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Abstract: This invited paper present in a semi-formal illustrative way several new
results concerning the analysis and synthesis of free choice systems. It is a complementary
work of the survey by E. Best [Best 87]. In the analysis part, we characterize liveness and
boundedness in linear algebraic terms. As a consequence of the new characterizations, both
properties are shown to be decidable (as a whole) in polynomial time. We also provide two
different kits of sound and complete reduction rules (the one reverse-dual of the other).

We address then the problem of synthezising live and bounded free choice systems within
the two basic design methodologies: top-down and modular (synthesis by composition of
modules). Two complete kits of top-down synthesis rules are provided. They are essentially
the reduction kits obtained before, but this time considered in the reverse direction. The
completeness of the kits can be used to prove new results (or give new proofs of old results)
using structural induction on the chain of applications of the rules that synthezise a given
system. In the modular approach, exact conditions for the preservation of liveness and
boundednes under compositions of systems are given. These conditions are the absence of
certain design errors, called killing choices, killing joints, synchronic mismatches and state
mismatches. They help to understand why a certain system is not well behaved.

Keywords: Analysis, free choice nets, linear algebra techniques, reduction, state refine-
ment, structure of systems, modular synthesis, top-down synthesis, transformation.
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1 Introduction

Petri Nets (PNs) are well known abstract models of concurrent systems, with an intuitively
appealing graphical representation, very appreciated in engineering circles. They provide a
formal frame where the two basic problems, analysis and synthesis, can be investigated.

The analysis problem can be stated as follows: given a model (a PN model in our case),
does it satisfy a certain set of properties of good behaviour? The indigenous PN techniques
developed for this problem can be classified into three groups: reachability, reduction and
structural techniques. In systems with a finite number of states (i.e. bounded systems),
the reachability approach permits to answer all analysis questions. However, this technique
requires an exhaustive exploration of the state space, which hinders its application to large:
systems. In non-bounded systems only some analysis questions can be answered (e.g. regu
larity problems [Fink 90]).
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Structural techniques are based on the relationships between the behaviour of a system
and the structure of its underlying net. More precisely, given a behavioural property, the
structutal approach tries to find structural properties characterizing it partially (only neces-
sary or sufficient conditions) or totally (necessary and sufficient conditions). Structural anal-
ysis techniques use basically graph theory (e.g. [Best 87, TV 84]) and linear algebra/convez
geometry arguments (e.g. [CCS 90b, CS 89a, CS 89b, Laut 87a, MR 80]).

Reduction (or abstraction) techniques [Bert 87, Silv 85] simplify the system by means
of reduction rules which preserve the properties under study (the reduced systems enjoys
the property if and only if the original one enjoys it as well). Applying reduction rules in
an iterative way, a sequence of progressively more simple models is obtained, in which it is
easier to check if the desired property holds. Sometimes the final system is trivial, and the
question can be immediately answered; otherwise other analysis techniques are needed.

Synthesis is the second basic, and more difficult, problem. It can be stated as follows:
given a set of properties of good behaviour, how to construct systems enjoying them? This
problem is strongly related to design methodologies. The two basic and complementary
approaches are the top/down (sometimes refinement) and the modular (or compositional).
The first one is just the reverse of the reduction analysis approach. In the second case
modules (subsystems) are merged (composed) into new systems.

Petri nets permit to combine in easy and powerful ways three fundamental situations:
sequence, conflict (choice) and concurrency. The interplay of the last two situations can make

“it very difficult to find relationships between behaviour and structure. To obtain structural
characterizations of behavioural properties, the only actual possibility is to restrict the class

.of nets in such a way that the interplay between concurrency and choice is particularly
sinfple. The analysis and synthesis problems are trivial for systems in which synchronization
is structurally forbidden such as State Machines. For Marked graphs, systems in which
choices are structurally: forbidden, they are not so trivial but have been both extensively
studied (see [CHEP 71, ES 89b, GL 73, Mura 89]), and are very well understood.

Free Choice systems are located at an interesting place in the tradeoff between practical
modeling power and analyzability. An ordinary net (i.e. arc weights equal to 1) is free-
choice iff all the transitions in a conflict have only one input place. This way, choices
cannot be influenced by the environment (a concept similar to the internal nondeterminism
of TCSP). Partially based on works by Commoner, Hack’s thesis [Hack 72] is the pioneer
reference for FC nets theory. Two surveys on the results obtained till 1987 are [Best 87,
BT 87]. Since then, further contributions are [BCDE 90, BD 90, Des 90, DE 90, ES 89a,
ES 89b, Espa 90a, Espa 90b, ES 90a, ES 90b, ES 90c, Vogl 89]. To maintain this work at a
semiformal illustrative level, the analysis works surveyed concern only two basic properties:
liveness and boundedness. Analogously, only the synthesis of live and bounded free choice
(LBFC) systems is considered. In [Des 90] the reduction/synthesis of live and safe FC
systems without frozen tokens is done using a kit of four rules. Result concerning home

~states in LBFC systems are reported in [BCDE 90, Vogl 89], while the reachability problem
. in the home space for LBFC systems is solved in [DE 90]. The main topics selected for
- presentation in this paper are the three following:

(1) liveness and boundedness (as a whole) can be linearly characterized for FC systems.

i~ (2) the class of LBFC systems can be reduced/top-down synthetized by means of kits of
two rules (one non local).

(3) the class of LBFC systems can be synthetized (and also reduced) by means of modular
compositions.
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Given the above selection, the concepts of handles and bridges [ES 89a] are not considered
here. basically because they are specially useful for proof techniques, that provide results on
LBFC systems that are interpretable at higher-level [ES 90a, ES 90b].

Sections 2 and 3 are devoted to the analysis problem. Section 2 introduces our linear
algebraic characterization of liveness and boundedness. It is shown how Hack’s duality
theorem can be derived from it. Section 3 introduces the kits of reduction rules.

The synthesis of LBFC systems is considered in sections 4 and 5. Two reverse-dual kits
of top-down rules are introduced. They are, informally speaking, the reverse of those of
reduction rules. The completeness of the kits permits to state a generative definition for
LBFC systems: those that can be generated by them. Using this alternative definition new
results or new proofs of known results can be given using structural induction on the chains
of applications of the rules.

We present then exact conditions for the preservation of liveness and boundedness under
synchronisations of nets (a particular kind of composition in which, essentially, transitions
are merged). They are the absence of two design errors called killing choices and synchronic
-mistmachs. Using the duality theorem, it is shown that the absence of other two errors (killing
Jjoints and state mismatches) characterize the preservation of liveness and boundedness under
fusions (compositions in which, essentially, places are merged).

In the sequel N = (P, T, F) is a net, where P represent the set of places, T the set of
transitions and F is the flow relation. A marked net-or system, (N, Mp), is obtained by
associating an initial marking, Mo, to the net N: usually N is said to be the underlying net
of the system (N, Mp). )

2 A linear algebraic approach to the analysis problem

Our linear algebraic characterization of liveness and boundedness is splitted into two parts.
We characterize first the structure of the FC nets which can be endowed with a live and
bounded marking. The second part characterizes the markings that make such a lively and
boundedly markable net live and bounded.

2.1 Some’deflnitions and results

Let us recall structural boundedness and structural liveness notions.

A net N is said to be structurally bounded (SB) iff for every initial marking My, the system
(N, Mo) is bounded. The interest of structural boundedness is that it does not depend on
any initial marking, but only on the underlying net N. :

A net N is structurally live (SL) iff there exists at least one initial marking, Mo, for:
which (N, Mp) is live. Structural liveness is a necessary condition for liveness. Once agam,
structural liveness depens only on the net N.

Our first result, in the next section, characterizes structural liveness and structura.l bound-
edness (SL&SB). This is not in general what we promised above, since not every net that can
be endowed with a live and bounded marking is SL&SB (although the converse obviously:
holds). But the following result, a consequence of classical results (Hack 72], shows that both
notions collapse for FC nets. ;5

Proposition 2.1 [Espa 90b] Let N be an FC net. Then, there ezists My such that (N, M)
is live and bounded iff N is SL&SB.
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(a) Structuraily live (r=p) (b) Structurally non live (rep)
r=rank(C) = § r=rank(C) =3
P= mén-a-1=7+7-8-1=5 P MEn-a-1=445-0-1=2

Figure 2.1. Two consistent and conservative free choice nets.

ty

a b
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¢
's
-(a) Non consistent state machine: (b) Non conservative marked graph:
~ Structurally non live, even if r » p Structurally unbounded, evenifr=p
r = rank(C)=3 r = rank(C)=3 -
P=m+n-a-1=5+44-5-1=3 P= m+n-8-1=445-5-1=3

Figure 2.2. Non consistency or non-conservativeness destroy the algebraic characteriza-
tion of theorem 2.3.
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The characterization we provide of SL&SB is given in linear algebraic terms. It comple.
ments for FC nets the following well known result, in which SL&SB are related to two prop-
erties of the incidence matrix, called conservativeness and consistency. A net N = (P, T, F)
with incidence matrix C is conservative iff (Y > 0 means Y(p) > 0, Vp € P):

¥ >0:YT-C=0
N is consistent iff (X > 0 means X(t) >0, Vt€ T):
3IX>0:C-X=0

‘Conservativeness and consistency can be stated in term of p- and t-semiflows, respectively.
A rational-valued vector Y X 0 (X X 0) is a p-semiflow (t-semiflow) of N = (P, T,F)
iff YT.C =0 (C-X = 0). The support of a p-semiflow Y, denoted by ||Y]|, is the set

I¥ll = {p € P :Y(p) > 0}. Analogously, | X|| = {t € T : X(t) > 0} is the support of the
t-semifiow X. Therefore;

N is conservative <« 3Y, a p-semiflow such that ||Y] =
N is consistent & 3X, a t-semiflow such that || X||=T

Theorem 2.2 [Sifa 78, MR 80) Let N be an SB&SL net. Then N is conservative and :
consistent.

Unfortunately, the converse of this result is not true. The net of Figure 2.1b is antg
example. This net is conservative and consistent, but structurally non live. The question:
is, which condition should be added to conservativeness and consistency in order to get a
characterization of SL&SB? We do not know the answer in general, but the main result of
the next section gives the answer for FC nets.

2.2 A linear algebraic characterization of structural liveness and
consequences _ '?

The ‘missing condition’ for FC nets is, maybe surprisingly, that the rank of the incidence’
matrix (i.e. the maximal number of linearly independent rows and columns) has to be a very%
simple function of the number of places, denoted by n, the number of transitions, denoted by
m, and the number of arcs leading from a place to a transition, denoted by a = |F'N(P x T)l

Theorem 2.3 (Rank Theorem) Let N be an FC net. N is SL&SB iff it is conservatwe,/
consistent, and rank(C)=m —1 — (a — n).

This result is illustrated in Fig. 2.1, 2.2 and 2.3. The net of Fig. 2.1.a satisfies the

conditions, and is hence SL&SB (a live and bounded marking is shown). The other netseé
show that all conditions are necessary.

- Fig. 2.1.b: the net is FC, conservative and consistent but does not satisfy the rank
“equation. It is not SL.

- Fig. 2.2.a: the net is FC, conservative and satisfies the rank equation but it is not:
consistent. It is not SL. ‘

- Fig. 2.2.b: the net is FC, consistent and satisfies the rank equation, but it is not.
conservative. It is not SB.
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- Fig. 2.3.a: the theorem is false for Extended FC nets. The net is SL&SB, but does not
satisfy the rank equation. Let us point only that the theorem could be reformulated
in a less elegant way to make it hold for this subclass [CCS 90b].

- Fig 2.3.b: the theorem is false for non-FC nets. The net is SL&SB, but does not satisfy
the rank equation.

This characterization was conjectured by the second author, together with J. Campos and
G. Chiola, while studying performance bounds for LBFC stochastic systems. We will expose
here part of the original argumentation [CCS 90a] that lead to one half of the property, since
we think it can provide good insight on the result. Assume (N, Mp) is an LBFC system, and
a probabilistic prescription to solve the conflicts of N is given (e.g. if a place has three output
transitions t,, t,, t3, firing probabilities ry, ry, r3 are associated to them with the constraint
ri+7r2+r3 = 1). Let now G be a vector of dimension |T'| expressing the relative frequency of
firings of the transitions in the steady-state of the net (the reader will have to believe that
this steady state exists). After a little thought, it can be guessed that this vector is unique,
once it has been properly normalized by setting the frequency of an arbitrary transition to
1. This means that G is completely characterized by

- The structure of the net N, that is represented by the incidence matrix C, provided
there are no self-loops (i.e. Vt € T Pre(t)T - Post(t) = 0).

- The probabilities assigned to transitions in conflict. They can be represented by a ma-
trix R, having a row for each pair of transitions in conflict and a column per transition.

For instance, consider the net of Fig. 2.1.a. It has one single pair of transitions in conflict,
namely the pair formed by ¢, and ¢,, the two output transitions of p;. Thus, R has only one
row. Let the conflict be solved with probability r for t;, and 1 — r for ¢;. Then:

Git) _ v
G(tz)—l—f‘

S (1-rG(t) —rG(ty) =0

Therefore R = (1 — r,-r,0,0,0,0,0).
The fact that G is unique implies that, for any assignation of probabilities, the system

o
(R‘)-G,,=0,G>0

has a unique solution. This means that the space of right annullers of the matrix has
dimension 1, and hence the dimension of the space generated by the rows of the matrix has
dimension m — 1. Since this happens for all the possible assignations of probabilities, the
spaces generated by the rows of C' and R must be disjoints, and hence

rank(C) + rank(R) = m -1

Now, we can observe that the number of linearly independent rows of R is @ — n: each
place p contributes with [p*| — 1 independent constraints to R (e.g. if p has three output
transitions ¢y, t,, i3, only two probabilities r, r; can be set up independently, the third one
being given by the constraint ry + r; +r3 = 1). Adding up the constraints corresponding to
all the places, this number is obtained. Hence, we have

rank(C)=m—1—-{(a—n)
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(a) Extended free choice net A(b) Asymmetric choice net
r=rank(C)=1 - . r=rank(C) =3
p=m+n-a-1 = 3+3-5-1=0 p=m+n-a-1 = 5+5-7-1=2

Figure 2.3. Two live mid structirally bounded nets with r #

Figure 2.4. An SL&SB asymmetric choice net: It is non live even if all p-semiflows are
marked.. ‘ _
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" In [Espa 90a] the algebraic characterization of structural liveness is proven for the par-
ticular case of state machine decomposable free choice (SMD-FC) nets. Independently of
stochastic concepts, in [ES 90c] a formal proof of the theorem will be given. The necessary
condition follows the above line of though, while the sufficiency is more complicated.

The first important fact about this theorem is that many of Hack’s classical results can
be derived from it or the proof process. In particular, the one which has an immediate proof
is the so called “duality theorem”. We need a previous definition: given anet N = (P, T, F),
its reverse-dual is the net N,q = (T, P, F~1) (i.e we replace places by transitions, transitions
by places, and reverse the direction of the arcs). It is easy to see from the definition that if
N is FC, then N,; is FC as well.

We can now state the result.

Corollary 2.4 (Duality Theorem) Let N be an FC net and N,4 its reverse-dual net. N
is SL&SB iff N,q is SL&SB.

Proof: It follows easily from the definition of the reverse-dual net that C,q4 = —CT,
where C' and C,4 are the incidence matrices of N and N, respectively. Some consequences
of this fact are:

(a) rank(C) = rank(C,q)
(b) N,q is conservative iff N is consistent

{c) N,q is consistent iff N is conservative
Using theorem 2.2, we have that N, 4 is FC, conservative and consistent. Moreover
rank(Ca) = rank(C) =n — 1 — (a — m) = Myg — 1 — (Grg — Na) = Mg — 1 — (ayg = mya)
Hence, by theorem 2.3, .V, is SL&SB. »

A second immediate consequence of theorem 2.3 is that SL&SB of an FC net is decidable
in polynomial time.

Corollary 2.5 Let N be an FC net. ‘Then it can be decided in polynomial time if N is
SL&SB.

- Proof: Linear programming problems have polynomial complexity [Karm 84, GT 89).
Conservativeness of a net can be decided by means of the following linear pmgmmmmy

:problem (LLP) (which is a little bit tricky, because the optimization function is identically
2ero)

max Y7.0
st. YT.C=0
Y21 e

A similar LLP can be used to decide consistency. Finally, the rank of a matrix can be
calculated using standard methods of linear algebra. All these problems have polynomml
complexity. Apply then theorem 2.3. , -
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2.3 A linear algebraic characterization of liveness for structurally
live and structurally bounded free choice nets

Theorem 2.3 characterizes the lively and boundedly markable FC nets. Once we have one
of these nets, we would like to know which are exactly the markings that make it live and
bounded. By proposition 2.1, we know that the net is SL&SB, and hence bounded for any
marking. It remains to characterize which markings make it live. The answer can be given
in terms of the p-semiflows of the net, again a linear algebraic concept. A p-semiflow is
marked at a marking M iff at least one of the places of its support is marked at M.

Theorem 2.6 [Espa 90b] Let N be an SL&SB FC net. (N, Mo) is live iff all p-semiflows
of N are marked at M (i.e VY 20,YT-C =0:YT - M, > 0).

The “only if” part holds in general: if a p-semiflow is unmarked at the initial marking, it
remains unmarked at any reachable marking. But then the output transitions of the places
of its support never fire. The “if” part can be proved from basic results in [Hack 72].

Theorem 2.6 is not true for non-FC nets. The net in Fig. 2.4 is SL&SB, and all its p-
semiflows are marked at the initial marking shown. Nevertheless, the corresponding system
is non-live.

A first corollary of theorem 2.6 is the well known result that the addition of tokens
preserves liveness and boundedness in LBFC systems (this can be also directly derived from

Commoner’s Theorem, [Hack 72]), something that is not true for asymmetric choice nets
(add a token to p3 in Fig. 2.5).

Corollary 2.7 (Liveness Monotonicity) Let (N, M) be an LBFC system. Then, for
every My > My, (N, M} is live and bounded as well.

Proof: By proposition 2.1, N is SL&SB. By theorem 2.6, M, marks all p-smniﬂo;vs

of N. Then Mj marks them as well. Applying theorem 2.6 again, (N,M}) is live and
bounded.

A second corollary states that hveness and boundedness, as a whole, are decidable in
polynomial time.

Corollary 2.8 (Polynomial Complexity) Let (N, M,) be an FC system. It can be de-
cided in polynomial time if (N, My) is live and bounded.

Proof: By proposition 2.1 and theorem 2.6, (N, My) is live and bounded iff N is SL&SB
and all p-semiflows of N are marked at My. The first condition can be checked in polynomial

time (corollary 2.5). The second condition can be checked solving, also in polynomial time,
the following LPP:

max YT.0.

st. YT.C=0
YT'M():D
Y 20

It is obvious that all p-semiflows are marked iff this LPP has no solutions. s

This result can be compared with the one obtained by Jones, Landweber and Lien in
[JLL-77): deciding if an FC system is live is an coNP-complete problem.

To finish the section, let us remark that in [ES 89b] a quite different approach for deciding
liveness and boundedness of FC nets, also polynomial, was presented. The method is based
on an extension of Lauteribach’s ideas relating deadlock, traps and p-semiflows [Laut 87b].
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3 Analysis through reduction

The idea underlying reduction techniques is the following: given some properties to be
analysed, transform the system into another one such that

- The properties hold in the transformed system if and only if they hold in the initial
system. When this happens the transformation is said to preserve the properties.

- The properties are easier to analyse in the transformed system.

The transformations are performed by repeated application of a kit of reduction rules
(elementary transformations) preserving the considered properties. A reduction rule consists
on two parts:

- The conditions that have to be satisfied for the rule to be applicable

- The changes that specify the transformation

Both of them can be divided again into conditions and changes concerning the structure
of the system and conditions and changes concerning its marking.

One of the problems of reduction analysis is that there can be systems to which the rules
are not applicable. If these systems have a large size, their reachability analysis can be also
computationally very complex. Here is where the notion of completeness of a kit of rules
plays a réle. A kit of rules is complete w.r.t. a class of systems if all the systems of the
class satisfying the properties are transformed after the iterative application of the rules into
one or more particularly simple systems (called elementary systems). In this case, we can
decide if a system enjoys the properties just checking which is the final system after the
transformation, and no further analysis is needed.

The goal of this section is to introduce two complete kits of reduction rules for the class
of FC systems with respect to liveness and boundedness. In the first part of the section we
introduce the two rules of the first kit. They are, essentially:

- Removal of so called marking structurally implicit places

- Substitution of certain P-g’raphs by a place

This kit can be hence considered as place-oriented. In the second part we introduce,
making use of the duality theorem, a transition-oriented kit consisting of

- Removal of certain transitions, called structural bypasses

- Substitution of certain T-graphs by a transition

3.1 A place-oriented kit of reduction rules

Let us consider first the rule of removal of places. As usual, C denotes the incidence matrix
of a net N. N~ denotes the net obtained from N by removing the place p, together with
its tokens and its input and output arcs. The corresponding incidence matrices are denoted
by C and C~? It is then clear that
&)
C(p)



Figure 3.1. Place p; is 2-bounded, while the other places are safe.



where C(p) is the row associated to p in C.

The places that can be removed are those whose rows in the incidence matrix are non-
negative linear combinations of the rows of other places. We call them marking structurally
implicit places (MSIPs for short) {CS 89b]. The reason of the name is given below.

Definition 3.1 4 place p is an MSIP of N = (P, T, F) iff C(p) is a positive linear combi-
nation of the rows of C77:

Y, 20: C(p)=YT-C™*
The following property can be easily derived from the definition.
Property 3.2 [Silv 85] Let p be a MSIP. Then Vt € *p [t*| > 1 and Vt € p* |*t| > 1.

This property provides an easy to check necessary condition for a place to be an MSIP.
In particular. it is obvious that P-graphs are MSIP-free nets. »
The reason of the name is that for every marking of the net N~?, there is a marking of

p that makes it implicit, meaning that the language of the net before and after adding this
place does not change.

Property 3.3 [CS 89b] Let p be an MSIP of N. Then, for every My?, there is M, (equal
to My? in P\ p) such that the languages of (N, M,) and (N~?, My*) are equal.

This property will be used later on in some proofs.
" The following theorem shows that the removal of an MSIP from an FC net preserves
SL&SB. The proof is given to show an application of the rank theorem.

Theorem 3.4 Let N = (P,T,F) be an FC net and p € P an MSIP of N. Then N7 is
SL&SB iff N is SL&SB.

Proof: First, it is obvious that N~? is FC with n —1 places, m transitions and a—1 input
arcs to transitions. We show that, under the conditions above, N is conservative, consistent
and rank(C) = n — 1 — (a — m) iff N~? is conservative, consistent, and rank(C~?) =
(n —1) —1—((a — 1) — m) = rank(C). Applying then theorem 2.3, the result follows.

Let Y, 20 be the vector such that Y,,T -C~? = C(p).

(i) N is consistent <» N7 is consistent
(=): Obvious, because no transition has been removed.

(«): Since N~P is consistent, thereis X > 0, C~?- X = 0. We show that C- X = 0,
what implies that NV is consistent as well.

ferx] cr.X o7
C‘X“[cm-x}‘[Y:-C-"-X]‘“

(i) N conservative <> N~? is conservative
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(=): Since N is conservative, there is W > 0, WT .(C = 0. This vector W can be

written
Y
w=|t]

with k > 0. Hence
0=WT-C=Y"-C?+kC(p) = (Y +kY,) - C7

Since Y + kY, > 0, N7 is conservative.

(<): Since N~? is conservative, there is W > 0, WT . C~? = 0. Take X > 0 such that
Y' =AW -Y, > 0. Then:

0= WT.cr=(Y+Y,)l.cP=YT.C?P+Clp)=[Y"T|1]-C
Since Y’ > 0, N is conservative
(iit) rank(C)=n-1-(a=-m) & ranlc(C’_") =n-1)—1- ((a —|p*}) —m)
a) by propertjé 3.2 and'th‘ev.FC deﬁnition; Ip°l = 1. Hence
n—1-(a—m)=(n—1)—1-((a—1)—m)
b) by the MSIP definition, rank(C) = rank(C~?)

and the result follows. -

It can be shown that the “if” part of this theorem holds in general. The “only if part”
does not. The net of Fig. 2.5 is an example. The place p; is an MSIP of the net: C(p3) =
C(ps) + C(ps) + C(p1). Nevertheless, removing p; the net becomes structurally non live.

We already know that the removal of an MSIP preserves SL&SB for FC nets. We should
see now which are the conditions for the removal to preserve liveness. It is not difficult to
prove that, if every p-semiflow of N is marked at Mj, so is every p-semiflow of N~? at the
marking Mg?, consisting of the projection of My on P \ {p}. Using then theorem 2.6, we
obtain that if (V, My) is live, so is (N~?, My*). Unfortunately, the converse does not hold.
It can be the case that, when removing p, we destroy unmarked p-semiflows of N, and pass
from a non-live to a live system. That is why the rule requires that all p-semiflows of the
source net have to be marked. The existence of an unmarked p-semiflow can be detected
in polynomial time, by means of the LPP used in the proof of corollary 2.8. Fortunately,
it is not necessary to check this condition every time we want to apply this rule, but only
the first one. The reason is that, if the net contains an unmarked p-semiflow, it follows
immediately that it is not live (the p-semiflow remains always unmarked, which implies that
the output transitions of the places contained in its support can never fire). In this case the
analysis is finished. On the other hand, if all the p-semiflows of the initial net are marked,
this property is transmited to the reduced systems by the rule we introduce now, and the
second one presented next.
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RepucrioNn Rure RIM

Structural conditions : N is an FC net containing an MSIP p
Marking conditions : Every p-semiflow of N is marked

Changes : Remove p with its tokens, input and output arcs.

Theorem 3.5 [Silv 85] [ES 90a] RIM preserves liveness and boundedness, but not the
bound of the net.

The preservation of liveness and boundedness follows, essentially, from theorems 2.6 and
3.4. Figure 3.1 shows that the bound is not preserved.

Let us now introduce the second rule of this first kit, which consists of the substitution
of a P-graph (N is a P-graph iff Vt € T,|t| = |t*|] = 1) by one single place. A previous
definition is needed.

‘Let N' = (P',T", F') be a subnet of N = (P, T, F) [i.e. F'=Fn((P'xT)U(T' x P"))).
A place p' € P’ is a way-in place of N’ iff *p N (T'\ T') # 0, where the dot refers to N.
Analogously, p' is a way-out place of N iff p* N (T'\ T") # 8. That is, the way-in places are
those that can be used to “enter” into the subnet, and the way-out places the ones through
which we can “get out” of it. Way-in and way-out transitions are defined analogously. They
will be used later on.

Definition 3.6 Let N’ be a subnet of N. N' = (P, T', F') is reducible to a place if:

(a) N’ is a P-graph containing at least one transition and Vt € T" : [t* N P'| < 1 and
tnP<1.

(b) For every p’ € P, there exists at least an F'-path from a way-in place of N' to P'.

(¢) For every p' € P' and every way-out place p|, of N', there ezists an F'-path from p' to

'Y

The next definition, although somewhat complex, éxpresses no more than the standard
%otion of substitution of a net by a place.

iDeﬂnition 8.7 Let (N = (P,T,F),My) be a system and N’ = (P',T'; F') a subnet of N
reducible to a place. The net N, = (P,,T,; F,), with

- P,=(P\P’)U{7f}
-T,=(T\T)
- F,=(FN((P, x T,)U(T, x P,))) U Fy, where

- (t,x) € F, iff there exists (t,p’) € F with p € P!
- (%,t) € F, iff there ezists (p/,t) € F with ¢/ € P'.
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is a macroplace reduction of N, and = is the macroplace that replaces N'. The system
(N,, M,), where N, is the reduction of N and M, is given by:

- M.(p)=Molp) ifp# ™
- My(x) = Lpepr M(p)

is called a macroplace teductibn of (N, My).

RepucTioNn Rure RMP

Structural condition : N contains a subnet N’ reducible to a place.
Marking condition : none.

Changes : (N, M) is reduced to (N,, M,), macroplace reduction in which N " is substituted
by a macroplace

Figure 3.2 illustrates the macroplace reduction rule. In order to apply RDMP it is
necessary to find the subnets of a net that can be reduced to a place. In [Silv 81] an
efficient (polynomial) algorithm for this purpose is given. It consists of removing first all
the transitions with more than one input or one output arc, what splits the net into one or
more P-graphs (Fig. 3.2b is obtained from Fig. 2.1a removing t3, ¢4 and their incident arcs).
Then simple recursive procedures are applied to each connected subnet to check conditions
(b) and (c) of definition 3.6. The subset of places {p;,p2,p3} cannot be reduced to a single
place because liveness would not be preserved (e.g. do this reduction in the context of Fig.
2.1b).

The utility of the macroplace concept lies in the following result, which holds in general.

Theorem 3.8 [Silv 81] RMP preserves liveness and the bound of the system (thus bound-
edness). '

Figure 3.3 illustrates an application of the macroplace reduction rule. Let us see how
we could go on reducing the net after that. The reader can easily check that C(MP1) =
C(M P2), and hence any of these two places is an MSIP. Removing any of them a strongly
connected state machine is obtained. The application of the macroplace reduction rule
leads to a net with one place and one transition, which is trivially live and bounded. A
more complex reduction process is presented in Fig. 3.4. In the first step the macroplaces
“B+D+F+G” and “M+J” are created. They can be removed one after the other, since both
are MSIPs in the corresponding nets. After that, the macroplace rule can be used again,
leading to the macroplaces “K+A+C” and “L+H+1". This last place is an MSIP. Removing
it, and applying the macroplace rule again, a system with one place and one transition is
obtained. Thus the original system was live and bounded. The procedure followed in these
two examples is the following Reduction Algorithm.
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(a) Reducible subnet and its reduction () {p1.p-p3} cannot be reduced o
a single ‘place

Figure 3.2. Macrdplace reduction rule.

Figure 3.3. An application of macroplace reduction rule.



Reduction algorlthm

begin
input := < N; Mo >, a FC system
=0

< NjyM; >:=< N, My >;
do while (< N;, M; > is reducible)
do while (< N;, M; > is RMP-reducible)
let < Niy1, M;zq > be the result of applying RMP to < N;, M; >;
t:i=14+1;
od
do while (< N;, M; > is RIM-reducible )
let < Nij1, Miy1 > be the result of applying RIM to < N;, M; >;

=141,
od
od
output < N;, M; >
end

The importance of this algorithm is that it is complete. In order to state this result we
need first the concept of elementary system. A system < N = (P, T, F), M, > is elementary
iff P = {p}, T = {t}, F = {(p,t),(t,p)} for some elements p,t and M, > 0.

Theorem 3.9 [ES 90a] (Soundness and Completeness of the Reduction Algo-
rithm) Let (N, M,) be an FC system. The application of the reduction algorithm to (N M)
yields as output an elementary system iff (N, My) .is live and bounded.

If we apply the above algorithm to any system constructed by marking the net in Fig.
2.1b, we see that the system cannot be reduced. Being not elementary, it follows that it is.
non-live or non-bounded. '

We would like to expose briefly an outline of the completeness proof, because it provides
good insight about how FC systems work. The proof relies heavily on Hack’s decomposition
result, whose statement requires some previous notions. A P-component of a net N =
(P,T.F) is a subnet N’ = (P',T", F') of N with the two following properties:

- N’ is a strongly connected P-graph
- *P' = P'* = T', where the dot refers to N

Notice that a P-component N’ is characterised by the set of its places, P/. Moreover if
Y €(0,1)" with Y(p) =1 iff p€ P',Y is a p-semiflow of N (i.e. YT.C =0).

N is said to be covered by a set of P-components if every place belongs to at least one
of the P-components of the set. This set is called a cover. The net of Fig. 3.4 is covered
by the P-components with sets of places {A,B,D, F,G}, {A,C,E,K}, {H,I,E,L} and
{H,I1,J,M}. Hack’s decomposition theorem states that this is always the case for LBFC
systems.

Theorem 3.10 [Hack 72] (Decomposition Theorem) Let (N, Mo) be an LBFC system.
Then N can be covered by P-components.
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K+A+C L.+H+1 K+A+C

O O
. [ c
O,
E+K+A+C
u 1

Figure 3.4. A reduction of a historical FC system (from [Hack 72)).




The completeness of the Reduction Algorithm is shown by proving the following result:
it is always possible to apply the reduction rules to an LBFC system in such a way that
the reduced system can be covered by a smaller number of P-components. Iterating this
sequences of reductions, we get at the end a system covered by one single P-component,
which implies that the system itself is a strongly connected P-graph. It is then possible to
apply the macroplace rule to reach an elementary system.

We have to show hence how to reduce a system covered by r P-components to another
one covered by r — 1. We need a couple of previous notions.

Definition 8.11 Let C = {Ny,...,N,} be @ cover of P-components of N. The net N
covered by { Na,...N,} is called the environment of N;. ' :

Let now N} be a subnet of Ny. Nj is a private subnet of Ny iff the following three.
conditions hold: ' ‘ : : :

(¢) Nj is connected
(b) N? and N, are disjoint - v , i
‘(é,) N} is m.aztmal. in the sense that no bigger subnet of Ni satisfies both (a) and (b).

Private subnets are those parts of a P-component in which the environment does not in-
terfere. In our example of Fig. 3.4, with the cover given above, the subnet with {B, D, F,G}
as places and {b,d, ¢, f, g} as transitions is a private subnet of the P-component characterised
by {A,B,D,F,G}. :

Consider now a P-component such that when we remove all its private parts what remains
(its environment) is strongly connected. It is not difficult to show that such a P-component
always exists. In our example, the P-component generated by {4, B, D, F,G} satisfies this_
condition. : ‘

We proceed in two steps. First, we show by means of the next theorem that the private
subnets of such a P-component, let us call it Ny, can be reduced to a place. Then, we show
that the macroplaces so obtained are MSIPs, and hence can be removed. After this, the:
reduced system is just the environment of N;, which can be covered by (r — 1) P-components:
(the old cover without Ni).

Theorem 3.12 [ES 90a] [Espa 90b] Let Ny be a P-component of an LBFC system, such
that its environment is strongly connected. Let N| be a private subnet of Ny. Then N has
eractly one way-out place.’

The only way-out place of the private subnet mentioned above is G. This theorem shows
immediately that these private subnets fulfil the three conditions of definition 3.6. The third
condition is immediately satisfied, because all places are connected to the only way-out place
of the subnet, and hence to all of them. But the theorem has a clear interpretation as well.
Private subnets of a P-component, which structurally can be considered as a sequential
process, represent the part of the behaviour that the process can perform independently,
without having to agree with other processes. Theorem 3.12 points out that this private
behaviour is strongly constrained. Since private subnets have one single way out place,
the environment, once a token has been put into the subnet, knows that eventually it will
reach this place. The process can delay this final outcome, maybe for ever if the private
subnets contains cycles and no fairness assumption is made, but cannot choose between
different outcomes. Freedom of choice requires to pay a high price: no process can take
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privately a decission which could have influence on the environment. This result should not
be surprising: if nobody can be forced to do anything that (s)he does not want to do, then
nobody should be able to decide privately things that concern other people. From this point
of view, theorem 3.12 just formalises this idea, giving a precise interpretation of the concepts
concern and privacy.

The second part of our procedure requires to prove that the macroplaces we obtain after
the reduction are MSIPs. This is done by means of the following result, which characterizes
MSIPs in LBFC systems in terms of a surprisingly simple graph theoretical condition.

Theorem 3.13 [ES 90a] [Espa 80b] Let (N, M) be an SL&SB FC net and p a place of
N. If N=? is strongly connected, then p ts an MSIP of N.

As a last comment, the reader can check that both reduction rules can be applied by
means of polynomial time algorithms. Because of the completeness of the reduction process,
this provides an alternative polynomial algorithm to decide liveness and boundedness.

3.2 The reverse-dual kit

If we consider the structural parts of the place-oriented reduction rules (the structural condi-
tions and the structural changes) we get structural rules. They transform nets, not systems,.
and preserve the existence of a live and bounded marking, instead of liveness and bounded-
ness. In the case of FC nets, we know by proposition 2.1 that they preserve SL&SB as well.
We can now profit from the duality theorem (corollary 2.4) to obtain what can be called
structural reverse-dual rules. They are defined as follows:

- The strucural reverse-dual rule can be applied to N iff the structural rule can be applied
to N,q4.

- If the structural rule transforms N into N’, then the structural reverse dual rule trans-
forms N,4 into N/,

It is easy to see that if a structural rule preserves SL&SB, so does its structural reverse-
dual rule (direct application of the duality theorem).

In order to get reverse-dual rules, acting on systems and preserving liveness and bound-
edness, we still have to care of the markings. We solve this problem using theorem 2.6.

Let us obtain the reverse-dual of the MSIP rule. If we removed places before, now we
‘remove transitions, whose column in the incidence matrix is a positive linear combination
of the columns corresponding to other transitions. We call these transitions structural by-
passes. The reason is that their firing produces just the same effect than the firing of all the
transitions present in the linear combination, each one as many times as the corresponding
coefficient of the combination indicates. That is, firing this transition we bypass firing the
“other ones.

Let us now denote by N~* the net obtained removing the transition ¢ from N, together
with its input and output arcs. The corresponding incidence matrices are denoted by C and

C-*. 1t is then clear that
c=(c o))

where C(t) is the column associated to ¢ in C.



(a) The original is a LBFC net: the (b) The original s a live sind boanded P/T net.
addition of the structural bypass - The.addition of the structural bypass: . -
t4=1 )+ 12 preserve structural L EmtyetaH ~kill the net for any initial

liveness m‘fﬁﬂl Sl

Figure 3.5. Structural bypass: positive linear combination of transitions.

Figure 3.6. Macrotransition subnet reduction rule (ignoring the marking it is the reverse-
dual schema of that in Fig. 3.2).
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finition 3.14 A transition t is a structural bypass of the net N = (P,T,F) iff C(t) is a
%ﬁbsitive linear combination of the columns associated to other transitions:

3X, 20: C(t)=C™*- X,
The two shaded transitions of Fig. 3.5 are structural bypasses.
Property 3.15 Let t be a structural bypass. Then Vp € *t:|p*| > 1 and Vp € t*:|*p| > 1.

The above property (dual of property 3.2) provides an easy to check necessary condition
for a transition to be a structural bypass. In particular, it points out that T-graphs have no
structural bypass.

The following result is easily obtained from the duality theorem and theorem 3.4.

Theorem 3.16 Let t be a structural bypass of an FC net N. Then N is SL&SB iff N~ is
+SL&SB.

This theorem is not true in general. The structurally bounded net of Figure 3.5b is
- non-live for any marking, but removing the shaded structural bypass it becomes structurally
: live.

» It can be proved that if ¢ is a structural bypass then all the p-semiflows of N are marked
- iff all the p-semiflows of N~* are marked. This shows that we do not need to care about the
~markings in order to preserve liveness and boundedness.

RepucrioNn Rurk RBY

Structural condition : N is an FC net containing a structural bypass ¢
Marking condition : none

Changes : Remove ¢ with its input and output arcs.

Theorem 3.17 RBY preserves liveness and boundedness, but not the actual bound of the
system.

Let us now introduce the reverse-dual of the macroplace rule. The next definition contains
the reverse-dual concept of subnet reducible to a place. Way-in and way-out transitions are
defined analogously to way-in and way-out places.

Definition 3.18 Let N be an FC net and N' = (P',T'; F') be a subnet of N (z e. F/' =
FN((PxTYU(T' x P'))). N' is reducible to a transition if:

(a) N’ is a T-graph andVp € P: |p* NT'| <1 and |*pNT'| <1
(b) For everyt' € T', there exists at least an F'-path from t' to a way-out transition of N'.
(c) V' € T', ¥V way-in transition t; of N': there ezists an F'-path from t; to t'.

Figure 3.6 shows the macrotransition reduction rule. The intuition of the reduction
process is straighforward and we skip to give a formal definition of the rule (in any case, is
the reverse dual of that considered in definition 3.7). The reader can easily check that now
T-graphs are reduced to a single macrotransition.

Figure 3.7 is self-explicative on an alternative reduction of the net in Fig.3.3a.



(a) Marked graph obtained from Fig. 3.3a through:
Stepl: d, e and j arc structural bypass

Step2: BbDIFgG is a trans. reducible subnet: g+{+b

(b) Final reduction

l+h+a+g+f+brm+itc+k

Figure 3.7. Structural bypass and macrotransition subnet. reduction. of FC in Fig. 3.3a.
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RevuctioNn Rure RMT

‘Structure condition : N contains a subnet N’ reducible to a macrotransition.

‘Marking condition : There is no unmarked p semiflow in N'.

‘Structural changes: o Substitute N’ by the macrotransition. _

‘Marking changes: o M; is the restriction of My to P\ P'. h _

i o The final marking is obtained adding to each output place of a
way-out transition the minimum number of tokens found in the
different paths from the way-in transition.

The utility of the macrotransition concept lies in the following result.

Theorem 3.19 RMT preserves liveness and boundedness, but not the actual bound of the
system.

Using the duality theorem, we can easily prove that this second kit of reduction rules is
also complete. We have then provided two kits of reduction rules which characterize liveness
‘and boundedness in FC systems. Since nothing prevents to interleave the applications of the
four rules, faster (i.e. in less steps) reduction processes can be expected.

4 t Top-down synthesis

‘Sections 2 and 3 have been devoted to analysis techniques. These techniques detect non-
~correct systems, but in general do not give any hint about how to proceed in order to improve
.the design.

© This section and the next present an interesting alternative to this trial and error proce-
“dure based on analysis and modification: The use of strict design methodologies.

_In these cases, the designer restricts him/herself to modifying and developing the model
‘using only some very specific rules of top-down transformation and composition (modular
sapproach), which can be safely applied because they are known to preserve the properties
/(here liveness and boundedness) desired for the system. ‘

. Inthe top-down design paradigm, to which this section is devoted, the synthesis procedure
‘starts from an elementary one place-one transition system which is trivially live and bounded.
:This initial system is then enlarged in a stepwise way using the synthesis rules kit.

~ Synthesis (or design) rules are the reverse of reduction rules: instead of reducing the net
Zystem, a more detailed (enlarged) model is obtained. In section 3 a place-oriented and a
‘transition-oriented complete reduction rules kits were presented. Their reverse will constitute
.complete synthesis rules kits: all LBFC systems can be generated stepwisely. Thus any of
”§hese synthesis kits provide an alternative definition of LBFC systems: instead of defining
‘FC nets, and liveness and boundedness properties, LBFC systems are those that can be
%ﬁgenerated by means of rules of the identified synthesis kits. The important point with this
7idea in mind is that many net or system properties can be now proved in a relatively easy

@

;ﬁny by inductive reasoning: checking that the property is true for the elementary net/system
‘and is preserved by any of the refinement rules in one of the kits.
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4.1 The two éynthesis kits

This section is devoted to the introduction of the two synthesis kits corresponding to the
reduction kits introduced in the past section.

Place-oriented synthesis kit. This kit is composed by the reverse of the marking struc-
turally implicit place (MSIP) and the macroplace reduction rules.

Let N, be the net obtained adding a place to a net N. Given a marking Mg, of N,,, let
M, be the marking obtained projecting Mo, on the places of N.

SynNTHESIS RuLk SIM

Structural conditions : N is an FC net

Marking conditions : none

Structural changes An MSIP p is added to N to yield an FC net N,
(in particular, |p*} = 1)
Markmg changes o The marking of places of N remains unchanged.
: eif 3Y > e, YT: C, = 0 such that Y7 - M,, =0
then M,,(p) > 0
else M,,(p) 2 0 fi

We can easily prove now the following result. :
Property 4.1 SIM preserves liveness and boundedness, but not the bound of the net.

Proof: By theorem 3.4, N, is SL&SB iff N is. Due to the nature of the marking
changes, N, contains no unmarked p-semiflow containing the new place p. This implies
that N, contains an unmarked p-semiflow iff V also contains one. Applying theorem 2.6, it
follows that (N,, My,) is live and bounded iff (N, Mp) is live and bounded. s

SIM, like RIM, does not preserve the bound of the system (Fig. 3.1) and does not preserve
liveness for bounded asymmetric choice systems (Fig. 2.5).
Let us introduce now the macroplace refinement rule.

SynrHESIS RuLe SMP

Structural and marking conditions : none

Structural and marking changes : Transform (N, Mo) into (N, Mo), such that (N, Mo)
is a macroplace reduction of (N, Mo)

Property 4.2 SMP preserves liveness and the bound of the system (thus boundedness).

Proof: Follows easily from theorem 3.8. s
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Transition-oriented synthesis kit. This kit is composed by the synthesis rules corre-
sponding to the structural bypass and the macrotransition reduction rules.
Let N, be the net obtained by adding transition ¢ to N.

SyNtHESIS Rurk SBY

Structural condition : N is FC

Marking condition : none

Structural change: N, is an FC net obtained adding a structural bypass t to N
(in particular, [*¢| =1)
Marking change: The old marking is preserved.

Property 4.3 SBY preserves liveness and boundedness, but not the bound of the system.
Nevertheless, if the system is live the bound is also preserved.

Using the duality theorem and theorem 3.5, it follows that N, is SL&SB iff N is SL&SB.
The rest of the proof uses the following two facts: (1) the addition of a structural bypass
preserves the p-semiflows, and (2) the behavioural bound of any place can be computed from
the p-semiflows for LBFC systems [Espa 90b}.

Let us now introduce the macrotransition refinement rule.

SYN'I‘HESIS RuLk SMT

,L*Structural and marking conditions : none

*Structural and marking changes : Transform (N, M) into (N, My), such that (N, Mo)
: is a macrotransition reduction of (N, Mo)

Property 4.4 SMT preserves liveness and boundedness, but not the actual bound of the
system.

The synthesis procedure. Any of the two refinement kits, place and transition-oriented,
permit to construct all and only LBFC systems. This result, which follows easily from the
completeness of their corresponding reduction kits, is formally stated next.

‘Theorem 4.5 (N, M) is an LBFC system iff (N, My) is:
| ‘@) an elementary system, or

b) the result of a finite sequence of transformations from a marked elementary system
using the place-oriented or the transition oriented synthesis kits.
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Figure 4.1 shows a sequence of place-oriented synthesis. The initial place is refined into
the shaded subnet. After that the MSIP p, is added. The refinement of p; leads to the
shaded subnet in Fig. 4.1c. Later the MSIP p, is added. Its refinement leads to Fig. 4.1d,
where the MSIP p, is added. Refinement of p; leads finaly to the net in Fig. 3.3a.

In the example of Fig. 4.1 places p,, p2 and p; when added are implicit: they do not
change the behaviour of the model. In other words, these places being implicit do not
constraint the firing language (i.e. the firing language is preserved) of the original net.

Let us suppose now that the elementary net (Fig. 4.1a) were marked with two tokens:
Mo(po) = 2. If Mo(py) = 1 and My(B) = 2, the addition of p; does not kill the net (the
new p-semiflow is obviously marked) but p, is no more an implicit place: p, constraints the
behaviour. For example, transition k cannot be fired twice from M, without firing transition
a.

4.2 Consequences of the completeness of the synthesis kits for
the analysis of properties

Theorem 4.5 shows that LBFC systems can be defined recursively using any of the two
refinement kits. Hence, if a property = is true for the elementary system chosen as seed of
the synthesis procedure, and this same property is preserved for the two rules of one of the
refinement kits, 7 is also true for all LBFC systems. We develop this idea using it to prove a
couple of interesting results, whose proofs are only sketched. The first one is already known
(see [BD 90]). The second can be deduced from Best/Voss/Vogler result on the existence of
home states for LBFC systems [BV 84, Vogl 89] and proposition 2.1.

Proposition 4.6 (Relationship between T-components and minimal T-semiflows)
Let (N, Mo) be an LBFC system where N = (P,T; F) and X > 0. X is a minimal T-semiflow
iff the two following conditions holds:

(a) Ve T: X(t) € {0,1)

(b) There ezists a T-component Ny = (P,,Ty; F,) of N such that the support of X (i.e.
IXl|={teT:X(t)>0})is Ty, |X|| = T.

Proof idea:

(<=): This part holds in general.

(=>): We prove this part by induction.

Base: The statement is trivially true for elementary systems.

Step: It is easy to see that the property is preserved by the macroplace rule, because
the macroplace is substituted by a P-graph . We show now that the MSIP refinement rule
preserves the property as well. In fact, if a vector X is a T-semiflow of the net before adding
an MSIP, then it is also a T-semiflow of the net after adding it, because the MSIP place is
a (positive) linear combination of rows in C, and no change can be produced on its right
annulers.

Assume now we have a minimal T-semiflow satisfying the conditions of the theorem. By
the induction hypothesis, to this T-semiflow corresponds a T-component. Moreover we know
that this vector is also a T-semiflow of the final net. In particular, for SL&SBFC nets this
means that the new place has as many input transitions in the support of the T-semiflow as
output transitions: the number of both is exactly 0 (when the new place has no interference
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component of the new net. In the second case, the old T-component plus the new place is a

%

with the T-semifiow) or 1 (otherwise). In the first case, the old T-component is also a T-

3

T-component of the new net. . L

The second result requires to introduce the notion of reversibility. A system (N, Mq) is
reversible iff from every reachable marking M there is a firing sequence leading to M, (i.e. -
Mo is a home state). As we have done with the notions of liveness and boundedness, we can
also define structural reversibility. A net N is structurally reversible iff there exists an initial -

marking, Mo, such that (N, Mo) is reversible.

‘Théorem_d.? Let N be an SL&SB FC net. Then N is structurally reversible.

Proof: We generate inductively a reversible system (N, M,) using the place oriented kit.
Base: We start from the elementary system with one token on the place. This system is

reversible. :
Step: We use the two following particularizations of the two refinement rules.

i) The marking of the new MSIP places is large enough to make them implicit.

R b

With this restriction, we ensure that the language of the net does not change. Let then

(N, M) be the old system and (Np, Mo,) the new one, where p is implicit. Consider
then Mo,|o)M,. Since the language has not changed, Mo|o)M. By the induction hy-
pothesis, there exists o’ such that M|o’) Mo. Since the language is preserved, M,|o") M.
It remains to show that M, = M,,. This can be done taking into account that the
Parikh vector of the sequence oo’ is a T-semiflow of N. It was proved in the past result
that if a vector is a T-semiflow in a net, it is also a T-semiflow after the addition of
MSIP. Hence (00’). is a T-semiflow of N,, and Mo,|o0’) M, = Mq,. :

ii) The macroplace rule allows us to distribute arbitrarily the tokens of the substituted
place on the new P-graph. Now we restrict this freedom, imposing that all the tokens
have to be placed on the only way-out place of the new P-graph (see theorem 3.12).

Take now a reachable marking M of the system after substituting the macroplace.
We sketch the procedure to find a firing sequence leading from M to M,. The idea
is the following: take the markings Mj and M’ of the system before the P-graph is
substituted which correspond to My and M (that is, they are like My and M, with
the exception that all the tokens of the P-graph are now in the macroplace). By
the induction hypothesis, there is a sequence M'|o’)M]. Now, every appearance of
a transition in o’ that puts a token on the macroplace is substituted by a sequence
composed by this transition and a firing sequence of transitions of the P-graph that
put this token on the way out place. This way we produde a firing sequence o of the
system after the substitution. It is not difficult to see that M|o)Mo.

Therefore giving some restrictions on the markings of the place oriented kit only reversible
systems are produced. Since we have not constrained the structural parts of the rules, we
can still generate all the SL&SB FC nets with this new kit (although not all the LBFC

systems). We have proved then that every SL&SB FC net can be endowed with a marking

that makes it reversible. .

LBFC systems are not reversible in general. An example is the net of Fig. 2.1a with
initial marking My = (01001 00).
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5 Modular synthesis

The design of large systems requires the use of teams of designers, each one in charge of a
particular subsystem or module. The final system is built composing the subsystems. In this
section we define two ways of composing subsystems and show how to interconnect them to
preserve the properties of good behaviour that both the subsystems and the global system
should enjoy. ‘

Within our context, the above problem can be formulated in a very simple way: given
several LBFC systems, characterize the compositions that preserve liveness and boundedness.
We should warn the reader that we present a compositional solution of only the structural
part of the problem. That is, we give exact conditions for the preservation of SL&SB under
the compositions of nets we consider. Once we have obtained an SL&SB net, the initial
markings making it live can be obtained applying theorem 2.6.

Since compositions of k nets can be splitted into k—1 compositions of 2 nets, we consider
only this latter particular case.

5.1 Synchronizations and fusions

A very general notion of composition of two nets can be given as follows: anet N = (P,T,F)
is the composition of N, = (P,,Ts, F,) and N, = (P;, Ty, Fy) iff Ny, Ny are subnets of N and
N=N,UN,=(P,UR,T,UTy,F,UF).

As an example, the net of Fig. 5.1.b is a composition of the two nets of Fig. 5.1a. An
important notion for us concerning compositions is that of interface. The interface I between
N, and N, in N is a subset of nodes defined as follows. A node z of N is in I iff:

- z is in both Ny, Ny
- There is at least one node of *z U z° that is not in both N, and N,.

That is, we define the interface as the nodes where the two components “meet”, Nodes
“between” interface nodes need not be interface nodes themselves (e.g. Fig. 5.1c.2). In the
example of Fig. 5.1a, the interface between the two components is formed by a place and a
transition. The transition can be interpreted as a communication by rendez-vous between the
two components, while the place corresponds to a communication by shared states (common
variables). Compositions in which these two types of communication mechanisms are present
in the interface are difficult to interpret and lead to difficult to handle constructions. That
is why we would like to consider compositions in which the interface is composed by only

one type of nodes.
Definition 5.1 Let {N,,N,} be two nets. N is a synchronization of N, and N, iff
peEPNP=>pup e, NT,

(i.e. no place belongs to the interface).
N is a fusion of N, and Ny iff

teT,NT,=°tUut* € P,NF,

(i.e. no transition belongs to the interface).
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(a) Two LBFC nets

@2)

(d) Two fusions

Figure 5.1. Composition, synchronization and fusion (the reverse-dual of synchroniza-
tion) of free choice nets.
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The nets of Fig. 5.1c are two different synchronisations of the nets of Fig. 5.1.a. The

- ones of Fig. 5.1d are two different fusions of the same nets.

We are interested on those synchronisations and fusions producing FC nets. We call them

?FC-synchronisations (fusions). Obviously, the two components of an FC-synchronisation

 (fusion) must be FC. The net in Fig. 5.2 shows how the net in Fig. 3.3a can be obtained
through FC-synchronizations.

Let us focus on the case of synchronisations. How to check that the synchronization of

two SL&SB FC nets produces an SL&SB net? We could apply theorem 2.3 and check in
7 polynomial time that the synchronisation is consistent and satisfies the rank equation (it can

be shown that the synchronisation is conservative by construction). A possible question is:
when the system is produced through several synchronisations, why not just check the final
model? The answer is that, if we perform a check after each synchronisation, the possible
design error is detected as soon as it is introduced. And this is particularly interesting in

. the context of FC nets, because the following monotonicity property can be proved.

: Proposition 5.2 [ES 90b, Espa 90b] Let N be an FC-synchronisation (FC-fusion) of
{N..N}. N is SL&SB only if N, and N, are SL&SB.

Hence, if after a synchronisation of two conservative FC nets the composed net becomes

. non SL, it remains non SL. Further synchronisations cannot repair design errors. Never-
; theless, the reader can easily check (see Fig. 5.3) that this property does not holds when
_-asymmetric choice nets are considered!

As a last remark, Fig. 5.4 shows that non-liveness of the FC-synchronized net can be

originated on the initial marking obtained by the composition and not on the structure.

Lt e A, e

5.2 Interpreting FC-synchronization design errors

Theorem 2.3 can be used to detect when a bad composition was performed, but does not
give information about the location and nature of the design error. We introduce in this

- section the results of [ES 90b] on this problem, which can be summarized as follows: the
- only possible design errors are two, called synchronic mismatches and killing choices.

- ‘The first structural design error: synchronic mismatches. Let us make first an

informal introduction. Consider the two nets of the upper part of figure 5.5. They model

. the behaviour of John and Mary, two millionaires of Palm Beach. Every day John decides
. whether he well play tennis or not. If he does not play tennis, he goes dancing and then has
. adrink. If he does play tennis, then he is too tired to go dancing and just drinks. After the
drink a new day comes and everything starts again.

Also Mary decides every day to play tennis or not. But, since she is in better shape than
John, she always goes dancing after, and then has the drink. The question is: if John and
Mary get married, and want to play tennis or not, go dancing and drink together, will the
marriage eventually reach a deadlock? The marriage corresponds to the FC-synchronization
at the bottom of the figure. and it is easy to see that the system will eventually deadlock.

- The reason is that John can execute the action “do play tennis” an arbitrarily large number

of times without executing “go dancing”, and Mary will be waiting to “go dancing”.
To formalize the above problem, let us introduce a synchronic relation. Synchronic
relations [Silv 87, SC 87] are tools of Synchronic Theory, which is a branch of net theory

- devoted to the study of dependences between the firings of transitions.
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Figure 5.2. Modular composition (through- synchromzatlons) of nets: The net n an

3.3a is obtained 'synchronizing N1 and N2.




Figure 5.3. A structurally non-live FC net becomes a structurally live asymmetric choice
‘net' when the synchronization with-a two place cvcle is performed.

N1 N2

Figure 5.4. Thesynchronization of N; and N, leads to a structurally live net but non-live
system (the cycle p; — t;3 — pq — t54 is unmarked!).
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Definition 5.3 (Bounded Deviation, BD) Let < N, My > be a system and R(N, My)
its marking reachability set..

()T, T, ET arein k-bounded relation in the system iff YM € R(N, Mo) and Vo appli-
cable at M (i.e. Mo >), 3(T3) = 0= d(Th) < k.

(2 Ti,T; C T are in (behamoural) bounded deviation relation in < N, Mg > iffdke N
~ such that Tl,Tz are in k-bounded deviation relation.

(3) T1,T2 C T-are in structura.l bounded deviation relatlon in N :,ﬂ’ VMo,3k € N such
- that Ty, Tz am in k-bounded deviation relation.

" In the case of John and ‘Mary, the two actions “do not play tennis” and “go dancing” are \
in structural BD~relatwn for John but not for Mary. That is,. the synchromc relations of the
two “partners” (subsvstems) do not “match”.

Definition 5.4 Let N be a synchromzatwn of {N;,N;}. The tmns:tzons t;,t; € T,NT,, are
a synchronic mismatch iff they are in structural BD-relation in one and only one of N,, N.

In our example, the two transitions correspondmg to “do not pla.y tennis” and “go dmc-
(ing™ constitute a synchwmt mﬁmatch

Proposition 5.5 [ES 90b] Let N be an FC~synchmmzat:on of {N., N}, where both N,,
N, are SL&SB. If N contains a synchronic mismatch, then N is not structurally live.

The second structural design error: killing choices. Let us go back to John and
Mary. They have changed of hobbies, and like now to go to the cinema every day. There are
two cinemas for millionaires in Palm Beach, the “Odeon” and the “Capitol”. John decides
each day which of the two cinemnas he wants to go to, and so does Mary. .

John and Mary want to get married and go to the cinema together, but both want
to decide, without consulting the other, which of the two cinemas they will go to. The
corresponding synchronisation is shown at the bottom of figure 5.6. Notice that the net
contains no synchronic mismatches, but nevertheless leads to a deadlock for any marking.
The deadlock is produced by the fact that the choices of John and Mary are private, but

concern the partner. It is intuitively reasonable that these choices lead to non liveness for
any marking. We call them killing choices.

Definition 5.6 Let N be a FC-synchronisation of {Ns = (P, Ts; F,), Ny = (P, Ty; R)}. A
place p € P, is a killing choice of N, iff the following three conditions hold:

(a) p¢ P
(b) There exists a T-component N} of N, containing p and a transition t; € T, N T,.

(c) There exists an elementary path B = (p,...,t;), t; € T, N'Ty, such that p is the only
node of N! in B.

A killing choice of Ny is defined analogously. It is said that N contains a killing choice iff it
contains a killing choice of N, or a killing choice of Ny.



NP: do Not Play tennis
P: Play tennis

GD: Go Dancing

D: have a Drink

Figure 5.5. The transitions NP and GD are in synchronic mismatch.



MO /JO: Mary / John decides to go to the Odeon
MC/JC: Mary / John decides to go to the Capitol
GO: John and Mary go to the Odeon
GC: John and Mary go to the Capitol

Figure 5.6. Both components of the synchronization contain a killing choice.

(a) p is a killing choice (b) p is not a killing choice

Fighre 5.7. Killing choices leads to deadlocks.
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Notice that p is a place with more than one output transition, because it has at least
one output transition in the T-component and another one out of it. In fact, N, can decide
freely at p whether the tokens are kept in the T-component or are taken out of it.

It could be thought at first sight that condition (b) of the definition is too complicated:
apparently, in order to affect the behaviour of the other subnet, it would be sufficient the
existence of two paths starting from the candidate to killing choice and ending at the two
transitions t;, ¢;, paths with only the initial place in common. This is not enough, as the net
in figure 5.7b shows. Place p seems to be a killing choice of N,. Nevertheless, in spite of the
existence of the two paths leading to ¢, t;, the solution given by N; to the conflict in p has
no relevance for N,. N, only “sees” that Nj is always willing to fire both ¢; and ¢;, whichever
was the branch selected by N, at p. This is due to the fact that every T-component of N,
containing p and one of the transitions t; , ¢; contains also the other.

Proposition 5.7 [ES 90b] Let N, and N; two SL&SB FC nets and N be an FC-synchroni-
zation of {N,,N,}. If N contains a killing choice, then N is structurally non live.

This proposition is not true for asymmetric choice nets obtained by synchronization (Fig.
2.3b, with t,‘ = t3 and t]‘ = tq).

Completeness of the design errors. We hope that both killing choices and synchronic

mismatches are intuitively seen as design errors, so it shouldn’t be surprising that they lead

to bad behaviours. What is not so intuitive is that every (structural) design error can be

interpreted in terms of these two, or, in some sense, that these two are the only possible
* design errors.

" Theorem 5.8 [ES 90b] Let N, and Ny two SL&SB FC nets and be N and FC-synchroni-

zation of {N,,Ny}. N is structurally live iff it contains no synchronic mismatch and no
killing choice.

As a final remark, it can be pointed out that synchronic mismatches and killing choices
can coexist in a bad design.

5.3 Fusions and design errors

Applying the duality theorem we can obtain similar results to those of the past section about
-the reverse-dual concepts of synchronization, synchronic mismatch and killing choice. Due
-to lack of space we will not deal with them here.

- Nevertheless, it is important to point out that FC-fusions (the reverse-dual of FC-
‘synchronizations) are net compositions in which the interface is formed only by places.
. The reader is referred to Fig. 5.8 for illustrations of the fusion (or place) mismatch error,
‘the reverse-dual of the synchronic mismatch, and the killing joint error, the reverse-dual of
killing choice.

Once again, particular attention must be payed to the completeness of fusion mismatches
and killing joints in order to explain all the possible errors. The reverse-dual of theorem 5.8
states that an FC-fusion of two SL&SB FC nets is SL&SB iff it contains no place mismatches
and no killing joints.
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(a) pj and p; represent a fusion (b) tis a killing joint
(place) n'l]nsmatch

Figure 5.8. Fusion mismatch and killing joint design errors.



6 Conclusion

Arrived at this point. we should confess that our main goal has been to convince the reader of
how nice, simple, powerful and computationally efficient the theory of LBFC systems can be.
We have tried to state clearly concepts and results, illustrating them by means of examples
and omitting the lenghty proofs. For more technical presentations the readers should consult
the references. where the results are usually stated using quite different approaches. The
cited works of Best. Commoner, Desel, Hack, Thiagarajan and Voss introduce many other
beautiful results of the theory of Free Choice systems. In particular, it may be interesting to
record two related recent results concerning home states and reachability in LBFC systems:

{1) In [BCDE 90], home states of LBFC systems are characterized as those for which all
* traps are marked.

a(2) In [DE 90], the reachability problem is solved in polynomial time for reversible (i.e. My
" isahome state) LBFC systems.

Free choice nets are rather limited for practical applications. For example, they cannot
model systems with shared resources. On the other hand, as was pointed out in [Best 87, the
research on FC systems has shown the existence of a big gap between them and asymmetric
choice systems, which could appear to be the next natural class to consider. A possible
solution to this conflict between the solutions offered by the theory and the requirements
of practice could be the following: systems of practical interest are usually not FC, but
we have observed that they are often composed by subsystems which are FC. These sub-
systems represent functional entities (i.e. the work we want to perform) which compete for
resources or cooperate through message passing, modelled by means of monitors (a shared
place implementing mutual exclusion mechanisms) and buffers (or mail boxes) respectively.
We suggest to extend the class of nets adding some restricted communication mechanism like
these mentioned here which, while representing a significant improvement in the expressive

power, preserve some of the nice properties of FC systems. Some research is going on in this
direction.
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