
Acta Informatica manuscript No.
(will be inserted by the editor)

Verification of Population Protocols

Javier Esparza · Pierre Ganty · Jérôme Leroux ·
Rupak Majumdar

Received: date / Accepted: date

Abstract Population protocols (Angluin et al., PODC, 2004) are a formal model of sen-
sor networks consisting of identical mobile devices. Two devices can interact and thereby
change their states. Computations are infinite sequences of interactions satisfying a strong
fairness constraint.

A population protocol is well specified if for every initial configuration C of devices, and
every computation starting at C, all devices eventually agree on a consensus value depending
only on C. If a protocol is well specified, then it is said to compute the predicate that assigns
to each initial configuration its consensus value.

While the computational power of well-specified protocols has been extensively studied,
the two basic verification problems remain open: Is a given protocol well specified? Does
a given protocol compute a given predicate? We prove that both problems are decidable by
reduction to the reachability problem of Petri nets. We also give a new proof of the fact
that the predicates computed by well-defined protocols are those definable in Presburger
arithmetic (Angluin et al., PODC, 2006).

Keywords population protocols · Petri nets · parametrized verification

CR Subject Classification C.2.2 · D.2.4 · F.3.1

1 Introduction

Population protocols [2] are a model of distributed computation by anonymous, identical
finite-state agents. While they were initially introduced to model networks of passively mo-

Javier Esparza
TUM, Germany

Pierre Ganty
IMDEA Software Institute, Spain

Jérôme Leroux
LaBRI, CNRS & Univ. Bordeaux, France

Rupak Majumdar
MPI-SWS, Germany

2

bile sensors [2], they capture the essence of distributed computation in diverse areas such as
trust propagation [9] and chemical reactions [19].

In each computation step of a population protocol, a fixed number of agents are chosen
nondeterministically, and their states are updated according to a joint transition function.
Since agents are anonymous and identical, the global state of a protocol is completely de-
termined by the number of agents at each local state, called a configuration. A protocol
computes a boolean value for a given initial configuration if in all fair executions starting
at it, all agents eventually agree to this value—so, intuitively, population protocols compute
by reaching consensus. An execution is fair if it is finite and cannot be extended, or it is
infinite and satisfies the following condition: if the execution visits a configuration C in-
finitely often, then it also visits every configuration reachable from C infinitely often. Given
a set of inputs (typically a set of vectors of natural numbers), and a mapping that assigns to
each input an initial configuration, the predicate computed by a protocol is the function that
assigns to each input the boolean value computed by the protocol from the corresponding
initial configuration. If the protocol does not reach consensus for some input, then we say it
is ill specified and does not compute any predicate.

In each computation step of a population protocol, a fixed number of agents are chosen
nondeterministically, and their states are updated according to a joint transition function.
Since agents are anonymous and identical, the global state of a protocol is completely de-
termined by the number of agents at each local state, called a configuration. A protocol
computes a boolean value for a given initial configuration if in all fair executions starting at
it, all agents eventually agree to this value—so, intuitively, population protocols compute by
reaching consensus. An execution is fair if it is finite and cannot be extended, or it is infinite
and every configuration reachable infinitely often (that is, reachable from infinitely many
of the configurations reached along the execution) is also reached infinitely often. Given a
set of inputs (typically a set of vectors of natural numbers), and a mapping that assigns to
each input an initial configuration, the predicate computed by a protocol is the function that
assigns to each input the boolean value computed by the protocol from the corresponding
initial configuration. If the protocol does not reach consensus for some input, then we say it
is ill specified and does not compute any predicate.

Much of the work on population protocols has concentrated on characterizing the pred-
icates computable by well-specified protocols. In particular, Angluin et al. [2] gave explicit
well-specified protocols to compute every predicate definable in Presburger arithmetic, and
showed in a later paper (with a different set of authors) that they cannot compute anything
else, i.e., well-specified population protocols compute exactly the Presburger-definable pred-
icates [4].

Since it is easy to erroneously design protocols that are not well specified, one can ask
two natural verification questions: Given a population protocol, is it well specified? Given a
population protocol and a Presburger predicate (represented by a Presburger formula), does
the protocol compute the predicate? We call them the well-specification and fitting problems.

The semantics of a population protocol is an infinite family of finite-state transition sys-
tems, one for each possible input. Deciding if the protocol reaches consensus for a fixed
input only requires to inspect one of these finite transition systems, and can be done au-
tomatically using a model checker. This approach has been followed in [20,21,6,7], but it
only proves the correctness of a protocol for a finite number of (typically small) inputs. Al-
ternatively, one can also formalize a proof of well specification in a theorem prover [8], but
this approach is not automatic: a human prover must first come up with a proof for each
particular protocol.

3

Since the well-specification problem asks if consensus is reached for all inputs, and
there are infinitely many of them, it is not obviously decidable; in fact, similar questions are
undecidable for many parameterized systems [5]. Moreover, techniques based on algorithms
for the coverability problem of Petri nets, or on well-quasi-orders—which have been used to
prove decidability of many parameterized verification problems [1,12]—cannot be directly
applied to the well specification and fitting problems. Loosely speaking, the reason is that
the set of initial configurations from which all agents eventually agree on a value is not
necessarily upward- nor downward-closed.

Despite these difficulties, in the first part of the paper we show that the well-specification
and fitting problems are decidable and recursively equivalent to the reachability problem
for Petri nets. Our reductions show that both problems have elementary complexity iff the
reachability problem for Petri nets has elementary complexity, a problem that remains open
since the early 80s.

In the second part of the paper we study the tailor problem: Given a well-specified proto-
col, returns a Presburger formula for the predicate computed by it. To solve the problem, we
introduce a notion of certificate (of well-specification) of a protocol. We provide algorithms
that, given a protocol and an advice string decide if the string is a certificate, and extract from
it a Presburger formula of the predicate computed by the protocol. The overall algorithm for
the tailor problem just enumerates all advice strings, checks if they are a certificate, and if
so computes a formula. However, this algorithm may not terminate if a protocol happens
to have no certificates. So we also show that this is not the case: every well-specified pro-
tocol has at least one certificate. The proof relies on several recent results from the theory
of Petri nets: the existence of Presburger-definable inductive sets that separate unreachable
markings [15], the effective Presburger-definability of the mutual reachability relation [16],
and a result from the theory of accelerations [18]. Finally, along the way we obtain a new
proof of the main theorem of [4] showing that well-specified protocols can only compute
Presburger-definable predicates.

The paper is organized as follows. Section 2 presents some preliminaries. Section 3 in-
troduces population protocols and defines the well-specification, fitting, and tailor problems.
Section 4 describes the connection between population protocols and Petri nets. Sections 5
and 6 reduce the well-specification and fitting problems to the reachability problem for Petri
nets, and Section 7 presents reductions in the other direction. Finally, Section 8 presents our
certificate-based algorithm for the tailor problem.

2 Preliminaries: Presburger Sets, Semilinear Sets, Multisets

Presburger Arithmetic and Presburger sets. Presburger arithmetic is the first-order theory of
addition, i.e., the first-order theory of the natural numbers with addition as only function, and
equality as only predicate. A set S ⊆ Nd is a Presburger-definable, or just a Presburger set,
if there exists a formula F(x1, . . . , xd) with free variables x1, . . . , xd such that F(n1, . . . , nd) is
true iff (n1, . . . , nd) ∈ S.

Semi-linear sets. A set L ⊆ Nd is linear if there is a base or root vector b and a finite set
P = {p1, . . . ,pn} of periods such that L = {b +

∑n
i=1 λipi | (λ1, . . . , λn) ∈ Nd}. We write

L = (b; P), and say that the pair (b; P) is a linear representation of L. A set S is semi-linear
set if it is a finite union of linear sets, and the set of its linear representations is called a
semi-linear representation of S.

4

It is well known that the semi-linear sets and the Presburger sets coincide [13]. In par-
ticular, semi-linear sets are effectively closed under Boolean operations and emptiness, in-
clusion, and equivalence of semi-linear sets are all decidable.

Multisets. A multiset on a finite set E is a mapping M : E → N. For e ∈ E, M(e) denotes
the number of occurrences of element e in M. Operations on N like addition, subtraction,
or comparison, are extended to multisets by defining them component wise. The set of all
multisets over E is denoted NE . Given e ∈ E, we denote e ∈ NE the multiset consisting of
one occurrence of element e, that is, the multiset satisfying e(e) = 1 and e(e′) = 0 for every
e′ , e. The support of a multiset M ∈ NE , denoted by Sup(M), is the set {e ∈ E | M(e) > 0}.

Given a total order e1 ≺ e2 ≺ · · · ≺ en on E, a multiset M can be represented by the
vector (M(e1), . . . ,M(en)), and a set M of multisets by a set of vectors. A set of multisets
over a finite set E is Presburger (resp. linear, semi-linear) if its corresponding set of vectors
is Presburger (resp. linear, semi-linear)

3 Population Protocols

A population P on a finite set E is a non-empty multiset on E, i.e., P ∈ NE and P , ∅. Thus
P(e) > 0 for some e ∈ E, which is equivalent to Σe∈E P(e) > 0. The set of all populations on
E is denoted by Pop(E).

Example 1 Let E = {a, b}. The set of populations {P ∈ Pop(E) | P(a) ≥ P(b)} is Presburger,
since it is denoted by the Presburger formula ∃Y : Xa = Y + Xb ∧ Xb > 0. It is easy to see
that the set of populations {P ∈ Pop(E) | P(a) = P(b)2} is not Presburger. ut

3.1 Protocol Schemes

A protocol schemeA = (Q, ∆) consists of a finite non-empty set Q of states and a set ∆ ⊆ Q4.
If (q1, q2, q′1, q

′
2) ∈ ∆, we write (q1, q2) 7→ (q′1, q

′
2) and call it a transition. The populations

of Pop(Q) are called configurations. Intuitively, a configuration C describes a collection of
identical finite-state agents with Q as set of states, containing C(q) agents in state q for every
q ∈ Q. Pairs of agents interact using transitions from ∆.1 Formally, given two configurations

C and C′ and a transition δ = (q1, q2) 7→ (q′1, q
′
2), we write C

δ
−→ C′ if

C ≥ (q1 + q2) holds, and C′ = C − (q1 + q2) + (q′1 + q′2) .

From the definition of step, it is easily seen that, inside the tuple (q1, q2, q′1, q
′
2) ∈ ∆, the

ordering between q1 and q2 and between q′1 and q′2 is irrelevant. We write C
w
−→ C′ for a

sequence w = δ1 . . . δk of transitions if there exists a sequence C0, . . . ,Ck of configurations

satisfying C = C0
δ1
−→ C1 · · ·

δk
−→ Ck = C′. We also write C → C′ if C

δ
−→ C′ for some

transition δ ∈ ∆, and call C → C′ a step. We say that C′ is reachable from C if C
w
−→ C′

for some (possibly empty) sequence w of transitions. Further, two configurations C,C′ are
mutually reachable if C is reachable from C′ and C′ is reachable from C. We have:

Lemma 1 For every configuration C, the set of configurations reachable from C is finite.

1 While protocol schemes model pairwise interactions only, one can model k-way interactions for a fixed
k > 2 by adding additional states.

5

Proof Follows immediately from the fact that an interaction does not create or destroy
agents, just changes their current states. Since Q is finite, there are only finitely many con-
figurations C′ satisfying

∑
q∈Q C(q) =

∑
q∈Q C′(q). ut

Example 2 (Debating philosophers.) We consider a protocol schemeA = (Q, ∆) with agents
called “philosophers”. A group of philosophers debate about a thesis, say, “do animals have
rights?”. At each point in time a philosopher is tired or rested, denoted by T and R, respec-
tively, and is for or against the thesis, denoted by F and A. The set Q contains four states

Q = {T, R} × {F, A} .

The interactions between the philosophers model the following behavior. When two
philosophers meet, they compare their positions and update their current state as follows:

(i) Philosophers with the same opinion do not debate and stay in their current state.
(ii) Rested philosophers convince tired opponents of anything.

(iii) If two philosophers in the same physical condition debate, the one for animal rights
convinces the one against and they both are tired after the debate.

Accordingly, the set ∆ is defined as follows where α, β ∈ {F, A}, α , β and X, Y ∈ {R, T}:

(Xα, Yα) 7→ (Xα, Yα) (Rα, Tβ) 7→ (Rα, Tα) (Xα, Xβ) 7→ (TF, TF) .

We represent configurations as tuples indicating the number of philosophers in each
state. Here is a possible infinite step sequence of the protocol scheme.

RF RA TF TA
(3 3 0 0) →

RF RA TF TA
(2 2 2 0) →

RF RA TF TA
(2 2 1 1) →

RF RA TF TA
(1 1 3 1) →

RF RA TF TA
(0 0 5 1) →

RF RA TF TA
(0 0 6 0) →

RF RA TF TA
(0 0 6 0) →

RF RA TF TA
(0 0 6 0) · · · ut

3.2 Configuration Graphs

The configuration graph of a protocol scheme A is the infinite directed graph (Pop(Q),→)
having the populations over Q as nodes and the pairs (C,C′) such that C → C′ as edges. Con-
sider the partition {Pop(Q)i}i≥1 of Pop(Q), where Pop(Q)i = {C ∈ Pop(Q) |

∑
q∈Q C(q) = i}.

(Note that i starts at 1 because every population contains at least one agent.) Since inter-
actions do not create or destroy agents, the set {→i}i≥1, where →i=→ ∩Pop(Q)2

i , is also
a partition of →. Therefore (Pop(Q),→) consists of the infinitely many disjoint and finite
subgraphs {(Pop(Q)i,→i)}i≥1.

A strongly connected component (SCC) of the configuration graph is a maximal set of
mutually reachable configurations. An SCC is a bottom SCC if it is closed under reachability,
i.e., if C belongs to the SCC and C′ is reachable from C, then C′ also belongs to the SCC.
A configuration is a bottom configuration if it belongs to a bottom SCC of the configuration
graph.

Example 3 (Debating philosophers.) In the step sequence of Example 2 the number of
philosophers remains constant at 6, and so all its configurations belong to Pop(Q)6.

We prove that the set B of bottom configurations of the debating philosophers is B =

BF ∪ BA, where

BF = { (rf , 0, tf , 0) | rf + tf > 0 } and BA = { (0, ra, 0, ta) | ra + ta > 0 } .

6

(Observe that in the configurations of B all philosophers have the same opinion: in BF they
are all for animal rights, and in BA against them.) If C ∈ B, then the only possible step is
C → C. So {C} is a bottom SCC, and C is a bottom configuration. It remains to prove that if
C < B then C is not a bottom configuration. For this it suffices to exhibit a configuration C′

reachable from C such that C is not reachable from C′ (i.e., C′ is reachable from C, but C
and C′ are not mutually reachable). Let C = (rf , ra, tf , ta) < B. We consider several cases:

– rf > 0 and ra > 0. Then C → C′ for C′ = (rf−1, ra−1, tf +2, ta) (two rested philosophers
debate and get tired) but, since no rules turn a tired philosopher into a rested one, C is
not reachable from C′.

– rf > 0 and ra = 0. Since C < B we have ta > 0, and so C′ = (rf , 0, tf + ta, 0) is reachable
from C (a rested philosopher for animal rights convinces all tired philosophers against
them), but not vice versa.

– rf = 0 and ra > 0. Since C < B we have tf > 0, and so C′ = (0, ra, 0, tf + ta) is reachable
from C (a rested philosopher against animal rights convinces all tired philosophers in
favor of them), but not vice versa.

– rf = 0 and ra = 0. Since C < B we have tf , ta > 0, and so C′ = (0, 0, tf + ta, 0) is
reachable from C (a tired philosopher for animal rights convinces all tired philosophers
against them), but not vice versa. ut

3.3 Executions and Fair Executions

An execution of A is a finite or infinite sequence of configurations C0,C1, . . . such that
Ci → Ci+1 for each i ≥ 0. Following Angluin et al. [2], we introduce a notion of fair
execution. Loosely speaking, if a fair execution is infinite then every step that is enabled
infinitely often by visiting infinitely often a configuration C must be taken infinitely often
from C. Formally, an execution C0,C1, . . . is fair if it is finite and cannot be extended, or it is
infinite and for every step C → C′, if Ci = C for infinitely many indices i ≥ 0, then C j = C
and C j+1 = C′ for infinitely many indices j ≥ 0. Thanks to Lemma 1 we show in Lemma 2
that every fair execution reaches a strongly connected component (SCC) of (Pop(Q),→) and
never leaves it.

Remark 1 Our notion of fairness is based on configurations, and does not coincide with
transition-based weak fairness (if a transition is enabled at infinitely many configurations,
then it is also taken infinitely often). To illustrate the difference, consider the protocol
scheme with states {q1, q2, r1, r2, s} and transitions

δqr = (q1, r1) 7→ (q1, r1)
δq1 = (q1, s) 7→ (q2, s)
δq2 = (q2, s) 7→ (q1, s)

δr1 = (r1, s) 7→ (r2, s)
δr2 = (r2, s) 7→ (r1, s) .

Consider the configuration that puts one agent in each of q1, r2, and s, that is q1 +r2 +s. From
this configuration we can execute the infinite sequence of transitions w = (δq1δr2δr1δq2)ω. It
is easy to see that during the execution of w the transition δqr is never enabled, and so the exe-
cution is weakly fair in the transition-based sense. However, it is not fair in the configuration-
based sense. Indeed, while q1 + r2 + s is visited infinitely often, only δq1 is executed from it,
even though it also enables δr2 . ut

The following lemma 2 formalizes a fundamental property of fair executions: they even-
tually reach a bottom SCC of the configuration graph, and then visit each of its states in-
finitely often (actually, if the execution is finite, then the bottom SCC consists of just one

7

state without successors; intuitively, the execution reaches this state, and stays there “for-
ever”).

Lemma 2 For every fair execution C0,C1, . . . there is an index i ≥ 0 such that Ci is a bottom
configuration, and the set {C j | j ≥ i} is a bottom SCC of the configuration graph.

Proof If the execution is finite, then, since it cannot be extended, its last configuration is a
bottom SCC with one single node and no outgoing transitions. If the execution is infinite,
then the fairness condition forces it to eventually leave every non-bottom SCC it enters.
So there is an index i ≥ 0 such that C j is a bottom configuration for every j ≥ i, and so
{C j | j ≥ i} is included in a bottom SCC S. Now let C be an arbitrary configuration of S.
By Lemma 1 the set S is finite, and so there is a number k such that for every j ≥ i, the
configuration C is reachable from C j in at most k steps. A simple induction on k shows that,
by fairness, C is contained in the execution. So S = {C j | j ≥ i}. ut

Example 4 (Debating philosophers.) It is easy to see that the infinite sequence of steps
shown in Example 2 is a fair execution. Many other executions are not fair (for example,
the infinite execution (2, 1, 0, 0)ω where no two philosophers with diverging opinions get to
debate). A less trivial example is (3, 3, 0, 0)

(
(2, 2, 2, 0) (2, 2, 1, 1)

)ω. ut

3.4 Population Protocols

We define what it means for a protocol scheme to compute a predicate Π : Pop(Σ)→ {0, 1},
where Σ is a non-empty, finite set of input variables. Before presenting formal definitions,
we give some intuition.

The first step is to add to a protocol scheme an input mapping I : Pop(Σ) → Pop(Q)
and an output mapping O : Pop(Q) → {0,⊥, 1}. The input mapping assigns to an input
X ∈ Pop(Σ) an initial configuration I(X) of the protocol scheme, and the output mapping
assigns to a configuration C an output, which can be either 0, 1, or ⊥. Here ⊥ stands for
“undefined” or “no output”.

Intuitively, imagine that an operator is in charge of computing a boolean for each input
X ∈ Pop(Σ) with the help of a machine implementing the protocol scheme. Upon receiving
X, the operator first applies the input mapping to it, obtains the configuration C = I(X),
allocates C(q) agents to each state q of the scheme/machine, and runs it from this initial
configuration, letting it produce a fair execution. The machine has two lamps for the outputs
1 and 0. The b-lamp is switched on whenever the current configuration C satisfies O(C) = b,
and switched off otherwise. By definition, the execution of the machine outputs b ∈ {0, 1}
if it eventually stabilizes to b, meaning that from some moment on the b-lamp stays on
forever (that is, from some moment on the execution only visits configurations C such that
O(C) = b).

For a given input X some fair execution starting at C(X) may not stabilize to 0 or 1. Or
two different fair executions starting at C(X) may stabilize to 0 and 1, respectively. Then we
say that the scheme is ill specified. More precisely: If there is at least one input for which
at least one fair execution does not stabilize to 0 or 1, or for which two fair executions
stabilize to 0 and to 1, respectively, then the scheme is ill specified, and “does not compute
any predicate”.

If a scheme is well specified, then for every input X all fair computations from I(X)
stabilize to the same boolean bX , and we define the predicate computed by the protocol as
the mapping Π given by Π(X) = bX .

8

Example 5 (Debating philosophers.) We define input and output mappings for the debating
philosophers. For the set of inputs we choose Σ = {F, A} (For and Against). So a population
over Σ models a population of philosophers, specifying how many are for and against animal
rights. We represent a population with f philosophers for and a philosophers against animal
rights by the pair (f , a).

As input mapping we choose the function I : Pop(Σ)→ Pop(Q) given by

I(f , a) =

RF RA TF TA
(f a 0 0)

In other words, the mapping assigns to (f , a) a population with f rested philosophers sup-
porting animal rights, a rested philosophers against animal rights, and no tired philosophers.

As output mapping we choose the function O : Pop(Q)→ {0,⊥, 1} given by

O(r f , ra, t f , ta) =


1 if ra + ta = 0 (all philosophers are for animal rights)
0 if rf + tf = 0 (all philosophers are against animal rights)
⊥ otherwise

ut

After this informal introduction, we now present some formal definitions.

Input and Output Mappings. Formally, an input mapping of a protocol scheme A = (Q, ∆)
is a function I : Pop(Σ) → Pop(Q) that maps each input population X to a configuration of
A. The set of initial configurations is I = {I(X) | X ∈ Pop(Σ)}. An output mapping of O
is a function O : Pop(Q) → {0,⊥, 1} that associates to each configuration C of A an output
value in {0,⊥, 1}. A configuration C on Q such that O(C) = b for some b ∈ {0,⊥, 1} is called
a b-configuration.

If input and output mappings can be arbitrary functions, even non computable ones,
then any problem involving them is bound to be undecidable. For this reason we introduce
“reasonable” classes of input and output mappings.

An input mapping I is Presburger if the set of pairs (X,C) ∈ Pop(Σ) × Pop(Q) such that
C = I(X) is definable in Presburger arithmetic. An output mapping O is Presburger if the
same holds for the set of pairs (C, b) ∈ Pop(Q) × {0,⊥, 1} such that O(C) = b.

A population protocol is a triple (A, I, O), where A is a protocol scheme, and I(X,C)
and O(C, b) are formulas of Presburger arithmetic denoting a Presburger input mapping I and
a Presburger output mapping O, respectively.

Presburger input and output mappings are still quite general. Many papers onlyconsider
a more restricted class. An input mapping I is simple if for every input variable σ ∈ Σ there
exists a state qσ ∈ Q such that

I(X) =
∑
σ∈Σ

X(σ) qσ

for every input population X on Σ. Intuitively, if I is simple then each input variable is
assigned a state, and the operator can prepare the initial configuration for the input X by
going through all input variables σ, and putting X(σ) agents in the state corresponding to σ.

Similarly, an output mapping O is simple if there exists a partition (Q0,Q1) of Q such
that

O(C) =


0 if Sup(C) ⊆ Q0

1 if Sup(C) ⊆ Q1

⊥ otherwise

for every configuration C. Notice that O is well defined because Sup(C) , ∅.

9

Example 6 (Debating philosophers.) The input mapping given in Example 5 is Presburger.
Indeed, if we represent the input X satisfying X(F) = f and X(A) = a by the pair (f , a),
and the configuration C satisfying C(RF) = r f , C(RA) = ra, C(TF) = t f , and C(TA) = ta
by the vector (rf , ra, tf , ta), then the set of pairs (X,C) such that I(X) = C is defined by the
Presburger formula

I(f , a, rf , ra, tf , ta) := (rf = f ∧ ra = a ∧ tf = 0 ∧ ta = 0)

The output mapping is also Presburger. Moreover, both mappings are simple. Indeed, for I
we have

I(f , a) = f RF + a RA

For the output mapping simply consider Q0 = {RA, TA} and Q0 = {RF, TF}. ut

Remark 2 A particular case of protocols with Presburger input and output mappings are
population protocols with leader [3]. In these protocols the initial configuration contains
one agent, called the leader, occupying a distinguished initial state ql not initially occupied
by any other agent. This corresponds to the input mapping I(X) = ql +

∑
σ∈Σ X(σ) qσ which

is obviously Presburger. ut

Stabilization and well-specified protocols. An execution C0,C1, . . . stabilizes to b for a
given b ∈ {0,⊥, 1} if there exists n ∈ N such that O(Cm) = b for every m ≥ n (if the
execution is finite, then this means for every m between n and the length of the execution).
Notice that there may be many different executions from a given configuration C0, each of
which may stabilize to 0, 1, or ⊥, or not stabilize at all.

A population protocol (A, I, O) is well specified if for every input population X ∈

Pop(Σ), every fair execution of A starting at I(X) stabilizes to the same value b ∈ {0, 1}.
Otherwise, the protocol is ill specified. Finally, population protocol computes a predicate Π
if for every X ∈ Pop(Σ), every fair execution ofA starting at I(X) stabilizes to Π(X). It fol-
lows easily from the definitions that a protocol computes a predicate iff it is well specified.

Example 7 (Debating philosophers.) Let us show that the population protocol (A, I, O) of
the debating philosophers is well specified. By Lemma 2, every fair execution eventually
gets trapped in bottom configurations, that is, in configurations of B = BF ∪ BA, where BF
and BA were computed in Example 3:

BF = { (rf , 0, tf , 0) | rf + tf > 0 } and BA = { (0, ra, 0, ta) | ra + ta > 0 }

Since in the configurations of B all philosophers have the same opinion, it is not possible to
move from BF to BA, or vice versa. So a fair execution gets trapped either in BF or in BA,
and therefore every fair execution stabilizes to 0 or 1.

It remains to show that for every fixed initial configuration C0 = (rf 0, ra0, 0, 0), either
all fair executions starting at C0 get trapped in BF, or they all get trapped in BA. We prove
that they get trapped in BA if rf 0 ≥ ra0, and in BF otherwise.

Let C1 = {(tf , ra, rf , ta) | rf < ra}. By direct inspection of the transitions, if C ∈ C1

and C → C′, then C′ ∈ C1. Therefore, if rf 0 ≥ ra0 then a fair execution starting at C0 gets
trapped in configurations of B ∩ C1, and so only in configurations of BA.

Let C2 = {(tf , ra, rf , ta) | tf ≥ ra ∧ tf + rf > 0} By direct inspection of the transitions,
if C ∈ C2 and C → C′, then C′ ∈ C2. (For the transition (Rα, Tβ) 7→ (Rα, Tα), observe that
if the transition is enabled then rf > 0.) Assume C0 = (tf 0, ra0, 0, 0) satisfies tf 0 ≥ ra0.
Since configurations contain at least one agent, we have tf 0 > 0 and so C0 ∈ C2. Therefore,

10

a fair execution starting at C0 gets trapped in configurations of B ∩ C2, and so only in
configurations of BF.

So the protocol of the debating philosophers is well specified, hence it computes a pred-
icate Π : Pop({F, A}) → {0, 1}. This predicate is just the majority predicate: Π(f , a) = 1 iff
f ≥ a. ut

3.5 Verification Problems

Angluin et al. [2] showed that well-specified population protocols can compute all Pres-
burger predicates. Later, Angluin, Aspnes and Eisenstat [4] proved by means of an involved
argument that they can only compute Presburger predicates. However, a protocol can be
ill specified, or be well specified but compute a predicate different from the one intended.
Finally, given a protocol we would like to obtain a Presburger formula for the predicate it
computes. So we study the following three problems.

– The well-specification problem: given a population protocol (A, I, O), is it well speci-
fied?

– The fitting problem: given a population protocol (A, I, O) and a Presburger predicate Π ,
does (A, I, O) compute Π?

– The tailor problem: given a well-specified population protocol (A, I, O), compute (in
the standard sense) a Presburger formula for the predicate computed (in the population
protocol sense) by (A, I, O).
Note that the fitting problem does not assume (A, I, O) to be well specified. Conse-

quently, if (A, I, O) does not compute Π then either the population protocol is ill specified,
or it stabilizes to b ∈ {0, 1} for some input X ∈ Pop(Σ) such that Π(X) = 1 − b.

In the rest of the paper we obtain the following results:
– The well-specification and fitting problems are Turing-reducible in elementary time to

the reachability problem for Petri nets.
In other words, we show that both problems can be solved in elementary time with the
help of an oracle for the reachability problem for Petri nets. In particular, this proves
that both problems are decidable.

– The reachability problem for Petri nets can be reduced in polynomial time to the (com-
plements of the) well-specification or the fitting problems.
Together with the previous result, this shows that the well-specification and fitting prob-
lems can be solved in elementary time if and only if the reachability problem for Petri
nets can be solved in elementary time.

– There is an algorithm for the tailor problem.
This algorithm can also be used to solve the well-specification and fitting problems.
However, it consists of two semi-decision algorithms, and currently we do not know
of any elementary time reduction to the reachability problem. As a corollary of this
algorithm we obtain an alternative proof to the result of Angluin et al. [4].

4 Population Protocols as Petri Nets

The computation of a population protocol can be simulated by an associated Petri net. This
allows us to apply results on Petri nets to population protocols.

A Petri net N = (P,T, F) consists of a finite set P of places, a finite set T of transitions,
and a flow function F : (P × T) ∪ (T × P)→ N. The preset of a transition t is the multiset •t

11

of places given by •t(p) = F(p, t) and its postset the multiset •t given by t•(p) = F(t, p). A
marking M ∈ NP is a multiset on the set P of places and we say that M puts M(p) tokens in
place p. A transition t ∈ T is enabled at marking M, written M [t〉, if •t ≤ M. A transition t
that is enabled at M can fire, yielding the marking M′ = M − •t + t•. We denote this fact as
M [t〉M′. We extend enabledness and firing inductively to words of transitions as follows.
Let w = t1 . . . tk be a finite word of transitions t j ∈ T . We write M [w〉M′ if there exists a
sequence M0, . . . ,Mk of markings such that M = M0 [t1〉M1 · · · [tk〉Mk = M′, and say that
M′ is reachable from M.

Given a Petri net N = (P,T, F), a set M of markings, and a language W ⊆ T ∗, we
introduce the sets:

postN(M,W) = {M′ ∈ NP | ∃M ∈ M ∃w ∈ W : M [w〉M′}

preN(M,W) = {M ∈ NP | ∃M′ ∈ M ∃w ∈ W : M [w〉M′} .

When W = T ∗ these sets are denoted by post∗N(M) and pre∗N(M), respectively.
The reachability problem for Petri nets asks, given a Petri net N and two markings

M,M′ of N, whether M′ is reachable from M, or equivalenty whether M′ ∈ postN({M}).
The problem is known to be decidable in non-primitive recursive time, and EXPSPACE-
hard. It is open whether the problem has an algorithm that runs in elementary time, i.e., in
k-EXPTIME for some number k independent of the input.

Given two sets M,M′ of markings, we say that M′ is reachable from M,M′ if there
are M ∈ M and M′ ∈ M′ such that M′ is reachable from M. The reachability problem for
Presburger-definable sets of markings is also decidable:

Theorem 1 Let N be a Petri net, and let φ, φ′ be two Presburger formulas denoting sets
M,M′ of markings of N. The problem whetherM′ is reachable fromM can be reduced in
elementary time to the reachability problem for Petri nets, and is thus decidable.

Proof Since similar reductions are well known (see e.g. [14]), we only sketch the argument.
Let d be the number of places of N. Markings of N can then be represented as vectors of Nd.
SinceM andM′ are Presburger definable, they are semi-linear [13], and we can compute
in elementary time (actually, in triple exponential time in N), semi-linear representations for
M andM′.

Let {(r1; P1), . . . , (rn; Pn)} and {(r′1, P
′
1), . . . , (r′m, P

′
m)} be semi-linear representations of

M andM′. We sketch the behavior of a Petri net N̂ with an initial marking M̂ that, loosely
speaking, nondeterministically generates an initial marking M0 of N, simulates N on this
marking, nondeterministically stops the simulation at some point in time, and nondetermin-
istically checks if the marking M reached by N when the simulation is stopped belongs to
M′.

The marking M0 is generated as follows. Initially N̂ nondeterministically fires a transi-
tion from a set {t1, . . . , tn}, containing a transition for each linear set in the representation
of M. After firing, say, transition ti, the net proceeds to nondeterministically generate a
marking of (ri, Pi) where, say, Pi = {pi1, . . . , pik}. For this it first fires a transition that puts
ri tokens in the places of N, and then it proceeds to repeatedly fire transitions ti1, . . . , tik
such that the firing of ti j adds pi j tokens to the places of N. The net can stop these firings
at any time by nondeterministically choosing to fire a transition start, after which it starts
simulating N.

The simulation is stopped nondeterministically by firing a transition stop. Let M be
the marking of N after the simulation stops. The net nondeterministically guesses that M

12

RF RA

TF TA

2

2

Fig. 1 Petri net for the protocol scheme of the debating philosophers. Transitions t such that •t = t• are not
shown.

belongs to the linear set (r′j, P
′
j) of the representation ofM′ by firing a transition t′i for some

1 ≤ i ≤ m. Assume P′i = {p′i1, . . . , p′ik′ }. The net proceeds to nondeterministically check
the guess by first firing a transition that removes r′i tokens from the places of N, and then
repeatedly firing transitions t′i1, . . . , t

′
ik′ , where the firing of t′il removes p′i j tokens from the

places of N. If the guess is correct, i.e., if M belongs to the linear set (r′j, P
′
j), then the net can

reach the empty marking; otherwise, the nondeterministic check gets stuck at some marking
different from the empty marking. Therefore, the empty marking can be reached from M̂ iff
some marking ofM′ is reachable from some marking ofM. ut

Given a protocol scheme A = (Q, ∆), we define the Petri net N(A) = (Q, ∆, F), whose
places and transitions are the states and transitions of the protocol, respectively, and •δ =

{q1, q2}, δ
• = {q′1, q

′
2} for every δ = (q1, q2) 7→ (q′1, q

′
2) in ∆. Note that a configuration of

the protocol scheme A is a marking of the Petri net N(A). Further, whenever C
δ
−→ C′ for

configurations C and C′, we have C [δ〉C′ in the Petri net, and vice versa. Figure 1 shows
the Petri net for the protocol scheme of the debating philosophers. Transitions t such that
•t = t• (whose firing does not change the current marking) have been omitted.

5 The Well-Specification Problem is Decidable

We first characterize the ill specified population protocols in terms of the bottom configura-
tions of their configuration graphs.

Definition 1 Let (A, I, O) be a population protocol, and let B be the set of bottom config-
urations of its configuration graph. We define B0 as the set of configurations C ∈ B such
that every configuration C′ in the same SCC as C satisfies O(C) = 02. The set B1 is defined
analogously.

Lemma 3 A population protocol (A, I, O) is ill specified iff
(1) B \ (B0 ∪ B1) is reachable from I, or
(2) I contains a configuration C ∈ I such that both B0 and B1 are reachable from C.

Proof By definition, a protocol is ill specified iff
(a) some fair execution starting at a configuration of I does not stabilize to either 0 or 1; or

2 Observe that we do not define B0 as the set of configurations C ∈ B such that O(C) = 0.

13

(b) two fair executions starting at the same configuration of I stabilize to 0 and 1, respec-
tively.

We prove that (a) holds iff (1) holds, and (b) holds iff (2) holds.
(a) ⇔ (1). By Lemma 2, a fair execution eventually gets trapped in a bottom SCC S

of the configuration graph, and visits infinitely often every configuration of S. Therefore,
the execution does not stabilize to either 0 or 1 iff either O(C) = ⊥ for some C ∈ S, or
S contains two configurations C1, C2 such that O(C1) , O(C2). In both cases we have
S ∩ (B0 ∪ B1) = ∅, and so S ⊆ B \ (B0 ∪ B1).

(b) ⇔ (2). By Lemma 2, two executions that stabilize to 0 and 1 get trapped in two
bottom SCCs S0 and S1, and visit all configurations of these SCCs infinitely often. So, we
have O(C0) = 0 for every C0 ∈ S0, and O(C1) = 1 for every C1 ∈ S1. It follows S0 ⊆ B0

and S1 ⊆ B1, and so both B0 and B1 are reachable from some C ∈ I. ut

This lemma reduces the ill specification problem to reachability questions for the sets
I, B, B0, and B1. We use some results of Petri net theory to prove that all these sets are
effectively Presburger, which allows us to apply Theorem 1.

The mutual reachability relation of a Petri net N is the binary relation over the markings
of N that containing the pairs (M,M′) such that M′ is reachable from M and M is reachable
from M′ (equivalently, the pairs (M,M′) such that M and M′ belong to the same SCC of the
reachability graph). It is easy to see that the mutual reachability relation is an equivalence
relation, and it is closed under addition: if (M1,M′1) and (M2,M′2) belong to the relation,
then so does (M1 + M2,M′1 + M′2). Using a result of Eilenberg and Schützenberger about
rational sets in commutative monoids [10] one can then prove that the mutual reachability
relation is Presburger-definable. However, the proof of this result is non-constructive. This
problem was overcome by Jérôme Leroux [16]:

Theorem 2 ([16]) There is an algorithm that takes as input a Petri net N and returns a
Presburger formula denoting the mutual reachability relation of N. Moreover, the algorithm
runs is elementary time.

Using this theorem, we can easily derive an algorithm to construct Presburger formulas
for B, B0, and B1.

Proposition 1 There is an elementary-time algorithm that takes as input a protocol scheme
and returns Presburger formulas denoting the sets B, B0, and B1.

Proof We show that the predicate B(C) associated to the set of bottom configurations is
definable in Presburger arithmetic. Let us introduce the predicate MR(C,C′) associated to the
mutual reachability relation. Theorem 2 shows that MR(C,C′) is effectively Presburger. Now,
we just observe that C is a bottom configuration iff for every configuration C′ such that C
and C′ are mutually reachable and for every C′′ such that C′ → C′′, we have C and C′′ are
also mutually reachable:

B(C) = ∀C′ ∀C′′ : (MR(C,C′) ∧C′ → C′′)⇒ MR(C,C′′) .

We claim that Bb is a Presburger set of configurations. To prove this, we just notice that Bb

is denoted by the following formula:

Bb(C) = B(C) ∧ ∀C′ : MR(C,C′)⇒ O(C′, b) .

ut

14

Together with Theorem 1, Proposition 1 shows that we decide reachability questions
between I (which is a Presburger set by definition), and the sets of bottom configurations.
The next theorem reduces conditions (1) and (2) of Lemma 3 to such questions.

Theorem 3 The ill specification problem is Turing-reducible in elementary time to the
reachability problem for Petri nets, and thus decidable.

Proof Given a population protocol (A, I, O), we show that conditions (1) and (2) of Lemma 3
are reducible to the reachability problem for Petri nets in elementary time. To check condi-
tion (1) we proceed as follows:

– Using Proposition 1, compute a Presburger formula φ⊥ denoting the set B \ (B0 ∪ B1).
– Apply Theorem 1 to the net N(A) and the formulas I and φ⊥.

Checking condition (2) requires some more work. Consider the net (N(A) ‖ N(A))
obtained by putting two disjoint copies of N(A) side by side. (Formally, if N(A) = (P,T, F),
then we take a net (P′,T ′, F′) isomorphic to (P,T, F) and satisfying (P′ ∪T ′)∩ (P∪T) = ∅,
and let (N(A) ‖ N(A)) = (P∪P′,T ∪T ′, F ∪F′).) We denote a marking of (N(A) ‖ N(A))
as (M,M′), meaning that its projections onto P and P′ are M and M′, respectively. It follows
easily from this definition that (M,M′) is reachable from (M0,M′0) in (N(A) ‖ N(A)) iff
M is reachable from M0 and M′ is reachable from M′0 in N(A). In particular, since the non-
empty markings of N(A) are the configurations of A, condition (2) of Lemma 3 holds iff
there are non-empty markings MI ,M0,M1 of N(A) such that

– MI ∈ I, M0 ∈ B0, M1 ∈ B1, and
– (M0,M1) is reachable from (MI ,MI) in (N(A) ‖ N(A)).

So to check condition (2) we proceed as follows:
– Construct a Presburger formula φII denoting the set of markings of (N(A) ‖ N(A)) of

the form {(M,M) | M ∈ I}.
This is possible because the set I is Presburger.

– Construct a Presburger formula φ01 denoting the set of markings of (N(A) ‖ N(A)) of
the form {(M0,M1) | M0 ∈ B0,M1 ∈ B1}.

– Apply Theorem 1 to the net (N(A) ‖ N(A)) and the formulas φII and φ01. ut

6 The Fitting Problem is Decidable

We show that the fitting problem is Turing-reducible in elementary time to the reachability
problem for Petri nets.

Theorem 4 The fitting problem is Turing-reducible in elementary time to the reachability
problem for Petri nets, and thus decidable.

Proof Let (A, I, O) be a population protocol and let Π : Pop(Σ) → {0, 1} be a Presburger
predicate. We reduce the fitting problem to the (complement of the) reachability problem
for Presburger sets of markings, and apply Theorem 1.

Recall that I(X,C) is a formula of Presburger arithmetic that holds iff I(X) = C, that is,
if C ∈ Pop(Q) is the initial configuration for the input X ∈ Pop(Σ). We define the formulas

I1(C) = ∃X : I(X,C) ∧ Π(X) I0(C) = ∃X : I(X,C) ∧ ¬Π(X)

and the sets I1,I0 of configurations satisfying I1, I0. So I1 (resp. I0) is the set of initial
configurations of A corresponding to the inputs that satisfy Π (resp. do not satisfy Π).
Clearly, both sets are Presburger-definable.

15

Let B, B0, and B1 as in Definition 1. We claim that (A, I, O) computes Π iff B \ B0 is
not reachable from I0, and B \B1 is not reachable from I1. By Lemma 2 and the definition
of B0 and B1, a fair computation stabilizes to b ∈ {0, 1} iff it gets trapped in a bottom SCC
contained in Bb. Therefore, B \ Bb is not reachable from Ib iff every fair computation from
Ib stabilizes to b. This proves the claim.

Let N(A) be the Petri net associated to A. By the claim, (A, I, O) does not compute Π
iff some marking of B\B0 is reachable in N(A) from some marking of I0, or some marking
of B \ B1 is reachable in N(A) from some marking of I1. Since, by Proposition 1, B, B0

and B1 are Presburger sets, and computable in elementary time, so are B \ B0 and B \ B1.
So the fitting problem reduces to in elementary time to (the complements of) two instances
of the reachability problem for Presburger sets. ut

7 Lower Bounds for the Well-Specification and Fitting Problems

We show that the reachability problem for Petri nets can be reduced to the complements of
the well-specification and fitting problems.

Theorem 5 The reachability problem for Petri nets is polynomially reducible to ill-specification
problem and to the complement of the fitting problem for population protocols (in both cases
even with simple output mappings).

Proof We proceed by means of a sequence of reductions. First, the reachability problem
for Petri nets can be reduced in polynomial time to the single-place zero-reachability prob-
lem [14]:

Given: a Petri net N = (P,T, F), a marking M0 ∈ N
P, and a distinguished place

z ∈ P.
Decide: Is there a marking M reachable from M0 such that M(z) = 0 ?

We claim that this problem can in turn be reduced in polynomial time to the problem for the
special case in which, additionally,
(a) M0(z) > 0,
(b) N with M0 as initial marking is deadlock-free,
(c) no two transitions of N have the same input and output places (i.e., if •t1 = •t2 and

t1• = t2• then t1 = t2),
(d) the range of the flow function F is {0, 1}, and
(e) every transition t of N satisfies 1 ≤ |•t| ≤ 2 and 1 ≤ |t•| ≤ 2,

Proof of the claim. For (a): clear, because problem instances with M0(z) = 0 are trivial
(take M = M0). For (b), if N is not deadlock-free we just add a new place p0, initially
marked, and a new transition t0 with •t0 = t0• = p0 . For (c), if there are several transitions
with the same input and output places, we can safely remove all but one, without changing
the set of reachable markings. For (d) and (e), it suffices to replace every transition of N
non-complying with the conditions by an adequate “gadget” that simulates the firing of a
transition t one place at a time: first the places of •t then those of t•. Within •t and t•, the
ordering is given by a total order ≺ on the places of P such that z is the largest place in this
ordering. Figure 2 illustrates the gadget construction (bottom) given the original transition
(top); the reader can easily guess the general definition. It is important that the “gadget”
simulates the firing of a transition t going through the places of •t ∪ t• in the order given by

16

p1

z

p1

z

r

p2

p22

Fig. 2 Above the original transition, below its gadget. We assume p1 ≺ p2 ≺ z.

≺. The place r is shared by all the gadgets of all transitions. Loosely speaking, r guarantees
that at most one gadget is active at a time.

Let N′ = (P′,T ′, F′) be the result of performing this transformation. We have P′ =

P ∪ Paux, where Paux are the auxiliary places used in the gadgets. Let M′0 ∈ N
P′ be such that

M′0 = M0 + r. The following two properties are easy to prove:
(1) The reachable markings of N and the projections onto P of the reachable markings of

N′ that put one token in the special place r coincide.
Loosely speaking, the net N′ simulates the firings of transitions of N by executing the
corresponding gadget. If N′ tries to simulate the firing of a transition of N that is not
currently enabled, then the gadget cannot execute and N′ reaches a deadlock. The mark-
ings of N′ with one token in r are those in which every execution of a gadget could be
successfully completed.

(2) If some reachable marking M′ of N′ satisfies M′(z) = 0 then some reachable marking
M′′ satisfies M′′(z) = 0 and M′′(r) = 1.
Indeed, since z is the largest place among the input places of any transition, any reach-
able marking M′ with M′(z) = 0 is a marking in which the first part of the gadget for
some output transition of z has been successfully executed. The marking M′′ is reached
by completing the execution of the gadget.

It follows easily from (1) and (2) that N has a reachable marking M such that M(z) = 0 iff
N′ has a reachable marking M′ such that M′(z) = 0.

Proof of the theorem. Given an instance of the single-place zero-reachability problem sat-
isfying the additional constraints above, we construct a population protocol (A, I, O) with
Presburger input mapping. We first describe the protocol scheme A = (Q, ∆). The set Q of
states of the protocol contains

– a state qp for every place p ∈ P;
– a state qt for every transition t ∈ T ; and
– two states Source and Sink.

Let Qz = {qz} ∪ {qt | F(z, t) = 1} The output mapping O, which is simple, is given by
the partition Q0,Q1 with Q0 = Qz ∪ {Sink}. The input mapping I : Pop(Σ) → Pop(Q) is
defined as follows. The set Σ is a singleton {σ}, and I assigns to the number n—a population
of Pop({σ})— the configuration that puts

– n agents in Source;
– M0(p) agents in qp for every place p; and
– 0 agents elsewhere.

Observe that I is a Presburger mapping.

17

We now describe the transitions of the protocol. By condition (c), we can identify a Petri
net transition t and the pair (•t, t•), and so we use the notation t = (•t, t•). Following (e), we
define the set ∆ of protocol transitions as follows:
(1) for every Petri net transition t = ({p1, p2}, {p3, p4}), two protocol transitions

(qp1 , qp2) 7→ (qt, Sink) and δt := (qt, Source) 7→ (qp3 , qp4)

(we call the second transition δt, for future reference).
(2) for every Petri net transition t = ({p1, p2}, {p3}), two protocol transitions

(qp1 , qp2) 7→ (qt, Sink) and δt := (qt, Source) 7→ (qp3 , Sink)

(3) for every Petri net transition t = ({p1}, {p2, p3}), one protocol transition

δt := (qp1 , Source) 7→ (qp2 , qp3)

(4) for every Petri net transition t = ({p1}, {p2}), one protocol transition

δt := (qp1 , Source) 7→ (qp2 , Sink)

(5) for every q′ ∈ Q1, and every q ∈ Qz, a protocol transition

(q′, q) 7→ (Sink, q) .

The transitions of (1)–(4) simulate the firing of the Petri net transition t (in the case
of transitions in (1)–(2), firing t is simulated by the occurrence, one after the other, of two
protocol transitions). Observe that the simulation of a transition t of type (1) can “get stuck”:
after the occurrence of (qp1 , qp2) 7→ (qt, Sink) there may be no agent in Source, and then
(qt, Source) 7→ (qp3 , qp4) cannot occur. This is also true for the transitions of type (2).

Intuitively, the transitions of (5) can move agents from any state in Q1 to Sink (∈ Q0)
“as long as there is at least one token in z”. This is the case if there is at least one agent in
qz, or if the simulation of a transition {qt | F(z, t) = 1} has got stuck, and so has not been
completed. Observe that this is the case if there is at least one agent in Qz.

In all cases, simulating the firing of t requires one agent to leave the Source state. Since,
moreover, no agents ever enter Source, each execution of (A, I, O) contains only finitely
many occurrences of transitions of (1)–(4). Further, since every transition of (5) moves an
agent to Sink, and no agents ever leave Sink, the transitions of (5) also occur only finitely
often. Therefore all fair executions of (A, I, O) are finite.

Assume that some reachable marking M of N satisfies M(z) = 0. Let τ ∈ T ∗ be such that
M0 [τ〉M, and let k be the length of τ. Since M0(z) > 0, we have k > 0. We claim that A
has a fair (finite) execution from I(kσ) that does not stabilize. Consider the execution that
starts by simulating τ through transitions (1)–(4). At the end of this simulation the protocol
reaches a configuration C such that C(Source) = 0 = C(Qz), and C(Sink) > 0 (this follows
from k > 0). Since C(Source) = 0, no δt transition can occur from C, and so, by exhaustively
executing transitions from (1)–(2), we reach a configuration C′ that that does not enable any
transition of (1)–(4), still satisfies C′(Source) = 0 = C′(Qz) and C′(Sink) > 0, and further
satisfies C′(qp) +

∑
t|F(p,t)=1 C′(qt) > 0 (because transitions of (1)–(2) may have moved the

agents in qp to states qt with F(p, t) = 1). Since C′(Qz) = 0, the configuration C′ does not
enable any transition of (5) either. So the execution cannot be extended, hence it is fair. Since
Sink ∈ Q0 and {qp} ∪ {qt | F(p, t) = 1} ⊆ Q1, and both are occupied by agents in C′, we have
O(C′) = ⊥. So (A, I, O) is ill specified.

18

Assume now that every reachable marking M of N satisfies M(z) > 0. We prove that
every fair execution stabilizes to 0. Since all fair executions of (A, I, O) are finite, given
a fair execution C0C1 . . .Cn we have to prove O(Cn) = 0 or, equivalently, Cn(q) = 0 for

every q ∈ Q1. Let σ = δ1, . . . , δn be the sequence of protocol transitions such that C0
δ1
−→

C1 · · ·Cn−1
δn
−→ Cn, and let δt1 · · · δt j be the projection of σ onto the set of transitions {δt |

t ∈ T }. It follows from the definition of A that t1 . . . t j is a firing sequence of N from the
marking M0. Let M be the marking of N reached by firing this sequence. By hypothesis we
have M(z) > 0. Let C j be the configuration reached after executing the protocol transition
δt j in σ. Since C j corresponds to the marking M, we have C j(qz) > 0. Since no transition of
{δt | t ∈ T } occurs between C j and Cn, we have Cn(Qz) > 0. Finally, since by hypothesis the
execution C0C1 . . .Cn cannot be extended, Cn does not enable any transition of (5), and so
Cn(Q1) = 0.

The same reduction shows hardness for the complement of the fitting problem for the
predicate false. ut

8 An Algorithm for the Tailor Problem

We present an algorithm for the tailor problem (given a well-specified population protocol
obtain a Presburger formula for the predicate it computes), based on the notion of certifi-
cates. A certificate of a protocol (A, I, O) is a string x satisfying certain conditions, specified
in Section 8.1 below. After defining certificates, we prove the following properties:
(1) If a protocol has a certificate, then it is well specified. Moreover, there is an algorithm

that, given a protocol and a certificate, returns a Presburger formula for the predicate
computed by the protocol.

(2) There is an algorithm that, given a protocol and a string x, decides if x is a certificate of
the protocol.

(3) If a protocol is well specified, then it has a certificate.
These properties immediately lead to an algorithm for the tailor problem: enumerate

all strings x; check if x is a certificate using property (2); if x is a certificate, compute a
formula for the predicate computed by the protocol using property (1). The termination of
the algorithm is ensured by property (3).

After defining certificates in Section 8.1, properties (1)–(3) are proved in in three dif-
ferent sections. Property (3) has the most involved proof, and requires to introduce some
further results from the theory of Petri nets.

8.1 Certificates

We need some definitions and notations. Let (A, I, O) be a population protocol.
– A configuration C of A is a 0-configuration (resp. 1-configuration) if O(C) = 0 (resp.

O(C) = 1).
– A set C of configurations ofA is inductive if C ∈ C and C → C′ implies C′ ∈ C.
– Given a language W ⊆ ∆∗ and a set C of configurations, preA(C,W) denotes the set

of configurations C such that C
w
−→ C′ for some word w ∈ W and some C′ ∈ C. We

write pre∗
A

(C) to denote preA(C, ∆∗). The definitions for postA(C,W) and post∗
A

(C) are
as expected.

19

Definition 2 Let (A, I, O) be a population protocol such that A = (Q, ∆). A certificate for
the population protocol (A, I, O) is a tuple (S0, S1, D0, D1,w1, . . . ,wk), where S0, S1, D0, D1 are
predicates in Presburger arithmetic denoting Presburger sets of configurationsS0,S1,D0,D1,
and w1, . . . ,wk are words in ∆∗ denoting the language W = w∗1 . . .w

∗
k, such that:

(1) S0,S1,D0,D1 are inductive.
(2) The pair (I0,I1), where I0 = S0 ∩ I and I1 = S1 ∩ I, is a partition of I.
(3) D0 is a set of 0-configurations such that S0 ⊆ preA(D0,W).
(4) D1 is a set of 1-configurations such that S1 ⊆ preA(D1,W).

Observe that, by condition (2), all initial configurations belong to S0 ∪ S1. So, by con-
dition (1), S0 ∪ S1 contains all configurations reachable from initial configurations. Con-
dition (3) ensures that from every configuration of S0 one can reach and get trapped in a
set of 0-configurations (because D0 is inductive); condition (4) is a similar property for
1-configurations.

8.2 Certificates Ensure Well-Specification

We show that if a protocol has a certificate, then it is well specified. Moreover, a Presburger
formula for the predicate computed by the protocol can be easily extracted from the certifi-
cate.

Lemma 4 If a population protocol (A, I, O) has a certificate (S0, S1, D0, D1,w1, . . . ,wk),
then the protocol is well specified and computes the predicate Π : Pop(Σ) → {0, 1} defined
as follows:

Π(X) =

0 if ∃C : I(X,C) ∧ S0(C)
1 if ∃C : I(X,C) ∧ S1(C) .

In particular, the algorithm that given a protocol and a certificate outputs the formula
∃C : I(X,C) ∧ S0(C) yields a correct solution to the tailor problem.

Proof Let S0,S1,D0,D1 be the Presburger sets of configurations denoted by S0, S1, D0, D1,
respectively. Let W = w∗1 . . .w

∗
k. Since I0 and I1 form a partition of I, it suffices to prove

that every fair execution starting at Ib stabilizes to b. Let C ∈ Ib and let C0,C1, . . . be a fair
execution starting at C. By Lemma 2 the execution gets trapped in a bottom SCC. Hence,
there exists n ∈ N such that Cn is a bottom configuration. As Sb is inductive, it follows that
Cn ∈ Sb. Moreover, as Sb ⊆ preA(Db,W), there exists a word w ∈ W and a configuration
C′ ∈ Db such that Cn

w
−→ C′. Since Cn is a bottom configuration, there exists a word w′ ∈ ∆∗

such that C′
w′
−−→ Cn. Now, let m ≥ n. Since Cm is reachable from Cn, it follows that Cm is

reachable from C′. As C′ ∈ Db andDb is inductive, it follows that Cm ∈ Db. AsDb is a set
of b-configurations, it follows that O(Cm) = b; thus, the execution stabilizes to b. ut

Example 8 (Certificate for the parity predicate.) We describe a population protocol and
show with the help of a certificate that it computes a given predicate. In the following
b ∈ {0, 1}.

Let Σ = {σ}. Abusing language, we identify the mapping X : Pop(Σ) → N given by
X(σ) = n with the number n. The parity predicate Π : Pop(Σ) → {0, 1} is given by
Π(n) = 0 if n is even, and Π(n) = 1 otherwise.

The protocol (A, I, O), whereA = (Q, ∆), is defined as follows:

20

– Q = {A0, A1, P0, P1}. Agents in {A0, A1} are active, and those in {P0, P1} are passive.
Further, agents in {Ab, Pb} carry (the value) b.

– ∆ = {δx,y, δx | x, y ∈ {0, 1}}, where

δx,y = (Ax, Ay) 7→ (Ax+y, Px+y) and δx = (Ax, P1−x) 7→ (Ax, Px) .

Intuitively, in δx,y two active agents add their values modulo 2, and one of them becomes
passive; in δx an active agent changes the value of a passive agent.

– I(n) = nA1 for every n ∈ N. That is, to compute the parity of n the protocol starts with
n active agents carrying 1 (n agents in state A1, and no agents elsewhere).

– O(C) = b if Sup(C) ⊆ {Ab, Pb}, and O(C) = ⊥ otherwise. That is, a configuration has
output b ∈ {0, 1} if currently all agents carry b, otherwise it has output ⊥.
We provide a certificate of the fact that the protocol computes Π .

– Db(C) :=
(
C(Ab) = 1 ∧C(A1−b) = 0 ∧C(P1−b) = 0

)
.

Notice that the set of configurationsDb denoted by Db is inductive. In fact, since config-
urations of Db only have one active agent, and all their agents carry the same value b,
they enable no transitions.

– S0(C) and S1(C) are Presburger formulas for “C(A1) is even” and “C(A1) is odd”.
Inspection of ∆ immediately shows that the sets S0 and S1 denoted by S0(C) and S1(C)
are inductive. Notice that I ∩ S0 and I ∩ S1 is a partition of I.

– W = δ∗1,1 δ
∗
0,0 δ

∗
1,0 δ

∗
0 δ
∗
1.

W models a strategy to reachD0∪D1 from any configuration. First execute the transition
δ1,1 as long as possible, until there is at most one active agent carrying a 1. Then execute
δ0,0 as long as possible, until there is at most one active agent carrying a 0. Then execute
δ1,0 if possible, reaching a configuration with exactly one active agent carrying a value
b. Finally, execute δ0 as long as possible, followed by δ1 as long as possible, leading to
a configuration in which every passive agent also carries the value b. ut

8.3 Checking Certificates

Using a result of one of the authors [18], we show that the problem of checking if a given
tuple is a certificate reduces to the problem of checking if a closed formula of Presburger
arithmetic is true, and so decidable.

Lemma 5 Given a protocol (A, I, O) and a tuple (S0, S1, D0, D1,w1, . . . ,wk), it is decidable
whether the tuple is a certificate of the protocol.

Proof We show that conditions (1)–(4) of Definition 2 can be effectively expressed in Pres-
burger arithmetic. For (1), a set M of configurations denoted by a predicate M(C) in Pres-
burger arithmetic is inductive iff the following Presburger formula is valid:

∀C,C′ : (M(C) ∧C → C′)⇒ M(C′) .

So the inductiveness of S0,S1,D0,D1 is expressible. For (2), (I0,I1) is a partition of I iff

∀C : (∃X : I(X,C))⇔
(
(I0(C) ∧ ¬I1(C)) ∨ (¬I0(C) ∧ I1(C)

)
is valid, where Ib(C) = (∃X : I(X,C)) ∧ Sb(C). For (3-4),Db is a set of b-configurations iff

∀C : Db(C)⇒ O(C, b)

21

is valid. It remains to express Sb ⊆ preA(Db,W). Observe that for every word w ∈ ∆∗, the

relation
w∗
−−→ defined by C

w∗
−−→ C′ if C

wn

−−→ C′ for some n ∈ N is effectively definable in
Presburger arithmetic. (For w = δ, where δ = (q1, q2) 7→ (q′1, q

′
2), this follows easily from

C′ = C − (q1 + q2) + (q′1 + q′2). For the general case, see the reference [18].) So the inclusion
holds iff

∀C0 :
(
Sb(C0)⇒ ∃C1, . . . ,Ck : C0

w∗1
−−→ C1 · · ·

w∗k
−−→ Ck ∧ Db(Ck)

)
is valid. ut

8.4 Every Well-Specified Protocol has a Certificate

We prove that every well-specified protocol has a certificate.
Let (A, I, O) be a well-specified protocol. Let I0 and I1 be the subsets of initial con-

figurations for which the protocol computes 0 and 1, respectively. Since the protocol is well
specified, the pair (I0,I1) is a partition of I.

We choose D0 and D1 as Presburger formulas denoting the sets B0 and B1 of A, as
defined in Definition 1. These formulas exist and can be computed by Proposition 1, which
shows thatB0 andB1 are effectively Presburger. Observe that, with this choice,Db is a set of
b-configurations. Moreover, since any configuration reachable from a bottom configuration
is also a bottom configuration,Db is inductive.

Before choosing the sets S0 and S1, let us consider the tentative choice S′0 = post∗
A

(I0),
and S′1 = post∗

A
(I1). The sets S′0 and S′1 are clearly inductive. Moreover, since the protocol

is well specified, we have S′0 ∩I = I0 and S′1 ∩I = I1. Indeed, since (I0,I1) is a partition
of I, if S′0 ∩ I) I0 then S′0 ∩ I1 , ∅, and so there is a configuration with two fair
computations stabilizing to 0 and to 1, contradicting the assumption that the protocol is well
specified.

However, we still miss two important properties: S′0 and S′1 may not be Presburger sets,
and there may be no language W satisfying conditions (3) and (4). At this point we get help
from the following two results:

Theorem 6 ([4]) If (A, I, O) is well specified, then I0 and I1 are Presburger sets.

Theorem 7 ([17, Lemma 9.1]) Let N be a Petri net, and letM andM′ be Presburger sets
of markings of N such that post∗N(M) ∩M′ = ∅. There exists a Presburger inductive set of
markings S such thatM ⊆ S and S ∩M′ = ∅.

Applying Theorem 7 to M = I0 and M′ = I1 (which are Presburger by Theorem 6)
yields an inductive and Presburger set S0 ⊇ S

′
0 such that S0 ∩ I1 = ∅, and therefore

S0 ∩ I1 = I0. Similarly, applying the theorem to M = I1 and M′ = I0, we obtain a
corresponding set S1.

The existence of the bounded language W follows directly from another result of net
theory:

Theorem 8 ([18, Corollary XI.3]) For every Petri net N = (P,T, F) and for every Pres-
burger sets of markings S andD such that S ⊆ pre∗N(D), there exists a sequence w1, . . . ,wk

of words in T ∗ such that the bounded language W ⊆ w∗1 . . .w
∗
k satisfies S ⊆ preN(D,W).

Applying the theorem to S0 andD0 and to S1 andD1, we obtain two languages W0,W1.
It then suffices to take W = W0W1 since W ⊇ W0 ∪W1.

22

8.5 Well-Specified Protocols Compute Presburger Predicates: A New Proof

Angluin et al. have shown—a celebrated result—that well-specified population protocols
compute exactly the Presburger-definable predicates [4]. The proof that every Presburger
definable predicate is computed by some protocol profits from the fact that every formula of
Presburger arithmetic is equivalent to a quantifier-free formula with divisibility predicates
[11]. Using this result, it suffices to exhibit protocols computing some simple predicates,
and prove that predicates computed by population protocols are closed under conjunction
and disjunction, which is achieved by a rather straightforward product construction. The
other direction, showing that population protocols can only compute Presburger predicates,
is far more involved. We show that this direction follows from recent results of Petri net
theory obtained by one of the authors. In fact, we slightly generalize the results of Angluin
et al. [4], which hold for simple input and output mappings, to the more general Presburger
mappings.

Let us first introduce some notations. The set of non-negative rational numbers is de-
noted by Q≥0. Vectors in Qd

≥0 and subsets of Qd
≥0 are denoted in bold face. Given two subsets

X and Y of Qd
≥0, we write X + Y for the set {x + y | (x, y) ∈ X ×Y}. Symmetrically, for a set

R ⊆ Q≥0 and a set X ⊆ Qd
≥0, we write RX for the set {rx | (r, x) ∈ R × X}. When R, X, or Y

are reduced to a singleton set {r}, {x} or {y}, we simply denote X + Y by x + Y or X + y, and
RX by rX or Rx.

A conic set is a subset C of Qd
≥0 containing 0 and satisfying C + C ⊆ C and Q≥0C ⊆ C.

A subset P of Nd is periodic if 0 ∈ P and P + P ⊆ P. The periodic set P generated by a
subset S of Nd is the set {s1 + · · ·+ sk | k ∈ N, s1, . . . , sk ∈ S}. Notice that Q≥0P is a conic set
for every periodic set P. A periodic set P is said to be asymptotically-definable if the conic
set Q≥0P is definable in FO(Q≥0,+).

With these definitions, a linear set is a subset of Nd of the form b + P where b ∈ Nd and
P is a periodic set generated by a finite set. An almost-linear set is a set of the form b + P
where b ∈ Nd and P is an asymptotically-definable periodic set. Just like a semi-linear set
is a finite union of linear sets, an almost-semi-linear set is a finite union of almost linear
sets. The reachability sets of Petri nets are almost-semi-linear, as shown by the following
theorem.

Theorem 9 ([17, Corollary 6.3]) The sets post∗N(X)∩Y and pre∗N(Y)∩X are almost semi-
linear for every Petri net N and for every Presburger sets of markings X,Y.

Almost semi-linear sets can be approximated by Presburger sets as follows. The lin-
earization of an almost-linear set b + P is the semi-linear set b + [(P − P) ∩ Q≥0P] where
P − P = {p − q | p,q ∈ P}. Notice that a linearization of an almost semi-linear set is an
over-approximation. Assume that X is an almost-semi-linear set of the form

⋃k
j=1 X j where

X j is an almost linear set. The semi-linear set
⋃k

j=1 S j, where S j is the linearization of X j,
is called a linearization of X. Since the decomposition of an almost semi-linear set into a
finite union of almost-linear sets is not unique, an almost-semi-linear set may have multiple
linearizations.

Linearizations are tight over-approximations of almost semi-linear sets. The tightness
is captured in Lemma 6 below, which uses the notion of dimension. The dimension of a
non-empty subset S of Nd is the minimal r ∈ N such that S is included in a semi-linear
set

⋃k
j=1 b j + P j such that every P j is a periodic set generated by at most r vectors. The

dimension of the empty set is defined to be equal to −1. Intuitively, the lemma states that
if two almost-semi-linear sets are disjoint, then their linearizations cannot have a “large”

23

intersection: the dimension of the intersection must be strictly smaller than the dimension
of at least one of the sets.

Lemma 6 ([17, Corollary 8.4]) Let S and T be linearizations of non-empty, almost-semi-
linear sets X and Y such that X ∩ Y = ∅. The following relation holds:

dim(S ∩ T) < max{dim(X), dim(Y)} .

A subset X ofNd is said to be decomposable if X∩S is almost semi-linear for every semi-
linear set S. It follows form Theorem 9 that reachability sets of Petri nets are decomposable.
The following lemma shows that if the complement of a decomposable set is decomposable,
then the set is semi-linear.

Lemma 7 Disjoint decomposable sets X,Y such that X ∪ Y is semi-linear are semi-linear.

Proof Let us prove by induction on r ∈ N that for every semi-linear set A such that dim(A) <
r and for every partition X,Y of A into decomposable sets, the sets X and Y are semi-linear.
The case r = 0 is immediate since in this case A is empty. Assuming that the statement
is true for r, let us prove it for r + 1. Consider a semi-linear set A such that dim(A) = r,
and a partition X,Y of A into decomposable sets. In particular X and Y are almost semi-
linear. If X or Y is empty, then X and Y are semi-linear, and so we can assume that these
two sets are non-empty. Let S and T be linearizations of X and Y, respectively. Lemma 6
shows that dim(A′) < r where A′ is the semi-linear set defined as the intersection S∩T. We
introduce the decomposable set X′ and Y′ defined as X ∩A′ and Y ∩A′. Notice that X′,Y′
is a partition of A′. By induction, it follows that X′ and Y′ are semi-linear. Now, just notice
that X = (S\A′)∪X′ and Y = (T\A′)∪Y′. We derive that X and Y are semi-linear, and the
induction is proved. ut

We are now ready to prove our result:

Theorem 10 For every Petri net N, and for every Presburger sets of markingsM, F0,F1:
ifM0 =M∩ pre∗N(F0) andM1 =M∩ pre∗N(F1) is a partition ofM, thenM0 andM1 are
Presburger sets.

Proof From Theorem 9, it follows that pre∗N(F0) and pre∗N(F1) are decomposable sets. Thus
M0 andM1 defined asM∩pre∗N(F0) andM∩pre∗N(F1) are decomposable. SinceM0∩M1 =

∅ andM0 ∪M1 =M, it follows from Lemma 7 thatM0 andM1 are Presburger. ut

Corollary 1 Well-specified population protocols only compute Presburger predicates.

Proof Let (A, I, O) be a well-specified protocol. Then I, B0, and B1 are Presburger sets.
Applying Theorem 10 toM := I, F0 := B0, and F1 := B1, we obtain that I∩ pre∗N(B0) and
I ∩ pre∗N(B1) are Presburger sets. Since the protocol is well specified, each configuration of
I can reach exactly one of B0 and B1, these two sets are equal to I0 and I1, respectively.
So I0 and I1 are Presburger sets. ut

9 Certificate-Based Algorithms for Well-Specification and Correctness

Certificates provide an alternative algorithm to decide the well-specification and fitting prob-
lems. If we apply our algorithm for the tailor problem to an arbitrary protocol, then two cases
are possible: if the protocol is well specified, then the algorithm terminates and returns a

24

Presburger formula for the computed predicate. If the protocol is ill specified, then it has no
certificate, and the algorithm does not terminate. In other words, our algorithm for the tailor
problem is at the same time a semi-decision procedure for the well-specification problem.

In order to obtain a decision procedure, it suffices to run this semi-decision procedure
for well-specification in parallel with a semi-decision procedure for ill-specification. But
this second semi-decision procedure is easy to find. Recall that a protocol is ill specified if
there is an input X and either
(1) a fair computation starting at the configuration I(X) that does not stabilize, or
(2) two fair computations starting atI(X), and stabilizing to opposite values.
The semi-decision procedure for ill-specification enumerates all inputs X, constructs for
each of them the fragment of the reachability graph with root I(X), which is finite by
Lemma 1, and examines the bottom SCCs of this graph to decide if conditions (1) or (2)
hold.

Since the semi-decision procedure for the well-specification problem returns a Pres-
burger formula for the computed predicate, we can also use this combination of semi-
decision procedures to solve the fitting problem: if the protocol is ill specified, then it does
not fit any predicate; if the protocol is well specified, then we check whether the Presburger
formulas for the intended predicate and the computed predicate are equivalent, which is a
decidable problem.

Acknowledgements We thank the CONCUR reviewers for their insightful feedback.

References

1. P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. General decidability theorems for infinite-state
systems. In LICS ’96: Proc. 11th Annual IEEE Symp. on Logic in Computer Science, pages 313–321.
IEEE Computer Society, 1996.

2. D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, and R. Peralta. Computation in networks of passively
mobile finite-state sensors. In PODC ’04, pages 290–299. ACM, 2004.

3. D. Angluin, J. Aspnes, and D. Eisenstat. Fast computation by population protocols with a leader. In
DISC ’06, volume 4167 of LNCS, pages 61–75. Springer, 2006.

4. D. Angluin, J. Aspnes, and D. Eisenstat. Stably computable predicates are semilinear. In PODC ’06,
pages 292–299. ACM, 2006.

5. K. R. Apt and D. C. Kozen. Limits for automatic verification of finite-state concurrent systems. Infor-
mation Processing Letters, 22(6):307 – 309, 1986.

6. I. Chatzigiannakis, O. Michail, and P. G. Spirakis. Algorithmic verification of population protocols.
In S. Dolev, J. A. Cobb, M. J. Fischer, and M. Yung, editors, Stabilization, Safety, and Security of Dis-
tributed Systems - 12th International Symposium, SSS 2010, New York, NY, USA, September 20-22, 2010.
Proceedings, volume 6366 of Lecture Notes in Computer Science, pages 221–235. Springer, 2010.

7. J. Clement, C. Delporte-Gallet, H. Fauconnier, and M. Sighireanu. Guidelines for the verification of
population protocols. In ICDCS ’11, pages 215–224, 2011.

8. Y. Deng and J. Monin. Verifying self-stabilizing population protocols with coq. In W. Chin and S. Qin,
editors, TASE 2009, Third IEEE International Symposium on Theoretical Aspects of Software Engineer-
ing, 29-31 July 2009, Tianjin, China, pages 201–208. IEEE Computer Society, 2009.

9. Z. Diamadi and M. J. Fischer. A simple game for the study of trust in distributed systems. Wuhan
University Journal of Natural Sciences, 6(1–2):72–82, 2001.

10. S. Eilenberg and M. P. Schützenberger. Rational sets in commutative monoids. Journal of Algebra,
13(2):173–191, 1969.

11. H. B. Enderton. A Mathematical introduction to logic. Academic Press, 2001 San Diego London Toronto,
2001.

12. A. Finkel and P. Schnoebelen. Well-structured transition systems everywhere! Theoretical Computer
Science, 256(1-2):63–92, 2001.

13. S. Ginsburg and E. H. Spanier. Semigroups, presburger formulas, and languages. Pacific Journal of
Mathematics, 16(2):285–296, 1966.

25

14. M. H. T. Hack. Decidability questions for Petri nets. Technical Report 161, MIT, 1976.
15. J. Leroux. The general vector addition system reachability problem by presburger inductive invariants.

In LICS ’09, pages 4–13. IEEE Computer Society, 2009.
16. J. Leroux. Vector addition system reversible reachability problem. In CONCUR ’11, volume 6901 of

LNCS, pages 327–341. Springer, 2011.
17. J. Leroux. Vector addition systems reachability problem (a simpler solution). In Turing-100: The Alan

Turing Centenary Conference, volume 10 of EPiC Series, pages 214–228. EasyChair, 2012.
18. J. Leroux. Presburger vector addition systems. In LICS ’13, pages 23–32. IEEE Computer Society, 2013.
19. S. Navlakha and Z. Bar-Joseph. Distributed information processing in biological and computational

systems. Commun. ACM, 58(1):94–102, Dec. 2014.
20. J. Pang, Z. Luo, and Y. Deng. On automatic verification of self-stabilizing population protocols. In Sec-

ond IEEE/IFIP International Symposium on Theoretical Aspects of Software Engineering, TASE 2008,
June 17-19, 2008, Nanjing, China, pages 185–192. IEEE Computer Society, 2008.

21. J. Sun, Y. Liu, J. S. Dong, and J. Pang. PAT: towards flexible verification under fairness. In A. Bouajjani
and O. Maler, editors, Computer Aided Verification, 21st International Conference, CAV 2009, Grenoble,
France, June 26 - July 2, 2009. Proceedings, volume 5643 of Lecture Notes in Computer Science, pages
709–714. Springer, 2009.

