petri net and (q1, R, ¢2) is a transition of the Biichi automaton,
then we add the following transition to the product:

(Pi+(R=Pi)+{q1}, Po+(R—=P1)+{q2})

It is immediate to see that this solution satisfies conditions (1) to (3) above.
The product automaton can then be defined in the following way:

Definition4. The product Biichi net N, = (P,T, My, F') of Ny, and A4 is
given by

= P = Poys; UQ-y,

— T is the smallest set satisfying: if (P1, P2) € Tyys and (g1, R, q2) € Ay, then
(Pi+(R=P)+ {1}, P+ (R=P1)+{q2}) €T,

- MO = MOsys + {q0ﬂ¢},

- F=F.

Fig.1. A Petri net Ny, (lhs.) and a Biichi automaton A-4 (rhs.).

Figure 2 illustrates this definition.

Loosely speaking, in the second construction the automaton and the Petri
net alternate their moves: the automaton tests if the marking M; marks every
place of R. If this is the case, then it moves from ¢; to g2, and transfers controls
to the net, who makes its move, and transfers control back to the automaton.
The alternation can be implemented by means of two scheduling places SC1,
SCs. A token on SC; (SC3) means that the automaton (the net) has to move
next.

Fig.2. The product net Ny of Nsys and A~y of Figure 1 w.r.t. Definition 4.

Definition 5. The product Biichi net N, = (P, T, My, F') of Ny, and A~y is
given by

— P=Py, UQ-p U {SC4,S5C,},

— T is the smallest set satisfying: if (P, P2) € Tsys then (P + {SC4}, Po+
{SC1}) €T, and if (1, R, q2) € A4 then ({q1,5C1} + R, {g2, SC2} + R) €
T

- MO - MOsys + {QO—'¢7 SCI}1

- '=1TI.,.

See Figure 3 for an example.

Fig.3. The product net Ny of Ny and A~y of Figure 1 w.r.t. Definition 5.

This second construction, contrary to the first, remains very small: its size is
essentially the sum of the sizes of Ny, and A.4. Unfortunately, as shown in the
next section, this second construction faces other problems. We shall actually
combine the two constructions in order to obtain good results.

4 Testing emptiness of Biichi nets using T-invariants

In Section 3 we have reduced the model-checking problem to the emptiness
problem of Biichi nets. We now develop a semidecision test for this latter problem
which avoids the construction of the reachability graph. The theory underlying
the method is well-known; our contribution is a set of refinements and techniques
for its application.

We have developed this test in order to verify parallel programs modelled
in the language B(PN)? [2], which are automatically translated into 1-safe Petri
nets by the PEP tool [10]. The fact that a variable z has a value v is modelled by
putting a token on a place z,. Therefore, assertions like “the variable z takes the
value 1 infinitely often® are best formalised using state-based semantics. From
now on we concentrate on this semantics, but the technique is also applicable
(even more easily) to the action-based case.

The test is based on the notion of T-invariant. Recall that a T-invariant of
a net is a mapping J that assigns to each transition ¢ a rational number 7 (¢)
and satisfies the following property for every place p:

dam=> T

te®p tep®

T-invariants have the following fundamental property. Let M and M’ be
markings of a net N, and let o be a sequence of transitions such that M -2 M".
We have M = M’ iff the mapping which associates to each transition ¢ the
number of times that it appears in o is a T-invariant of N.

A T-invariant J of a Buchi net N 1s realisable if there exists a reachable
marking M and a nonempty sequence of transitions ¢ such that M -2 M
and every transition ¢ occurs exactly J(¢) times in o. The sequence M 2 Mis
called a realisation of J. Realisable T-invariants are always semi-positive, i.e., its
components have to be nonnegative, and at least one of them must be different
from 0. A T-invariant 7 is final if J(¢) > 0 for some transition ¢ in the postset
of a final place of N. The following result is easy to prove:

Proposition6 [6]. A Bichi net is nonemply iff it has a final realisable T-
mvartant.

As an immediate consequence of this proposition, if a Biichi net has no final
semi-positive T-invariants, realisable or not, then it is empty. This sufficient con-
dition for emptiness leads to a simple semidecision test, since the absence of semi-
positive T-invariants can be checked by solving a system of linear (in)equations
of the form

N X =0
X>0
Diere X(t) > 1

where N 1s the incidence matrix of the Buchi net, and F' is the set of final places.

The practical interest of a semidecision test is directly proportional to its
quality (i.e., how often it is successful, or, in our case, how often does it prove
emptiness) and inversely proportional to its computational complexity. Tt is well-
known that systems of linear (in)equations can be solved very efficiently using
the simplex algorithm, and in guaranteed polynomial time by other techniques.
So the test above is very efficient. Unfortunately, its quality is very low. In nearly
all examples of interest the test fails to provide an answer even if the language
of the net is empty. So we refine Definition 4 in order to improve the quality
of the test. In subsection 4.1 we observe that some of the transitions of N,
can never occur. Since these transitions never appear in any infinite occurrence
sequence of N, they can be removed without affecting the result stating that
Nyys satisfies ¢ iff N, is empty. Clearly, after removing this transitions the
resulting net has exactly the same realisable T-invariants, but less semipositive
T-invariants, which improves the quality of the test.

Unfortunately, with the improved definition of product the number of tran-
sitions of IV, can still be unacceptably large, similarly to what happened in the
action-based case. In Section 4.2 we show that this problem can be palliated by
combining the improved Definition 4 with Definition 5.

4.1 Removing dead transitions

Let N, be a product net obtained according to Definition 4, and let ¢t = (P; +
(R—P1)+{qn1}, Po+ (R — P1) + {q2}) be a transition such that there exists a
place p € (P> — P1) N R. It is shown in [6] that ¢ can never occur in N,.

This is how far we can go if we have no other information about N, ,. How-
ever, we often know that N,,, has a certain set of P-components which contain
exactly one token at the initial marking. Recall that a P-component is a con-
nected subnet in which every transition has exactly one input and one output
place, and which is connected to other nodes of the net only through transitions?.
The number of tokens of a P-component remains constant under the occurrence
of transitions.

Information about the P-components of the net is very often available in
practice. Systems modelled by 1-safe nets are usually composed by several se-
quential systems that communicate via message passing, rendezvous, or shared
variables. In all cases, the models of these components are P-components of the
global model.

Let N; = (P;, T;) be a P-component carrying exactly one token at the initial
marking, and let

t=(Pi+(R=P)+{q:}, P2+ (R—P1)+ {q2})

be a transition such that |(Py + (R — P1))N P;| > 1. Tt is shown in [6] that ¢ can
never occur in Np.

2 Sometimes P-components are also required to be strongly connected submets, but
that is not necessary in our case.

The transition with the double weighted arc in Figure 2 can be removed using
this criterion.
We introduce the following definition:

Definition7. (P1, P;) € Ty, and (q1, R, q2) € A~y are compatible if the two
following properties hold:

- (P;NR)C (P NR), and
—foralll1 <i<k:if (PLNF;) #0 and (P,NR) # 0, then (PLNF;) = (P,NR).

If (Py, P3) and (¢1, R, q2) are compatible, then we also say that (g1, R, q2) is
compatible with (P, P3), or that (Py, P2) is compatible with (q1, R, ¢2).

Now, in Definition 4 we can substitute the description of the set T by the
following one:

— T is the smallest set satisfying: if (P, P») € Tsys and (q1, R, q2) € Ay are
compatible, then (P + (R — P1)+ {q1}, P2+ (R— P1) + {q2}) € T.

4.2 Combining Definition 4 and Definition 5

Let (P1, P») be a transition that is compatible with every transition of A 4. With
respect to (Py, P2), the new definition of product coincides with the old one: the
same set of transitions of the product is generated. However, n of these transi-
tions generate n-|T-4| transitions in the product net, which can be unacceptable
if n is large.

The solution to this problem is to use the product discipline of Definition 5
for these transitions, and reserve the discipline of Definition 4 for those which
can improve the quality of the test. In order to implement this idea we need the
following definition:

Definition8. A transition (Pi, Ps) of Ny, is compatible with A if it is com-
patible with every transition of A_4.

Definition9. The product Biichi net N, = (P, T, My, F) of Ny, and Ay is
given by

— P =Py, UQR-4 U{SCy, SC,},
— T is the smallest set satisfying:

(1) if (q1, R, q2) € Ay, then (RU {q1,SC1}, RU{q2,SC>}) € T,

(2) if (P1,P2) € Tyys is compatible with A.4, then (P; + {SC2}, P» +
{SC1})eT,

(3) if (P1, P2) € Tyys is not compatible with A4, then (P, + (R — P;) +
{Q1, 501}, Py + (R — Pl) =+ {QQ, SC’l}) c T for every (ql, R, QQ) € Amﬁ
compatible with (P, Ps).

- My = MOsys + {QO—'qby 501}7
- F=F,.

4.3 An improved test

In this section we introduce the notion of T*-invariant, and use it to develop a
new emptiness test. The quality is improved at the price of more computational
complexity: the new test is NP-complete. The quality will be now good enough
for verifying interesting liveness properties of real systems.

One of the main reasons why the test of the previous section has a low quality
is the fact that the Biuichi nets we wish to analyse usually contain self-loops, i.e.,
they contain places that are both input and output places of transitions. The
presence of self-loops may lead to the typical situation shown in Figure 4. The

tl t2

P2

Fig.4. Net with selfloops.

vector J = (0,0,1,1)"is a T-invariant, but not a realisable T-invariant. To prove
it, observe that the subnet N’ generated by the places {p1, p2} and the transitions
{t1,...ta} is a P-component (see Figure 6), and so M(p1) + M(p2) = 1 holds
for every reachable marking M. Now, assume that J 1s realisable. Then it has
a realisation M —— M. Since J = (0,0,1,1)!, o only contains occurrences of

t3 and t4. It is easy to see that the projection M’ 2 M of M -2+ M onto
the places and transitions of N’ is an occurrence sequence of N’. But this leads
to a contradiction: since t3 needs a token on py to occur, and #4 needs a token
on pi, t3 can never occur immediately after ¢4; the transition #; must occur
inbetween. Similarly, {4 can never occur immediately after ¢3; the transition ¢,
must occur inbetween. More generally, the subnet of N’ generated by transitions
t; and t5 together with their input and output places (shown in Figure 5) is not
strongly connected, and therefore no sequence containing only ¢3 and ¢4 can be
an occurrence sequence of N'. This shows that 7 is not realisable. In this proof
we have used again information about the P-components of the net, namely the
fact that N’ is a P-component which carries initially one single token. This leads
to the following definition:

Definition10. Let N = (P,T) be a net and let N; = (P;,T;), 1 <i<nbea

yan

pl féi\

ty
121 ts
tq 1
t3
Ia U
O P
P2

Fig.6. The P-component with
Fig.5. The subnet N’. places {p1,p2}.

set of P-components of N. We call a T-vector J a T*-invariant with respect to
Ni,..., Ny if

— J 1s a semi-positive T-invariant, and

— for every 1 < ¢ < n, the subnet of N; generated by the transitions of T;
that appear in J, together with their input and output places, is strongly
connected.

The T-invariant (0,0,1,1)" above is not a T*-invariant with respect to N’,
because the subnet of Figure 5 is not strongly connected. It is easy to see that
realisable T-invariants are T*-invariants with respect to any set of P-components
carrying one token [6]. This implies:

Theorem 11 [6]. Let N be a Biichi net and let N;, 1 < i < n be a set of P-
components of N carrying one token at the initial marking. If N has no final
T*-invariants with respect to Ny, ..., Ny, then it 1s empty.

We call the problem of deciding the existence of a T*-invariant for a given
net and a given set of P-components the T*- invariant problem. We have:

Theorem 12 [6]. The T*-invariant problem is NP-complete.

5 An Implementation of the T*-Invariant Test Using
Constraint Programming

A system of linear inequations can be seen as a conjunction of linear constraints
i.e., the feasible region of the system (its set of solutions) is the set of vectors
that satisfy all the constraints.

We can thus interpret linear programming as a primitive constraint program-
ming language, in which the only available operator to combine constraints is

AND. Simplex, or any other algorithm for linear programming, can be seen as
an inference engine for this programming language.

While the emptiness test based on traditional T-invariants can be imple-
mented in linear programming, this is no longer true for the T*-invariant prob-
lem: the AND construct is not powerful enough.

Fortunately, in the last years there have been a number of efforts to develop
programming environments for linear and integer programming that goes well
beyond the AND construct. One of these environments is 2lp [13]. Citing from
[13]:“2lp is a constraint logic programming language [12] with C-like syntax
which can be used to make linear and integer programming part of programming
in the contemporary sense of the word”.

An adequate introduction to 2lp is out of the scope of this paper; we refer the
interested reader to [13]. For our purposes, it suffices to know that the semantics
of a 2lp program is a (not necessarily linear) constraint on the space of its
variables, or, equivalently, a feasible region (the tuples of values of the variables
that satisfy the constraint). 2lp contains different operators to produce complex
constraints out of simpler ones. We introduce two of these operators in the
following example:

3z — 2y = 1;
either {z + y < 3}
or {2z —y > 3}

The operator “;” corresponds to the AND of linear programming. That is, the
feasible region of the program above is the intersection of the feasible regions of
3z — 2y = 1 and the either ...or constraint. The feasible region of the either
...or constraint is the union of the feasible regions of the constraints z +y < 3
and 2z — y > 3.

2lp also provides an operator to test the consistency of sets of constraints:

r<y+3;

y <3z —5;

if not # = y then printf(‘‘Inconsistent’’)
else printf(‘‘Consistent’’)

The feasible region associated to this program is the feasible region of its
first two constraints (i.e, the not operator does not change the feasible region).
However, the if not ...then ...else instruction determines if the constraint
xz = y 1s consistent with the first two, and answers accordingly.

We use these features to build a 2lp program that decides if a net contains a
final T*-invariant with respect to a set of P-components. To lighten the notation,
we consider only the case in which the set contains only one component. The
general case is similar.

We start by “massaging” the condition in the definition of T*-invariants
concerning strong connectedness. Fix a net N = (P,T) and a P-component
N' = (P, T") of N, and let U C T". Think of U as the intersection of 7" and
the set of transitions of a given T-invariant, of which we would like to determine

if it is also a T*-invariant. Let N/, be the subnet of N’ generated by U and
P'Nn(*UUU*). We wish to know whether N/, is strongly connected or not.

Define the relation ~»C T x T as follows: t ~»y ¢/ if t,#' € U, and there
exists a place p € P’ such that ¢t € *p and t' € p*. A set V C U is closed under
~p ift € V and t ~p t/ implies # € V. Notice that U is trivially closed under
~T.

We have the following lemma:

Lemma 13 [6]. N{; is strongly connected iff the only nonempty subset of U that
s closed under ~y 1s U itself.

We now define several sets of constraints on the following variables: a vector
Je QlTl, and two boolean vectors U,V € {0, 1}|T|, where we interpret the values
of U and V as subsets of P’.

Each set of constraints is to be understood conjunctively, 1.e., as if its elements
were linked by AND, or by the semicolon of 2lp.

(1) Jis a semipositive T-invariant. For each p € P:

> af]=) Ift]

tE®p tep*
and for each t € T
J[t] >0
(2) 7 is final.

Z Jt1>0

teFe

(3) U is the intersection of 7" and the support of J. For each ¢ ¢ T":
Uifﬂ =0
and for each t € T":
either {J[t] > 0;U[t] = 1}
or {J[t] = 0;U[t] = 0}
(4) Vis a subset of U. For each t € T
V[t]
either V[t]
or V[t]

IN

[t]

U
1
0

(5) V is nonempty.

> V>0

teT

(6) V is closed under ~p. For each ¢,# € T’ such that there exists p € P’
satisfying ¢t € *p and #' € p*:

V[f] + U[t) < 1+ V¢

(this constraint is the linear equivalent of (1 € VAt € U) — ¢ € V)
(7) V contains less transitions than U.

DoV < > uft]

teT teT

Now, define the 2lp program LOGy as

(D)5 2); (3);
not {(4); (5); (8); (M)}

The feasible region of (1) and (3) is the set of triples (J,U, V) where J is a
final semipositive T-invariant and U is the intersection of 77 and the support of .J.
The feasible region of (4) to (7) is the set of triples (J, U, V') where V is a proper
and nonempty subset of U closed under ~+ry. According to the semantics of the
not construct, LOGy answers “No T*-invariants wrt. N'” iff the conjunction
of the constraints (4) to (7) is inconsistent with the conjunction of (3) and
(6). Therefore, LOGy answers “No T*-invariants wrt. N'7 iff for every final
semipositive T-invariant the only nonempty subset of U closed under ~¢ is U
itself. This is the case iff N contains no final T*-invariants wrt. N'.

6 Applications

In this section we demonstrate the applicability of our verification method by
means of two examples. We first consider a (variant of a) ring election algo-
rithm designed by Chang and Roberts [4]. Then, we verify Bouge’s snapshot
algorithm [3]. The algorithms have been encoded in B(PN)? (Basic Petri Net
Programming Notation) [2], an imperative language designed to have a simple
Petri net semantics. The code can be found in [6]. B(PN)? are automatically
compiled into 1-safe Petri nets by the PEP-tool.

A ring election algorithm Consider a distributed system which consists of N
processes Py, ..., Py_1 connected via a token ring. The ring election algorithm
of Chang and Roberts allows the processes to agree on a master process. In our
implementation we use a boolean variable success to indicate that some master
process is found during a single ring election. After resetting all processes success
is set to false.

Verification and results The main liveness property of the specification of the
ring election is that a master process is found infinitely often. The corresponding
LTL-formula is O ¢ (success = true). We have verified this property for N =
1...10 (N is the number of processes and fifo queues). Table 6 summaries the
sizes of the original Petri net N,,, and the product Biichi net N, for some
representative values of N, together with the time needed to verify the absence
of T*-invariants compared to the time SPIN [11] needed to verify the property.
This example is particularly favourable to our technique due to the fact that
there exist no semipositive T-invariants containing transitions in the pre- or the
postset of the accepting places of the underlying Biichi automaton. It must also
be said that the table does not include the time needed to construct the Petri
net from the BPN? program. This time was very large (about half an hour for
N = 10), but this is due to the fact that the implementation of the PEP-compiler
from BPN? into Petri nets has not been optimized yet.

N Nays N, time (sec.)

| P| | |T | | P| | |T | 2lp | SPIN
5 93 91 99 96 1.24 2.20
6 117 115 123 120 2.38 9.50
7 143 141 149 146 2.44 39.40
8 | 171 | 169 | 177 | 174 | 3.13 | (97.30)
9 201 199 207 204 3.68
10 233 231 239 236 5.01

Table 1. Results and comparison with SPIN for Chang and Roberts’ algorithm.

A snapshot algorithm Consider a distributed system with N processes and one
single monitor process M. Every process can synchronously communicate with
its neighbour processes and with the monitor process. The task of a snapshot
algorithm is to enable any process at any time to initiate a snapshot that is
generated in the monitor process M. After the generation of a single snapshot
all processes receive it and they are reinitialized.

We have implemented Bouge’s snapshot algorithm in B(PN)? for a ring ar-
chitecture of 4 processes.

Verification and results The task of the snapshot algorithm can be specified by
the following LTL-formula*:

3
a ((\/ active; = true) = osnapshot_generated = true)

=0
The Petri net corresponding to the B(PN)%-program has 175 places and 178 tran-

sitions. The product net contains 179 places, 178 transitions, and 254 different®

3 128 Mbytes main memory are exceeded.
* Here, active; denotes the local variable of the i-th process.
® Different w.r.t. their support.

final semipositive T-invariants. The P-components used for the T*-invariant test
were those corresponding to the variables of the B(PN)?-program. The product
net was constructed in 81 seconds, and the absence of T*-invariants was checked
in 64 seconds.

This example could not® be verified by SPIN. It could not be verified by
the stubborn set method either. We tried to compute the stubborn reduced
reachability graph using Starke’s INA tool, but had to abort the process after
20 hours, when 206000 reduced states had been generated.

7 Conclusions

We have presented a semidecision test for the model-checking problem of 1-
safe Petri nets and LTL. The model-checking problem is first reduced to the
emptiness problem of a Biichi net. Then, the test checks the presence or absence
of a particular class of T-invariants which we have called T*-invariants. If no
T*-invariants are present, then the Biuichi net is empty, and the property holds.
We were able to implement this check very easily by making use of the constraint
programming tool 2lp. We have shown that there exist real algorithms for which
our test allows to verify a property which cannot be proved using other exact
methods.

We finish the section with some comments:

On techniques for emptiness checking. Emptiness of Biuchi nets can also be
checked using exact methods, not only semidecision tests. Wallner is working on
the application of net unfoldings to this problem [17].

On the restriction to 1-safe Petr:i nets. In the paper we have restricted our
attention to 1-safe Petri nets. A different version of our test, however, can also
be applied to arbitrary Petri nets, even unbounded ones (which is not true of the
automata-theoretic approach). Essentially, instead of T-invariants it is necessary
to work with so called T-surinvariants.

On the T*-invariant test. The test we have developed is certainly not the only
possible one. We see it more as an experiment in using structural information
to prove liveness properties of real examples. We have implemented some such
tests in the PEP-tool, which can be applied when exact methods fail.

On the complerity of the test. It may be criticized that our test involves
solving an NP-complete problem (absence of T*-invariants), which may require
exponential time. Actually, we think that good tests are likely to be NP-complete.
Complexity results show that nearly all interesting verification problems about
1-safe Petri nets are PSPACE-complete. Polynomial tests for such problems are
bound to have poor quality, as confirmed by our experiments. NP-complete tests
lie between the poor quality polynomial tests and the PSPACE-complete exact
methods.

On the 2lp tmplementation. Constraint programming tools like 2lp open a
wide range of new possibilities in the application of structural objects like invari-
ants, siphons and traps to verification problems. They also allow to implement

6 128 Mbytes main memory are exceeded.

prototypes very quickly.

Acknowledgements We wish to thank Robert Riemann for his critical comments
on an earlier version of this paper. We also benefited from discussions with Frank
Wallner and Ahmed Bouajjani.

References

10.

11.

12.

13.

14.

15.

16.

17.

Eike Best, Raymond Devillers, and Jon G. Hall. The Box Calculus: a New
Causal Algebra with Multi-Label Communication. Number 4/92 in Hildesheimer
Informatik-Bericht. Universitat Hildesheim, Mai 1992.

. Eike Best and Richard Pinder Hopkins. B(PN)? - a Basic Petri Net Programming

Notation. In A. Bode, M. Reeve, and G. Wolf, editors, Proceedings of PARLFE 93,
volume 694 of Lecture Notes in Computer Science, pages 379 — 390, 1993.

. Luc Bouge. Repeated Synchronous Snapshots and their Implementation in CSP.

In W. Brauer, editor, Proceedings 12th ICALP, volume 194 of Lecture Noles in
Computer Science, pages 63 — 70. Springer, 1981.

Ernest Chang and Rosemary Roberts. An Improved Algorithm for Decentralised
Extrema-finding in Circular Distributed Systems. Communication of the ACM,
22(5):281 — 283, 1979.

Jorg Desel and Javier Esparza. Free Choice Petri Nets. Cambridge University
Press, 1995.

. J. Esparza and S. Melzer. Model-Checking LTL using Constraint Programming.

Technical report, Technische Universitat Miinchen, March 1997. Available at
http://papa.informatik.tu-muenchen.de/forschung/sfb342_a3/refs.html.

Javier Esparza and Glenn Bruns. Trapping Mutual Exclusion in the Box Calculus.
Theoretical Computer Science, 153:95 — 128, 1996.

Rob Gerth, Doron Peled, Moshe Vardi, and Pierre Wolper. Simple On-the-fly
Automatic Verification of Linear Temporal Logic. In Protocol Specification Testing
and Verification, pages 3—18, Warsaw, Poland, 1995. Chapman & Hall.

. Patrice Godefroid. Partial-Order Methods for Verification of Concurrent Systems,

volume 1032 of Lecture Notes in Computer Science. Springer, 1996.

Bernd Grahlman and FEike Best. PEP — More than a Petri Net Tool. In
T. Margaria and B. Steffen, editors, TACAS 96, volume 1055 of Lecture Notes
in Computer Science, pages 397 — 401. Springer-Verlag, 1996.

Gerald J. Holzmann. Basic Spin Manual. AT&T Bell Lab., Murray Hill.

Joxan Jaffar and Jean-Lois Lassez. Constraint logic programming. In 14th Annual
ACM Symposium on Principles of Programming Languages, 1987.

Ken McAloon and Carol Tretkoff. Optimization and Computational Logic. John
Wiley & Sons, 1996.

Antti Valmari. A Stubborn Attack on State Explosion. Formal Methods in System
Design, 1:297 — 322, 1992.

M. Vardi and P. Wolper. Reasoning about infinite computations. Information and
Computation, 115(1):1 — 37, 1994.

Moshe Y. Vardi and Pierre Wolper. An automata-theoretic approach to automatic
program verification. In Proceedings of the First Symposium on Logics in Computer
Science, pages 322 — 331, Cambridge, June 1986.

F. Wallner. Model-Checking LTL using Net Unfoldings. Technical report, Tech-

nische Universitat Munchen, Institut fir Informatik, Forthcoming 1997.

This article was processed using the IATEX macro package with LLNCS style

