On the Complexity of Consistency and Complete State Coding
for Signal Transition Graphs

Javier Esparza

Institute for Formal Methods in Computer Science

Univ. Stuttgart, Germany

esparza@informatik.uni-stuttgart.de

Petr Jancar*
Center of Applied Cybernetics
Dept of CS, TU Ostrava, Czechia
Petr.Jancar@vsb.cz

Alexander Miller
Institute for Formal Methods in Computer Science
Univ. Stuttgart, Germany
Alexander.Miller@informatik.uni-stuttgart.de

Abstract

Signal Transition Graphs (STGs) are a popular formalism
for the specification of asynchronous circuits. A necessary
condition for the implementability of an STG is the exis-
tence of a consistent and complete state encoding. For an
important subclass of STGs, the marked graph STGs, we
show that checking consistency is polynomial, but checking
the existence of a complete state coding is co-NP-complete.
In fact, co-NP-completeness already holds for acyclic and
1-bounded marked graph STGs and for live and 1-bounded
marked graph STGs. We add some relevant results for free-
choice, bounded, and general STGs.

1. Introduction

Signal transition graphs (STGs) are a popular formalism
for specifying asynchronous circuits [3, 10]. They are Petri
nets in which the firing of a transition is interpreted as ris-
ing or falling of a signal in the circuit. Not every STG can
be implemented as a physical circuit. A central question re-
lated to implementability of an STG is whether it admits a
so-called consistent and complete state coding. Most papers
in the literature consider only the completeness part, assum-
ing that the STG is already consistent, and call the existence
of a complete state coding the CSC property. This property,
and the stronger unique state coding property (USC prop-
erty for short) have been studied in many papers (see e.g.
[1,7,8,09,11, 13, 14]).

*This author is supported by the Czech Ministry of Education, Grant
No. 1M0567

In this paper we reason about the computational com-
plexity of deciding if a given STG has a consistent and com-
plete state coding, viewing the consistency problem sepa-
rately. We obtain new results for STGs whose underlying
nets are marked graphs and free-choice nets; for complete-
ness, we also sketch some straightforward results for STGs
whose underlying nets are more general—bounded or even
arbitrary.

We first explore the consistency problem for marked
graph STGs. In [6] a polynomial algorithm was given to
check consistency of live, bounded, and cyclic free-choice
STGs, which include live and bounded marked graph STGs
as a subclass. Here we show that consistency is polynomial
for arbitrary marked graph STGs by means of a new algo-
rithm based on linear programming.

A natural question is whether these polynomiality results
also hold for the CSC or USC problems (i.e., the problems
of checking the CSC or USC properties), at least for the
class of live and 1-bounded marked graph STGs. Our main
result shows that both problems are co-NP-complete, and
so that polynomial algorithms are unlikely. This result ex-
plains why the algorithms of [1, 7, 8, 9, 11, 13, 14] have
exponential runtime or can only decide some necessary or
sufficient conditions for the CSC or USC properties to hold.
These algorithms are discussed in detail in the final section.

Our co-NP-completeness result is rather robust. We
prove that the CSC and USC problems remain co-NP-hard
for 1-bounded and acyclic marked graph STGs, and that
they remain in co-NP for arbitrary marked graph STGs and
for live and bounded free-choice STGs.

Moving to more general classes, we show that the con-
sistency, CSC and USC problems are PSPACE-complete for
1-bounded STGs, and that the consistency problem remains

PSPACE-hard in the free-choice case. Finally, we clarify
the relation between the consistency, USC and CSC prob-
lems for general STGs, and the fireability and reachability
problems for general Petri nets.

The paper is structured as follows. Section 2 presents
basic definitions and a characterization of consistency. Sec-
tion 3 presents the results about marked-graph STGs; it is
the core of the paper. Section 4 deals with free-choice and
Section 5 with general STGs. Section 6 contains conclu-
sions and discusses related work.

Remark. The full version of this paper, containing all
proofs, is available at
http://www.informatik.uni-stuttgart.de/fmi/szs/publications

2. Basic definitions

A net is a triple (P, T, F'), where P and T are disjoint
sets of places and transitions, respectively, and F is a func-
tion (P x T) U (T x P) — {0,1}. Places and transitions
are generically called nodes; we also note that a net can be
viewed as a (bipartite) graph. Places are graphically repre-
sented as circles; transitions are usually drawn like boxes,
but we use just their labels in the figures. If F(z,y) = 1
then we say that there is an arc from x to y. The preset
of a node z, denoted by °z, is the set of its input nodes,
ie,theset {y € PUT | F(y,z) = 1}. The postset
of x, denoted by x*®, contains its output nodes, i.e., the set
{ye PUT | F(zx,y) = 1}.

A marking M of anet (P, T, F) is a mapping P — IN
(where IN denotes the set of natural numbers including 0).
Graphically, a marking is represented by drawing M (p) to-
kens on the circle representing the place p. A marking
M enables a transition ¢ if it puts at least one token on
each place p € °t, i.e., if M(p) > 1 for each p € °t.
If ¢ is enabled at M, then it can fire (or occur) and its
firing (occurrence) leads to a new marking L, obtained
by removing a token from each place in the preset of ¢,
and adding a token to each place in its postset; formally,
L(p) = M(p) + F(t,p) — F(p,t) for every place p. M BN
denotes that is enabled at M, and M -5 M’ moreover de-
notes that firing ¢ leads to M.

The notation M —Z, M -2 M’ is extended to finite se-
guences o € T* in the natural way. When M %5 M’, for
o = tita - - - t,, We sometimes speak about an occurrence
sequence from M to M’, meaning the sequence

MBSy 2 M,y e M
By the Parikh vector of o € T, denoted by & or P(o), we
mean the mapping 7' — IN such that &'(¢) is the number of
occurrences of ¢t in o.
The incidence matrix of IV isthe matrix Cny: P x T —
{-1,0,+1} given by Cn(p,t) = F(t,p) — F(p,t). We

note that if A/ -~ M’ then M +C\x-& = M'. (We naturally
identify the mapping & with a (nonnegative integer) vector;
that’s why we use the term *Parikh vector’.)

A Petri net is a pair (N, My) where N is a netand M, is
a marking of IV, called the initial marking. A marking M
is called reachable if there exists an occurrence sequence
from M, to M ; we also denote this by My —* M. We call

My+Cn-X>0

the marking inequation. We note that My -2 M implies
My+Cyn-6 = M; & is thus a (nonnegative integer) solution
of the marking inequation.

A marking M of a net N is n-bounded if M (p) < n for
every place p. A Petri net (N, M) is n-bounded if all its
reachable markings are n-bounded.

A transition ¢ is fireable in (IV, M) if there is o such that
Moy -Z> M and M 5. A Petri net (N, My) is live if each
transition ¢ is fireable in (N, M) for each M reachable from
M. A transition is dead at a marking M if ¢ is not fireable
in (N, M).

A net N is called a marked graph if every place has at
most one input and at most one output transition. N =
(P, T, F) is a free-choice net if: for each place p and ev-
ery transition ¢, if F(p,t) = 1 then F(p’,t") = 1 for every
p’ € *t, t' € p*. Ina free-choice net, if some output tran-
sition of a place is enabled at a marking, then all its output
transitions are enabled, and it is possible to “freely” choose
among them.

Signal transition graphs. Let A = {a1,...,a,} be aset
(alphabet) of signals partitioned into input and output sig-
nals. Rising and falling of a signal « is denoted by o™ and
a~, respectively. (In some proofs we also use the notation
+a and —a, which is more convenient for using sub- and su-
perscripts.) We call an element of £ = A x {+, —} a label.
A signal transition graph (STG) is a triple S = (IV, Mo, ¢),
where (N, My) is a Petri net and ¢ is a labelling function
that assigns to each transition of NV a label in L.

A signal transition graph is a specification of the be-
haviour of the circuit under some assumptions on the en-
vironment. An STG S is implementable if there exists a
state coding mapping A (we also use the term binary encod-
ing) that associates to each reachable marking M a vector
of signal values A\(M) € {0, 1}" satisfying the following
two properties:

(1) Consistency. If M L5 L and ¢ is labelled by a;, then
the i-th components of A(M) and A(L) are 0 and 1,
respectively, and all other components have the same
value in A(A) and A(L). If ¢ is labelled by a; , then
the ¢-th components of A\(AM) and A(L) are 1 and 0,
respectively, and all other components have the same
value in A(M) and A(L).

(2) Completeness: if two different reachable markings
M, L satisfy A\(M) = A\(L), then they enable exactly
the same output labels.

Consistency is obviously necessary for implementability.
Completeness is necessary because the state of an imple-
mentation is completely determined by the signal values of
all signals. Therefore, if some output signal is enabled at M/
but notat L, M and L must correspond to different states of
the implementation, and so they must differ in the value of
at least one signal.

We define the consistency problem as the problem of de-
ciding if a given STG is consistent, i.e., if it admits a bi-
nary encoding) satisfying (1). The Complete State Coding
problem, CSC problem for short, is the problem to decide
if a given STG (usually already assumed consistent) has the
CSC property, i.e., admits a binary encoding satisfying (1)
and (2). A stricter version is the USC problem (unique state
coding) where we ask if a given STG has the USC prop-
erty, i.e., admits an injective binary encoding A satisfying
(1) (thus A(M) # A(L) for any two different reachable
M, L).

STGs naturally inherit many notions from their underly-
ing (Petri) nets. We already used this when speaking about

‘enabling a label’, e.g. M AN (meaning that M enables a
transition with label o). Thus we will freely speak about
n-bounded, live, marked graph, or free-choice STGs, etc.
We can also use notions like a is dead at M (meaning that
each transition with label a™ or o™ is dead at M).

We also freely use notation like M — M’ for se-
quences of labels (meaning that there is a transition se-
quence o = tity-- -ty such that M -2 M’ and u =
£(t1)l(t2) - - - £(tm)). We can occasionally even mix, and
consider u as a sequence of transitions and labels, when
this should not cause confusion. We also use expressions
like u is a-free, meaning that there is no a™ nor a™ in u;
and if u contains transitions, we mean that those transitions
do not have labels a*, a~. Recall that P(u) denotes the
Parikh vector of «; We denote by P(u)(a™) the number of
transitions with label a™ in w.

Finally we note that since the circuit implementation of
an STG can be seen as a finite object with at most 2™ states,
where n is the number of signals, STGs used in practice are
bounded, most of them are even 1-bounded; but in principle
unbounded STGs can make sense.

We finish the section by a characterization of consis-
tency, i.e., we look in more detail on when an STG is in-
consistent. (The proof is straightforward, and can be found
in the full version.)

Proposition 2.1 An STG S = (N, My, ¢) is inconsistent
(i.e., it admits no consistent binary encoding) iff there is

apair (M,a)

where My —* M and « is a signal

such that one of the following conditions holds:

(1) M enables ua™ and va~
for some a-free sequences u, v,

(2) M enables a™ua™ or a”ua~
for some a-free sequence u,

(3) M is reachable by wya™u and by woa~v
for some a-free sequences u, v (and some wy, wo).

3. Marked graphs

In this section we show that consistency can be decided
in polynomial time for all marked graph STGs and that both
the CSC problem and the USC problem are co-NP-complete
for them, even in the case of 1-bounded acyclic marked
graphs and in the case of live 1-bounded marked graphs.

3.1. Consistency

In [6] it is shown that consistency of live, bounded, and
cyclic free-choice STGs can be decided in polynomial time.
(A Petri net is cyclic if the initial marking is reachable from
every reachable marking, i.e., if it is always possible to re-
turn to the initial marking). Since live and bounded marked
graphs are always cyclic (see for instance [4]), and marked
graphs are a special case of free-choice nets, [6] provides
a polynomial algorithm deciding consistency of live and
bounded marked graph STGs. We now show a polynomial
algorithm for all marked graph STGs.

We start by recalling some simple properties of marked
graphs and derive a simpler variant of Proposition 2.1, valid
for marked graphs. (Proofs are in the full version.) One
such property is that if M enables a sequence with n oc-

currences of ¢ and M —— M for ¢/ # t then M’ enables a
sequence with n occurrences of ¢ as well; if ¢’ = ¢ then M’
enables a sequence with n—1 occurrences of ¢.

By P(u)(t) we denote the number of occurrences of ¢ in
a transition sequence u (P stands for the Parikh vector).

Claim 3.1 Let M be a marking of a marked graph.
If M = M, and M -5 M, then M =5 M’ for some w
and M’ such that

Vit : P(w)(t) = maz { P(u)(t), P(v)(¢) }.
Moreover, if M; - and P(v)(t) < P(u)(t) then M’ -

Proposition 3.1 A marked graph STG S = (N, My, {) is
inconsistent iff one of the following conditions holds:

(1") there is a reachable M (Mo —* M) such that
M ", and M —“_ for some signal a,

(2°) there is a reachable M such that
atua™ a ua~
M— or M

for some signal a and some a-free sequence w.

It is now sufficient to show that conditions (1°), (2”) of
Proposition 3.1 can be checked in polynomial time.

To this aim, we recall further useful observations about
marked graphs. We note that, given a marked graph STG
S = (N, Moy, ¢), we can check in polynomial time if there
is a circuit of N which is not marked at M, (i.e., its places
have no tokens in My). The places of such a circuit can be
safely removed, since no transition in the circuit can ever
occur.

We call a marked graph (N, Mj) normalized if every cir-
cuit of IV is marked at M.

Claim 3.2 Let (N, My) be a normalized marked graph,
and consider the inequation My + Cy - X > 0, where
Cly is the incidence matrix of V. An integer vector Xy > 0
is a solution of this inequation if and only if M, -= for a
transition sequence o whose Parikh vector is X,. For any
linear objective function f(X), the optimal solution of the
inequation (if it exists) is integer, and can be computed in
polynomial time.

Moreover, if My -2 M then My + Cn - Xy = M.

Now we come to the polynomiality claims, which can be
quickly established by using linear programming (which is
a well-known polynomial problem). The complete proofs
are in the full version.

Proposition 3.2 For normalized marked graph STGs,
checking (1) of Proposition 3.1 can be done in polynomial
time.

Proof: Follows easily from Claim 3.2.]

Proposition 3.3 For normalized marked graph STGs not
satisfying (1”), checking (2’) can be done in polynomial
time.

Proof: Let.S = (N, My, £) be a normalized marked graph
STG which does not satisfy (1”); i.e., no reachable M can
enable both «™ and a~. From this we can derive that
(My, a) does not satisfy (1) of Proposition 2.1. Therefore,
in every occurrence sequence containing occurrences of the
signal a, the first occurrence of a always has the same sign.
Which sign this is, + or —, can be determined very effi-
ciently, e.g. by firing any maximal transition sequence in
which each transition of .S occurs at most once (such a se-
quence contains all transitions that can ever be enabled).

Consider signal a, and assume we have found that o™ is
fireable as the first of a™, a—. (The case with a~ being the
first is similar.)

Let us now solve the linear programming problems

maximize f(X)

subjectto X >0, Mo+ Cn-X >0
minimize f(Y)
subjectto Y >0, My+Cn-Y >0
where
fxX)= > Xi- > X

tel—1(at) tel—1(a")

If we find that it is NOT the case that both problems have
optimal solutions X, Y,, with f(X,,) = 1and f(Yo,,) =
0 then we claim “(2’) holds’.

To check (27), we run the above procedure for each
signal a separately, and claim that (2’) holds when one
signal gives rise to this claim, otherwise we claim that (2°)
does not hold. The overall time of this algorithm is surely
polynomial. Its correctness follows from Claim 3.2 (a more
detailed proof can be found in the full version.) [|

Theorem 3.1 Consistency of marked graph STGs can be
decided in polynomial time.

Proof: The polynomial algorithm first normalizes the
STG and then uses the algorithms guaranteed by Proposi-
tions 3.2 and 3.3 to check if one of the conditions (17), (27)
of Proposition 3.1 holds. [|

3.2. Complete state coding

In this subsection we show the announced co-NP-
completeness results for the CSC problem and the USC
problem on (consistent) marked graph STGs.

The next lemma is the main technical result of the pa-
per. We say that an occurrence sequence is balanced if for
every signal a the sequence contains the same number of
occurrences of transitions labelled by o™ and of transitions
labelled by a~.

Lemma 3.1 The following problem is NP-complete:
Instance: a (consistent) STG S = (N, My, ¢) such that
(N, My) is a 1-bounded, acyclic marked graph.

Question: is there an occurrence sequence
My -Z My - M, of S such that 7 is nonempty and
balanced?

Proof: Membership in NP is clear: In any net (N, M)
which is 1-bounded and acyclic, each transition can appear
at most once in any occurrence sequence. So a nondeter-
ministic algorithm can just guess a sequence o7 of pairwise
distinct transitions and verify that it is performable from M
and that 7 is nonempty and balanced.

The main point is NP-hardness, which we show by a re-
duction from CNF-SAT. Let ¢ be a boolean formula in con-
junctive normal form

e withm clauses cy, ..., cm,

e and n variables z1, ..., x,.

(E.g., formula (z1 VT3 V 23) A (22 V T3) has 2 clauses and
4 variables.)

Our aim is to show a polynomial construction of a certain
STG S, = (N, My, £), with (N, My) being a 1-bounded
acyclic marked graph, so that ¢ is satisfiable iff S, ad-
mits My = M, — M, for some sequence o and some
nonempty balanced sequence .

The construction is based on the fact that there is a truth
assignment

A:{x1,29,...,2,} — {0,1}
satisfying ¢ if and only if there is a consistent choice of
literals, by which we mean a mapping

l:{ecr, e, som} — {21, T1, 22,72, - ., Tn, T)
attaching to each clause ¢; one of its literals, denoted I(c;),
in such a way that I(c;) # [(c;) forall ¢, (i.e., it is for-
bidden that one clause ‘chooses’ = while another clause
‘chooses’ 7).

We can easily observe that any consistent choice of lit-
erals [naturally provides a satisfying truth assignment A
(which can be specified arbitrarily for variables not appear-
ing in the range of [); and any satisfying truth assignment
enables to define (maybe several) consistent choices of lit-
erals.

We now describe the STG S,,, providing also informal
comments which will ease the later correctness proof. Fig-
ure 1 shows the overall structure of .S,

We need a few remarks about the notation. We construct
S, = (N, My,) where N is an acyclic marked graph. All
the minimal elements with respect to the flow relation will
be places, and precisely those places will be initially marked
(i.e., each will carry one token). We say that there is an arc
from transition ¢, to transition t; when there is an (interme-
diate) place p (initially unmarked) and arcs t; — p, p — ta.
(This is, in fact, a usual convention which we also use for
drawing marked graphs.)

Each symbol of Figure 1 (i.e., each V1, ..., CLF) stands
for an acyclic marked graph. The arrow V} — Ng has

Vi

VQ’J\
) -
cN 7

(7N

m

Vi
/ 142
/

oP

Figure 1. The overall structure of S,

the following meaning: V.} has a transition ¢ which is the
unique maximal element in V2} (w.r.t. the order induced by
the flow relation), Ng has a transition « which is the unique
minimal element in Ng, and the (overall) net N contains an
arc leading from ¢ to « (with an intermediate place—using
our convention). The meaning of the other arrows in the
structure is analogous.

It will be clear (after we finish the construction) that any
complete behaviour of S, can be divided into three phases:

I. first, all transitions in V},... ., V2, CN, ...,CY oc-
cur,
I1. then all transitions of Ng follow,
1. and finally all transitions in V2, ..., Vg2, CF,....CE

occur.

The complete behaviours of S, differ only in the order
in which transitions occur in the phases | and Ill. We
proceed to describe the marked graphs corresponding to
Ng, Vi, ... ,VA,CN. ... ,CN. Since we need to use both
sub- and superscripts, we change the notation and write +a
and —a instead of «™ and a~. The net Ng, enabled after
the whole phase I is finished, has one single (complete) be-
haviour, shown in Figure 2.

2 ..

+$ —a! —2? - —2" —c; —cg - —cm —$

Figure 2. (Linear) behaviour of Ng

This means that the signal set of S, contains (among
others):

e asignal ¢; for every clause (1 < i < m);
e asignal 27 for every variable (1 < j < n);

o a (special) signal $.

Signal $ will not appear anywhere else but in Ng. It will be
the case that any nonempty balanced sequence must include
all transitions, of Ng, and so such a sequence will necessar-
ily contain the whole phase Il.

For the rest of the proof let bal denote any non-empty and

balanced sequence such that My - M, AL, In bal,

each falling —27 (1 < j < n) must be compensated by a
raising +z7; the label +7 will appear just on the maximal
(i.e., the last) transition of V. (cf. Figure 3) and on the
minimal (i.e., the first) transition of VPZ (cf. Figure 4). So
precisely one of the subnets V%, V2. will contribute to bal.
We interpret this as ‘choosing’ a truth assignment A.

Similarly, each falling —¢; (1 < i < m) must be com-
pensated by a raising +c;; the label +¢; will appear just
once in CV and once in CF’, now ‘almost’ as the last transi-
tion and “almost’ as the first transition, respectively. Again,
exactly one of the subnets C/¥, C'7” will contribute to bal.

Now we continue with the details of our construction.
We extend the signal set used so far by

e asignal p{ foreachpairi,j (1 <i<m,1<j <
n) such that clause c; contains literal ; (p stands for
‘positive’);

e asignal n{ foreachpairi,j (1 <i<m,1<j <
n) such that clause ¢; contains literal Z; (n stands for
‘negative’).

(As usual, we can assume that no clause ¢; of formula ¢
contains a complementary pair of literals.)

Given j (1 < j < n), let {¢;;,ciy,...,ci, } be the set
of clauses containing (positive) literal z;. The (sub)net V7,
(representing setting «; to ‘true’) is depicted in Figure 3.
Thus V. “‘emits’ labels —|—ng , +p§2, ..., +p]_inany order,

®—’ +pgl
N

: : +ad
: .j P
(: — +p;.

Figure 3. The net V.

and then finishes by +x7.

Now let {cy,, Ck,, . . ., ci, } be the set of clauses contain-
ing (negative) literal z;. The (sub)net V' (representing set-
ting x; to ‘false”) is depicted in Figure 4. Thus, after the
label —$ of Ng occurs, V. ‘emits’ label +27 and then la-
bels —nj, , —nj,,...,—nj, inany order.

We now define the subnets CJ¥, CF. Recall that the se-
quence bal will contain either transitions of C}¥ or C7, but
not of both. This corresponds to ‘choosing’ either a positive

Figure 4. The net V},

or a negative literal I(c;) from ¢;. Which literal is chosen
will depend on which transitions of the corresponding net
occur in bal, and is explained later.

The nets C~ and C}” have no concurrency. They use ad-
ditional ‘parenthetical’ signals. More precisely, we enhance
the signal set by

e asignal Dg foreachpairi,j, 1 <i<mand1l <j <
n;, where n; is the number of negative literals in ¢;;

e asignal A7 for each pairi,j,1 <i <mand1 < j <
pi, Where p; is the number of positive literals in ¢;.

Giveni (1 < i < m), let{z;,,7;,..
negative literals of the clause ¢;.

The (sub)net C has a (marked) place as the least ele-
ment (w.r.t. the flow relation). And the only (complete) be-
haviour of C¥ is the sequence of labels shown in Figure 5.
The key observation is that if the label +c; of C¥ belongs

., T;, } be the set of

1 J1 J2 1 2 J2 J3 2
+0; +nt —ny? -0O; #0057 4n? —n;® =07 ---

00 pdet —pde 007 4008 4t 4o —O00

Figure 5. (Linear) behaviour of C¥

to the balanced sequence bal, then bal must also contain
—0¢, and thus, by balancedness, also +0¢. But then bal
also contains +n?*, and so it must also contain —n?*. If we
add the label —n’* of CN' to bal, then we are forced to add
—0¢ ! as well, and thus also +0¢~" and +n"*""; etc. So
if labels of CN occur in bal, then bal contains an occurrence
of some +n{ where T; is a literal of ¢;, such that the *bal-
ancing’ occurrence of —n? does not come from C, and so
it must come from VPZ. We interpret this as ‘choosing’ the
literal 5 of ¢;, i.e., as setting I(c;) = T;.

The (sub)net CF is similar. We let {xk,, zg,, . .-, Tk, }
be the set of positive literals of the clause ¢;. The least
element of CF (w.rt. the flow relation) is a transition la-
belled by A}; it follows from the overall structure that this
transition is enabled after —$ occurs. The only (complete)

behaviour of C¥” (after being enabled) is the sequence of la-
bels shown in Figure 6. And we reason similarly as above.

AL o —pt —AL AT 4P Pt —AT -

NN _|_p].”"1 —p]?b AN
Figure 6. (Linear) behaviour of C

If the label +c; from CF belongs to bal, then bal must also
contain +A}, and thus also —A} etc. So if labels of CF
occur in bal, then bal contains an occurrence of some —p?,
where x; is a literal of ¢;, such that the *balancing’ occur-
rence +p! does not come from CV, and so it must come
from V.. We interpret this as ‘choosing’ the literal ; of ¢;,
i.e., as setting I(c;) = x;.

We have thus completed the (obviously polynomial)
construction of S, and we can easily check that S, is
a consistent 1-bounded acyclic marked graph. If ¢ is
satisfiable, then we ‘choose’ a satisfying truth assignment
A and for each clause ¢; we ‘choose’ a literal I; such that
A makes [; true, where ‘choose’ has the meaning described
above. This leads to a balanced sequence bal. On the other
hand, if a balanced sequence bal can be found, then the
corresponding ‘choice’ of literals must be consistent (and
S0 ¢ is satisfiable): if both x; and T; are ‘chosen’, then
both +n? and —pJ, appear in bal, and both V. an V. must
contribute to bal, which, as we have seen, is not possible.
A more detailed argument can be found in the full version
of the paper. [|

The previous lemma is now used to derive the desired
co-NP-hardness results.

Proposition 3.4 Both the CSC problem and the USC prob-
lem are co-NP-hard for (consistent) STGs whose underlying
nets are 1-bounded acyclic marked graphs.

Proof: We use the STG S, constructed in the proof of
Lemma 3.1, recalling that it is a consistent 1-bounded
acyclic marked graph; let us denote its (unique) consistent
binary encoding by b.

Assume now that S, does not have the USC property.
This means that there are occurrence sequences

Mo 25 My, My -2 M,
such that

o My # M>
(i.e., o1 and o5 do not contain the same transitions),

o b(M;) = b(My).

In the full version of the paper we show that this is the case
iff there is a (nonempty) 7 such that My —* M; — My;
necessarily, 7 is balanced. Moreover, such My, My (with
b(M,) = b(M-)) enable different sets of signals, so the
CSC property is violated — when viewing all signals as
output signals. Therefore recalling Lemma 3.1 finishes the
proof. [|

Proposition 3.5 Both the CSC problem and the USC prob-
lem are co-NP hard for live 1-bounded marked graph STGs.

Proof: Consider the USC problem. We reuse the Petri net
S, from the proof of Lemma 3.1. We note that the be-
haviour obtained by firing all transitions of S, is not bal-
anced; i.e., b(My) and b(My), where b is the consistent
boolean encoding and M} is the final marking, differ on
some signals.

Remark. For concreteness, these unbalanced sig-
nals are 27, ¢;, nJ* (ford = 2,3,...,a), p (for
d=1,2,...,b—-1).

We define a new STG S/, by adding a “final segment’ to S.,:
we add a fresh signal f and construct a ‘linear’ net NV with
the behaviour

+flly o by —f

where ¢; are the labels compensating the unbalance of
S,; they include —z7, —¢;, +n??, etc.; we note that each
nonempty sequence of transitions of N is unbalanced. The
net Ny will be prompted in S/, after all transitions of S,
occur; the final transition of N will then restore the initial
marking M.

Hence 57, is an STG whose underlying net is a live and
1-bounded marked graph. It is easy to see that any sequence
containing precisely one occurrence of each transition of
S, is balanced. Let " be the unique consistent boolean
encoding of S,.

We show that S, has the USC property iff S/, has the
USC property, which proves the second part of the proposi-
tion.

It is trivial that if S, does not have the USC property,
then .S, does not have it either. For the other direction, as-
sume that S{, does not have the USC property. Then there
is a witness of the USC-violation, i.e. two occurrence se-
quences

My -5 My, My-2 M,

as in the proof of Proposition 3.4.

Let us assume that the witness is minimal in the sense
that neither o4 nor o5 can be shortened. We prove that this
minimal witness also corresponds to a USC-violation in the
Petri net S,,. It suffices to show that neither oy nor o con-
tain a transition labelled by the signal f.

Assume that one of o; and o, say o9, contains an occur-
rence of the signal f. Since b’(M;) = b’ (Mz), we can eas-
ily check that the assumption b'(M>)(f) = 1 would force
M, = M, a contradiction. So b'(Ms3)(f) = 0, which
means that the last occurrence of f in o2 is —f. But then
o9 can be (rearranged and) written as oo = oo where o
contains precisely one occurrence of each transition of .S.

This implies My 72, M,, which contradicts our minimal-
ity assumption.

Consider now the CSC property. Assume that all
signals are output signals. We show that S, has the CSC
property iff S7, has the CSC property. As in the USC case,
it is trivial that if S, does not have the CSC property,
then S/, does not have it either. For the other direction,
assume S, has the CSC property. We have shown in
Lemma 3.1 that in this case S, has the USC property
as well. So, by the first part of this proof concerning
the USC property, S/, has the USC property. Since USC
implies CSC, S, has the CSC property, and we are done. =

We now show the upper bound, a lemma which was al-
ready (implicitly) proved in [1].

Lemma 3.2 Both the CSC problem and the USC problem
are in co-NP for (bounded or unbounded) marked graph
STGs.

Proof: Let S = (N, My, £) be a normalized and consistent
marked graph STG. (We recall that consistency of S can be
checked in polynomial time.) It is sufficient to deal with the
CSC problem; the claim for the USC problem will follow
easily.

We observe that S does not have the CSC property if and
only if there are sequences u1, us such that

o Mo— My, My~ My,
o My # My,
e for each signal a:

P(ur)(a®) = P(ur)(a™) = P(uz)(a™) = P(uz)(a”)

e M, M, enable different output signals

To check that there is such a ‘CSC-violation’, a non-
deterministic (polynomial) algorithm guesses a place p
such that M, (p) # Ma(p), and guesses further whether
M;i(p) > Ma(p) or M2(p) > M;(p) holds. The algorithm
proceeds to guess an output signal a, and which of M, My
enables a. Assume w.l.o.g. the guess is that M, enables
a and M, does not. The algorithm guesses which places
of M; carry at least one token (including all the input
places of some transition labeled by «) and which places
of M, carry no token (including at least one input place of

each transition labeled by a). The algorithm translates all
these guesses into a system of linear inequalities, guesses
an integer solution of polynomial size, and checks in
polynomial time that it is indeed a solution. (Variables
for transition sequences are replaced by variables for their
Parikh vectors, and Claim 3.2 is used.) [|

Putting together Propositions 3.4 and 3.5 and Lemma 3.2
we obtain:

Theorem 3.2 The CSC problem and the USC problem are
co-NP-complete for marked graph STGs, and stay co-NP-
hard for live and 1-bounded marked graph STGs as well as
for 1-bounded acyclic marked graph STGs.

Remark. Notice that in the marked graphs produced by
the reduction from the proof of Lemma 3.1 there are differ-
ent transitions carrying the same label. The case with in-
jective labelling (each transition has its unique label) might
well admit a polynomial algorithm but we leave this prob-
lem open here.

4. Live and bounded free-choice nets

As already mentioned, [6] shows that consistency can
be decided in polynomial time for live and bounded free-
choice STGs that are moreover cyclic, meaning that the ini-
tial marking is reachable from every reachable marking. It
is not known whether the polynomiality result still holds if
the ciclicity condition is removed, and we leave this prob-
lem open.

We now show co-NP-completeness of the CSC problem
and of the USC problem for live and bounded free-choice
STGs. Since live and bounded marked graphs are cyclic,
Theorem 3.2 gives co-NP-hardness even for cyclic live and
bounded free-choice STGs. So we just need to show that
the complementary problem is in NP. We proceed similarly
as in the marked graph case, first recalling a known result
analogous to Claim 3.2; for this we use the following nota-
tion:

Foranet N = (P,T,F)and X : T — IN, we denote by
Nx = (Px,Tx, Fx) the subnet of NV defined as follows:
Tx is the set of transitions of 7" for which X (¢) > 1, Px =
*Tx UTy, and Fx is the projection of F on (Px x Tx)U
(T'x x Px). We also recall that @ C Pisatrapin N =
(P,T,F)ifQ* C *°Q. (Ifatrap is marked, i.e., has at least
one token, it cannot be unmarked). Here we consider only
nonempty traps @ # 0.

Lemma4.1([12]) Let (IV, My) be a live and bounded free-
choice Petri net, and let C'y be its incidence matrix.

An integer vector X > 0 is the Parikh vector of a tran-
sition sequence enabled at M, if and only if

1. Mo+ Cpy-Xo>0, and
2. M = My + Cn - Xo marks all traps of Nx,.

Theorem 4.1 The CSC problem and the USC problem are
co-NP-complete for live and bounded free-choice STGs.

Proof: As mentioned above, co-NP-hardness follows from
Theorem 3.2 (even when the Petri nets are also cyclic).

A nondeterministic polynomial algorithm for showing
that a given (consistent) live and bounded free-choice STG
does not have the CSC property (or the USC property)
can be constructed as in the proof of Lemma 3.2, using
Lemma 4.1 instead of Claim 3.2.

A little difficulty is the fact that a (honnegative integer)
solution of My + Cn - X > 0 may not be the Parikh
vector of an occurrence sequence. The algorithm handles
this problem by guessing (and requiring in the system
of inequalities) which components of X are positive and
which are zero; then it guesses a subset P’ of places
of Ny, verifies that P’ does not contain a trap in Nx
(which can be easily done in polynomial time) and
requires (in the constructed system of inequalities) that
Mo+ C\y - X is positive for all places of Nx outside P’. m

In the next section we show the importance of the as-
sumption of liveness.

5. More general nets

We study the complexity of the consistency, CSC, and
USC problems for more general classes of STGs. The
proofs of the results can be found in the full version.

By a straightforward use of standard techniques of Petri
net theory (using the reachability problem for k-bounded
nets) we can show:

Proposition 5.1 The consistency problem, the CSC prob-
lem and the USC problem are PSPACE-complete for k-
bounded nets (for any fixed k).

An arbitrary 1-bounded STG can be transformed into a
1-bounded free-choice STG by means of the operation il-
lustrated in Figure 7 1 while preserving consistency. This
leads to the following result:

Proposition 5.2 The consistency problem for 1-bounded
free-choice STGs (not necessarily live) is PSPACE-
complete.

Using reductions from and to the reachability problem of
general Petri nets, we can show

1This operation is closely related to the “releasing arcs”-technique, see
e.g. [4]

Figure 7. Transforming a 1-bounded STG into
a 1-bounded free-choice STG

Proposition 5.3 The consistency problem and the CSC
problem for general STGs are decidable but EXPSPACE-
hard.

6. Conclusions and related work

We have explored the complexity of the consistency
and the CSC problem for several classes of STGs. The
main result shows that deciding the CSC property is co-
NP-complete even for 1-bounded and acyclic marked graph
STG and for 1-bounded and live marked graph STGs. The
same result holds for the USC property. This result explains
why none of the existing approaches for checking the USC
or the CSC property in marked graph STGs is polynomial
or complete.

In [11] the USC property was studied for live and 1-
bounded marked graph STGs with injective labeling (i.e.,
one up-transition and one down-transition per signal). A
sufficient condition for the USC property to hold is pre-
sented, and it is shown that it can be checked in polyno-
mial time. The condition is conjectured to be also necessary,
which would imply that checking the USC property is poly-
nomial. The reduction used in our NP-completeness result
transforms a formula into an STG in which several signals
have two up- and two down-transitions, and so it does not
apply to this case. The complexity of the USC property for
this particular case is left for future research.

In [13] the result of [11] is extended to the case in which
the STG may have several up- and down-transitions per sig-
nal. The paper presents a generalization of the sufficient
condition of [11]. Our NP-completeness result shows that
if P#NP then the condition is not necessary or it cannot be
checked in polynomial time, or both. In fact, we conjecture
that the condition is neither necessary, nor can be checked
in polynomial time (it requires to establish a property for a

potentially exponential number of objects).

In [14] it is shown that a live and 1-bounded marked-
graph STGs violates the USC property iff the STG has a
so-called complementary path. The paper proposes an al-
gorithm that searches for such paths. The worst-case com-
plexity of the algorithm is exponential, and by our result this
is unavoidable unless P#£NP.

In [9] a polynomial algorithm is presented that detects all
violations of the CSC property in a live and bounded free-
choice STG. However, the algorithm may also give false
positives, i.e., it may detect false violations. Our result
shows that if P£NP then every polynomial algorithm must
produce false positives or false negatives.

In [1] a procedure is described that, given a marked-
graph STG, constructs in polynomial time an Integer Lin-
ear Programming (ILP) problem such that the STG violates
the CSC property if and only if the problem has a solution.
Our result shows that, unless P#£NP, ILP is necessary, and
cannot be replaced by ordinary Linear Programming (recall
that Linear Programming problems can be solved in poly-
nomial time).

In [7, 8] it is shown how to check the CSC property
for arbitrary bounded STGs using net unfoldings and ILP-
solvers or SAT-solvers. Given a bounded STG S, an object
is constructed called the unfolding of S. This unfolding is
used to generate an ILP problem (a boolean formula) such
that .S violates the CSC property iff the ILP problem has a
solution (iff the formula is satisfiable). If S is a live and
1-bounded marked graph, then the unfolding of .S has poly-
nomial size in S ([5], Theorem 4.14). This shows that, even
for marked graphs, ILP-solvers or SAT-solvers are unlikely
to be replaceable by other tools with polynomial running
time: if P£NP, then no polynomial algorithm taking the un-
folding of S as input can decide the CSC or the USC prop-
erty.

Finally, it could be argued that the important problem in
practice is not to decide whether a given STG satisfies the
CSC property, but to transform an STG that does not satisfy
the CSC property into another one that does. In [2] an au-
tomatic, very efficient procedure for such a transformation
is presented. Unfortunately, the procedure adds many ad-
ditional signals (one per place of the STG), and so in most
cases its output is only useful as a first approximation to
the design. The optimization of this first approximation has
to be carried out by a (possibly automatic) trial and error
procedure in which a candidate for an optimized STG is
guessed. The candidate must be checked for the CSC prop-
erty, which brings us back to the problem discussed in this
paper.

Acknowledgments. The first author thanks Jordi Cor-
tadella and José Carmona for helpful discussions.

References

[1] J. Carmona and J. Cortadella. ILP models for the synthesis
of asynchronous control circuits. In 2003 International Con-
ference on Computer-Aided Design (ICCAD’ 03), November
9-13, 2003, San Jose, CA, USA, pages 818-826. IEEE Com-
puter Society / ACM, 2003.

[2] J. Carmona, J. Cortadella, and E. Pastor. A structural en-
coding technique for the synthesis of asynchronous circuits.
In Proc. Int. Conf. on Application of Concurrency Theory
to System Design, pages 157-166. IEEE Computer Society,
2001.

[3] T.-A. Chu. Synthesis of Salf-Timed VLS Circuits from
Graph-theoretic Specifi cations. PhD thesis, MIT, 1987.

[4] J. Desel and J. Esparza. Free Choice Petri Nets, vol-
ume 40 of Cambridge Tracts in Theoretical Computer Sci-
ence. Cambridge University Press, 1995.

[5] J. Esparza. Model checking using net unfoldings. Science
of Computer Programming, 23:151-195, 1994.

[6] J. Esparza. A polynomial-time algorithm for checking con-
sistency of free-choice signal transition graphs. Fundamenta
Informaticae, 62(2):197-220, 2004.

[7] V. Khomenko, M. Koutny, and A. Yakovlev. Detecting State
Coding Conflicts in STGs Using Integer Programming. In
Proc. of the Design, Automation and Test in Europe Confer-
ence and Exhibition, pages 338-345. IEEE Computer Soci-
ety, 2002.

[8] V. Khomenko, M. Koutny, and A. Yakovlev. Detecting State
Coding Conflicts in STG Unfoldings using SAT. In Proc. of
the 4th Int. Conf. on Application of Concurrency to System
Design, pages 16-25. IEEE Computer Society, 2004.

[9] E. Pastor and J. Cortadella. Polynomial algorithms for
the synthesis for hazard-free circuits from signal transition
graphs. In 1993 International Conference on Computer-
Aided Design (ICCAD’93), Santa Clara, CA, USA, pages
250-254. IEEE Computer Society / ACM, 1993.

[10] L. Rosenblum and A. Yakovlev. Signal graphs: from self-
timed to timed ones. In Proc. Int. Workshop on Timed Petri
nets, pages 199-207. IEEE Computer Society, 1985.

[11] P. Vanbekbergen, F. Catthoor, G. Goossens, and H. D.
Man. Optimized synthesis of asynchronous control circuits
from graph-theoretic specifications. In 1990 International
Conference on Computer-Aided Design (ICCAD’ 90), pages
184-197. IEEE Computer Society, 1990.

[12] H.Yamasaki, J. Huang, and T. Murata. Reachability analysis
of petri nets via structural and behavioral classifications of
transitions. Petri Net Newsletter, (60):5-21, 2001.

[13] C. Ykman-Couvreur, B. Lin, G. Goossens, and H. D.
Man. Synthesis and optimization of asynchronous con-
trollers based on extended lock graph theory. In 4th Eu-
ropean Conference on Design Automation, Paris, France,
pages 512-517. IEEE Computer Society, 1993.

[14] M. Yu and P. Subrahmanyam. A new approach for checking
the unique state coding property of signal transition graphs.
In Proc. 3rd Int. European Conference on Design Automa-
tion, pages 312-321. IEEE Computer Society, 1992.

