
Javier Esparza and Keijo Heljanko

Unfoldings

A Partial-Order Approach to Model Checking

January 12, 2008

Springer

This is an author created final book draft made only available on author
homepages through the publishing agreement with Springer. The printed book
is:
Esparza, J. and Heljanko, K.: Unfoldings – A Partial-Order Approach to Model
Checking. EATCS Monographs in Theoretical Computer Science, ISBN: 978-3-
540-77425-9, Springer-Verlag, 172 p., 2008.
Book homepage: http://www.springer.com/978-3-540-77425-9

To Eike, who inspired all this.

To Virpi and Sara, with love.

Foreword by Ken McMillan

The design and analysis of concurrent systems has proved to be one of the
most vexing practical problems in computer science. We need such systems if
we want to compute at high speed and yet distribute the computation over
distances too long to allow synchronizing communication to a global clock.
At the speed of modern computer systems, one centimeter is already a long
distance for synchronization. For this and other reasons, almost all systems
that involve a computer also involve asynchronous concurrency in some way, in
the form of threads or message passing algorithms or network communication
protocols.

Yet designing correct concurrent systems is a daunting task. This is largely
due to the problem of “interleavings”. That is, the designer of a concurrent
system must somehow account for the fantastic number of possible orderings
of actions that can be generated by independent processes running at differ-
ent speeds. This leads to unreproducible errors, occurring randomly with a
frequency low enough to make testing and debugging extremely problematic,
but high enough to make systems unacceptably unreliable.

One possible solution to the problem is offered by model checking. This is
a fully automated verification technique that constructs a graph representing
all possible states of the system and the transitions between them. This state
graph can be thought of as a finite folding of an infinite “computation tree”
containing all possible executions of the system. Using the state graph, we can
definitively answer questions about the system’s behavior posed in temporal
logic, a specialized notation for specifying systems that evolve in time.

Unfortunately, because the computation tree explicitly represents all pos-
sible interleavings of concurrent actions, the size of the state graph we must
construct can become intractably large, even for simple systems. Yet intu-
itively, one could argue that these interleavings must be mostly irrelevant.
That is, if all the interleavings produced qualitatively different behavior, the
system would not appear coherent to a user. Somehow, all those interleavings
must fall into a small set of equivalence classes.

VIII

Unfoldings provide one way to exploit this observation. An unfolding is
a mathematical structure that explicitly represents concurrency and causal
dependence between events, and also the points where a choice occurs between
qualitatively different behaviors. Like a computation tree, it captures at once
all possible behaviors of a system, and we need only examine a finite part of it
to answer certain questions about the system. However, unlike a computation
tree, it does not make interleavings explicit, and so it can be exponentially
more concise. Over the last fifteen years, research on unfoldings has led to
practical tools that can be used to analyze concurrent systems without falling
victim to the interleaving problem.

Javier Esparza and Keijo Heljanko have been leading exponents of this line
of research. Here, they present an accessible elementary account of the most
important results in the area. They develop, in an incremental fashion, all of
the basic theoretical machinery needed to use unfoldings for the verification of
temporal properties of concurrent systems. The book brings together material
from disparate sources into a coherent framework, with an admirable balance
of generality with intuition. Examples are provided for all the important con-
cepts using the simple Petri net formalism, while the theory is developed for a
more general synchronized transition system model. The mathematical back-
ground required is only elementary set theory, with all necessary definitions
provided.

For those interested in model checking, this book should provide a clear
overview of one of the major streams of thought in dealing with concurrency
and the interleaving problem, and an excellent point of entry to the research
literature. Those with a background in concurrency theory may be interested
to see an algorithmic application of this theory to solve a practical problem.
Since concurrent systems occur in many fields (biological systems such as
gene regulatory networks come to mind) this work may even find readers
outside computer science. In any event, bringing this material together into
a single accessible volume is certain to create a wider appreciation for and
understanding of unfoldings and their applications.

Berkeley, October 2007 Ken McMillan

Preface

Model checking is a very popular technique for the automatic verification
of systems, widely applied by the hardware industry and already receiving
considerable attention from software companies. It is based on the (possi-
bly exhaustive) exploration of the states reached by the system along all its
executions.

Model checking is very successful in finding bugs in concurrent systems.
These systems are notoriously hard to design correctly, mostly because of
the inherent uncertainty about the order in which components working in
parallel execute actions. Since n independent actions can occur in n! different
orders, humans easily overlook some of them, often the one causing a bug.
On the contrary, model checking exhaustively examines all execution orders.
Unfortunately, naive model checking techniques can only be applied to very
small systems. The number of reachable states grows so quickly, that even a
modern computer fails to explore them all in reasonable time.

In this book we show that concurrency theory, the study of mathematical
formalisms for the description and analysis of concurrent systems, helps to
solve this problem. Unfoldings are one of these formalisms, belonging to the
class of so-called true concurrency models. They were introduced in the early
1980s as a mathematical model of causality. Our reason for studying them
is far more pragmatic: unfoldings of highly concurrent systems are often far
smaller and can be explored much faster than the state space.

Being at the crossroads of automatic verification and concurrency theory,
this book is addressed to researchers and graduate students working in either
of these two fields. It is self-contained, although some previous exposure to
models of concurrent systems, like communicating automata or Petri nets,
can help to understand the material.

We are grateful to Ken McMillan for initiating the unfolding technique in
his PhD thesis, and for agreeing to write the Foreword. Our appreciation goes
to Eike Best, Ilkka Niemelä, and Leo Ojala for their guidance when we started
work on this topic. We thank Pradeep Kanade, Victor Khomenko, Maciej
Koutny, Stephan Melzer, Stefan Römer, Claus Schröter, Stefan Schwoon, and

X Preface

Walter Vogler, the coauthors of our work on the unfolding technique, for
their ideas and efforts. We are indebted to Burkhard Graves, Stefan Melzer,
Stefan Römer, Patrik Simons, Stefan Schwoon, Claus Schröter, and Frank
Wallner for implementing prototypes and other tools that very much helped
to test and refine the ideas of the book. Some of them were integrated in the
PEP tool, a project led by Eike Best, and coordinated by Bernd Grahlmann
and Christian Stehno, and others in the Model Checking Kit, coordinated by
Claus Schröter and Stefan Schwoon. We thank them for their support. Thomas
Chatain, Stefan Kiefer, Victor Khomenko, Kari Kähkönen, Beatriz Sánchez,
Stefan Schwoon, and Walter Vogler provided us with valuable comments on
various drafts, for which we express our gratitude. We thank Wilfried Brauer
for his continuous support and his help in finding a publisher, and Ronan
Nugent, from Springer, for his smooth handling of the publication process.

München, Germany and Espoo, Finland, Javier Esparza
October 2007 Keijo Heljanko

Contents

1 Introduction . 1

2 Transition Systems and Products . 5
2.1 Transition Systems . 5
2.2 Products of Transition Systems . 6
2.3 Petri Net Representation of Products . 8
2.4 Interleaving Representation of Products . 10

3 Unfolding Products . 13
3.1 Branching Processes and Unfoldings . 14
3.2 Some Properties of Branching Processes . 22

3.2.1 Branching Processes Are Synchronizations of Trees 22
3.2.2 Causality, Conflict, and Concurrency 23
3.2.3 Configurations . 25

3.3 Verification Using Unfoldings . 26
3.4 Constructing the Unfolding of a Product 28
3.5 Search Procedures . 33
3.6 Goals and Milestones for Next Chapters . 35

4 Search Procedures for the Executability Problem 41
4.1 Search Strategies for Transition Systems . 41
4.2 Search Scheme for Transition Systems . 43
4.3 Search Strategies for Products . 48

4.3.1 Mazurkiewicz Traces . 50
4.3.2 Search Strategies as Orders on Mazurkiewicz Traces . . . 53

4.4 Search Scheme for Products . 56
4.4.1 Counterexample to Completeness . 58

4.5 Adequate Search Strategies . 59
4.5.1 The Size and Parikh Strategies . 63
4.5.2 Distributed Strategies . 64

4.6 Complete Search Scheme for Arbitrary Strategies 67

XII Contents

5 More on the Executability Problem . 73
5.1 Complete Prefixes . 73

5.1.1 Some Complexity Results . 76
5.1.2 Reducing Verification Problems to SAT 78

5.2 Least Representatives . 82
5.3 Breadth-First and Depth-First Strategies 86

5.3.1 Total Breadth-First Strategies . 86
5.3.2 Total Depth-First Strategies . 86

5.4 Strategies Preserved by Extensions Are Well-Founded 91

6 Search Procedures for the Repeated Executability Problem 97
6.1 Search Scheme for Transition Systems . 97
6.2 Search Scheme for Products . 101

7 Search Procedures for the Livelock Problem 107
7.1 Search Scheme for Transition Systems . 107
7.2 Search Scheme for Products . 115

8 Model Checking LTL . 125
8.1 Linear Temporal Logic . 126
8.2 Interpreting LTL on Products . 126

8.2.1 Extending the Interpretation . 128
8.3 Testers for LTL Properties . 129

8.3.1 Constructing a Tester . 130
8.4 Model Checking with Testers: A First Attempt 136
8.5 Stuttering Synchronization . 138

9 Summary, Applications, Extensions, and Tools 151
9.1 Looking Back: A Two-Page Summary of This Book 151
9.2 Some Experiments . 152
9.3 Some Applications . 153
9.4 Some Extensions . 154
9.5 Some Tools . 156

References . 157

Index . 165

1

Introduction

State space methods are the most popular approach to the automatic verifi-
cation of concurrent systems. In their basic form, these methods explore the
transition system associated with the concurrent system. Loosely speaking,
the transition system is a graph having the reachable states of the system as
nodes, and an edge from a state s to another state s′ whenever the system
can make a move from s to s′. In the worst case, state space methods need to
explore all nodes and transitions of the transition system.

The main problem of transition systems as a basis for state space meth-
ods is the well-known state explosion problem. Imagine a concurrent system
consisting of n sequential subsystems, communicating in some way, and as-
sume further that each of these subsystems can be in one out of m possible
states. The global state of the concurrent system is given by the local states
of its components, and so the system may have up to mn reachable states; in
fact, this bound is already reached by the rather uninteresting system whose
components run independently of each other, without communicating at all.
So very small concurrent systems may generate very large transition systems.
As a consequence, naive state space methods may have huge time and space
requirements even for very small and simple systems.

The unfolding method is a technique for alleviating the state explosion
problem. It uses results of the theory of true concurrency to replace transi-
tion systems by special partially ordered graphs. While these graphs contain
full information about the reachable states of the system, their nodes are not
reachable states themselves. In particular, the number of nodes of the graph
does not grow linearly in the number of reachable states. Since its introduction
by McMillan in [84, 85, 86], the unfolding technique has attracted considerable
attention. It has been further analyzed and improved [88, 39, 71, 41, 73], par-
allelized [61, 110], distributed [8], and extended from the initial algorithms,
which only allowed us to check the reachability of a state or the existence
of a deadlock, to algorithms for (almost) arbitrary properties expressible in
Linear Temporal Logic (LTL) [28, 35, 37]. Initially developed, as we shall see
below, for systems modeled as “plain” Petri nets, it has been extended to

2 1 Introduction

high-level Petri nets [72, 110], symmetrical Petri nets [29], unbounded Petri
nets [2], nets with read arcs [121], time Petri nets [43, 21, 22], products of tran-
sition systems [39], automata communicating through queues [83], networks
of timed automata [16, 19], process algebras [80], and graph grammars [7]. It
has been implemented in several tools [110, 111, 61, 78, 89, 51, 58, 37] and
applied, among other problems, to conformance checking [87], analysis and
synthesis of asynchronous circuits [74, 76, 75], monitoring and diagnosis of
discrete event systems [10, 9, 20], and analysis of asynchronous communica-
tion protocols [83].

The goal of this book is to provide a gentle introduction to the basics of the
unfolding method, and in particular to give a detailed account of an unfolding-
based algorithm for model checking concurrent systems against properties
specified as formulas of Linear Temporal Logic (LTL)1, one of the most popu-
lar specification formalisms in the area of automatic verification. Our intended
audience is researchers working on automatic verification, and in particular
those interested in grasping the algorithmic ideas behind the method, more
than the details of true concurrency semantics.

An important question when planning the book was which formalism to
choose as system model. The unfolding method requires a formalism having
a notion of concurrent components; in particular, the formalism should allow
us to determine for each action of the system which components participate
in the action and which ones remain idle. For historical reasons, most papers
on the unfolding method use Petri nets. We decided to deviate from this tra-
dition and use synchronous products of labeled transition systems (products
for short), introduced by Arnold in [4]. Loosely speaking, in this formal-
ism sequential components are modeled as transition systems (one could also
say as finite automata). Components may execute joint actions by means of
a very general synchronization mechanism, containing as special cases the
mechanisms of process algebras like Milner’s Calculus of Communicating Sys-
tems (CCS) [90] and Hoare’s Communicating Sequential Processes (CSP) [64].
There were three main reasons for choosing products. First, an automata-
based model makes clear that the unfolding method is applicable not only
to Petri nets. The unfolding method is not tied to a particular formalism, al-
though its details may depend on the formalism to which it is applied. Second,
products provide some more information than Petri nets about the structure
of the system, and at a certain point in the book (Chap. 4) we exploit this
information to obtain some interesting results. Finally (and this is our main
reason), products of transition systems contain transition systems as a par-
ticular case. Since a transition system is a product of n transition systems for
n = 1, we can present verification procedures for products by first exhibiting
a procedure for the case n = 1, and then generalizing it to arbitrary n. This
approach is very suitable for describing and discussing the problems raised by

1 For the so-called stuttering-invariant fragment of LTL, see Chap. 8 for details.

1 Introduction 3

distributed systems, and their solutions. Moreover, the case n = 1 is usually
simple, and provides a gentle first approximation to the general case.

The reader may now wonder whether the book covers the unfolding method
for Petri nets. The answer is yes and no. It covers unfolding methods for so-
called 1-bounded Petri nets (for definition of 1-bounded nets, see, e.g., [30]).
Readers interested in unfolding techniques for more general net classes will
find numerous pointers to the literature.

Structure of the Book

Chapter 2 introduces transition systems and their products as formal models
of sequential and concurrent systems, respectively. As mentioned above, this
makes sequential systems a special case of concurrent systems: they corre-
spond to the tuples of transition systems of dimension 1, i.e., having only one
component.

Chapter 3 presents the unfolding of a product as a generalization of the
well-known unfolding of a transition system (or just a graph) into a tree. In
particular, it explains why unfolding a product can be faster than construct-
ing and representing its state space as a transition system. The chapter also
introduces the notion of search procedure, and lists the three basic verification
problems that must be solved in order to provide a model checking algorithm
for LTL properties: the executability, repeated executability, and livelock prob-
lems.

These three problems are studied in Chaps. 4, 6, and 7, respectively. All
these chapters have the same structure: First, a search procedure is presented
that solves the problem for transition systems, i.e., for products of dimension
1; the correctness of the procedure is proved, and its complexity is determined.
Then, this procedure is generalized to a search procedure for the general case.

The executability problem is the most important of the three. In particular,
it is the only problem that needs to be solved in order to answer reachabil-
ity questions and safety properties. Chapter 5 studies it in more detail, and
presents a number of important results which are not directly relevant for the
model checking procedure.

Chapter 8 introduces the model checking problem and presents a solution
based on the procedures obtained in the previous chapters.

Chapter 9 summarizes the results of the book and provides references to
papers studying experimental questions, extensions of the unfolding method,
and implementations.

2

Transition Systems and Products

In this chapter we introduce transition systems as a formal model of sequen-
tial systems, and synchronous products of transition systems as a model of
concurrent systems.

2.1 Transition Systems

A transition system is a tuple A = 〈S, T, α, β, is〉, where

• S is a set of states,
• T is a set of transitions,
• α:T → S associates with each transition its source state,
• β:T → S associates with each transition its target state, and
• is ∈ S is the initial state.

Graphically, states are represented by circles, and a transition t with s and
s′ as source and target states is represented by an arrow leading from s to s′

and labeled by t. We mark the initial state is with a small wedge.

Example 2.1. Figure 2.1 shows a transition system A = 〈S, T, α, β, is〉 where
S = {s1, s2, s3, s4}, T = {t1, t2, t3, t4, t5}, and is = s1. We have for instance
α(t1) = s1 and β(t1) = s2.

We call a finite or infinite sequence of transitions a transition word or
just a word. Given a transition t, we call the triple 〈α(t), t, β(t)〉 a step of A.
A state s enables a transition t if there is a state s′ such that 〈s, t, s′〉 is a
step. A (possibly empty) transition word t1t2 . . . tk is a computation of A
if there is a sequence s0s1 . . . sk of states such that 〈si−1, ti, si〉 is a step for
every i ∈ {1, . . . , k};1 we say that the computation starts at s0 and leads to
sk. A computation is a history if s0 = is, i.e., if it can be executed from the
initial state. An infinite word t1t2 . . . is an infinite computation of A if there
1 Notice that there is at most one such sequence of states.

6 2 Transition Systems and Products

s1

s2 s3t5

s4

t1 t2

t3 t4

Fig. 2.1. A transition system

is an infinite sequence s0, s1, . . . of states such that 〈si−1, ti, si〉 is a step for
every i ≥ 1, and an infinite history if moreover s0 = is.

If h is a history leading to a state s and c is a computation that can be
executed from s, then hc is also a history. We then say that h can be extended
by c.

2.2 Products of Transition Systems

Let A1, . . . ,An be transition systems, where Ai = 〈Si, Ti, αi, βi, isi〉. A syn-
chronization constraint T is a subset of the set

(T1 ∪ {ε})× · · · × (Tn ∪ {ε}) \ {〈ε, . . . , ε〉}

where ε is an special symbol intended to denote inaction (idling). The elements
of T are called global transitions. If t = 〈t1, . . . , tn〉 and ti 6= ε, then we say
that Ai participates in t.2 The tuple A = 〈A1, . . . ,An,T〉 is called the product
of A1, . . . ,An under T. A1, . . . ,An are the components of A.

Intuitively, a global transition t = 〈t1, . . . tn〉 models a possible move of
A1, . . . ,An. If ti = ε, then t can occur without Ai even “noticing”.

Example 2.2. Figure 2.2 shows a product of transition systems with two com-
ponents and seven global transitions. The first component participates in five
of them, and the second component in four.

A global state of A is a tuple s = 〈s1, . . . , sn〉, where si ∈ Si for every
i ∈ {1, . . . , n}. The initial global state is the tuple is = 〈is1, . . . , isn〉.

2 This is the reason why 〈ε, . . . , ε〉 is excluded from the set of global transitions: at
least one component must participate in every global transition.

2.2 Products of Transition Systems 7

T = {〈t1, ε〉 , 〈t2, ε〉 , 〈t3, u2〉 , 〈t4, u2〉 , 〈t5, ε〉 , 〈ε, u1〉 , 〈ε, u3〉}

u3t5

r3

s2

t2t1

t3 t4

s3

r1s1

s4

u1

r2

u2

Fig. 2.2. A product of transition systems

A step of A is a triple 〈s, t, s′〉, where s = 〈s1, . . . , sn〉 and s′ = 〈s′1, . . . , s′n〉
are global states and t = 〈t1, . . . , tn〉 is a global transition satisfying the
following conditions for all i ∈ {1, . . . , n}:
• if ti 6= ε, then s′i = βi(ti) and si = α(ti); and
• if ti = ε, then s′i = si.

We say that s enables t if there is a global state s′ such that 〈s, t, s′〉 is a step.
Once the notion of a step has been defined, we can easily lift the definitions

of word, computation, and history to products. We call a finite or an infinite
sequence of global transitions a global transition word. A (possibly empty)
global transition word t1 . . . tk is a global computation if there is a sequence
s0, s1, . . . , sk of global states such that 〈si−1, ti, si〉 is a step for every i ∈
{1, . . . , k}; we say that the global computation can be executed from s0 and
leads to sk. A global computation is a global history if one can take s0 = is,
i.e., if it can be executed from the initial global state.3 An infinite global
transition word t1t2 . . . is an infinite global computation if there is an infinite
sequence s0s1 . . . of global states such that 〈si−1, ti, si〉 is a step for every
i ≥ 1.

Example 2.3. Consider the product of Fig. 2.2. The initial global state is
〈s1, r1〉. The global transition word 〈t1, ε〉 〈ε, u1〉 〈t3, u2〉 is a global compu-
tation, because of the following three steps:

〈〈s1, r1〉 , 〈t1, ε〉 , 〈s2, r1〉〉 ,
〈〈s2, r1〉 , 〈ε, u1〉 , 〈s2, r2〉〉 , and
〈〈s2, r2〉 , 〈t3, u2〉 , 〈s4, r3〉〉 .

3 Notice that, contrary to the case of a computation of a single component, a global
computation can be executed from more than one global state.

8 2 Transition Systems and Products

The computation leads from 〈s1, r1〉 to 〈s4, r3〉 and so it is also a global history.
The sequence 〈t1, ε〉 〈t3, u1〉 is not a global computation, because 〈t3, u1〉 is not
a global transition.

If there is no risk of confusion (and this is usually the case, because global
states and transitions are always written using boldface or explicitly as tuples)
we shorten global word, global computation, global history, etc., to transition
word, computation, history, etc..

2.3 Petri Net Representation of Products

A product of transition systems can be represented in different ways. The
obvious first possibility is as a tuple of transition systems together with the
synchronization constraint. However, when the transition systems are repre-
sented graphically as graphs, the global behavior of the system can be difficult
to visualize, because the local transitions corresponding to a global transition
may be far apart. For small products, a good alternative is to represent them
as Petri nets.

A net is a triple (P, T, F), where P and T are disjoint sets of places and net
transitions (or just transitions when there is no risk of their confusion with
the transitions of a transition system) and F ⊆ (P × T)∪ (T ×P) is the flow
relation. The elements of F are called arcs. Places and transitions are called
nodes. Graphically, a place is represented by a circle, a transition by a box,
and an arc (x, y) by an edge leading from x to y. If (x, y) ∈ F then x is an
input node of y and y is an output node of x. Notice that the input and output
nodes of a place are transitions and those of a transition are places. The sets
of input and output nodes of x are denoted by •x and x•, respectively.

A set of places is called a marking. A marking is graphically represented
by putting a token (a black dot) within each of the circles representing its
places. A Petri net is a tuple N = (P, T, F,M0) where (P, T, F) is a net and
M0 is a marking of N called the initial marking.

Example 2.4. Figure 2.3 shows the graphical representation of the Petri net
(P, T, F,M0) where

• P = {p1, p2, p3, p4},
• T = {t1, t2, t3},
• F = {(p1, t2), (p2, t2), (p3, t1), (p4, t3), (t1, p1), (t2, p3), (t2, p4), (t3, p2)}, and
• M0 = {p1, p2}.
We have for instance, •t2 = {p1, p2} and t2• = {p3, p4}.

A marking M enables a net transition t if it marks every input place of t,
i.e., if •t ⊆M . If t is enabled by M then it can occur or fire, and its occurrence
leads to a new marking M ′ = (M \ •t)∪ t•. Graphically, M ′ is obtained from
M by removing one token from each input place and adding one token to

2.3 Petri Net Representation of Products 9

p1 p2

t2t1 t3

p3 p4

Fig. 2.3. A Petri net

each output place. An occurrence sequence is a sequence of transitions that
can occur from the initial marking in the order specified by the sequence. We
say that the sequence leads from the initial marking to the marking obtained
after firing all transitions of the sequence. A marking is reachable if some
occurrence sequence leads to it.

Example 2.5. The initial marking of the Petri net of Fig. 2.3 enables only
transition t2. After firing t2 we obtain the marking {p3, p4}. The reachable
markings are {p1, p2}, {p1, p4}, {p3, p2}, and {p3, p4}.

The Petri net representation of a product A = 〈A1, . . . ,An,T〉 of transi-
tion systems Ai = 〈Si, Ti, αi, βi, isi〉 is the Petri net (P, T, F,M0) given by:

• P = S1 ∪ . . . ∪ Sn,4
• T = T,
• F = {(s, t) | ti 6= ε and s = αi(ti) for some i ∈ {1, . . . , n}} ∪

{(t, s) | ti 6= ε and s = βi(ti) for some i ∈ {1, . . . , n}},
where ti denotes the i-th component of t ∈ T; and

• M0 = {is1, . . . , isn}.
So, loosely speaking, the Petri net representation of a product A has the
local states of A as places and the global transitions of A as net transitions.
The arcs are determined by the source and target relations of the product’s
components, and the initial marking by the initial states of the components.

Example 2.6. Figure 2.4 shows the Petri net representation of the product of
transition systems of Fig. 2.2. We use the following convention: all nodes of
the net corresponding to the states of the transition system on the left of
Fig. 2.2 are white, all nodes corresponding to the transition system on the
right of Fig. 2.2 are dark grey, and all joint transitions are light grey. We have
• 〈t2, ε〉 = {s1}, 〈t2, ε〉• = {s3}, • 〈t4, u2〉 = {s3, r2} and 〈t4, u2〉• = {s4, r3}.

4 We assume that the Si’s are pairwise disjoint.

10 2 Transition Systems and Products

Notation 1. Since every global transition of a product yields a net transi-
tion in the corresponding Petri net, we can transfer the •-notation to global
transitions. Given t = 〈t1, . . . , tn〉 ∈ T with ti ∈ Ti ∪ {ε}, we have

•t = {αi(ti) | ti 6= ε} and t• = {β(ti) | ti 6= ε} .

It is easy to see that the semantics of a product coincides with its semantics
as a Petri net, in the following sense: A sequence t1t2 . . . tk is a global history
of a product A if and only if it is an occurrence sequence of its associated
Petri net. The advantage of the Petri net representation is that it helps to
visualize the product’s behavior, at least for small nets. For instance, a look
at Fig. 2.4 shows that 〈ε, u1〉 〈t2, ε〉 〈t4, u2〉 〈t5, ε〉 is an occurrence sequence,
but it is considerably more difficult for the human eye to determine from
Fig. 2.2 that the same sequence is a history of the product. It becomes even
more difficult for products with three or four components, of which we will
exhibit a few in the next chapters.

〈t3, u2〉

r2s3s2

〈t1, ε〉 〈t2, ε〉 〈ε, u1〉

r1s1

〈t5, ε〉

〈t4, u2〉

s4 r3

〈ε, u3〉

Fig. 2.4. Petri net representation of the product of Fig. 2.2

2.4 Interleaving Representation of Products

In the interleaving semantics we identify a product of transition systems with
one single transition system whose states and transitions are the global states
and the steps of the product, respectively.

Formally, the interleaving semantics of a product A = 〈A1, . . . ,An,T〉 is
the transition system TA = 〈S, T, α, β, is〉, where

2.4 Interleaving Representation of Products 11

• S is the set of global states of A,
• T is the set of steps 〈s, t, s′〉 of A,
• for every step 〈s, t, s′〉 ∈ T : α(〈s, t, s′〉) = s and β(〈s, t, s′〉) = s′; and
• is = is.

Observe that |S| =
∏n
i=1 |Si|, and so the interleaving semantics of A can

be exponentially larger than A, even if we consider only the states that are
reachable from the initial state. Figure 2.5 shows the interleaving semantics
of the product of Fig. 2.2.

〈s4, r1〉〈s1, r3〉

〈ε, u1〉〈ε, u1〉

〈s1, r1〉
〈ε, u3〉

〈t1, ε〉 〈t2, ε〉〈ε, u1〉
〈s1, r2〉〈s2, r1〉 〈s3, r1〉

〈t2, ε〉〈t1, ε〉

〈s2, r2〉 〈s3, r2〉
〈t4, u2〉〈t3, u2〉

〈s4, r3〉

〈t1, ε〉 〈t2, ε〉 〈ε, u1〉

〈ε, u3〉

〈ε, u3〉

〈ε, u3〉〈t5, ε〉

〈s4, r2〉〈s2, r3〉 〈s3, r3〉

〈t5, ε〉

〈t5, ε〉

Fig. 2.5. Interleaving representation of the product of Fig. 2.2

As was the case with the Petri net representation, a product is completely
determined by its interleaving semantics: The local states can be extracted
from the global states, and the global transitions from the steps. Since each

12 2 Transition Systems and Products

transition of each component appears in some global transition by assumption,
this allows us to get all transitions of all components.5

Bibliographical Notes

As mentioned in the introduction, synchronous products of labeled transition
systems were introduced by Arnold in [4]. In this model, the synchronization
of the transition systems is described by means of an explicit enumeration of
the global transitions. While this makes the model very general, when mod-
elling systems the explicit enumeration is usually impractical, because the list
of global transitions becomes very large. For instance, the description of Peter-
son’s mutual exclusion algorithm for two processes takes more than one page
in [4]. In process algebras like CSP [64] and CCS [90], the set of global tran-
sitions is described implicitly. For instance, the CSP synchronization model
can be easily adapted to our transition system framework. Given a product
A = 〈A1, . . . ,An,T〉, we assign to each component Ai an alphabet Σi of ac-
tions, and label each transition with an action (different transitions may be
labeled by the same action). For each action a ∈ ⋃n

i=1Σi, we define a set of
global transitions as follows: a tuple 〈t1, . . . , tn〉 belongs to the set if for every
i ∈ {1, . . . , n} either a /∈ Σi and ti = ε, or a ∈ Σi, ti 6= ε, and ti is labeled by
a. So, loosely speaking, a tuple is a global transition for action a if and only
if all components having a in their alphabets participate in it with a-labeled
local transitions. In this way the set of global transitions is implicitly defined
by the alphabets of the components and by the transition labels.

Petri nets were introduced in C.A. Petri’s dissertation [101, 102]. The
particular variant of Petri nets considered here is very close to Elementary
Net Systems (see for instance [108]).

5 Note that if we restrict ourselves to the global states reachable from the initial
state, only the local transitions which are executable as a part of some global
transition enabled in some reachable global state can be recovered, and similarly
for the local states of each of the components.

3

Unfolding Products

A transition system A = 〈S, T, α, β, is〉 can be “unfolded” into a tree. Intu-
itively, the unfolding can be seen as the “limit” of the construction that starts
with the tree having one single node labeled by is, and iteratively extends it
as follows: If a node of the current tree enables a transition t, then we add a
new edge to the tree labeled by t, and leading to a new node labeled by β(t)
(to be precise, we only add the edge and the node if they have not been added
before). If the transition system has a cycle, then its unfolding is an infinite
tree.1

Example 3.1. Figure 3.1(a) shows the transition system of Fig. 2.1, while
Fig. 3.1(b) is its unfolding as a transition system, more precisely an initial
part of it. For the Petri net presentation of the same unfolding, take a peek at
Fig. 3.4 on p. 21. In the rest of the book we will use the Petri net representation
in order to make the notation between unfoldings of a single transition system
(a product of dimension 1) and a product of transition systems identical.

Notice that we can also look at the unfolding as a labeled transition system,
i.e., as a transition system whose states and transitions carry labels. The states
of the unfolding are the nodes of the tree, and they are labeled with states of
the original transition system; the transitions of the unfolding are the edges of
the tree, and they are labeled with transitions of the original transition system.
Many states (potentially infinitely many) of the unfolding can be labeled with
the same state of the original transition system: they correspond to different
visits to the state. For instance, the unfolding of Fig. 3.1(b) contains infinitely
many visits to s1. Similarly with transitions: a transition of the unfolding
corresponds to a particular occurrence of a transition of the original transition
system. In a textual representation the states and transitions of the unfolding
would be assigned unique names (for instance, the states labeled by s1 could
be given the names s11, s12, s13, . . .), which are not shown in the graphical
representation.
1 These infinite trees are often referred to as computation trees in the literature.

14 3 Unfolding Products

(a)

s1

s2 s3t5

s4

t1 t2

t3 t4

t1 t2

s2s3

(b)

s1

s2 s3

t4t3

s4 s4

t5 t5

s1 s1

s2 s3

t1 t2t1t2

Fig. 3.1. The transition system of Fig. 2.1 (a) and its unfolding (b) as a transition
system

We now address the question of how to unfold a product. The answer
is easy if we take the interleaving representation of products as defined in
Sect. 2.4: The unfolding of a product A can be defined as the unfolding of
the transition system TA. However, in this book we investigate a different
notion of unfolding, which corresponds to taking the Petri net representation
of products. In Sect. 3.1 we introduce, first intuitively and then formally, the
notion of branching processes, and the notion of the unfolding of a product as
the “largest” branching process. In Sect. 3.2 we present some basic properties
of branching processes. Section 3.3 explains why unfolding-based verification
can be more efficient than verification based on the interleaving representation
of products. Section 3.4 discusses the algorithmic problem of computing the
unfolding. Section 3.5 introduces the notion of a search procedure for solving
a verification problem. Finally, Sect. 3.6 sets the plan for the next chapters.

3.1 Branching Processes and Unfoldings

The unfolding of a transition system is a labeled transition system, and in the
same way the unfolding of a product (represented by a Petri net) is going to
be a labeled Petri net, more precisely a Petri net whose places and transitions

3.1 Branching Processes and Unfoldings 15

are labeled with places and transitions of the original net. When unfolding a
transition system A we start with one node, labeled with the initial state of
A. In the same way, when unfolding a product A, we start with one place for
each component, labeled with the initial state of the component. The net N0

of Fig. 3.2 corresponds to this initial step for the product of Fig. 2.4 on p. 10.
We use in Fig. 3.2 the same node coloring convention as in Fig. 2.4.

N5:

s4 r3 s4 r3

〈t4, u2〉〈t3, u2〉

s3 r2s2

〈t1, ε〉 〈t2, ε〉 〈ε, u1〉

r1s1

r2s2

〈t1, ε〉

r1s1N2:

〈ε, u1〉

N4:

s4 r3

〈t3, u2〉

s3 r2s2

〈t2, ε〉 〈ε, u1〉

r1s1r1s1N0:

〈t1, ε〉

s2

〈t1, ε〉

r1s1N1:

N3:

s4 r3

〈t3, u2〉

r2s2

〈t1, ε〉 〈ε, u1〉

r1s1

Fig. 3.2. Unfolding a product

When unfolding a transition system A, we proceed as follows: If in the
current tree a state enables a transition t then we add a new transition labeled
with t and a new state labeled with β(t). When unfolding a product A, we
proceed similarly: If in the current Petri net a reachable marking enables a

16 3 Unfolding Products

global transition t, then we add a new net transition labeled with t and new
places labeled with the states of t•. After this we connect the transition t
to the set of places •t as its preset and to the freshly generated places of
t• as its postset. The nets N1, . . . ,N5 of Fig. 3.2 are constructed in this way.
Notice that we always add a new transition and new places, even if the current
Petri net already contains transitions and places carrying the same labels. For
instance, we go from N4 to N5 by adding a new transition labeled by 〈t4, u2〉
and two new places labeled by s4 and r3, even though N3 already contains
two places with these labels.

Figure 3.3 on shows the unfolding of the product of Fig. 2.4 on p. 10. Places
and transitions are labeled with the names of local states and global transitions
of the product. For convenience we use the notation where a transition ti from
the first component denotes the global transition 〈ti, ε〉 in all the figures to
follow and similarly a transition tj from the second component denotes 〈ε, tj〉.
The numbering of the transitions suggests a possible order in which they
could have been added, starting from the initial Petri net N0. Notice that
this ordering is different from the one followed in Fig. 3.2, just to know that
different orderings are possible.

Convention 1. In order to avoid confusion, it is convenient to use different
names for the transitions of a transition system or product of transition sys-
tems, and for the transitions of its unfolding. We call the transitions of an
unfolding events. An event corresponds to a particular occurrence of a tran-
sition. In the figures we use the natural numbers 1, 2, 3, . . . as event names.

Formal Definition of Unfolding of a Product

In this section we introduce a class of Petri nets called branching processes,
and define the unfolding of a product as a particular branching process. Before
giving the formal definition (Def. 3.5) we need some preliminaries.

Loosely speaking, a branching process will be either a Petri net containing
no events (corresponding to the Petri net N0 in the example of Fig. 3.2), or
the result of extending a branching process with an event (this is how the
Petri nets N1, . . . ,N5 in the same example are constructed), or the union of
a (possibly infinite) set of branching processes. Before defining unions, let us
informally explain their role. We use them to generate branching processes
with an infinite number of events. In particular, the unfolding of Fig. 3.3
will be the union of all the branching processes that can be generated by re-
peatedly extending N0, one event at a time, in all possible ways. Intuitively,
we can imagine that the sequence N0,N1, . . . ,N5 is extended with infinitely
many more processes, each one containing one more event than its predeces-
sor, ensuring that every event that can be added is eventually added. While
the union of N0,N1, . . . ,Ni will always be equal to Ni, the union of all the
elements of the sequence produces a new infinite Petri net, namely the one of
Fig. 3.3.

Unions of Petri nets are defined component-wise:

3.1 Branching Processes and Unfoldings 17

r3

t5

s4

u3

r1

21 3

4 5

6 7 8 9

1514131110

16 17 18 19

s1 r1

u1t2t1

s2 s3 r2

s4

t5

s1

s2

s4 r3 s4 s4

〈t3, u2〉 〈t4, u2〉

t2t1 t2u112 t1

s3 r2 s2 s3

〈t3, u2〉 〈t4, u2〉 〈t3, u2〉 〈t4, u2〉

s4r3 r3 r3

s1

r3

r1

u1

r2

u3

Fig. 3.3. The unfolding of the product represented in Fig. 2.4 on p. 10

Definition 3.2. The union
⋃
N of a (finite or infinite) set N of Petri nets

is defined as the Petri net

⋃
N =

 ⋃

(P,E,F,M0)∈N
P,

⋃

(P,E,F,M0)∈N
E,

⋃

(P,E,F,M0)∈N
F,

⋃

(P,E,F,M0)∈N
M0

 .

Unions, however, must be handled with some care. Unless the names of
the nodes are well chosen, they can generate “wrong” nets that do not corre-
spond at all to the intuition behind the unfolding process. For instance, take

18 3 Unfolding Products

two “copies” of the net N0, but giving the places of the second copy different
names than those of the first copy. The union of the two nets is a net with
four places, which no longer correspond to our intuition of a branching pro-
cess. More generally, the union of two isomorphic branching processes, i.e.,
of two identical branching processes up to renaming of the nodes, may not
be isomorphic to any of them. So, even though we are not interested in the
names of the nodes per se, we have to worry about them to guarantee that
unions work the way they should.

We solve this problem by introducing a canonical way of naming nodes.
Loosely speaking, an event labeled by a global transition t ∈ T is given the
name (t, X), where X is the set containing the names of the input places of
the event. Similarly, a place labeled by a local state s ∈ Si is given the name
(s, {x}), where x is the name of the unique input event of the place. We say
that (t, X) and (s, {x}) are the canonical names of the nodes.

Formally, given a product A = 〈A1, . . . ,An,T〉 we define the set C
of canonical names as the smallest set satisfying the following property: if
x ∈ S1 ∪ . . . ∪ Sn ∪ T and X is a finite subset of C, then (x,X) ∈ C. We
call x the label of (x,X), and say that (x,X) is labeled by x. Notice that C is
nonempty, because (x, ∅) belongs to C for every x ∈ S1 ∪ . . . ∪ Sn ∪T.

Example 3.3. The two places of N0 in Fig. 3.2 are given the names (s1, ∅)
and (r1, ∅). In N1 these places get the same names. The name of the
unique event of N1 is (〈t1, ε〉 , {(s1, ∅)}), and the name of its output place
is (s2, {(〈t1, ε〉 , {(s1, ∅)})}).

We can now define C-Petri nets as the Petri nets whose places and tran-
sitions are taken from the set C, and in which a place carries a token if and
only if it has no predecessors.

Definition 3.4. A C-Petri net is a Petri net (P,E, F,M0) such that:

(1)P ∪ E ⊆ C,
(2) if (x,X) ∈ P ∪ E, then X = •(x,X); and
(3) for every (x,X) ∈ P , (x,X) ∈M0 if and only if X = ∅.
By (2), in a C-Petri net the preset of a node is part of the name of the node.
Therefore, the set of arcs of a C-Petri net is completely determined by its set
of places and events. By (3), the same is true of the initial marking of the net.
This fact is used in the definition of branching processes:

Definition 3.5. The set of branching processes of a product A is the smallest
set of C-Petri nets satisfying the following conditions:

(1) Let Is = {(is1, ∅), . . . , (isn, ∅)}, where {is1, . . . , isn} is the set of initial
states of the components of A. The C-Petri net having Is as set of places
and no events is a branching process of A.

3.1 Branching Processes and Unfoldings 19

(2) Let N be a branching process of A such that some reachable marking of
N enables a global transition t. Let M be the set containing the places of
the marking that are labeled by •t. The C-Petri net obtained by adding to
N the event (t,M) and one place (s, {(t,M)}) for every s ∈ t• is also a
branching process of N . We call the event (t,M) a possible extension of
N .

(3) If B is a (finite or infinite) set of branching processes of A, then so is⋃
B.

The union of all branching processes of A is called the unfolding of A. We
say that every branching process is a prefix of the unfolding.

Example 3.6. Let us see how the step from N1 to N2 in Fig. 3.2 matches this
definition. The reachable marking that puts a token on the places marked by
s1 and r1 enables the transition t = 〈ε, u1〉. We have •t = {r1}, and so N1

can be extended with a new event labeled by 〈ε, u1〉. Since 〈ε, u1〉 has r2 as
only output place, we also add a new place labeled by r2. More precisely, the
names of the new event and the new place are

(〈ε, u1〉 , {(r1, ∅)}) and (r2, {(〈ε, u1〉 , {(r1, ∅)})}) .
It can be easily checked that if the places and events of the six Petri nets of
Fig. 3.2 are given their canonical names, then the union of all six nets is equal
to N5.

At this point the reader may be worried by the length and complexity of the
canonical names. Actually, there is no reason to worry. Canonical names are
just a mathematical tool allowing us to define the infinite branching processes
of a product and reason about them. The algorithms of the next chapters only
compute finite prefixes of the unfoldings, and the names of their places and
events can be chosen arbitrarily; the canonical names need not be used. As a
matter of fact, the canonical names will never be used again in this book.

Fundamental Property of Unfoldings

Intuitively, the unfolding of a product exhibits “the same behavior” as the
product. We formalize this idea by defining the steps of an unfolding and
arguing that the steps of a product and the steps of its unfolding are very
tightly related.

Given two markings M,M ′ and an event e of the unfolding of a product A,
we say that the triple 〈M, e,M ′〉 is a step ifM enables e and the occurrence of e
leads from M to M ′. To formulate our proposition we still need some notation.
Given a node x (place or event) of the unfolding, we denote the label of x by
λ(x). Furthermore, given a set X of nodes we define λ(X) = {λ(x) | x ∈ X}.
Proposition 3.7. Let s be a reachable state of A, and let M be a reachable
marking of the unfolding of A such that λ(M) = s.2

2 More precisely, such that s = 〈s1, . . . , sn〉 and λ(M) = {s1, . . . sn}, i.e., we abuse
language and identify the tuple 〈s1, . . . , sn〉 and the set {s1, . . . sn}.

20 3 Unfolding Products

(a) If 〈M, e,M ′〉 is a step of the unfolding, then there is a step 〈s, t, s′〉 of A
such that λ(e) = t, and λ(M ′) = s′.

(b) If 〈s, t, s′〉 is a step of A, then there is a step 〈M, e,M ′〉 of the unfolding
such that λ(e) = t, and λ(M ′) = s′.

It is not difficult to give a formal proof of this proposition, but the proof
is tedious and uninteresting. For this reason, we only present an example.

Example 3.8. Let p10, p7 be the input places of the events 10 and 7 in
Fig. 3.3 on p. 17, respectively. The marking {p10, p7} is reachable . Fur-
thermore, the triple 〈{p10, p7}, 10, {p′10, p7}〉, where p′10 is the output place
of event 10, is a step. We have λ({p10, p7}) = 〈s1, r3〉, λ(10) = 〈t1, ε〉, and
λ({p′10, p7}) = 〈s2, r3〉. As guaranteed by part (a) of Prop. 3.7, the triple
〈〈s1, r3〉 , 〈t1, ε〉 , 〈s2, r3〉〉 is a step of the product of Fig. 2.4 on p. 10.

For the converse, consider the global state 〈s1, r3〉. The three possible steps
from this state are

〈 〈s1, r3〉 , 〈t1, ε〉 , 〈s2, r3〉 〉 ,
〈 〈s1, r3〉 , 〈t2, ε〉 , 〈s3, r3〉 〉 , and
〈 〈s1, r3〉 , 〈ε, u3〉 , 〈s1, r1〉 〉 .

Since λ({p10, p7}) = 〈s1, r3〉, by Prop. 3.7(b) the unfolding must have three
corresponding steps from the marking {p10, p7}, and indeed this is the case as
shown by

〈 〈p10, p7〉 , 10, 〈p′10, p7〉 〉 ,
〈 〈p10, p7〉 , 11, 〈p′11, p7〉 〉 , and
〈 〈p10, p7〉 , 7, 〈p10, p

′
7〉 〉 ,

where p′7 and p′11 denote the output places of the events 7 and 11, respectively.

In particular, Prop. 3.7 implies the existence of a very tight relation be-
tween the histories of a product A and the occurrence sequences of its un-
folding. In order to formulate this result, we extend the labeling function λ
to sequences of events. Given a finite or infinite sequence σ = e0 e1 e2 . . ., we
define λ(σ) = λ(e0)λ(e1)λ(e2)

Corollary 3.9. (a) If σ is a (finite or infinite) occurrence sequence of the
unfolding, then λ(σ) is a history of A.

(b) If h is a history of A, then some occurrence sequence of the unfolding
satisfies λ(σ) = h.

Proof. (a) Let σ = e0 e1 e2 Since σ is an occurrence sequence there are
markings M0,M1,M2 . . . such that M0 is the initial marking of the unfold-
ing and 〈Mi, ei,Mi+1〉 is a step for every index i ≥ 0 in the sequence. By
the definition of the unfolding, λ(M0) is the initial state of A; by Prop. 3.7,
〈λ(Mi), λ(ei), λ(Mi+1)〉 is a step of A. It follows that λ(σ) is a history of A.
(b) The argument is analogous. ¤

3.1 Branching Processes and Unfoldings 21

Products with Only One Component

A transition system can be seen as a degenerate product of transition systems
with only one component. In the rest of the book we look at transition sys-
tems this way, and speak of the branching processes and the unfolding of a
transition system. Figure 3.4(a) shows a transition system and Fig. 3.4(b) its
unfolding as a branching process. Observe that the branching processes and
the unfolding of a transition system are trees. In particular, the events always
have one single input and one single output place.

(a)

s1

s2 s3t5

s4

t1 t2

t3 t4

(b)

s1

1

7 8

2

3 4

5 6

109

t1

s2

t3

s4

t5

t2

s3

t4

s4

t5

s1 s1

t2

s3s2

t1 t1t2

s3 s2

Fig. 3.4. The transition system of Fig. 2.2 on p. 7 (a) and its unfolding (b)

22 3 Unfolding Products

3.2 Some Properties of Branching Processes

We list some properties of branching processes. They can all be easily proved
by structural induction on the definition of branching processes, and in most
cases we only sketch their proofs.

3.2.1 Branching Processes Are Synchronizations of Trees

A branching process of a transition system is a tree. Intuitively, a branching
process of a product can be seen as a synchronization of trees. We formalize
this idea.

Definition 3.10. A place of an unfolding is an i-place if it is labeled by a
state of the ith component. The i-root is the unique i-place having no input
events. An event is an i-event if it is labeled by a global transition 〈t1, . . . , tn〉
such that ti 6= ε. In other words, an event is an i-event if the ith component
participates in the global transition it is labeled with.

It follows that an i-place can only be a j-place if j = i; on the contrary,
an event can be an i-event and a j-event even for i 6= j if both Ai and Aj
participate in the transition it is labeled with.

Proposition 3.11. Let N be a branching process of A. Then:

(1)N has no cycles, i.e., no (nonempty) path of arcs leads from a node to
itself.

(2) For every i ∈ {1, . . . n}, every reachable marking of N puts a token in
exactly one i-place.

(3)The set of i-nodes of the branching process N forms a tree with the i-root
as root. Moreover, the tree only branches at places, i.e., if a node of the
tree has more than one child, then it is a place.

(4)A place of N can get marked at most once (i.e., if along an occurrence
sequence it becomes marked and then unmarked, then it never becomes
marked again), and an event of N can occur at most once in an occurrence
sequence.

Proof. (1) The branching process without events has no cycles, and the two
operations that produce new branching processes preserve this property.

(2) The property holds for the branching process without events. By
Def. 3.5 every event of a branching process has an input i-place if and only if
it has an output i-place, and therefore its firing preserves the property.

(3) By (1) it suffices to prove that every i-node has at most one i-
predecessor. This holds for the branching process without events. By Def. 3.5,
every i-event has exactly one input i-place, and every i-place has exactly one
input i-event with the exception of the i-root, which has none.

(4) Let e be an event of N , and let p be one of its input places. Let i be
the unique component index such that p is an i-place and let p′ be the unique

3.2 Some Properties of Branching Processes 23

output i-place of e. Assume that e occurs in some occurrence sequence. Right
after the occurrence of e the place p′ is marked. By (2) and (3), every subse-
quent marking puts a token at some i-place p′′ ≥ p. By (1), p′′ 6= p, and so
the place p never becomes marked again, and e never occurs again. ¤

Example 3.12. In Fig. 3.3 on p. 17, the 1-nodes are represented in white and
the 2-nodes in dark grey. The events that are both 1-events and 2-events are
in light grey. The tree of 1-nodes is the one formed by the white and light
grey nodes, and the tree of 2-nodes the one formed by the dark grey and light
grey nodes.

3.2.2 Causality, Conflict, and Concurrency

Two events of the unfolding of a transition system are either connected by
a path of net arcs or not. For instance, events 1 and 5 of Fig. 3.4 are connected
by a path, while events 3 and 4 are not. In the first case, the event at the
end of the path can only occur after the one at the beginning of the path has
occurred; we say that the events are causally related. In the second case, no
occurrence sequence of the unfolding contains both events, and so we say that
the events are in conflict.

Consider now events 1 and 3 of the unfolding shown in Fig. 3.3 on p. 17.
Event 1 is certainly not a cause of event 3, and vice versa. Moreover, they
are not in conflict, since the sequence 1 3 is an occurrence sequence of the
unfolding. We need to introduce a third category of concurrent nodes.

Definition 3.13. Let x and y be two nodes of an unfolding.

• We say that x is a causal predecessor of y, denoted by x < y, if there is
a (non-empty) path of arcs from x to y; as usual we denote by x ≤ y that
either x < y or x = y; two nodes x and y are causally related if x ≤ y or
x ≥ y.

• We say that x and y are in conflict, denoted by x#y, if there is a place
z, different from x and y, from which one can reach x and y, exiting z by
different arcs.

• We say that x and y are concurrent, denoted by x co y, if x and y are
neither causally related nor in conflict.

The following proposition shows that a set of places of an unfolding can
be simultaneously marked if and only if its elements are pairwise concurrent.

Proposition 3.14. Let N be a branching process of A and let P be a set of
places of N . There is a reachable marking M of N such that P ⊆ M if and
only if the places of P are pairwise concurrent.

Proof. (⇒): We prove the contrapositive. Assume that two places p, p′ ∈ P
are not concurrent. Then they are either causally related or in conflict. In the

24 3 Unfolding Products

first case, assume w.l.o.g. that p ≤ p′ holds. Then there is a path (possibly
consisting of just one node) starting at some place of N carrying one token,
continuing to p, and ending at p′. Since places have exactly one input event,
the occurrence of an event does not change the total number of tokens marking
the places of the path, and so at any reachable marking exactly one place of
this path is marked. So p and p′ can never be simultaneously marked. Assume
now that p and p′ are in conflict. Then there is a path starting at some place
of N carrying one token, continuing to a place p′′, different from p and p′,
and branching into two paths leading from p′′ to p and p′, respectively. Again,
the occurrence of an event does not change the total number of tokens in
the places of this structure (the path leading to p′′ plus the two branches
leading to p and p′), and so at any reachable marking exactly one place of the
structure is marked. So p and p′ can never be simultaneously marked.

(⇐): Observe first that the property holds for the branching process with-
out events (all its places are pairwise concurrent, and they all belong to the
initial marking). Assume now that N is obtained by extending a branching
process N ′ with a new event e. Let P ′ be the subset of places of P that belong
to N ′. If P ′ = P , then the property holds by induction hypothesis. Other-
wise, P \ P ′ is a nonempty subset of e•. Since the places of P ′ are pairwise
concurrent, so are the places of the set P ′ ∪{•e} (it is easy to see that no two
places of this set are causally related or in conflict). By induction hypothesis,
some reachable marking M ′ of N ′ satisfies P ′∪{•e} ⊆M ′. Then, the marking
M obtained from M ′ by firing e satisfies P ⊆ M , and we are done. Finally,
assume that N is the union of a sequence of branching processes. In this case,
some element of the union already contains all places of P , and the property
holds by induction hypothesis. ¤

We can now show that any pair of nodes of an unfolding belongs to exactly
one of the causal, conflict, and concurrency relations.

Proposition 3.15. (1) For every two nodes x, y of a branching process exactly
one of the following holds: (a) x and y are causally related, (b) x and y
are in conflict, (c) x and y are concurrent.

(2) If x and y are causally related and x 6= y, then either x < y or y < x, but
not both.

Proof. (1) By definition, two nodes are concurrent if and only if they are
neither causally related nor in conflict. So it suffices to show that no two
nodes x, y can be both causally related and in conflict. Consider two cases:

• x = y. Then x and y are causally related, and so we have to show that x#x
does not hold, i.e., that x is not in self-conflict. Observe first that, since
a place of a branching process has at most one input event, a place is in
self-conflict if and only if its input event is in self-conflict. So it suffices to
show that no event is in self-conflict. We proceed by structural induction.
For the branching process without events there is nothing to show. Assume

3.2 Some Properties of Branching Processes 25

now that no event of a branching process N is in self-conflict, and let e be
a possible extension of N . By the definition of conflict, e#e can only be
the case if there exist two places p1, p2 ∈ •e such that p1#p2. But, by the
definition of a branching process, some reachable marking of N contains
both p1 and p2, and so by Prop. 3.14 p1 and p2 are concurrent. It follows
that p1 and p2 are not in conflict. Finally, it is easy to see that if no event
of a set of branching processes is in self-conflict, then no event of their
union is in self-conflict.

• x 6= y. If x < y and x#y, then there is a path leading from x to y, and
a place z and two paths leaving z through different arcs and leading to x
and y. So y#y, contradicting (1). The case x > y and x#y is symmetric.

(2) If x < y and y < x, then N has a cycle, contradicting Prop. 3.11(1). ¤

Example 3.16. In the unfolding of Fig. 3.3 on p. 17, the output place of event
4 labeled by s4 and the output place of event 12 labeled by r2 are concurrent,
and indeed they can be simultaneously marked by letting the events 1, 3, 4,
7, and 12 occur in this order.

3.2.3 Configurations

A realization of a set of events is an occurrence sequence of the branching
process in which each event of the set occurs exactly once, and no other
events occur. A set of events can have zero, one, or more realizations. For
instance, the sets {1, 2} and {4, 6} in Fig. 3.3 on p. 17 have no realizations
(for the latter, recall that occurrence sequences start at the initial marking,
which enables neither event 4 nor event 6), and the set {1, 3, 4, 7} has two
realizations, namely the sequences 1 3 4 7 and 3 1 4 7.

Definition 3.17. A set of events of an unfolding is a configuration if it has
at least one realization.

The following proposition characterizes the configurations of a branching
process:

Proposition 3.18. Let N be a branching process of a product A and let E
be a set of events of N .

(1)E is a configuration if and only if it is causally closed, i.e., if e ∈ E
and e′ < e then e′ ∈ E, and conflict-free, i.e., no two events of E are in
conflict.

(2)All the realizations of a finite configuration lead to the same reachable
marking of N .

Proof. (1) The “only if” direction is easy. For the “if” direction we proceed by
induction on the size of E. If |E| = 0, then the empty sequence is a realization,

26 3 Unfolding Products

and we are done. If |E| > 0, let e be a maximal event of E w.r.t. the causality
relation. Then E \ {e} is also a configuration, and by induction hypothesis it
has a realization σ. It follows immediately from the occurrence rule for Petri
nets that the sequence σ e is a realization of E, and we are done.

(2) It is easy to see that the marking reached by any realization of a given
finite configuration E is the one putting a token in the places p of N such
that •p ⊆ E and p• ∩ E = ∅. ¤

Example 3.19. In Fig. 3.3 on p. 17, {1, 3, 4, 6} is a configuration, and {1, 4}
(not causally closed) or {1, 2} (not conflict-free) are not. The configuration
{1, 3, 4, 6} has two realizations, namely 1 3 4 6 and 3 1 4 6. Both lead to the
same marking.

3.3 Verification Using Unfoldings

Transition systems are used to represent the semantics of dynamic systems,
like programs or digital circuits. For instance, a sequential program can be
assigned a transition system whose states are tuples containing the current
value of the program counter and the current values of the program vari-
ables. The unfolding of the transition system can be seen as a data structure
representing the system’s computations, and so all the computations of the
program. Given a question about the system, like “does some computation
execute the transition t?”, we can try to compute an answer by exploring the
unfolding: we compute larger and larger portions of it, until an event labeled
by t is found, or until somehow we are able to conclude that no future event
will be labeled by t.

In the same way, the unfolding of a product can be seen as a data struc-
ture representing the product’s global computations, each global computation
corresponding to an occurrence sequence of the unfolding. Given the question
“does some computation execute the global transition t?”, we can compute
an answer by exploring the unfolding until an event labeled by t is found, or
until we can somehow conclude that no such event can be ever added (how to
conclude this is explained in the coming chapters). It is important to observe
that only a finite prefix of the unfolding is explored.

This is the approach we study in this book. Notice that it differs from
the conventional model checking approach, which consists of exploring not
the product’s unfolding, but its interleaving semantics. In order to give a first
impression of why the new approach could be superior to the conventional
one, consider the product of transition systems of Fig. 3.5. We wish to know
if the global transition c = 〈c0, . . . , c4〉 is executable.

The Petri net representation of the product is shown in Fig. 3.6. Its un-
folding is shown in Fig. 3.7. In this case, the unfolding is finite, and the finite
prefix that needs to be explored in order to decide the executability of c is

3.3 Verification Using Unfoldings 27

b4 = 〈ε, ε, ε, ε, b4〉 , c = 〈c0, c1, c2, c3, c4〉}

T = {a = 〈a0, a1, ε, ε, ε〉 ,b1 = 〈ε, b1, ε, ε, ε〉 ,
b2 = 〈ε, ε, b2, ε, ε〉 ,b3 = 〈ε, ε, ε, b3, ε〉 ,

r1 s1 t1 u1 v1

b1

c1 c3 c4

b2 b4a0

c0

r3 s3 t3 u3 v3

r2

c2

b3a1

t2 u2 v2s4 s2

Fig. 3.5. Product of transition systems

the unfolding itself. The transition c is not executable, because otherwise the
unfolding would contain at least one event labeled by it.

If we choose the interleaving representation, then in order to find out that
c is not executable we need to explore the whole transition system associated
with the product. The important point is that the unfolding of Fig. 3.7 is
more compact. The transition system has 24 global states and 40 transitions,
while the unfolding has 11 places and five events. If these numbers do not look
very impressive, we can always extend the system by adding new “copies” of
the three components on the right of Fig. 3.5. For a product with a total of
n components the unfolding contains 2n + 1 places and n events, while the
transition system has 3 · 2n−2 global states and even more global transitions.
Notice also that, since the transition c is not executable, state space explo-
ration based on the interleaving semantics will need to compute all the global
states of the product in order to decide if the property holds.

Summarizing, the prefix of the unfolding of a product that needs to be
explored can be much more compact than the unfolding of its associated
transition system, and this is the fact we try to exploit.3

3 See Bibliographical Notes at the end of the chapter for alternative approaches to
exploiting concurrency.

28 3 Unfolding Products

r1 s1 t1 u1 v1

r2 s2 t2 u2 v2

r3 s3 t3 u3 v3

c

a b3b2b1 b4

s4

Fig. 3.6. Petri net representation of the product of Fig. 3.5

r1 s1 t1 u1 v1

r2 s2 t2 u2 v2

b4b3b2b1a

s4

Fig. 3.7. The unfolding of the product of Fig. 3.5

3.4 Constructing the Unfolding of a Product

Exploring the unfolding of a product corresponds to generating larger and
larger branching processes, each one the result of adding a new event to the
previous one. The question is how to compute the events that can extend the
current branching process. More concretely: Given a finite branching process

3.4 Constructing the Unfolding of a Product 29

N of a product A and a global transition t, how can we decide whether N
can be extended with an event labeled by t?

Let •t = {s1, . . . , sk}. Then k is the number of components of the product
that participate in t. We call this number the synchronization degree of t. By
the definition of branching processes, we have to decide if N has a reachable
marking that puts a token on places p1, . . . , pk labeled by s1, . . . , sk, respec-
tively. For this, we proceed as follows:

(1) We consider all the sets {p1, . . . , pk} of places of N such that for i ∈
{1, . . . , k} the place pi is labeled by si. Let us call them the candidates.

(2) For each candidate {p1, . . . , pk}, we decide if some reachable marking M
satisfies {p1, . . . , pk} ⊆M . We say that the candidate is reachable.

The complexity of the procedure is the product of the number of candidates
and the time needed to check if a candidate is reachable. The number of
candidates is O((n/k)k) for a branching process with n places. Checking the
reachability of a candidate involves solving a reachability problem for a Petri
net, which is known to be computationally expensive. Fortunately, branching
processes are a very special class of nets, and for them the reachability problem
is far easier than in the general case. By Prop. 3.14, a candidate is reachable
if and only if its places are pairwise concurrent. There are several possible
algorithmic solutions to checking pairwise concurrency, exhibiting a typical
trade-off between time and space. We present two of them.

Memory-Intensive Approach

We assume that not only N but also the concurrency relation (i.e., the pairs
(x, y) of nodes such that x co y) is part of the input. In this case, using an
adequate data structure, e.g., a hash table, we can check the concurrency of
two places in O(1) time. Since a candidate contains k places, its reachability
can be checked in O(k2) time. Since there are O((n/k)k) candidates, this
approach takes O(nk/kk−2) time. However, O(n2) memory is needed to store
the concurrency relation. Moreover, when extending a branching process with
a new place the concurrency relation needs to be updated. The following
proposition, whose proof follows easily from the definitions, shows that the
update can be carried out in O(n) time.

Proposition 3.20. Let N ′ be a branching process obtained by extending a
branching process N with an event e according to Def. 3.5. Let co and co′

denote the concurrency relations of N and N ′, respectively, and let p1, p2 be
distinct places of N ′. We have p1 co′ p2 if and only if:

• p1 and p2 are places of N and p1 co p2, or
• p1 and p2 are output places of e, or
• one of p1, p2 is an output place of e and the other one is a place of N in

co-relation with every input place of e.

30 3 Unfolding Products

Memory-Light Approach

Assume now that N is the only input, and that it is stored using a data
structure that implements the following operation: given a node x of N (place
or event), the operation returns its set of input nodes. In order to determine if
two places p and p′ are concurrent, we first make repeated use of this operation
to compute the set C(p) of causal predecessors of p, i.e., the set of nodes x
such that x < p. If p′ belongs to this set, then we have p′ < p, and so p and
p′ are not concurrent. Otherwise, we compute the set C(p′). If it contains p,
then p < p′. If not, then we check if the set C(p) ∩C(p′) contains some place
p′′ having two output events e ∈ C(p)\C(p′) and e′ ∈ C(p′)\C(p). If so, then
p and p′ are in conflict; otherwise they are concurrent. This procedure can
be easily generalized to decide if the places of a set {p1, . . . , pk} are pairwise
concurrent. We go through a loop that executes (at most) k iterations. We
use a variable C, which after i iterations stores the set C(p1) ∪ . . . ∪ C(pi)
(the initial value of C is the empty set). In the ith iteration we compute C(pi)
and check whether it contains any of p1, . . . , pk. If so, pi is causally related
to at least one of p1, . . . , pk, and we stop. If not, we check whether C ∩C(pi)
contains some place having two output events e ∈ C\C(pi) and e′ ∈ C(pi)\C.
If so, pi is in conflict with at least one of p1, . . . , pi−1, and we stop. If not, we
add C(pi) to C, and continue with the next iteration. Using adequate data
structures the procedure runs in O(n) time.

Since checking the reachability of a candidate takes O(n) time, and there
are O((n/k)k) candidates, we need O(nk+1/kk) time.

The exponential complexity in k of the two approaches is less worrisome
than it might seem at first sight. Recall that k is the synchronization degree
of the transition t. Products modelling real systems rarely have transitions
of high synchronization degree. The reason is that the execution of a global
transition requires the consensus of its participants, and consensus among a
large number of processes is difficult to implement.

In particular, the global transitions of systems in which components are
organized in an array or in a ring (think of the well-known dining philoso-
phers example) have degree at most 3, because in these systems a component
can only synchronize with its two neighbors4. In the case of systems whose
components are arranged in a hypercube, the degree grows logarithmically in
the number of components.

A Lower Bound

Even if the exponential dependency in k is not so crucial, we can still ask
whether some other algorithm avoids it. The following proposition shows that
this is unlikely, because it would imply P=NP.

4 In fact, the degree is usually 2, because it is rarely the case that a component
synchronizes with its two neighbors simultaneously.

3.4 Constructing the Unfolding of a Product 31

Proposition 3.21. Let N be a branching process of a product A, and let t be
a global transition of A. Deciding whether N can be extended with an event
labeled by t is NP-complete.

Proof. For membership in NP we guess a global transition t and a set of
places of the unfolding M = {p1, . . . , pk} labeled by •t = {s1, . . . , sk}, and
check in polynomial time, using the procedure sketched above, that its input
places are pairwise concurrent. After this we still need to check in polynomial
time that no event exists in the unfolding labeled with t and having preset
M to ensure the event is a proper extension of the unfolding.

We prove NP-hardness by a reduction from CNF-3SAT formula over vari-
ables x1, x2, . . . , xn. A literal is either a variable xi or its negation xi. Let
F = C1 ∧ C2 ∧ . . . ∧ Cm be a CNF-3SAT formula, where each conjunct Cj
is a disjunction of at most three literals. We construct in polynomial time a
product F of transition systems defined as follows:

q1
1r1

1x1

sat1

x1 x1 x1

sat1x1

s0
1 r0

1x1
q0
1

r2
1x1

q2
1

s1
1

sat1x1
sat1x2

(c)(b)

(a)

Fig. 3.8. Transition systems X1 (a), C1x1 (b), and E1 (c) for F = (x1 ∨ x2) ∧ x1

• For each variable xi, let Xi be the transition system having two states
s0i , s

1
i , with s0i as initial state, and two transitions xi, xi both leading from

s0i to s1i .
Intuitively these transitions select the truth value of xi to be either true
or false.

• For each clause Cj and each literal l of Cj , let Cjl be the transition system
having three states r0jl, r

1
jl, r

2
jl, with r0jl as initial state, a transition l leading

from r0jl to r1j1, and a transition satjl leading from r1jl to r2jl
Intuitively, Cjl moves from r0jl to r1jl when the literal l is set to true. It
is then willing to execute transition satjl, signalling that the clause Cj is
satisfied by the assignment because it contains literal l, and l has been set
to true.

32 3 Unfolding Products

sat

q2
2q2

1

q1
1r2

1x1

sat1x1

r1
1x2

s1
2

x1

r0
1x1

s0
1 r0

2x1
s0
2

r1
2x1

s1
1r1

1x1

r0
1x2

x2x1 x2

sat2x1
sat1x2

q0
1 q0

2

q1
2r2

1x2
r2
2x1

Fig. 3.9. Petri net representation of the product F for F = (x1 ∨ x2) ∧ x1

• For each clause Cj , let Ej be the transition system having three states
q0j , q

1
j , q

2
j , with q0j as initial state, a transition satjl leading from q0j to q1j

for every literal l of Cj , and a transition satj leading from q1j to q2j .
Intuitively the transitions from q0j model all the possible ways of satisfying
the clause Cj . The transition satj leading from q1j to q2j signals that the
clause Cj has been satisfied.

The set of global transitions contains:

• Two transitions xi, xi for every variable xi. The components of the tuple xi
corresponding to the transition system Xi and to all the transition systems
Cjl such that l = xi are the local transitions xi; all other components are
equal to ε. The global transition xi is defined similarly.

3.5 Search Procedures 33

• A transition satjl for every clause Cj and every literal l of Cj . The com-
ponents of the tuple satjl corresponding to the transition systems Cjl and
Ej are the local transitions satjl; all other components are equal to ε.

• A transition sat. For every j ∈ {1, . . . ,m} the component of the tuple sat
corresponding to Ej is the local transition satj ; all other components are
equal to ε.

Intuitively, the execution of the transition xi and xi corresponds to setting
xi to true or false, respectively. After xi or xi has occurred for each variable,
an assignment has been chosen, and the transition system Cjl is in state r1jl if
and only if this assignment makes the clause Cj true. Those transition systems
that have reached r1jl are willing to execute satjl. It follows that the transition
system Ej can move to state q1j if and only if the assignment makes the clause
Cj true. So sat can occur if and only if the assignment makes all clauses true,
i.e., if F is satisfiable.

Consider now the prefix of the unfolding of F obtained by removing from
the full unfolding all events labeled by sat. This prefix can be easily con-
structed in polynomial time in the size of F because all global transitions
(except for sat) have a bounded synchronization degree. The prefix can be
extended with an event labeled by sat if and only if the formula F is satisfi-
able. ¤

Example 3.22. Consider the formula F = (x1∨x2)∧x1. We have C1 = x1∨x2

and C2 = x1. Figure 3.8 shows some of the components of the product F,
namely the transition systems X1, C1x1 , and E1.

Figure 3.9 shows the Petri net representation of the product F. For clarity,
some places which are not connected to any net transition have been omitted.

3.5 Search Procedures

In this book we consider verification questions of the form: “Does the system
have a (possibly infinite) history satisfying a given property?” Our computa-
tional approach consists of computing larger and larger prefixes of the unfold-
ing, until we have enough information to answer the question. The prefixes
are generated by search procedures.

A search procedure consists of a search scheme and a search strategy. The
search strategy determines, given the current prefix of the unfolding, which
event should be added to it next. Notice that a strategy may be nondetermin-
istic, i.e., it may decide that any element out of the set of possible extensions
should be added next. Depth-first and breadth-first are typical strategies for
transition systems. The search scheme depends on the property we are inter-
ested in. It determines which leaves of the prefix need not be explored further,
and whether the search is successful. More precisely, a search scheme consists
of two parts:

34 3 Unfolding Products

procedure unfold(product A) {
N := unique branching process of A without events;
T := ∅; S := ∅; X := Ext(N , T);
while (X 6= ∅) {

choose an event e ∈ X according to the search strategy;
extend N with e;
if e is a terminal according to the search scheme then {
T := T ∪ {e};
if e is successful according to the search scheme then {
S := S ∪ {e}; /* A successful terminal found */

};
};
X := Ext(N , T);

};
return 〈N , T, S〉;

};

Fig. 3.10. Pseudo-code of the unfolding procedure

• A termination condition determining which leaves of the current prefix are
terminals, i.e., nodes whose causal successors need not to be explored.5

• A success condition determining which terminals are successful, i.e., ter-
minals proving that the property holds.

Once a search strategy and a search scheme have been fixed, the search pro-
cedure generates a prefix of the unfolding according to the pseudo-code of
Fig. 3.10. T is a program variable containing the set of terminal events of
the current prefix N , while S is the variable containing the set of successful
terminals of N . Ext(N , T) denotes the set of events that can be added to N
according to Def. 3.5 on p. 18 and have no causal predecessor in the set of
terminal events T . The search procedure terminates if and when Ext(N , T) is
empty, i.e., when each leaf of the current prefix is either a terminal or has no
successors. (In practice, the procedure can also terminate whenever it finds
a successful terminal, but for the analysis it is more convenient to consider
this definition.) Given a product A and a terminating search procedure P ,
the final prefix is the prefix generated by P on input A after termination.
The final prefix is successful if it contains at least one successful terminal.
Given a property φ, a terminating procedure P is complete if the final prefix
it generates is successful for every product A satisfying φ, and sound if every
product A such that the final prefix is successful satisfies φ.

Remark 3.23. There is an important difference between the prefixes generated
by search procedures in the transition system case and in the product case. In
the transition system case, if an event is not a terminal, then all its successor
events belong to the final prefix. This is no longer true in the case of products.

5 Terminals are often called cut-offs in the literature.

3.6 Goals and Milestones for Next Chapters 35

s6 t6 u6 v6

i

s4 t4 u4 v4

s5 t5 u5 v5

g h

Fig. 3.11. A particularity of branching processes in the product case

The reason is that, since in the case of products events may have several input
places, a successor of an event e may have a predecessor e′ 6= e that is a
terminal. In this case, the successor will not be explored because of e′, even
though e may not be a terminal itself. This situation is illustrated in Fig. 3.11.
The figure shows a fragment of a prefix that will appear in the next chapter.
Assume that the event labeled by h is a terminal, but the event labeled by
g is not. Event i is a successor of event g, but does not belong to the final
prefix, because it is also a successor of event h.

3.6 Goals and Milestones for Next Chapters

The ultimate goal of this book is to present a search procedure for model
checking a product A against arbitrary properties expressed in Linear Tem-
poral Logic (LTL), a popular specification language.6 The search procedure
is presented in Chap. 8. It is based on search procedures for three central
verification problems which are also interesting on their own:

6 For the reader familiar with LTL we must be more precise: our model checker will
only work for the fragment of LTL that does not contain the next time operator
X.

36 3 Unfolding Products

• The executability problem: Given a set G ⊆ T of global transitions,
can some transition of G ever be executed, i.e., is there a global history
whose last event is labeled by an element of G?

• The repeated executability problem: Given a set R ⊆ T of global
transitions, can some transition of R be executed infinitely often, i.e., is
there an infinite global history containing infinitely many events labeled
by transitions of R?

• The livelock problem: Given a partitioning of the global transitions into
visible and invisible, and given a set L ⊆ T of visible transitions, is there
an infinite global history in which a transition of L occurs, followed by an
infinite sequence of invisible transitions?

In the next chapters we present search procedures for these problems.
The chapters follow the same systematic approach. First, we design a search
procedure for transition systems, i.e., for products with n = 1 components,
and then we generalize it to the general case n ≥ 1. This allows us to expose the
parts of the search procedure that are necessary for the cases in which n > 1.
Since in the interleaving representation products are reduced to transition
systems, our search procedures for the case n = 1 can be seen as solutions
to our three problems in which the interleaving representation instead of the
Petri net representation is used.

Before closing the chapter, we establish the computational complexity of
the three problems above. We assume that the reader is familiar with basic
notions of complexity theory, and only sketch the proof.

Theorem 3.24. The executability, repeated executability, and livelock prob-
lems are PSPACE-complete for products.

Proof. (Sketch.) We only consider the executability problem, since the proof
for the other two problems is similar. To prove membership in PSPACE we
observe first that, since NPSPACE=PSPACE by Savitch’s theorem (see, e.g.,
[98]), it suffices to provide a nondeterministic algorithm for the problem using
only polynomial space. The algorithm uses a variable v to store one global
state; initially, v = is. While v 6= s, the algorithm repeatedly selects a global
transition t enabled at v, computes the global state s′ such that 〈v, t, s′〉, and
sets v := s′. If at some point v = s, the algorithm stops and outputs the
result “reachable”. Obviously, the algorithm only needs linear space.

PSPACE-hardness is proved by reduction from the following problem:
given a polynomially space-bounded Turing machine M and an input x, does
M accept x? We assume w.l.o.g. that M has one single accepting state qf .

Let p(n) be the polynomial limiting the number of tape cells that M uses
on an input of length n. We construct a product A =

〈AQ,A1, . . . ,Ap(|x|),T
〉
.

The component AQ contains one state sq for each control state q of M . The
intended meaning of sq is that the machine M is currently in state q. For
every i ∈ {1, . . . , p(|x|)} and for every tape symbol a of M , the component
Ai contains two states s〈a,0〉 and s〈a,1〉. The intended meaning of s〈a,0〉 is:

3.6 Goals and Milestones for Next Chapters 37

the ith tape cell currently contains the symbol a, and the head of M is not
reading the cell. The intended meaning of s〈a,1〉 is: the ith tape cell currently
contains the symbol a, and the head of M is reading the cell. The initial
states of the component are chosen according to the initial configuration of
M : the initial state of AQ is sq0 , where q0 is the initial state of M ; the initial
state of component A1 is s〈x1,1〉, where x1 is the first letter of the input x;
and so on. The transitions of the components and the synchronization vector
T are chosen so that the execution of a global transition of A corresponds
to a move of M . Additionally, the component Aq has a transition tf with
sqf as both source and target state, and T contains a synchronization vector
tf = 〈tf , ε, . . . , ε〉.

Clearly, M halts for input x if and only if the instance of the executability
problem for A given by G = {tf} has a positive answer. ¤

Bibliographical Notes

Definition 3.5 (branching processes and unfolding of a product of transition
systems) can be traced back to [103], where Petri introduced nonsequential
processes as a truly concurrent semantics of Petri nets.7 A nonsequential pro-
cess, also called a causal net or an occurrence net in the literature, describes a
partial run of a Petri net. It contains information about the events that have
occurred, their causal relationship, and which events occurred independently
of each other. The theory of nonsequential processes has been extensively stud-
ied already early on by Goltz, Reisig, Best, Devillers, and Fernández, among
others [49, 11, 13].

A Petri net may have many different nonsequential processes. Loosely
speaking, each of them corresponds to a different way of solving a conflict,
i.e., a situation in which two different transitions are enabled at a marking,
but letting one occur disables the other. The unfolding of a Petri net was
introduced by Nielsen, Plotkin, and Winskel in [93] (see also Sects. 3.1 and 3.3
of [123]) as a way of describing all possible full runs (the “full branching run”
of the net) by means of a single object. In [94, 95] Nielsen, Rozenberg, and
Thiagarajan gave axiomatic and categorical definitions of the unfoldings of
Elementary Net Systems, a class of Petri nets very close to ours, and studied
their properties. Unfoldings constituted the initial inspiration for Winskel’s
theory of event structures [123, 124].

In [32], Engelfriet observed that nonsequential processes described partial
runs and the unfolding described the unique full branching run of a Petri

7 A semantics is truly concurrent if it distinguishes between a system in which two
fully independent subsystems execute two actions, say a and b, and a system
which nondeterministically chooses between executing the sequence a b or the
sequence b a.

38 3 Unfolding Products

net, but no objects had been defined to describe “partial branching runs”.
He introduced branching processes for this purpose. Engelfriet’s definition is
axiomatic, i.e., it defines branching processes as the set of Petri nets satisfying
a number of conditions. Definition 3.5 is more operational and combines the
definitions given by Esparza and Römer in [39] and by Khomenko, Koutny,
and Vogler in [73].

The theory of nonsequential processes and branching processes has been
extended to more general classes of Petri nets, like high-level Petri nets [72],
Petri nets with inhibitor arcs, and Petri nets with read arcs (see for in-
stance [67, 6, 121, 77]).

The idea that unfoldings can be interesting not only semantically but also
from an algorithmic point of view is due to McMillan. In [84] he presented
an algorithm to check deadlock-freedom of Petri nets based on the explicit
construction of a prefix of the unfolding, and conducted experiments showing
that the approach alleviated the state explosion problem in the verification of
asynchronous hardware systems. McMillan’s work will be discussed in more
detail in the Bibliographical Notes of the next chapter. An earlier paper by
Best and Esparza [12] already used the theory of nonsequential processes to
obtain a polynomial model checking algorithm for Petri nets without conflicts,
but this class of nets had very limited expressive power. McMillan was the
first to convincingly apply the unfolding technique to verification problems.

Exploiting the concurrency of the system in order to alleviate the state
explosion problem is also the idea behind partial-order reduction techniques.
However, the approach is different. Given a product of transition systems,
the unfolding technique explores the unfolding of the Petri net representa-
tion instead of the interleaving representation. Partial-order reduction tech-
niques explore the interleaving representation, but exploit information about
the concurrency of the system in order to reduce the set of global states that
need to be explored. For this, given a global state, the techniques compute a
subset of the set of transitions leaving it, the reduced set, and only explore
the transitions of this set. The literature contains different proposals for the
computation of reduced sets: Valmari’s stubborn sets [115, 116], Peled’s ample
sets [99], and Wolper and Godefroid’s sleep sets [48, 125, 47] are based on sim-
ilar principles. Valmari’s survey paper on the state explosion problem [118]
presents all of them. Finally, local first search is still another partial-order
reduction technique, due to Niebert, Huhn, Zennou, and Lugiez [91], based
on a different principle.

The problem of computing the events that can be added to a given
branching process was studied by Esparza and Römer in [39] (see also [107]).
Khomenko and Koutny improved the algorithms in [70]. McMillan had already
in his thesis [85] shown NP-hardness of deadlock detection using the unfold-
ing as input. The NP-hardness of possible extensions calculation has been
later discussed in detail by Heljanko, Esparza, and Schröter [56, 42]. For the
PSPACE-hardness reduction details, see the survey of Esparza [34], where a
polynomially space-bounded Turing machine is mapped to a 1-bounded Petri

3.6 Goals and Milestones for Next Chapters 39

net, a model that can be easily simulated by products of polynomial size. See
also the work of Heljanko [59] extending some of the results to finite prefixes.

The terminology we use for search procedures (terminals, successful ter-
minal, soundness, and completeness) is inspired by the terminology of tableau
systems for logics. In particular, we have been influenced by the work of Stir-
ling, Bradfield, and Walker on tableau methods for the µ-calculus [113, 17].

4

Search Procedures for the Executability
Problem

The executability problem consists of deciding if a product can execute any
transition out of a given set of global transitions. It is a fundamental problem,
and many others can be easily reduced to it.

4.1 Search Strategies for Transition Systems

We fix a transition system A = 〈S, T, α, β, is〉 and a set G ⊆ T of goal tran-
sitions. We wish to solve the problem of whether some history of A executes
some transition of G by means of a finite, sound, and complete search proce-
dure. It is not difficult to see that such procedures exist; for instance depth-first
or breadth-first search will do the job. However, we wish to prove a stronger
result, namely the existence of a search scheme that leads to a terminating,
sound, and complete search procedure for every search strategy. In this section
we formalize the notion of strategy, and in the next one we proceed to define
the search scheme.

To define search strategies, it is convenient to define the notion of order :

Definition 4.1. An order is a relation that is both irreflexive and transitive.

Orders are often called strict partial orders in the literature but we use the
term order for brevity.

Recall that, loosely speaking, a search strategy determines, given the cur-
rent prefix, which of its possible extensions should be added to it next. So, in
full generality, a search strategy can be defined as a priority relation or as an
order between branching processes. Assume the current branching process is
N with possible extensions e1, . . . ek, and for every i ∈ {1, . . . , k} let Ni be
the result of adding ei to N . Then the event ej such that Nj has the highest
priority among N1, . . . ,Nk is the one selected to extend N . In terms of orders,
we select an event ej such that Nj is minimal according to the order.

Given two events e1, e2, there can be many different branching processes
having e1 and e2 as possible extensions. For some of them the priority relation

42 4 Search Procedures for the Executability Problem

may prefer e1 to e2, while for others it may be the other way round. Such
strategies can be called “context-dependent”, since the choice between e1 and
e2 does not only depend on e1 and e2 themselves, but also on their context.
For simplicity, we restrict our attention to “context-free” strategies in which
the choice between e1 and e2 depends only on the events themselves.

Notice that, from a computational point of view, it does not make sense
to define strategies as priority relations (i.e., orders) on events. The reason
is that the events are what the search procedure has to compute, and so the
procedure does not know them in advance. To solve this problem we introduce
the notion of an event’s history.

Definition 4.2. Let e be an event of the unfolding of A, and let e1e2 . . . em be
the unique occurrence sequence of the unfolding and ending with e, i.e., em =
e. The history of e, denoted by H(e), is the computation t1t2 . . . tm, where ti
is the label of ei. We call the events e1, . . . , em−1 the causal predecessors of
em. We denote by e′ < e that e′ is a causal predecessor of e. The state reached
by H(e), denoted by St(e), is defined as β(e), i.e., as the state reached after
executing e.

Example 4.3. In the unfolding of Fig. 3.4 on p. 21 the history of event 7 is
H(7) = t1 t3 t5 t1, and the state reached by H(7) is St(7) = s2. The causal
predecessors of event 7 are the events 1, 3, and 5. We have, for instance,
H(7) = H(3) t5 t1.

The following proposition is obvious:

Proposition 4.4. An event is characterized by its history, i.e., e = e′ holds
if and only if H(e) = H(e′).

This proposition allows us to define strategies as orders on the set of all
words, i.e., as orders ≺ ⊆ T ∗ × T ∗. Since histories are words and events are
characterized by their histories, every order on words induces an order on
events. Moreover, since the set T is part of the input to the search procedure,
it makes perfect computational sense to define a strategy like “choose among
the possible extensions to the current prefix anyone having a shortest history”.

Abusing notation, the order on events induced by an order ≺ on words is
also denoted by ≺. The order need not be total (i.e., there may be distinct
events e, e′ such that neither e ≺ e′ nor e′ ≺ e holds). However, we require
that ≺ refines the prefix order on T ∗, i.e., for every w,w′ ∈ T ∗, if w is a proper
prefix of w′, then w ≺ w′.1 The reason is that if H(e) is a proper prefix of
H(e′) then e′ can only be added to the unfolding after e, and so e′ should
have lower priority than e.

1 Intuitively, we refine a given order by ordering pairs of elements that are currently
unordered. For instance, if x and y are unordered, we can refine by declaring that
x is smaller than y (or vice versa).

4.2 Search Scheme for Transition Systems 43

Definition 4.5. A search strategy on T ∗ is an order on T ∗ that refines the
prefix order.

Notice that e is a causal predecessor of e′ if and only if H(e) is a proper
prefix of H(e′). Therefore, if e < e′ then H(e) ≺ H(e′) and so e ≺ e′. We say
that a search strategy refines the causal order on events.

4.2 Search Scheme for Transition Systems

We are ready to present a search scheme for the executability problem that is
sound and complete for every search strategy. A search scheme is determined
by its terminals and successful terminals, which we now define. The definition
of terminals may look circular at first sight (terminals are defined in terms of
the auxiliary notion of feasible events, and vice versa) but, as we shall see, it
is not.

Definition 4.6. Let ≺ be a search strategy. An event e is feasible if no event
e′ < e is a terminal. A feasible event e is a terminal if either

(a) it is labeled with a transition of G, or
(b) there is a feasible event e′ ≺ e, called the companion of e, such that

St(e′) = St(e).

A terminal is successful if it is of type (a). The ≺-final prefix is the prefix of
the unfolding of A containing the feasible events.

The intuition behind the definition of a terminal is very simple: If we
add an event labeled by a goal transition g ∈ G, then the history of the
event ends with the execution of g and so, since g is executable, the search
can terminate successfully; this explains type (a) terminals. The idea behind
type (b) terminals is that if two events lead to places labeled with the same
state of A, then the two subtrees of the unfolding rooted at these places are
isomorphic, and so it suffices to explore only one of them. We explore the
subtree of the smallest event w.r.t. the strategy ≺.

Example 4.7. Fig. 4.1 shows a transition system. Let G = {t5}, and consider
the strategy ≺1 defined as follows: e ≺1 e

′ if H(e) is lexicographically smaller
than H(e′). The ≺1-final prefix is shown in Fig. 4.2(a). Events 3 and 5 are
terminals of type (b) with events 1 and 2 as companions, respectively. Event
4 is a successful terminal. Observe that ≺1 is a total order, and therefore the
search procedure is deterministic. The numbering of the events corresponds
to the order in which they are added by the procedure.

Consider now the strategy ≺2 defined by: e ≺2 e
′ if |H(e)| < |H(e′)|. The

≺2-final prefix s shown in Fig. 4.2(b). Events 3 and 4 are terminals of type
(b) with events 1 and 2 as companions, respectively. Event 5 is a successful
terminal. Since ≺2 is not total, the search procedure is nondeterministic. The

44 4 Search Procedures for the Executability Problem

t4 t5

s4

s3s2

t3
t2t1

s1

Fig. 4.1. A transition system

numbering of the events corresponds to a possible order in which the procedure
may add them. The procedure might also have added the events in, say, order
2 1 5 3 4.

s1

5 t2

s3

1t1

s2

t3 2

s3

4 t5

s4s2

3t4

(a)

s1

s3

2

t4 3 t55

s4

t2t1 1

s2

t3

s2s3

4

(b)

Fig. 4.2. Final prefixes for G = {t5} and two different strategies: ≺1 (a) and ≺2 (b)

4.2 Search Scheme for Transition Systems 45

In order to prove that the set of terminal events is well-defined we need a
lemma.

Lemma 4.8. Let ≺ be an arbitrary search strategy, and let (F, T) be a pair of
sets of events satisfying the conditions of Def. 4.6 for the sets of feasible and
terminal events, respectively. Then for every feasible event e ∈ F the history
H(e) has length at most |S|+ 1.

Proof. Assume that e is a feasible event such that the length of H(e) is
larger than |S| + 1. Then, by the pigeonhole principle, there are two events
e1 < e2 < e such that St(e1) = St(e2). Since e ∈ F , no event e′ < e belongs
to T , and so the same holds for e1 and e2. It follows e1, e2 ∈ F . Since e1 < e2
and the search strategy ≺ refines the causal order, we have e1 ≺ e2, and, by
condition (b), e2 ∈ T . Since e2 < e, the event e cannot be feasible, contra-
dicting the assumption. ¤

A direct corollary of the proof above is that for all non-terminal events e the
length of H(e) is at most |S|.
Proposition 4.9. The search scheme of Def. 4.6 is well-defined for every
strategy ≺, i.e., there is a unique set of feasible events and a unique set of
terminal events satisfying the conditions of the definition. Moreover, the ≺-
final prefix is finite.

Proof. Let (F1, T1) and (F2, T2) be two pairs of sets of events satisfying
the conditions of Def. 4.6 on the feasible and terminal events. Since there
are only finitely many histories of length at most |S| + 1, it follows from
Lemma 4.8 that the sets F1 and F2 are finite. We prove F1 = F2, which
implies T1 = T2. Assume F1 6= F2, and let e be a ≺-minimal event satisfying
e ∈ (F1 \ F2) ∪ (F2 \ F1) (this event exists because F1 and F2 are finite).
Assume w.l.o.g. that e ∈ F1 \ F2. By the definition of a terminal there is an
event e′ < e such that e′ ∈ T2 \T1. The event e′ cannot be of type (a) because
the definition of a terminal of type (a) only depends on the transition that
labels e′, and so if e′ ∈ T2 then it must also be the case that e′ ∈ T1. So
e′ is of type (b). By the definition of a terminal event of type (b), e′ has a
companion e′′ ≺ e′ in F2, and moreover e′′ /∈ F1 (if e′′ ∈ F1 then we would
also have e′′ ∈ T1). So e′′ ∈ F2 \ F1 and e′′ ≺ e′ < e, giving e′′ ≺ e and thus
contradicting the ≺-minimality of e.

Since the ≺-final prefix contains the feasible events, and there are only
finitely many of them, the prefix is finite. ¤

Notice that the ≺-final prefix is exactly the prefix generated by the al-
gorithm of Fig. 3.10 on p. 34 with ≺ as search strategy (in both cases the
unfolding is “cut-off” at the terminal events). Since this prefix is finite, the
algorithm terminates. Notice also that even though the algorithm itself is

46 4 Search Procedures for the Executability Problem

nondeterministic, it can be shown that the ≺-final prefix (where all isomor-
phic prefixes are considered equivalent) will always be generated by it for all
different nondeterministic choices the algorithm makes.

The soundness of the scheme for every strategy is also easy to prove:

Proposition 4.10. The search scheme of Def. 4.6 is sound for every strategy.

Proof. If the final prefix is successful then it contains a terminal e labeled by a
goal transition g, and so H(e) is a history containing g. Thus, g is executable.
¤

We now show that the search scheme is also complete for every search
strategy. We present the proof in detail, because all the completeness proofs
in the rest of the book reuse the same argumentation. It proceeds by con-
tradiction: it is assumed that the product satisfies the property, but the final
prefix is not successful. First, a set of witnesses is defined; these are the events
of the unfolding “witnessing” that the property holds, i.e., if the search al-
gorithm would have explored any of them then the search would have been
successful. Second, an order on witnesses is defined; it is shown that the or-
der has at least one minimal element em, and, using the assumption that the
search was not successful, a new event e′m is constructed. Third, it is shown
that e′m must be smaller than em w.r.t. the order on witnesses, contradicting
the minimality of em.

Theorem 4.11. The search scheme of Def. 4.6 is complete for every strategy.

Proof. Let ≺ be an arbitrary search strategy. Assume that some goal tran-
sition g ∈ G is executable, but no terminal of the ≺-final prefix is successful.
We derive a contradiction in three steps.

e′m em

ese′

g

cs cs

g

≺

Fig. 4.3. Illustration of the proof of Thm. 4.11

Witnesses. Let an event of the unfolding of A be a witness if it is labeled
with g. Since g is executable, the unfolding of A contains witnesses. However,
no witness is feasible, because otherwise it would be a successful terminal. So
for every witness e there is an unsuccessful terminal es < e. We call es the
spoiler of e. (see Fig. 4.3).

4.2 Search Scheme for Transition Systems 47

Minimal witnesses. Let e be a witness and let es be its spoiler. Since es < e,
some computation c satisfiesH(es)c = H(e). Let l(e) denote the (finite) length
of c. We define an order ¿ on witnesses as follows: e¿ e′ if either l(e) < l(e′)
or l(e) = l(e′) and es ≺ e′s.

We claim that ¿ is well-founded. Assume this is not the case. Then there
is an infinite decreasing chain of witnesses e1w À e2w À e3w . . ., and because
l(eiw) can only decrease a finite number of times, we must from some index
j onwards have an infinite decreasing chain of spoilers ejs Â ej+1

s Â ej+2
s

Thus, since spoilers are terminals, the set of terminals must be infinite. So the
≺-final prefix is infinite, contradicting Prop. 4.9. This proves the claim.

Since¿ is well-founded, there is at least one¿-minimal witness em. Let es
be the spoiler of em and let cs be the unique computation satisfying H(em) =
H(es)cs. Notice that, since em is labeled by g, the computation cs ends with
g. Since es is an unsuccessful terminal, it has a companion e′ ≺ es such
that St(e′) = St(es). Since St(e′) = St(es), both H(es)cs and H(e′)cs are
histories of A. Let e′m be the event having H(e′)cs as history, i.e., H(e′m) =
H(e′)cs. Since cs ends with g, the event e′m is also labeled by g, like em. So
e′m is a witness, and has a spoiler e′s. Let c′s be the computation satisfying
H(e′m) = H(e′s)c

′
s.

Contradiction. Since H(e′s)c
′
s = H(e′m) = H(e′)cs, we have e′ < e′m and

e′s < e′m. So there are three possible cases:

• e′s < e′. Then, since e′s is a spoiler and spoilers are terminals, e′ is not
feasible, contradicting our assumption that e′ is the companion of es, which
according to Def. 4.6 requires e′ to be feasible.

• e′s = e′. Then, since H(e′s)c′s = H(e′m) = H(e′)cs, we have cs = c′s.
Moreover, since e′s = e′ and e′ ≺ es we have e′s ≺ es. This implies e′m ¿ em,
contradicting the minimality of em.

• e′ < e′s. Then, since H(e′s)c
′
s = H(e′m) = H(e′)cs, the computation c′s is

shorter than cs, and so e′m ¿ em, contradicting the minimality of em.

¤

The next example shows that the size of the final prefix depends on the
choice of strategy. In the worst case, the final prefix can be exponentially
larger than the transition system.

Example 4.12. Consider the transition system of Fig. 4.4 with G = ∅. If we
choose ≺ as the prefix order on histories, then the final prefix is the complete
unfolding, shown in the same figure on the right. The same happens if we define
e ≺ e′ ⇔ |H(e)| < |H(e′)|, i.e., if e has priority on e′ when H(e) is shorter
than H(e′). In this case, since all histories reaching a state have the same
length, no event is a terminal. If the transition system of Fig. 4.4 is extended
with more “diamonds”, the size of the final prefix grows exponentially in the
number of “diamonds”.

48 4 Search Procedures for the Executability Problem

Now define: e ≺ e′ if and only if H(e) is lexicographically smaller than
H(e′), where we assume that the order of the transitions as the basis of the
lexicographic order is just the alphabetical order of the transition labels. In
this case, the event of the unfolding labeled by d and the leftmost events
labeled by h and l are terminals. The final prefix has now linear size in the
number of “diamonds”.

One way to make the final prefix smaller is to require the strategy ≺ to
be a total order.

Theorem 4.13. If ≺ is a total order on T ∗, then the ≺-final prefix of Def. 4.6
has at most |S| feasible non-terminal events.

Proof. If ≺ is total, then, by condition (b) in the definition of a terminal, we
have St(e) 6= St(e′) for any two feasible non-terminal events e and e′. So the
final prefix contains at most as many non-terminal events as there are states
in A. ¤

4.3 Search Strategies for Products

We fix a product A = 〈A1, . . . ,An,T〉 of transition systems, where Ai =
〈Si, Ti, αi, βi, isi〉, and a set of goal global transitions G ⊆ T. We wish to solve
the problem of whether some global history of A executes some transition of
G. Our goal is to generalize Def. 4.6 to a search scheme for an arbitrary
product of transition systems.

In this section we generalize the notion of a search strategy to products.
Recall that, intuitively, a search strategy determines the order in which new
events are added when constructing the unfolding. In the transition system
case we modeled strategies as order relations on T ∗. This was possible because
an event was uniquely determined by its history, and so an order on T ∗ induced
an order on events. However, in the case of products, an event does not have
a unique history, as illustrated by the example below.

Example 4.14. Consider event 10 in the unfolding of Fig. 3.3 on p. 17. Recall
that this is the unfolding of the product of Fig. 2.2 on p. 7. Many occurrence
sequences of events contain this event, and all of them correspond to histories
of the product. Here are some examples:

Event sequence History
1 3 4 7 6 12 10 〈t1, ε〉 〈ε, u1〉 〈t3, u2〉 〈ε, u3〉 〈t5, ε〉 〈ε, u1〉 〈t1, ε〉
1 3 4 6 10 〈t1, ε〉 〈ε, u1〉 〈t3, u2〉 〈t5, ε〉 〈t1, ε〉
3 1 4 6 10 〈ε, u1〉 〈t1, ε〉 〈t3, u2〉 〈t5, ε〉 〈t1, ε〉
1 3 4 6 10 7 〈t1, ε〉 〈ε, u1〉 〈t3, u2〉 〈t5, ε〉 〈t1, ε〉 〈ε, u3〉

4.3 Search Strategies for Products 49

s1

s4

s3s2

s10

s9s8

s7

s6s5

b

c d

a

e f

g h

i j

k l

(a)

(b)

s1

s10 s10 s10 s10 s10 s10 s10 s10

s8 s9 s8 s9 s8 s9 s8 s9

k

i

l

j

k

i

l

j

k

i

l

j

k

i

l

j

s7 s7 s7

g h g h

s5 s6 s5 s6

e f e f

s7

s4 s4

c d

s2 s3

a b

Fig. 4.4. A transition system (a) and its unfolding (b)

50 4 Search Procedures for the Executability Problem

Which of them is “the” history of event 10? In the case of transition systems,
the history of an event contains the events that must necessarily occur for the
event to occur. If we adopt this point for products as well, we conclude that
the first and fourth histories are not histories of 10: they contain the events 7
and 12, which are not necessary for 10 to occur.

However, there is no reason why we should choose the second or third
history as “the” history of event 10. We conclude that an event of a product
does not have a unique history, but a set of histories.

This example suggests that a strategy should no longer be an order on
transition words, but on sets of words, i.e., an order on the powerset of T∗.
However, for many sets of words we can easily tell that they are not the sets of
histories of an event. For instance, since the histories of an event always have
the same length, all sets containing words of different length can be excluded.
So maybe it is better to define strategies over the sets of words whose elements
have the same length? Which is the right universe for strategies? While a good
part of the theory that follows could be developed using the powerset of T∗

as universe, the theory takes a much nicer shape if we restrict our attention to
sets of histories being Mazurkiewicz traces, a well-known notion of concurrency
theory introduced by Antoni Mazurkiewicz in the 1970s. In the next section
we introduce some basic definitions and results about Mazurkiewicz traces.

4.3.1 Mazurkiewicz Traces

The definition of Mazurkiewicz traces is based on the notion of independence
of transitions. Recall that a component Ai of A participates in the execution
of a global transition t = 〈t1, . . . , tn〉 when ti 6= ε. We define:

Definition 4.15. Two global transitions are independent if no component Ai
of A participates in both of them.

Example 4.16. The transitions 〈t1, ε〉 and 〈ε, u1〉 of the product of Fig. 2.2 on
p. 7 are independent, but the transitions 〈t1, ε〉 and 〈t4, u2〉 are not, because
A1 participates in both of them.

It follows easily from this definition that a pair t and u of independent tran-
sitions satisfies the following two properties for every w,w′ ∈ T∗:

(1) if wtuw′ is a history of A, then so is wutw′ ; and
(2) if wt and wu are histories of A, then so are wtu and wut .

Example 4.17. The sequence 〈t1, ε〉 〈ε, u1〉 〈t3, u2〉 is a history of the product
of Fig. 2.2 on p. 7, and so is 〈ε, u1〉 〈t1, ε〉 〈t3, u2〉, as demanded by (1). (In this
case w is the empty sequence and w′ = 〈t3, u2〉.) The sequences of length 1,
〈t1, ε〉 and 〈ε, u1〉, are histories of the same product, and so are 〈t1, ε〉 〈ε, u1〉
and 〈ε, u1〉 〈t1, ε〉, as demanded by (2). (In this case w is the empty sequence.)

4.3 Search Strategies for Products 51

The independence relation induces an equivalence relation on the set T∗

of transition words. Loosely speaking, two words are equivalent if one can be
obtained from the other by swapping consecutive independent transitions.

Definition 4.18. Two transition words w,w′ ∈ T∗ are 1-equivalent, denoted
by w ≡1 w′, if w = w′ or if there are two independent transitions t and u
and two words w1,w2 ∈ T∗ such that w = w1 t uw2 and w′ = w1 u tw2.
Two words w,w′ ∈ T∗ are equivalent if w ≡ w′, where ≡ denotes the tran-
sitive closure of ≡1.

Since ≡1 is reflexive and symmetric, ≡ is an equivalence relation. It follows
easily from this definition and property (1) above that if h is a history of A,
then every word w ≡ h is also a history of A.

Definition 4.19. A Mazurkiewicz trace (or just a trace) of a product A is
an equivalence class of the relation ≡. The trace of a word w is denoted by
[w], and the set of all traces of A by [T∗].

A trace of A is a history trace if all its elements are histories.

Example 4.20. The sequence w = 〈t1, ε〉 〈ε, u1〉 〈t3, u2〉 〈t5, ε〉 〈ε, u3〉 is a history
of the product of Fig. 2.2 on p. 7. Its corresponding history trace is:

[w] = { 〈t1, ε〉 〈ε, u1〉 〈t3, u2〉 〈t5, ε〉 〈ε, u3〉 ,
〈t1, ε〉 〈ε, u1〉 〈t3, u2〉 〈ε, u3〉 〈t5, ε〉 ,
〈ε, u1〉 〈t1, ε〉 〈t3, u2〉 〈t5, ε〉 〈ε, u3〉 ,
〈ε, u1〉 〈t1, ε〉 〈t3, u2〉 〈ε, u3〉 〈t5, ε〉 }.

The sequence w′ = 〈t1, ε〉 〈ε, u3〉 〈t1, ε〉 is not a history. Its corresponding
trace is:

[w′] = { 〈t1, ε〉 〈ε, u3〉 〈t1, ε〉 ,
〈ε, u3〉 〈t1, ε〉 〈t1, ε〉 ,
〈t1, ε〉 〈t1, ε〉 〈ε, u3〉 }.

We conclude this section with a fundamental result. Loosely speaking, it
states that a trace of a product is characterized by the projections of any of
its elements onto the product’s components.

Theorem 4.21. For every i ∈ {1, . . . , n}, let Ti ⊆ T be the set of global
transitions of A in which Ai participates. Two words w,w′ ∈ T∗ satisfy
w ≡ w′ if and only if for every i ∈ {1, . . . , n} their projections onto Ti

coincide.

Proof. (⇒): Assume w′ ≡ w, and let i ∈ {1, . . . , n} be an arbitrary index.
We show that w and w′ have the same projection onto Ti. It suffices to
prove the result for the case w′ ≡1 w. By the definition of ≡1, there are two
independent transitions t,u such that w = w1 t uw2 and w′ = w1 u tw2. By
the definition of independence, at most one of t and u belongs to Ti. So t u
and u t have the same projection onto Ti, and we are done.

52 4 Search Procedures for the Executability Problem

(⇐): Assume w and w′ have the same projection onto Ti for every
i ∈ {1, . . . , n}. We first claim that the length of a word v ∈ T∗ is com-
pletely determined by the length of its projections onto the Ti’s, so that w
and w′ have the same length. For this, observe that if exactly k components
participate in a transition t, then each occurrence of t in v appears in exactly
k of the projections of v onto T1, . . . ,Tn. So, if we attach weight 1/k to tran-
sitions with k participating components, then the length of v is equal to the
total weight of all the projections of v on T1, . . . ,Tn. This proves the claim.

We now prove w ≡ w′ by induction on the common length k of w and
w′. If k = 0 then both w and w′ are the empty sequence, and we are done.
If k > 0, then there are transitions t and t′ and words w1,w′

1 such that
w = tw1 and w′ = t′w′

1. We consider two cases:
Case 1: t = t′. Then w1 and w′

1 have the same projection onto Ti for ev-
ery i ∈ {1, . . . , n}. So, by induction hypothesis, we have w1 ≡ w′

1, and so
w = tw1 ≡ tw′

1 = w′.
Case 2: t 6= t′. We first claim that t and t′ are independent. Assume the
contrary. Then some component Ai participates in both t and t′. But then
the projection of w on Ti starts with t, and the projection of w′ on Ti starts
with t′, a contradiction, and the claim is proved.

Let Aj be any of the components that participates in t′. Since w and w′

have the same projection onto Tj , and w′ contains at least one occurrence of
t′, the word w1 also contains at least one occurrence of t′. So there exist words
w2 and w3 such that w = tw2 t′w3, and w.l.o.g. we can further assume that
w2 contains no occurrence of t′ (notice that w2 may be empty).

We claim w ≡ t′ tw2 w3. Since t and t′ are independent, it suffices to
prove that t′ is independent of every transition occurring in w2. Assume this
is not the case, i.e., assume that w2 contains some transition u such that t′

and u are dependent. We have u 6= t, because t and t′ are independent, and
u 6= t′, because t′ does not occur in w2. Since t′ and u are dependent, some
component Ak participates in both t′ and u. We examine the projections of
w and w′ onto Tk. In the former, transition u appears before transition t′

(recall that t′ does not appear in w2). In the latter, transition t′ appears
before transition u. But this contradicts our assumption that w and w′ have
the same projection onto Tk, and proves the claim.

Since w ≡ t′ tw2 w3, we can apply the first part of this theorem and
conclude that the projections of w and t′ tw2 w3 onto T1, . . . ,Tn coincide.
So the same holds for w′ and t′ tw2 w3. Since w′ also starts with t′, we can
continue as in Case 1, and prove w′ ≡ t′ tw2 w3. So, since both w and w′

are equivalent to the same word, we have w ≡ w′. ¤

Example 4.22. Consider the trace [w] of Ex. 4.20. In this case we have

T1 = {〈t1, ε〉 , 〈t2, ε〉 , 〈t3, u2〉 , 〈t4, u2〉 , 〈t5, ε〉}, and
T2 = {〈t3, u2〉 , 〈t4, u2〉 , 〈ε, u1〉 , 〈ε, u3〉}.

4.3 Search Strategies for Products 53

As guaranteed by Thm. 4.21, the projections of all the elements of [w] onto
T1 coincide, and the same holds also for T2. The projections are

〈t1, ε〉 〈t3, u2〉 〈t5, ε〉 and 〈ε, u1〉 〈t3, u2〉 〈ε, u3〉 .
At this point the reader might like to ask the following question: Does

Thm. 4.21 still hold if we replace the projections of w and w′ onto T1, . . . ,Tn

by their projections onto T1, . . . , Tn, the sets of local transitions ofA1, . . . ,An?
This would look more natural, since then the projections of a global history
would be local histories of its components. However, the theorem then fails,
as shown by the following example.

Example 4.23. Consider the product shown in Fig. 4.5(a), and the global
histories w1 = 〈t1, u1, ε〉 〈ε, u2, v1〉 and w2 = 〈ε, u1, v1〉 〈t1, u2, ε〉. We have
[w1] = {w1} 6= {w2} = [w2]. However, the projections of w1 and w2 onto
the sets T1, T2, and T3 of local transitions coincide; they are in both cases t1,
u1u2, and v1. So a trace is not characterized by the projections of its elements
onto the sets of local transitions.

The Fig. 4.5(b) shows the unfolding of the product. The sequences w1 and
w2 are the unique histories of events 3 and 4, respectively.

4.3.2 Search Strategies as Orders on Mazurkiewicz Traces

We define search strategies following the same steps of the transition sys-
tem case (see Sect. 4.1). First, we formally define the set of histories of an
event (Def. 4.26). Then we show that this set is always a Mazurkiewicz trace
(Prop. 4.28). So an order on Mazurkiewicz traces induces an order on events,
and so it makes sense to define strategies as orders on Mazurkiewicz traces
(Def. 4.32).

We start by introducing the notion of the past of an event. Intuitively, this
is the set of events that must occur for the event to occur.

Definition 4.24. The past of an event e, denoted by past(e), is the set of
events e′ such that e′ ≤ e (recall that e′ < e if there is a path leading from e′

to e).2

It is easy to see that past(e) is always a configuration.

Example 4.25. The past of event 10 in Fig. 3.3 on p. 17 is past(10) =
{1, 3, 4, 6, 10}. While the past of an event is a configuration, not every config-
uration is the past of an event. For instance the configuration {2, 3} is not the
past of an event. However, it is easy to see that every configuration is the union
of the pasts of some events. For instance, for {2, 3} we have past(2) = {2} and
past(3) = {3}.
2 In other papers the past of an event is called a local configuration. We avoid here

this terminology, because it does not correspond to the way in which the word
local is used in this book.

54 4 Search Procedures for the Executability Problem

(a)

T = {〈t1, u1, ε〉 , 〈ε, u1, v1〉 , 〈t1, u2, ε〉 , 〈ε, u2, v1〉}

r2

r1

r3

u2

u1

q1

q2

v1

q2

s1 r1 q1

s2
r2 r2

〈t1, u1, ε〉 〈ε, u1, v1〉

s2

t1

s1

〈t1, u2, ε〉〈ε, u2, v1〉

r3 q2 s2 r3

(b)

1

3

2

4

Fig. 4.5. A product of transition systems (a) and its unfolding (b)

Now we define the set of histories of an event as the set of realizations of
its past.

Definition 4.26. A transition word t1 t2 . . . tn is a history of a configuration
C if there is a realization e1 e2 . . . en of C such that ei is labeled by ti for every
i ∈ {1, . . . , n}. The set of histories of C is denoted by H(C). If C = past(e)
for some event e, then we also call the elements of H(past(e)) histories of e.
To simplify notation, we write H(e) instead of H(past(e)).

4.3 Search Strategies for Products 55

Example 4.27. The configuration past(10) = {1, 3, 4, 6, 10} has two realiza-
tions, namely the occurrence sequences 1 3 4 6 10 and 3 1 4 6 10. So event 10 in
Fig. 3.3 on p. 17 has two histories, which are the second and third histories
in the list of four shown in Ex. 4.14 on p. 48.

The next proposition shows that a configuration is characterized by its set
of histories, and that this set is always a Mazurkiewicz trace.

Proposition 4.28. (a) Let C1, C2 be two configurations. Then C1 = C2 if and
only if H(C1) = H(C2).

(b) Let C be a configuration. Then H(C) is a Mazurkiewicz trace.

Proof. (a) If C1 = C2, then H(C1) = H(C2). Assume that H(C1) = H(C2),
and let h ∈ H(C1). We proceed by induction on the length k of h. If k = 0,
then C1 = ∅ = C2 and we are done. If k > 0, then h = h′ t for some history h′

and some transition t, and there are configurations C ′1, C
′
2 and events e1, e2

labeled by t such that C1 = C ′1∪{e1}, C2 = C ′2∪{e2}, and h′ ∈ H(C ′1),H(C ′2).
By induction hypothesis we have C ′1 = C ′2. So it remains to prove e1 = e2.
For this, let M be the marking reached after executing any of C ′1 or C ′2 (recall
C ′1 = C ′2). Since both e1 and e2 are labeled with t, the set •e1 contains some
i-place if and only if •e2 does. Since M contains exactly one i-place for each
component Ai, we have •e1 = •e2. By the definition of branching processes,
if two events have the same set of input places and are labeled by the same
global transition, then they have the same canonical names, which implies
that they are equal. So e1 = e2.

(b) Let h be an arbitrary history of H(C). We prove [h] = H(C).
H(C) ⊇ [h] follows easily from property (1) of independent transitions.

For H(C) ⊆ [h], let w be an arbitrary realization of H(C). We have to show
w ∈ [h]. We apply Thm. 4.21. For every i ∈ {1, . . . n}, let Ti denote the set
of global transitions in which component Ai participates. We claim that the
projections of w and h on Ti coincide. By Thm. 4.21, this implies [w] = [h],
and so, in particular, w ∈ [h].

To prove the claim, recall that the set of i-nodes of a branching process
forms a tree that branches only at places (Prop. 3.11 (3)). It follows that for
every two distinct i-events e and e′, either e < e′, or e′ < e, or there is a place
x such that x < e and x < e′. However, this last case is impossible, because
then e and e′ would be in conflict, contradicting the fact that C is a con-
figuration and so conflict-free. So any two distinct i-events of C are causally
related. Since in every realization of C causally related events appear in the
same order, the projections of all realizations onto the set of i-events coincide.
It follows that the projections of all histories of C onto Ti also coincide. Since
both w and h are realizations of C, we are done. ¤

Example 4.29. Consider again the configuration past(10) = {1, 3, 4, 6, 10}. Its
two realizations correspond to the histories:

56 4 Search Procedures for the Executability Problem

〈t1, ε〉 〈ε, u1〉 〈t3, u2〉 〈t5, ε〉 〈t1, ε〉 , and
〈ε, u1〉 〈t1, ε〉 〈t3, u2〉 〈t5, ε〉 〈t1, ε〉 ,

which constitute a Mazurkiewicz trace.

Proposition 4.28 shows that we can define strategies for products as orders
on the Mazurkiewicz traces of A. Recall however that in the transition system
case a strategy was defined as an order that refines the prefix order, the
idea being that a history must be generated before any of its extensions are
generated. We need the same condition in the general case.

Definition 4.30. The concatenation of two traces [w] and [w′] is denoted by
[w] [w′] and defined as the trace [ww′]. We say that [w] is a prefix of [w′] if
there is a trace [w′′] such that [w′] = [w] [w′′].

We list some useful properties of trace concatenation and prefixes.

Proposition 4.31.

(a) The prefix relation on traces is an order.
(b) [w1] [w2] ⊇ {v1 v2 | v1 ∈ [w1],v2 ∈ [w2]}.
(c) If [w1] = [w2] then [w] [w1] [w′] = [w] [w2] [w′] for all words w and w′.
(d) If [w] [w1] [w′] = [w] [w2] [w′] for some words w and w′, then [w1] =

[w2].

Proof. Parts (a), (b), and (c) follow easily from the definitions. We prove
(d). Given a word v and i ∈ {1, . . . , n}, let v|i denote the projection of v
onto Ti, the set of transitions the ith component participates in. Choose
an arbitrary i ∈ {1, . . . , n}. By definition, [w] [w1] [w′] = [ww1 w′] and
[w] [w2] [w′] = [ww2 w′]. By Thm. 4.21, (ww1 w′)|i = (ww2 w′)|i. Since
(ww1 w′)|i = w|iw1|iw′|i and (ww2 w′)|i = w′|iw1|iw′|i we have w1|i =
w2|i. By Thm. 4.21, we get [w1] = [w2]. ¤

We can now formulate the generalization of search strategies.

Definition 4.32. A search strategy for A is an order on [T∗] that refines the
prefix order on traces.

4.4 Search Scheme for Products

We generalize the search scheme of Def. 4.6 to products. For this, we replace
H(e) by H(e), which by Prop. 4.28 is a Mazurkiewicz trace. It remains to
replace St(e) by a suitable generalization. For this, recall that St(e) is the state
reached after the execution of H(e). So we would have to replace it by the set
of global states reached after the execution of the different histories in H(e).
However, since all these histories are realizations of past(e), by Prop. 3.18 on
p. 25 all of them lead to the same global state.

4.4 Search Scheme for Products 57

Definition 4.33. Let C be a configuration of the unfolding of A. The global
state reached by C, denoted by St(C), is the global state reached by the exe-
cution of any of the histories of H(C).

To lighten the notation we define St(e) as a shorthand for St(past(e)).

Example 4.34. In Fig. 3.3 on p. 17 we have past(10) = {1, 3, 4, 6, 10}. The
marking reached by all the realizations of past(10) puts a token on the unique
output place of event 10 and on the output place of event 4 labeled by r3. We
have St(10) = 〈s2, r3〉.

Here is the generalized search scheme:

Definition 4.35. Let ≺ be a search strategy on [T∗]. An event e of the un-
folding of A is feasible if no event e′ < e is a terminal. A feasible event e is
a terminal if either

(a) e is labeled with a transition of G, or
(b) there is a feasible event e′ ≺ e, called the companion of e, such that

St(e′) = St(e).

A terminal is successful if it is of type (a). The ≺-final prefix is the prefix of
the unfolding of A containing the feasible events.

It is easy to show that the scheme is well-defined and sound for every
strategy (compare with Lemma 4.8, Prop. 4.9 and Prop. 4.10).

Lemma 4.36. Let ≺ be an arbitrary search strategy, and let (F, T) be a pair
of sets of events satisfying the conditions of Def. 4.35 for the sets of feasible
and terminal events, respectively. For every event e ∈ F , every history of H(e)
has length at most nK+1, where n is the number of components of A and K
is the number of reachable global states of A.

Proof. Assume that some history of H(e) has length greater than nK + 1.
Then, by the pigeonhole principle there is a component Ai of A and two i-
events e1 < e2 < e such that Sti(e1) = Sti(e2). Since e1 < e2 and the search
strategy ≺ refines the prefix order, we have e1 ≺ e2. By condition (b) we have
e2 ∈ T . Since e2 < e, e cannot be feasible, i.e., e /∈ F , and we are done. ¤

A direct corollary of the proof above is that for all non-terminal feasible events
e the maximal length of the histories in H(e) is at most nK.

Proposition 4.37. The search scheme of Def. 4.35 is well-defined for every
search strategy ≺, i.e., there is a unique set of feasible events and a unique set
of terminal events satisfying the conditions of the definition. Moreover, the
≺-final prefix is finite.

Proof. Analogous to the proof of Prop. 4.9. ¤

58 4 Search Procedures for the Executability Problem

Proposition 4.38. The search scheme of Def. 4.35 is sound for every strat-
egy.

Proof. If the final prefix is successful then it contains a terminal e labeled
by a goal transition g. So every history of H(e) contains g and therefore g is
executable. ¤

In the worst case, the size of the final prefix can be exponential in the
number K of reachable global states of A. This is not surprising, since this
is already the case for transition systems, which are products with only one
component. As in the case of transition systems, we can do better by using
total strategies.

Theorem 4.39. If ≺ is a total search strategy on [T∗], then the ≺-final prefix
generated by the search scheme of Def. 4.35 with ≺ as search strategy has at
most K non-terminal events.

Proof. Analogous to the proof of Thm. 4.13. ¤

4.4.1 Counterexample to Completeness

Unfortunately, a direct generalization of Thm. 4.11 does not hold: the search
scheme of Def. 4.35 is not complete for every strategy, as shown by the next
example.

Example 4.40. Figure 4.6 shows a product of transition systems with four com-
ponents. The corresponding Petri net is shown in Fig. 4.7, while the unfolding
is shown in Fig. 4.8. In this case the unfolding is finite, and can be represented
in full.

We wish to solve the executability problem for the global transition i =
〈i1, i2, i3, i4〉. Let ≺ be a search strategy that orders the events of the unfolding
according to the numbering shown in Fig. 4.8 (a lower number corresponds to
higher priority). We use the generalization of the search scheme of Def. 4.6,
with H(e) replaced by H(e) and St(e) by St(e). The ≺-final prefix is the
branching process containing events 1 to 9. To see this, observe that events 8
and 10 are terminals, with events 7 and 9 as companions, respectively, because

St(8) = {s5, t4, u5, v4} = St(7) and St(10) = {s4, t5, u4, v5} = St(9) .

The prefix with events 1 to 9 cannot be extended, because the only two pos-
sible extensions, namely events 11 and 12, have terminals among their prede-
cessors. So this prefix is the final prefix. Since events 8 and 10 are unsuccessful
terminals, the final prefix is unsuccessful. Since the global transition i is exe-
cutable, the search scheme is not complete for this search strategy.

We can ask at which point the completeness proof of Thm. 4.11 breaks
down in the case of products. In the Contradiction part of the completeness

4.5 Adequate Search Strategies 59

t4

t6

t5

i2

h2

t2 t3

u4

u6

u5

i3

g3

u2 u3

v4

v6

v5

i4

h4

v2 v3

t1 u1 v1

G = {i}

T = {a = 〈a1, a2, a3, a4〉 ,b = 〈b1, b2, b3, b4〉 , c = 〈c1, c2, ε, ε〉 ,

s4

s5

i1

g1

s3s2

s6

s1

a1 b1

c1 e1 c2

a2 b2

e2

a3

d3

a4b3

d4f3

b4

f4

g = 〈g1, ε, g3, ε〉 ,h = 〈ε, h2, ε, h4〉 , i = 〈i1, i2, i3, i4〉}
d = 〈ε, ε, d3, d4〉 , e = 〈e1, e2, ε, ε〉 , f = 〈ε, ε, f3, f4〉 ,

Fig. 4.6. An instance of the executability problem

proof we consider two events e′ and e′s, both satisfying e′ < e′m and e′s < e′m
for a certain event e′m. We then argue that there are three possible cases:
e′ < e′s, e

′ = e′s, and e′s < e′. However, in the case of products we also have
a fourth case: the events e′ and e′s can also be concurrent. This fourth case
occurs in Fig. 4.8. For the reader that has read the proof of Thm. 4.11 in
detail: Event 12 (playing the role of em) does not belong to the final prefix,
and event 8 (playing the role of es) is its spoiler. The companion e′ of es is
event 7, and e′m is event 11. The spoiler e′s of event e′m 11 is event 10. But the
events 7 and 10 are concurrent.

4.5 Adequate Search Strategies

Intuitively, the problem in the counterexample of Fig. 4.8 is that the events are
added “in the wrong order”. For instance, if the events 7, 8, 9, 10 were added
in the order 7, 10, 8, 9, then events 8 and 9 would be marked as unsuccessful
terminals, but we would still be able to add event 11, which would then be a
successful terminal.

60 4 Search Procedures for the Executability Problem

s3 t3 u3 v3s2 t2 u2 v2

s4 t4

s1

s5 t5

u4 v4

u5 v5

s6 t6 u6 v6

a b

d f

g h

i

c e

t1 u1 v1

Fig. 4.7. Petri net representation of the product of Fig. 4.6

4.5 Adequate Search Strategies 61

s1

s2 t2 u2 v2 s3 t3 u3 v3

s5 t5 u5 v5

s4 t4 u4 v4 s4 t4 u4 v4

s6 u6 v6 s6 t6 u6

s5 t5 v5

a b

c e f

g h

i i

d

1 2

3 4 5 6

h7 8 g 9

12

10

u5

11

t6 v6

v1u1t1

Fig. 4.8. Unfolding of the product of Fig. 4.6

62 4 Search Procedures for the Executability Problem

The question is, which are the search strategies that in combination with
the search scheme lead to complete search procedures? The next definition
introduces such a class of strategies.

Definition 4.41. A strategy ≺ on [T∗] is adequate if

• it is well-founded, and
• it is preserved by extensions: For all traces [w], [w′], [w′′] ∈ [T∗], if [w] ≺

[w′], then [w] [w′′] ≺ [w′] [w′′].

The following surprising result is due to Chatain and Khomenko. The proof
requires some notions of the theory of well-quasi-orders, and can be found in
Sect. 5.4 of the next chapter.

Proposition 4.42. Every strategy on [T∗] preserved by extensions is well-
founded.

It follows that a strategy is adequate if and only if it is preserved by
extensions. However, since the term “adequate” has already found its place
in the literature, we keep it.

We prove that the search scheme of Def. 4.35 together with an adequate
search strategy always yields a complete search procedure.

Theorem 4.43. The search scheme of Def. 4.35 is complete for all adequate
strategies.

Proof. Let ≺ be an adequate search strategy. Assume that some goal transi-
tion g ∈ G is executable, but no terminal of the final prefix is successful. We
derive a contradiction.

We follow the scheme of the completeness proof of Thm. 4.11, just changing
the definition of minimal witness, and using the definition of an adequate
strategy to derive the contradiction.

e′m em

ese′

cs cs

≺

≺ gg

Fig. 4.9. Illustration of the proof of Thm. 4.43

4.5 Adequate Search Strategies 63

Witnesses. Let an event of the unfolding of A be a witness if it is labeled
with g. Using the same argument as in the proof of Thm. 4.11, we conclude
that for every witness e there is an unsuccessful terminal es < e that we call
the spoiler of e.

Minimal witnesses. Since ≺ is well-founded by definition, the set of witnesses
has at least one minimal element em w.r.t. ≺. Let es be the spoiler of em
(see Fig. 4.9), and let [cs] be a trace satisfying H(em) = H(es) [cs]. Since es
is an unsuccessful terminal, it has a companion e′ ≺ es such that St(e′) =
St(es), and so H(e′) [cs] is also a history of A. Let e′m be the event satisfying
H(e′m) = H(e′)[cs]. Then e′m is labeled with g, and so it is a witness.

Contradiction. Since ≺ is preserved by extensions and H(e′) ≺ H(es) holds,
we have H(e′m) = H(e′)[cs] ≺ H(es)[cs] = H(em), and so H(e′m) ≺ H(em).
But this implies e′m ≺ em, which contradicts the minimality of em. ¤

Let us summarize the results of this section and Sect. 4.4. The search
scheme of Def. 4.35 is well-defined and sound for all search strategies. More-
over,

• the final prefix has at most K non-terminal events (where K is the number
of reachable global states) for total strategies, and

• the scheme is complete for adequate strategies.

The obvious question is whether total and adequate strategies exist. In
the rest of the section we show that this is indeed the case.

4.5.1 The Size and Parikh Strategies

In order to avoid confusions, we use the following notational convention:

Notation 2. We denote strategies by adding a mnemonic subscript to the
symbol ≺, as in ≺x. Given a strategy ≺x, we write [w] =x [w′] to denote that
neither [w] ≺x [w′] nor [w′] ≺x [w] holds.

A simple example of an adequate strategy is the size strategy.

Definition 4.44. The size strategy ≺s on [T∗] is defined as: [w] ≺s [w′] if
|w| < |w′|, i.e., if w is shorter than w′.

Notice that the size strategy is well-defined because all words that belong to
a trace have the same length. Observe also that, as required of a strategy, it
refines the prefix order. Finally, the size strategy is clearly adequate, because
[w] ≺s [w′] implies |w| < |w′| implies |ww′′| < |w′w′′| implies [w][w′′] ≺s
[w′][w′′] for every trace [w], [w′], [w′′].

Unfortunately, as we saw in Ex. 4.12 on p. 47, the size strategy may lead
to very large final prefixes, even for transition systems. In the worst case, the

64 4 Search Procedures for the Executability Problem

prefix can be exponentially larger than the transition system itself, and so
potentially much too large for verification purposes.

The Parikh strategy is a refinement of the size strategy that compares not
only the total number of occurrences of transitions, but also the number of
occurrences of each individual transition. In order to define it, we introduce
the Parikh image of a trace.

Definition 4.45. Let [w] be a trace. The Parikh mapping of [w], denoted by
P([w]), is the mapping that assigns to each global transition t the number of
times that t occurs in w.

Notice that the Parikh mapping is well-defined because all the words of a
trace have the same Parikh mapping. The Parikh strategy is defined in two
stages: first, the sizes of the traces are compared, and then, if necessary, their
Parikh mappings.

Definition 4.46. Let <a be a total order on T, called the alphabetical order.
The Parikh strategy ≺P on [T∗] is defined as follows: [w] ≺P [w′] if either
[w] ≺s [w′], or [w] =s [w′] and there is a global transition t such that

• P([w])(t) < P([w′])(t), and
• P([w])(t′) = P([w′])(t′) for every t′ <a t.

The Parikh strategy refines the prefix order because the size strategy does. It
is easily seen to be adequate: Since P([w] [w′]) = P([w]) + P([w′]), we have
that [w] ≺P [w′] implies [w] [w′′] ≺P [w′] [w′′] for every trace [w], [w′], [w′′].

The Parikh strategy leads to smaller final prefixes than the size strategy,
and it is in fact a useful strategy in practical applications. However, it is easy
to show that it is not a total strategy, not even for products with only one
component. So Thm. 4.39 cannot be applied to it.

4.5.2 Distributed Strategies

In this section we show that the problem of finding a total adequate strategy
on the set [T∗] of traces can be reduced to the much simpler problem of finding
a total adequate strategy for the set T∗ of words.

Recall Thm. 4.21: Given a trace, the projections of its elements onto
T1, . . . ,Tn coincide, where Ti is the set of global transitions in which the ith
component participates. Moreover, these projections characterize the trace,
i.e., different traces have different projections. It follows that searching for
total adequate orders on Mazurkiewicz traces reduces to searching for total
adequate orders on their tuples of projections onto T1, . . . ,Tn. Since these
are just tuples of words, we can try the following approach: find a total ade-
quate order on T∗, and then use some generic procedure to “lift” it to a total
adequate order on tuples of words.

In the following we develop this approach. We start with a useful notational
convention:

4.5 Adequate Search Strategies 65

Notation 3. We write [w] = [w1, . . . ,wn] to denote that w1, . . . ,wn are the
projections of w onto T1, . . . ,Tn and that [w] is the unique trace with this
property.

Example 4.47. For instance, we have

[〈t1, ε〉 〈ε, u1〉 〈t3, u2〉 〈t5, ε〉 〈ε, u3〉] = [〈t1, ε〉 〈t3, u2〉 〈t5, ε〉 ,
〈ε, u1〉 〈t3, u2〉 〈ε, u3〉] .

The following little proposition shows that the prefix order on words and
the prefix order on traces fit nicely with each other.

Proposition 4.48. If [w] = [w1, . . . ,wn] and [w′] = [w′
1, . . . ,w

′
n] then

[w] [w′] = [w1 w′
1, . . . ,wnw′

n].

Proof. By definition we have [w] [w′] = [ww′]. Since for every i ∈ {1, . . . , n}
the projection of ww′ onto Ti is wiw′

i, we are done. ¤

We are now ready to define the “lifting” procedure and prove its correct-
ness.

Definition 4.49. Let ≺ be a total search strategy on T∗. The distributed
strategy ≺d is the total search strategy on [T∗] defined as follows. Given [w] =
[w1, . . . ,wn] and [w′] = [w′

1, . . . ,w
′
n], we have [w] ≺d [w′] if there is an index

i ∈ {1, . . . , n} such that wi ≺ w′
i, and wj = w′

j for every 1 ≤ j < i.

By Prop. 4.48, and since ≺ refines the prefix order on words, ≺d refines the
prefix order on traces. Moreover, if ≺ is adequate and total then so is ≺d:
Theorem 4.50. If ≺ is a total adequate strategy on T∗, then ≺d is a total
adequate strategy on [T∗].

Proof. By the definition of an adequate strategy and Prop. 4.42, it suffices to
prove that ≺d is preserved by extensions. Let [w] = [w1, . . . ,wn] and [w′] =
[w′

1, . . . ,w
′
n] be traces such that [w] ≺d [w′], and let [w′′] = [w′′

1 , . . . ,w
′′
n]

be an arbitrary trace. By definition, there is an index i such that wi ≺ w′
i

and wj = w′
j for every j < i . Then we have wj w′′

j = w′
j w

′′
j for every j < i

and, since≺ is preserved by extensions, wiw′′
i ≺ w′

iw
′′
i . So ww′′ ≺ w′w′′. ¤

So to finish our quest for a total adequate strategy on [T∗] we just have
to find a total adequate strategy on T∗. But this is easy:

Definition 4.51. Let <a be the alphabetical order on T. The lexicographic
strategy on T∗, denoted by ≺l, is defined as follows: w ≺l w′ if either w is a
proper prefix of w′ or there are words w,v,v′ and transitions a and b such
that a <a b, w = wav, and w′ = wbv′. The size-lexicographic strategy
on T∗, denoted by ≺sl, is defined as follows: w ≺sl w′ if either w ≺s w′ or
w =s w′ and w ≺l w′.

66 4 Search Procedures for the Executability Problem

Theorem 4.52. ≺sl is a total adequate strategy on T∗, and so ≺dsl is a total
adequate strategy on [T∗].

Proof. By Thm. 4.50 it suffices to prove the first part. Clearly, ≺sl is a well-
founded total order on T∗. We show that it is preserved by extensions. Let
w,w′,w′′ be words such that w ≺sl w′. There are two possible cases:

• w ≺s w′. Then ww′′ ≺s ww′′ and so ww′′ ≺sl ww′′.
• w =s w′ and w ≺l w′. Then there are words w,v,v′ and transitions a

and b such that a <a b, w = wav and w′ = wbv′. But then we have
ww′′ = wavw′′ ≺l wbv′w′′ = w′w′′, and so ww′′ ≺sl w′w′′.

¤

Since ≺dsl is a total adequate order on [T∗], it is also complete, and so the
search procedure based on it will return the correct answer when applied to
the product of Fig. 4.6 on p. 59.

Example 4.53. Consider again the executability problem for G = {i} in the
product of Fig. 4.6 on p. 59. The unfolding is shown in Fig. 4.8 on p. 61.
Table 4.1 shows for every event e the projections of H(e) onto T1, . . . ,T4

(columns T1 to T4). On the left table the events are ordered according to
their number, while on the right table they are ordered according to ≺dsl.

Table 4.1. Histories of the events in Fig. 4.8 sorted according to event numbers
(left) and according to ≺d

sl (right)

Event T1 T2 T3 T4

1 a a a a

2 b b b b

3 ac ac a a

4 a a ad ad

5 be be b b

6 b b bf bf

7 acg ac adg ad

8 beg be bfg bf

9 be beh bf bfh

10 ac ach ad adh

11 acgi achi adgi adhi

12 begi behi bfgi bfhi

Event T1 T2 T3 T4

1 a a a a

4 a a ad ad

2 b b b b

6 b b bf bf

3 ac ac a a

10 ac ach ad adh

5 be be b b

9 be beh bf bfh

7 acg ac adg ad

8 beg be bfg bf

11 acgi achi adgi adhi

12 begi behi bfgi bfhi

So a search procedure based on ≺dsl generates the events in order 1, 4, 2, 6,
3, 10, 5, 9, 7, 8, 11, and marks events 9 and 8 as terminals with corresponding
events 10 and 7, respectively. Even though event 12 is not generated, the final
prefix is still successful because it contains event 11, which is a successful
terminal. Intuitively, in this example the adequate order guarantees that the

4.6 Complete Search Scheme for Arbitrary Strategies 67

events of the “left side” of Fig. 4.8 on p. 61 are always added to the unfolding
a bit earlier than their counterparts on the “right side” of the unfolding.

Notice, however, that adequacy is only a sufficient condition for the com-
pleteness of the associated search procedure. This is illustrated by the prefix
order on traces. While it is obviously a search strategy, it is not adequate: for
instance, if a,b, c are pairwise-dependent transitions, then [a] is a prefix of
[ab], but [a] [c] is not a prefix of [ab] [c], and therefore the prefix order on
traces is not preserved by extensions. However, the search procedure based on
the prefix strategy is still complete. This fact is a consequence of the following
generalization of Thm. 4.43:

Theorem 4.54. Let ≺1 and ≺2 be two strategies on [T∗]. If ≺1 is adequate
and refines ≺2, then the search procedure with ≺2 as strategy is complete.

Proof. Recall the definition of ≺1 refines ≺2: for every two events e, e′ of the
unfolding, e ≺2 e

′ implies e ≺1 e
′.

It suffices to show that if an unfolding contains events labeled by goal
transitions, then the ≺2-final prefix contains at least one successful terminal.

Let em be a ≺1-minimal event labeled by a goal transition. This event
exists, because ≺1 is adequate and therefore well-founded. We prove by con-
tradiction that em is ≺2-feasible, and so a ≺2-successful terminal.

Assume em is not ≺2-feasible. Then some event es < em (the spoiler of
em) is a ≺2-terminal. Since ≺1 is a strategy, we have es ≺1 em, and so, by the
minimality of em, the event es cannot be labeled by a goal transition. So es
is not a successful ≺2-terminal. It follows that es is unsuccessful. Let e′ ≺2 es
be the companion of es. Since ≺1 refines ≺2, we also have e′ ≺1 es. Let [c]
be the trace satisfying H(es) [c] = H(em). Since St(e′) = St(es), there is an
event e′m satisfying H(e′) [c] = H(e′m). This event is labeled by the same goal
transition as em and, since ≺1 is preserved by extensions, we have e′m ≺1 em.
But this contradicts the minimality of em. ¤

Corollary 4.55. The search scheme of Def. 4.35 is complete for the dis-
tributed prefix strategy.

Proof. It is easy to see that ≺dsl refines the prefix strategy on traces. Since
≺dsl is adequate, we can apply Thm. 4.54. ¤

4.6 Complete Search Scheme for Arbitrary Strategies

We have seen that the search scheme of Def. 4.35, called S in this section for
brevity, is not complete for every search strategy.

This result should not be interpreted as forbidding the use of some strate-
gies. It only states that they cannot be used in combination with S. In this

68 4 Search Procedures for the Executability Problem

section we show that S can be modified in a rather straightforward way to
yield a new search scheme complete for every strategy. The price to pay is that
the new search scheme may lead to larger final prefixes in the worst case. In
particular, Thm. 4.39, stating that the combination of S with a total adequate
strategy does not generate more non-terminals than the number of reachable
states of the product, does not hold for the new scheme. This approach is
originally due to Bonet, Haslum, Hickmott and Thiébaux.

Recall that S defines a terminal as a feasible event satisfying one of these
properties:

(a) e is labeled with a transition of G, or
(b) there is a feasible event e′ ≺ e such that St(e′) = St(e).

We replace (b) by a stronger condition (b′):

(b′) there is a feasible event e′ ≺ e such that St(e′) = St(e) and P (e′, e),

where P (e′, e) is a to-be-determined predicate on pairs of events. The question
is: how to choose P (e′, e) so that the resulting scheme is complete for all
strategies, without losing soundness or finiteness.

The perhaps surprising, but in fact very simple observation is that we can
take P (e′, e) ⇔ e′ ¿ e, where ¿ is any strategy for which S is complete. As
we shall see, the new scheme, whatever the strategy, always generates at least
(and possibly more than) the events generated by S with strategy ¿. So, if
the set G of goal transitions is executable, then S with strategy ¿ generates
an event labeled by some transition of G, and since this event is also generated
by the new scheme, the new scheme is also complete.

Before giving a formal definition of the new scheme, let us consider once
more the example of Fig. 4.6, whose full unfolding is shown again in Fig. 4.10.
The numbers inside the boxes correspond to the total strategy ≺ for which S
is not complete (events 8 and 10 are terminals, and so the search procedure
never adds events 11 or 12). For ¿ we take the size strategy ≺s, which is
adequate and so complete in combination with S.

The new search procedure adds events in the order given by ≺; however,
when it adds event 8, it observes that 7 6≺s 8 holds, and so that condition (b′)
fails. So the procedure does not mark event 8 as a terminal. In the same way,
event 10 is not marked either. So events 11 and 12 are feasible in the new
scheme, and become part of the final prefix.

This same example allows us to illustrate the practical interest in the new
search scheme. In Sect. 5.3 we shall consider depth-first strategies (see the
section for a formal definition), and will show that, unfortunately, they are
not complete for S. However, they can be safely used in combination with the
new scheme. This is useful, because in favorable cases depth-first strategies
may quickly lead to a successful terminal, which allows us to stop the search.
For instance, consider Fig. 4.11, which shows the unfolding of Fig. 4.8, but
orders the events according to a depth-first strategy. In combination with
this strategy, the new scheme stops after the addition of event 6, which is

4.6 Complete Search Scheme for Arbitrary Strategies 69

s1

s2 t2 u2 v2 s3 t3 u3 v3

s5 t5 u5 v5

s4 t4 u4 v4 s4 t4 u4 v4

s6 u6 v6 s6 t6 u6

s5 t5 v5

a b

c e f

g h

i i

d

1 2

3 4 5 6

h7 8 g 9

12

10

u5

11

t6 v6

v1u1t1

Fig. 4.10. Unfolding of the product of Fig. 4.6

70 4 Search Procedures for the Executability Problem

a successful terminal. This is a better result than the one obtained with scheme
S and the distributed version of the size-lexicographic strategy, which requires
us to generate 11 events.

s1

s2 t2 u2 v2 s3 t3 u3 v3

s5 t5 u5 v5

s4 t4 u4 v4 s4 t4 u4 v4

s6 u6 v6 s6 t6 u6

s5 t5 v5

a b

c f

g h

i i

1 7

2 3 8 9

4 10 11

12

5

u5

6

t6 v6

d

h

e

g

v1u1t1

Fig. 4.11. Unfolding of the product of Fig. 4.6 with depth-first strategy; only events
1 to 6 are part of the final prefix

4.6 Complete Search Scheme for Arbitrary Strategies 71

Summarizing: when the answer to the executability problem is positive, the
new scheme can reach a successful terminal faster by making use of its freedom
for choosing strategies. On the other hand, when the answer to the problem
is negative, the new scheme can never outperform S, because it generates at
least as many events, and in unfavorable cases it may generate many more
events.

We conclude the section with the formal definition of the new search
scheme.

Definition 4.56. Let ≺ be a strategy on [T∗], and let ¿ be any strategy on
[T∗] that together with the search scheme of Def. 4.35 yields a complete search
procedure.
An event e of the unfolding of A is feasible if no event e′ < e is a terminal.
A feasible event e is a terminal if either

(a) e is labeled with a transition of G, or
(b′) there is a feasible event e′ ≺ e, called the companion of e, such that

St(e′) = St(e) and e′ ¿ e.

A terminal is successful if it is of type (a). The ≺-final prefix is the prefix of
the unfolding of A containing the feasible events.

Well-definedness (including finiteness) and soundness for arbitrary strate-
gies are proved exactly as for the scheme of Def. 4.35; see proofs of Props. 4.37
and 4.38. Completeness is also easy:

Theorem 4.57. The search scheme of Def. 4.56 is complete for every strat-
egy.

Proof. Let S and S′ be the search schemes of Defs. 4.35 and 4.56, respectively.
Since the combination of S and ¿ is complete, the ¿-final prefix contains a
successful terminal et. So et is feasible and labeled by some goal transition.
We show that et is a feasible event of S′ for any strategy. Since et is labeled
by a goal transition, this implies that et is a successful terminal of S′, and so
that S′ is complete for every strategy.

Fix any strategy ≺, and assume that et is not feasible in S′. Then, some
event e < et is an unsuccessful terminal of S′. Let e′ be the companion of e.
By condition (b′), we have e′ ¿ e. But then e is a terminal of S, and since
e < et the event et is not feasible, contradicting the assumption. ¤

Bibliographical Notes

The search schemes of Defs. 4.6 and 4.35 for the executability problem owe
very much to the work of Khomenko, Koutny, and Vogler on canonical pre-
fixes of Petri net unfoldings [73]. They observed that this kind of seemingly

72 4 Search Procedures for the Executability Problem

circular definition is actually correct. The immediate consequence is that for
any arbitrary search strategy ≺ there is a unique ≺-final prefix (Khomenko,
Koutny, and Vogler would call it the canonical prefix).

Mazurkiewicz traces were introduced by Mazurkiewicz in the early 1970s
and have been very extensively studied. The standard reference is [31]. The
counterexample of Sect. 4.4.1 is taken from [40, 41].

Adequate search strategies were introduced in [40, 41] under the name of
adequate orders. The size strategy was introduced by McMillan in [84]. The
section on distributed strategies is taken from [39].

The complete search scheme for arbitrary strategies presented in Sect. 4.6
is due to Bonet, Haslum, Hickmott, and Thiébaux, and as far as we know
still unpublished in this form at the time this book goes to print. An earlier
version of the approach was presented in [15].

5

More on the Executability Problem

In this chapter we present some additional results on the executability prob-
lem, and in particular on adequate strategies, that are not used in the rest
of the book. The reader interested in the essentials of the model checking
procedure for LTL can safely skip them and move to Chap. 6.

In Sect. 5.1 we introduce complete prefixes. These are prefixes of the un-
folding which, loosely speaking, contain all reachable states. Once a complete
prefix is computed, it can be used to solve many different verification prob-
lems.

The other sections of the chapter present further results on adequate
strategies. Section 5.2 introduces a second total adequate strategy, different
from the distributed version of the size-lexicographic strategy that was defined
in the previous chapter. Section 5.3 generalizes the concept of breadth-first
and depth-first search to products. Finally, Sect. 5.4 proves Prop. 4.42, stat-
ing that every strategy on Mazurkiewicz traces preserved by extensions is
well-founded.

5.1 Complete Prefixes

Consider the special case of the executability problem in which the set G of
goal transitions is empty. Obviously, the answer to the question of whether
G contains an executable transition is “no”, and we do not need to construct
any branching process to answer it. However, the case G = ∅ is interesting
for another reason. We show in this section that, given an arbitrary adequate
strategy ≺, every reachable state of the product is represented by at least one
reachable state of the ≺-final prefix. So, in particular, the ≺-final prefix can
be seen as a (potentially very compact) representation of the complete set of
reachable global states. For this reason, this prefix is known in the literature
as the ≺-complete prefix (or just the complete prefix if the strategy ≺ is clear
from the context). In this section we prove this fact, show that the global

74 5 More on the Executability Problem

reachability problem for complete finite prefixes (formally defined below) is
NP-complete, and briefly discuss the applications of this result.

Recall that in the search scheme of Def. 4.35 on p. 57 an event is a terminal
if (a) it is labeled by a transition of G or (b) there is a feasible event e′ ≺ e
such that St(e′) = St(e). If G = ∅ then case (a) cannot occur. This leads to
the following definition of the complete prefix:

Definition 5.1. Let ≺ be an adequate search strategy on [T∗]. An event e of
the unfolding of A is feasible if no event e′ < e is a terminal. A feasible event
e is a terminal if there is a feasible event e′ ≺ e, called the companion of e,
such that St(e′) = St(e). The ≺-complete prefix is the prefix of the unfolding
of A containing the feasible events.

The fact that this definition is not circular follows immediately from the
fact that it is a special case of Def. 4.35 with G = ∅.
Example 5.2. Consider the product of Fig. 2.2 on p. 7, whose unfolding can be
found in Fig. 3.3 on p. 17. Consider the distributed size lexicographic strategy
≺dsl, where the alphabetical order <a on global transitions is given by:

〈t1, ε〉 <a 〈t2, ε〉 <a 〈t3, u2〉 <a 〈t4, u2〉 <a 〈t5, ε〉 <a 〈ε, u1〉 <a 〈ε, u3〉 .
Recall that ≺dsl is a total adequate strategy on traces. Fig. 5.1 shows the
complete finite prefix for this strategy. The events 7, 11, and 12, shown in
dark grey, are terminals. All of them have event 4 as companion. Table 5.1
shows for every event e the projections of the history H(e) onto T1 and T2.
The events are numbered in the order in which they are added to the complete
prefix, and the column St(e) shows the state reached by past(e).

Table 5.1. Projections of histories for the events in Fig. 5.1

Event Projection on T1 Projection on T2 St(e)

1 〈ε, u1〉 〈s1, r2〉
2 〈t1, ε〉 〈s2, r1〉
3 〈t2, ε〉 〈s3, r1〉
4 〈t1, ε〉 〈t3, u2〉 〈ε, u1〉 〈t3, u2〉 〈s4, r3〉
5 〈t1, ε〉 〈t3, u2〉 〈ε, u1〉 〈t3, u2〉 〈ε, u3〉 〈s4, r1〉
6 〈t1, ε〉 〈t3, u2〉 〈ε, u1〉 〈t3, u2〉 〈ε, u3〉 〈ε, u1〉 〈s4, r2〉
7 〈t2, ε〉 〈t4, u2〉 〈ε, u1〉 〈t4, u2〉 〈s4, r3〉
8 〈t1, ε〉 〈t3, u2〉 〈t5, ε〉 〈ε, u1〉 〈t3, u2〉 〈s1, r3〉
9 〈t1, ε〉 〈t3, u2〉 〈t5, ε〉 〈t1, ε〉 〈ε, u1〉 〈t3, u2〉 〈s2, r3〉
10 〈t1, ε〉 〈t3, u2〉 〈t5, ε〉 〈t2, ε〉 〈ε, u1〉 〈t3, u2〉 〈s3, r3〉
11 〈t1, ε〉 〈t3, u2〉 〈t5, ε〉 〈t1, ε〉 〈ε, u1〉 〈t3, u2〉 〈ε, u3〉 〈ε, u1〉 〈s4, r3〉

〈t3, u2〉 〈t3, u2〉
12 〈t1, ε〉 〈t3, u2〉 〈t5, ε〉 〈t2, ε〉 〈ε, u1〉 〈t3, u2〉 〈ε, u3〉 〈ε, u1〉 〈s4, r3〉

〈t4, u2〉 〈t4, u2〉

5.1 Complete Prefixes 75

11 12

10

4

s1 r1

t1 t2 u1

r2s3s2

〈t3, u2〉 〈t4, u2〉

s4r3s4

t5 u3

r1

u1

r2s3

t2t1

s2

s1

〈t3, u2〉 〈t4, u2〉

s4r3s4 r3

r3

132

7

8 5

9 6

Fig. 5.1. The complete prefix of the product of Fig. 2.2 on p. 7

We show that every reachable global state of a product A “corresponds”
to some configuration of the complete prefix.

Theorem 5.3. Let ≺ be an adequate search strategy on [T∗]. A global state s
of A is reachable if and only if some configuration C of the ≺-complete prefix
of A containing no terminals satisfies St(C) = s.

Proof. We start with the first statement.
(⇐:) Obvious, because every realization of C corresponds to a history of

A whose execution leads to s.
(⇒:) Since s is reachable, at least one history of A leads to it. Let h

be a history of A leading to s such that the trace [h] is minimal w.r.t. ≺.

76 5 More on the Executability Problem

(Notice that [h] exists because ≺ is well-founded.) By Prop. 3.7 on p. 19, some
occurrence sequence of the unfolding of A is labeled by h. The set of events
occurring in this sequence is realizable, and so, by definition, it constitutes a
configuration C. This configuration satisfies H(C) = [h] and St(C) = s.

We prove that C contains no terminals and is therefore contained in the
complete prefix. Assume that C contains a terminal e with companion e′. Let
c be any computation such that H(C) = H(e) [c]. Since St(e′) = St(e), we
have that H(e′) [c] is also a history trace of A. Let C ′ be the configuration
satisfying H(C ′) = H(e′) [c]. We have St(C ′) = s and, since ≺ is preserved
by extensions, H(C ′) ≺ H(C) holds, contradicting the minimality of [h]. This
proves that C contains no terminals. Moreover, it implies that all events of C
are feasible, and so that C is a configuration of the complete prefix. ¤

5.1.1 Some Complexity Results

It follows from Thm. 5.3 that a global transition t of a product is executable
if and only if the complete prefix contains an event labeled by it. Indeed, if
t is executable, then it is enabled by some reachable marking. By Thm. 5.3,
the complete prefix contains a configuration containing no terminal leading
to this marking, which can be extended with an event labeled by t, and also
belonging to the prefix. Note that the event labeled with t may itself be a
terminal. So we have the following result:

Proposition 5.4. The following problem can be solved in linear time:
Given: A complete prefix of a product A, a set G ⊆ T of global transitions.
Decide: Can some transition of G ever be executed?

This must be compared with Thm. 3.24 on p. 36, which states that the
executability problem is PSPACE-complete for products. In the executability
problem we ask the same question, but the input is the product A itself, not a
complete prefix. There is no contradiction between the two results, because in
the worst case the complete prefix of A is exponentially larger than A, and so
“linear time in the size of the complete prefix” may mean “exponential time
in the size of A”.

The same results (PSPACE-completeness with A as input, linear time with
the complete prefix as input) hold for the local state reachability problem:
Given a product A and a local state s of the ith component, decide if there
is a reachable global state s = 〈s1, . . . , sn〉 such that si = s. The proof is a
simple reduction from and to the executability problem.

Let us now examine the problem of deciding if a global state is reachable.
If the input is the product A, then the problem is again PSPACE-complete,
as can be easily shown by mutual reduction to the executability problem or
by a slight modification of the proof of Thm. 3.24 on p. 36. But if the input
is the complete prefix we have:

5.1 Complete Prefixes 77

Proposition 5.5. The following problem is NP-complete:
Given: A complete prefix of a product A, a global state s.
Decide: Is s reachable?

Proof. To prove membership in NP, we start by observing that in an oc-
currence sequence of the complete prefix no event can occur twice. This can
be easily proved by structural induction on the causal order: minimal events
w.r.t. the order can obviously occur at most once, and if the immediate causal
predecessors of an event can occur at most once, then so can the event itself.
Now, if s is reachable, we can guess a sequence of events of the complete pre-
fix, check that it is an occurrence sequence and that it leads to a reachable
marking labeled by s, and do all this checking in polynomial time.

NP-hardness can be proved by means of a reduction from the proposi-
tional logic satisfiability problem (SAT). The proof is very similar to that of
Prop. 3.21 on p. 31. ¤

Finally, we can consider a third version of the global reachability problem
in which the input is the transition system TA. Since the states of TA are the
global states of A, in this case the problem can be solved in linear time.

An interesting way of interpreting these results is to consider the product
A, its complete prefix, and the transition system TA as three representations
of the set of reachable global states. The product A is a very succinct rep-
resentation, while TA is very “verbose”. The complete prefix lies in between.
The price to pay for a succinct representation is a higher cost in retriev-
ing information. In the case of A, almost any interesting information has
“PSPACE-complete cost” (it is well known that most problems of interest
are PSPACE-complete for products). In the case of TA, almost any kind of
information (for instance, deciding any property expressible in CTL and LTL,
two popular temporal logics) has polynomial cost in the size of TA. Again, the
complete prefix lies in between. If we are interested in local properties, i.e., in
properties concerning a bounded number of components, then retrieving the
information has polynomial cost. For instance, deciding the executability of
one transition has linear cost, and deciding the mutual exclusion of two local
states has quadratic cost. However, global information, like the reachability
of a global state, has “NP-complete cost”.

It is important to notice the difference between “complete prefix” (as de-
fined in this work) and “prefix in which every reachable state is represented”.
Let us call the latter a full prefix. While every complete prefix is full, not ev-
ery full prefix is complete. Intuitively, when constructing a complete prefix the
only information we have about which global states are reachable comes from
the states St(e) associated with the events. These are the only global states
that are explicitly constructed and stored by a search procedure. In particu-
lar, when adding a new event e, the search procedure cannot check whether
St(e) is already represented in the prefix constructed so far; it can only check
whether St(e) is also the state associated with some other event. “Minimal”

78 5 More on the Executability Problem

full prefixes can be constructed by performing this check (reachability of a
global state can be done using Prop. 5.5), and can therefore be much more
compact representations of the set of reachable states than complete prefixes.
However, retrieving information from them is more costly: the second author
has shown that certain nested local state reachability problems with full pre-
fixes as input are PSPACE-complete. The exact lower bound of these nested
local state reachability problems for the much less succinct complete prefixes
is an open question.

By Prop. 5.5 we should not expect to find polynomial algorithms for the
global reachability problem with a complete prefix as input. Let us however
give a rough estimate of the complexity of a naive exponential algorithm.
Assume that the product A has k components, and that its complete prefix has
size n. Assume further that s = 〈s1, . . . , sk〉. By Thm. 5.3 and Prop. 3.14 on
p. 23, s is reachable if and only if the complete prefix contains a set {p1, . . . , pk}
of places such that

(1) pi and pj are concurrent for every 1 ≤ i < j ≤ k, and
(2) pi is labeled by si for every i ∈ {1, . . . , k}.
To check if such a set exists, we proceed in two steps. First, in a preprocessing
step we compute all concurrent pairs of places. It is easy to see that this can
be done in O(n2) time (and space). Then, for each subset {p1, . . . , pk} we
check (1) and (2) in time O(k2) by going through the places pairwise. Since
there are O((n/k)k) possible subsets, the existence of a set satisfying (1) and
(2) can be decided in O(nk/kk−2) time with a O(n2) preprocessing step. See
also Sect. 3.4, especially Prop. 3.20 on p. 29.

The important observation here is that the algorithm is only exponential
in the number k of components, which is usually much smaller than n.

5.1.2 Reducing Verification Problems to SAT

In the rest of the section we show that the reachability problem with a com-
plete prefix as input can be reduced in an elegant way to SAT. In fact, similar
reductions can be given for many other problems. These reductions are im-
portant, because they allow us to apply SAT solvers to reachability problems.

In a first preprocessing step we remove all terminals and their output
places from the complete prefix. The reason is Thm. 5.3: since all global states
are reachable by configurations containing no terminals, they can be safely
removed.

The heart of the result is the construction of a formula φA over a set of
Boolean variables containing a variable e for every event e, and a variable p for
every place p of the preprocessed complete prefix. In the following we present
this construction, but without paying much attention to efficiency questions;
many encoding tricks can be used to reduce the size of φA.

An assignment to the variables of φA determines and is completely deter-
mined by the pair (E,P), where E and P are the sets of events e and places

5.1 Complete Prefixes 79

p such that the variables e and p are set to true by the assignment, respec-
tively. So we identify an assignment and its associated pair, and speak of “the
assignment (E,P)”. The formula φA has the following fundamental property:

An assignment (E,P) satisfies φA if and only if E is a configuration,
and P is the marking reached by any realization of E.

So in φA we can interpret the variable e as “the event e has occurred”, and
the variable p as “the place p is marked”.

The formula φA is a conjunction of formulas φp, one for each place p of
the preprocessed complete prefix. Assume that p has an input event e and
output events e1, e2, . . . , en. We set

φp =

((
n∨

i=1

ei

)
→ e

)
∧

 ∧

1≤i<j≤n
¬(ei ∧ ej)

 ∧

(
p ↔ (e ∧

n∧

i=1

¬ei)

)

The first conjunct expresses that if any of e1, . . . , en have occurred, then e
must also have occurred. The second conjunct expresses that at most one of
e1, . . . , en have occurred. Finally, the third conjunct expresses that p is marked
if and only if e has occurred and none of e1, . . . , en has occurred. So, if an
assignment (E,P) satisfies the first two conjuncts for every place p, then E
is causally closed and conflict-free, and therefore a configuration (Prop. 3.18).
Moreover, P is the marking reached by any realization of C.

The preprocessed complete prefix may contain places having no input
event, no output events, or (in pathological cases) having neither input nor
output events. If a place has no input event, then its associated formula is
obtained by replacing all occurrences of the input event variable e in the for-
mula above by true. If it has no output events, then all occurrences of output
event variables ei are replaced by false. In particular, if the place has neither
input nor output events we get φp = p, expressing the fact that the place p
is marked in all configurations.

We illustrate the construction by means of an example.

Example 5.6. Consider the Petri net of Fig. 5.2. It is easy to see that it is the
Petri net representation of a product with two components, one with states
labeled si, and one with states labelled ri. Figure 5.3 shows the complete
prefix for the ≺dsl strategy. The name of a node (place or event) is written
inside the node, whereas its label is written next to it. As usual, the names of
the events correspond to the order in which they are added to the unfolding.
For the names of the places we have chosen Greek letters. Events 5 and 7 (that
are ignored by the encoding together with their output places) are terminals
with event 1 as their companion. Table 5.2 shows the conjuncts φp of φA for
every p ∈ {α, . . . , ζ, κ, λ, µ, ν}. (The places θ, ι, and ξ are removed by the
preprocessing step.)

With the help of the formula φA we can reduce many safety problems to
the satisfiability problem of a SAT formula. We give some examples:

80 5 More on the Executability Problem

s1 r1

a c e

r2s2

b d f

r3s3

Fig. 5.2. A Petri net model

c

s2

s3

λ

1

γ δ

3 2 4

5 6

θ

8 9 7

ξνµ

βs1 r1

c

bea

s1 r1

r2 ι κs2 r3

s3s1 r2

α

r2s2

ζ ε η

d

a fb

Fig. 5.3. A complete prefix of the Petri net of Fig. 5.2

5.1 Complete Prefixes 81

Table 5.2. The conjuncts of φA for the complete prefix of Fig. 5.3

p φp

α α ↔ ¬1
β β ↔ ¬1
γ ((3 ∨ 4) → 1) ∧ ¬(3 ∧ 4) ∧ (γ ↔ (1 ∧ ¬3 ∧ ¬4))
δ ((2 ∨ 6) → 1) ∧ ¬(2 ∧ 6) ∧ (δ ↔ (1 ∧ ¬2 ∧ ¬6))
ε ε ↔ 2
ζ ζ ↔ 3
η (6 → 4) ∧ (η ↔ (4 ∧ ¬6))
κ ((8 ∨ 9) → 6) ∧ ¬(8 ∧ 9) ∧ (κ ↔ (6 ∧ ¬8 ∧ ¬9))
λ λ ↔ 6
µ µ ↔ 8
ν ν ↔ 9

• Is 〈s2, r3〉 a reachable state of A?
This is the case if and only if some reachable marking of the complete
prefix marks a place labeled by s2 and a place labeled by r3. This is the
case if and only if the formula

φA ∧ (γ ∨ κ) ∧ λ

is satisfiable.
• Does every reachable marking mark either s1 or r2?

This is the case if and only if the formula

φA → ((α ∨ ζ ∨ µ) ∨ δ)

is valid, i.e., if and only if its negation is unsatisfiable.
• Can the Petri net deadlock?

This is an interesting property. By definition, the Petri net of Fig. 5.2 can
deadlock if and only if some reachable marking does not enable any transi-
tion. Assume that for every transition t ∈ {a, . . . , f} we have constructed
a formula enables(t) which holds for an assignment (P,E) if and only if
P enables some event labeled by t. Then, the net is deadlock-free if and
only if the formula

φA → (enables(a) ∨ enables(b) ∨ . . . ∨ enables(f))

is valid.
We explain how to construct the formula enables(t) by means of an exam-
ple. The formula enables(c) should be true for the assignments that mark
a place labeled by s1 and a place labeled by r1. So we have:

enables(c) = (α ∨ ζ ∨ µ) ∧ (β ∨ ε) .

82 5 More on the Executability Problem

The formula φA can be seen as a database that can be queried in order to
solve different problems. This approach has been studied from an experimental
point of view in different papers (see the Bibliographical Notes at the end of
the chapter). The main conclusion is that the bottleneck of the approach lies in
the construction of the complete prefix. In practice, the time required for the
construction of the complete prefix is usually far larger than the time required
by a state-of-the-art SAT solver to solve the SAT instances corresponding to
typical queries.

5.2 Least Representatives

In this section we present another total adequate strategy due to Niebert and
Qu. It can be seen as a way of refining the Parikh strategy so that it becomes
a total order. Historically, this strategy is older than the previous one we
presented in Sect. 4.5.2 (see Bibliographical Notes). Its main feature is that
it does not use the product structure, i.e., it is not a distributed strategy.

Recall that a trace is an equivalence class of words. The classical way to
deal with equivalence classes is to assign them representatives. A function rep
that assigns to each trace [w] a representative rep([w]) ∈ [w] can be used
to lift an order ≺ on T∗ to an order ≺r on traces as follows: [w] ≺r [w′]
if rep([w]) ≺ rep([w′]). In this section we follow this path and choose as
representative of a trace its smallest word according to the lexicographic order.

Definition 5.7. Let [w] be a trace. The least lexicographic representative of
[w], denoted by [w]l, is defined as follows: [w]l ∈ [w], and [w]l ≺l w′ for
every w′ ∈ [w]\{[w]l}, where ≺l denotes the lexicographic order on sequences
of global transitions. The order ≺rl on traces is defined by [w] ≺rl [w′] if
[w]l ≺l [w′]l.

Notice that ≺rl is not a strategy, because it does not refine the prefix order,
as shown by the following example.

Example 5.8. If the transitions a and b are independent, then we have ab ≺l b
and so [ba] ≺rl [b], even though [b] is a prefix of [b] [a] = [ba].

However, we can use it to refine the Parikh strategy.

Definition 5.9. The Parikh-lexicographic strategy ≺PL on [T∗] is defined as
follows: [w] ≺PL [w′] if [w] ≺P [w′] or [w] =P [w′] and [w] ≺rl [w′].

Since the lexicographic order on words is total, so is the Parikh-lexicographic
strategy. We prove that it is not only total, but also adequate. We start with
a basic property of the lexicographic representatives.

Lemma 5.10. If [ww′]l = ww′ then [w]l = w.

5.2 Least Representatives 83

Proof. We prove the contrapositive. Assume [w]l = v and v 6= w. Then
v ≡ w, which implies that w and v have the same length, and v ≺l w. It
follows vw′ ≡ ww′ and vw′ ≺l ww′, and so [ww′]l 6= ww′. ¤

The second lemma shows the relation between [wt]l and [w]l, where t is
a global transition. Notice that [w]l = w′ does not necessarily imply [wt]l =
w′ t. For instance, if a and b are independent then we have [b]l = b and
[ba]l = ab 6= [b]la.

Lemma 5.11. Let [w] be a trace and let t be a transition. Then there ex-
ist words w1,w2 ∈ T∗ such that [w]l = w1 w2, [wt]l = w1tw2 and t is
independent of every transition occurring in w2.

Proof. Let w1,w2 ∈ T∗ be the unique words such that [wt]l = w1 tw2

and w2 contains no occurrence of t. Since wt ≡ w1 tw2, the transition t is
independent of every transition of w2. So in order to prove the result it only
remains to show [w]l = w1 w2. For this, let w′

1 w′
2 be the words satisfying

[w]l = w′
1 w′

2, |w′
1| = |w1| and |w′

2| = |w2|. In the rest of the proof we
show that w′

1 = w1 and w′
2 = w2. We start by showing w′

1 = w1.

Claim 1: w′
1 ¹l w1. We first prove w′

1 w′
2 t ≡ w1 w2 t:

w′
1 w′

2 t = [w]l t (w′
1 w′

2 = [w]l)
≡ wt (w ≡ [w]l)
≡ [wt]l (wt and [wt]l are elements of [wt])
= w1 tw2 (def. of w1, w2)
≡ w1 w2 t (t is independent of every transition of w2)

Now we have:

w′
1 w′

2 t ≡ w1 w2 t
⇒ w′

1 w′
2 ≡ w1 w2

⇒ [w]l ≡ w1 w2 (w′
1 w′

2 = [w]l)
⇒ [w]l ¹l w1 w2 (def. of least representative)
⇒ w′

1 w′
2 ¹l w1 w2 (w′

1 w′
2 = [w]l)

⇒ w′
1 ¹l w1 (w1 and w′

1 have the same length)

Claim 2: w1 ¹l w′
1. Since w1 and w′

1 have the same length, it suffices to prove
w1 v ¹l w′

1 v′ for some words v and v′. We prove w1 tw2 ¹l w1
′w2

′ t.

w ≡ [w]l (w and [w]l are elements of [w])
⇒ wt ≡ [w]l t
⇒ [wt]l ¹l [w]l t (def. of least representative)
⇒ w1 tw2 ¹l w1

′w2
′ t (w1 tw2 = [wt]l, w′

1 w′
2 = [w]l)

By Claims 1 and 2, and since the lexicographic order is total, we get
w1 ¹l w′

1. Now we prove w2 = w′
2.

84 5 More on the Executability Problem

Claim 3: w′
2 ¹l w2. In Claim 1 we proved w′

1 w′
2 ¹l w1 w2. Since w1 = w′

1,
we get w′

1 w′
2 ¹l w′

1 w2, and the claim follows.

Claim 4: w2 ¹l w′
2. In Claim 1 we proved w1 w2 t ≡ w′

1 w′
2 t. Now we have:

w1 w2 t ≡ w′
1 w′

2 t
⇒ w1 w2 t ≡ w1 w′

2 t (w′
1 = w1)

⇒ w2 ≡ w′
2

⇒ w1 tw2 ≡ w1 tw′
2

⇒ w1 tw2 ¹l w1 tw′
2 ([wt]l = w1 tw2, def. of least representative)

⇒ w2 ¹l w′
2

By Claims 1 and 2, and since the lexicographic order is total, we get
w2 ≺l w′

2. ¤

We can now proceed to prove the result.

Theorem 5.12. The Parikh-lexicographic strategy on traces is adequate and
total.

Proof. Totality follows immediately from the definition. We show that the
strategy is preserved by extensions, which by Prop. 4.42 implies that it is
adequate. Assume [w] ≺PL [w′]. We show that [w] [w′′] ≺PL [w′] [w′′] holds
for every trace [w′′]. It suffices to consider the case in which w′′ has length 1,
since the result can then be easily proved by induction on the length of w′′.
So we assume that w′′ = t for some transition t and prove [wt] ≺PL [w′ t].

If [w] ≺P [w′], then we have [wt] ≺P [w′ t] (recall that the Parikh strategy
is adequate), and we are done. So we consider the case in which [w] =P [w′]
and [w] ≺l [w′], i.e, [w]l ≺l [w′]l. Without loss of generality we can assume
[w]l = w and [w′]l = w′. Moreover, [w] =P [w′] implies [wt] =P [w′ t], and
so in order to prove [wt] ≺PL [w′ t] it suffices to show [wt] ≺l [w′ t], i.e.,
[wt]l ≺l [w′ t]l. So, summarizing, we can assume w ≺l w′ and it suffices to
prove [wt]l ≺l [w′ t]l.

Since [w] =P [w′], the words w and w′ have the same length. So, since
w ≺l w′, there are words w,v,v′ ∈ T∗ and transitions a ≺l b such that

w = wav and w′ = wbv′ (5.1)

Moreover, by Lemma 5.11 there are words w1,w2,w′
1,w

′
2 ∈ T∗ such that:

[wt]l = w1 tw2 and [w′ t]l = w′
1 tw′

2 (5.2)

w = w1 w2 and w′ = w′
1 w′

2 (5.3)

w2 t ≡ tw2 and w′
2 t ≡ tw′

2 (5.4)

Observe that (5.1) and (5.3) give two different decompositions of w and w′.
To prove [wt]l ≺l [w′ t]l we consider two cases:

5.2 Least Representatives 85

• |w| < |w1|. By (5.1) and (5.3) there are (possibly empty) words v1,v′1 ∈
T∗ such that

wav1 = w1 and wbv′1 = w′
1 (5.5)

Since a ≺l b we have

[wt]l
(5.2)
= w1 tw2

(5.5)
= wav1 tw2 ≺l wbv′1 tw′

2

(5.5)
= w′

1 tw′
2

(5.2)
= [w′ t]l

• |w| ≥ |w1|. By (5.1) and (5.3) there are (possibly empty) words v2,v′2 ∈
T∗ such that

w2 = v2 av and w′
2 = v′2 bv′ (5.6)

Moreover, again by (5.1) and (5.3), these words satisfy

w1 v2 = w′
1 v′2 (5.7)

Claim: w1 t v2 av ¹l w′
1 t v′2 av.

It suffices to prove w1 t v2 av ≡ w′
1 t v′2 av and [w1 t v2 av]l =

w1 t v2 av. For the first part:

tw2 ≡ w2 t (5.4)
⇒ t v2 ≡ v2 t (by (5.6) and (5.4) t is independent

of every transition in v2)
⇒ w1 t v2 ≡ w1 v2 t
⇒ w1 t v2 ≡ w′

1 v′2 t (by 5.7)
⇒ w1 t v2 ≡ w′

1 t v′2 (by (5.6) and (5.4) t is independent
of every transition in v′2)

⇒ w1 t v2 av ≡ w′
1 t v′2 av

For the second part:

[w1 t v2 av]l
(5.6)
= [w1 tw2]l

(5.2)
= w1 tw2

(5.6)
= w1 t v2 av

Now we have:

[wt]l
(5.2)
= w1 tw2

(5.6)
= w1 t v2 av

(Claim)

¹l w′
1 t v′2 av

≺l w′
1 t v′2 bv′

(5.6)
= w′

1 tw′
2

(5.2)
= [w′ t]l

¤

86 5 More on the Executability Problem

5.3 Breadth-First and Depth-First Strategies

The two most popular classes of strategies for transition systems are the
breadth-first and depth-first strategies. Loosely speaking, a breadth-first strat-
egy gives priority to short histories over long ones, while a depth-first strategy
gives priority to extending a branch of the final prefix over generating other
branches. Breadth-first strategies are good for finding the shortest history sat-
isfying some property, while depth-first strategies are the key to many efficient
algorithms.

We have introduced two total strategies that are complete for the scheme
of Def. 4.35 on p. 57: the distributed version of the size-lexicographic strategy
(Def. 4.51 on p. 65) and the Parikh-lexicographic strategy (Def. 5.9). In this
section we study the question of whether total strategies exist that are not
only complete, but also breadth-first or depth-first. We shall see that the
answers are positive and negative, respectively.

5.3.1 Total Breadth-First Strategies

Let A be a transition system with T as set of transitions and let ≺ be a total
strategy on T ∗. Recall that ≺ induces an order on the events of the unfolding
of A. We say that ≺ is breadth-first if |H(e)| < |H(e′)| implies e ≺ e′ for
any two events e, e′. The generalization to products is immediate. Let A be a
product with T as set of global transitions, and let ≺ be a total strategy on
[T∗]. We say that ≺ is breadth-first if |H(e)| < |H(e′)| implies e ≺ e′ for any
two events e, e′.

Recall that the size strategy ≺s (Def. 4.44 on p. 63) induces the order on
events given by: e ≺s e′ if and only if |H(e)| < |H(e′)|. So a total strategy
is breadth-first if it refines the size strategy. Since the Parikh-lexicographic
strategy refines the Parikh strategy (Def. 4.45 on p. 64), which in turn refines
the size strategy, the Parikh-lexicographic strategy is breadth-first.

Distributed strategies (Def. 4.49 on p. 65) are not breadth-first, because,
loosely speaking, they compare the projections of two traces without first
comparing their sizes. But this can be easily changed. Consider the strategy
that gives priority to the shortest of two given traces, and, if the traces have
the same length, gives priority to the smallest of the two w.r.t. the size-
lexicographic strategy. This strategy is still total and breadth-first.

5.3.2 Total Depth-First Strategies

We first formalize the notion of depth-first strategy for transition systems.

Definition 5.13. Let A be a transition system with T as set of transitions
and let ≺ be a total strategy on T ∗. We say that ≺ is depth-first if it satisfies
the following property for any three events e, e′, e′′ of the unfolding: if e#e′

and e ≺ e′, then e < e′′ implies e′′ ≺ e′.

5.3 Breadth-First and Depth-First Strategies 87

So, intuitively, a depth-first strategy extends existing branches of the cur-
rent prefix before generating new ones. In the case of products, branches cor-
respond to configurations, and extending a branch corresponds to extending a
configuration with a new event. In the transition system case, a configuration
C can be extended by an event e only if e′ < e for every e′ ∈ C. In the product
case this is no longer true: C can be extended by e only if either e′ < e or
e′ co e hold for every e′ ∈ C. This suggests that, after adding one event e, a
depth-first strategy should give priority to the events that are causally related
or concurrent to e over the events that are in conflict with e. More formally,
one is tempted to define depth-first strategies for products as follows:

A total strategy ≺ on [T∗] is depth-first if it satisfies the following
property for every three events e, e′, e′′: if e#e′ and e ≺ e′, then e < e′′

implies e′′ ≺ e′ and e co e′′ implies e′′ ≺ e′.

Unfortunately, this definition is inconsistent, in the sense that many products
have no depth-first strategies at all. The following example shows one of them.

Example 5.14. Consider a product with two components. The first component
can choose between transitions a and b, and the second one between transitions
c and d. There are no synchronization constraints, and so these choices are
independent of each other. It is easy to see that the full unfolding contains

s1 r1

a b c d

s2 s3 r2 r3

T = {〈a, ε〉 , 〈b, ε〉 , 〈ε, c〉 , 〈ε, d〉}
Fig. 5.4. A product without depth-first strategies according to the first definition

four events, one for each global transition. Call these events ea, eb, ec, and ed,
respectively. We have ea#eb and ec#ed, while all other pairs of events are
concurrent.

Assume there exists a depth-first strategy ≺. We can assume w.l.o.g. that
ea ≺ eb and ec ≺ ed. Then, since ea co ed and ec co eb hold, we have ed ≺ eb
and eb ≺ ed, contradicting that ≺ is an order.

The lesson learned from this example is that, after exploring an event e, we
cannot always give priority to events concurrent with e over events in conflict
with e. Loosely speaking, strategies cannot satisfy “co before #”. On the

88 5 More on the Executability Problem

other hand, depth-first strategies must definitely give priority to the causal
descendants of an event over the events in conflict with it, i.e., they must
satisfy “< before #”. It follows that strategies cannot satisfy “co before <”
either, because “co before <” and “< before #” imply together “co before
#”.

We now investigate the possibility of defining “< before co”. That is,
causal successors are given priority over both concurrent events and events in
conflict.

Definition 5.15. A total strategy ≺ on [T∗] is depth-first if it satisfies the
following properties for every three events e, e′, e′′:

(1) if e#e′, e ≺ e′, and e < e′′, then e′′ ≺ e′; and
(2) if e co e′, e ≺ e′, and e < e′′, then e′′ ≺ e′.

Let us compute the order in which these depth-first strategies would ex-
plore events when applied to the example of Fig. 4.6 on p. 59.

Example 5.16. Consider again the executability problem for G = {i} in the
product of Fig. 4.6 on p. 59. The unfolding is shown in Fig. 4.8 on p. 61.
We consider a search procedure based on a depth-first strategy as defined in
Def. 5.15. Assume that the strategy gives priority to event 1 over event 2
(the other possibility is analogous). The next event cannot be 2, because it is
in conflict with 1. So the next event must be 3 or 4. Both cases are similar,
because after adding 3 the next event must be 4, and vice versa. The search
procedure continues with 7 and 10 (or vice versa), and then with 11. At this
point the procedure can stop, since it has found a successful terminal.

The depth-first strategy performs in this example better than the size-
lexicographic or Parikh-lexicographic strategies: it generates only six events
instead of 11.

Definition 5.15 looks attractive, and for some years the problem of whether
these strategies were complete for the search scheme of Def. 4.35 on p. 57
remained open. Unfortunately, the answer to this question is negative. We
prove this by showing that any search procedure based on the search scheme
of Def. 4.35 and a depth-first strategy of Def. 5.15 returns the wrong answer
to the following instance of the executability problem: Can transition i of the
product of Fig. 5.5 be executed? The answer is “yes” because, for instance,
the sequence bd i is a global history of the product. However, every search
procedure of this class returns “no”.

We claim that every search procedure of the class produces either the final
prefix shown in Fig. 5.7 or a symmetric one. Since b and d are the only two
global transitions enabled at the initial global state, the procedure must start
by exploring either event 1 or event 12. Due to the symmetry of the product,
both cases are similar, and so w.l.o.g. we can assume that event 1 is chosen.
After that, the order in which events can be explored is almost completely
determined by the depth-first condition. The procedure must continue with

5.3 Breadth-First and Depth-First Strategies 89

T = {a = 〈a1, a2, a3, ε〉 ,b = 〈b1, b2, ε, ε〉 , c = 〈ε, c2, c3, c4〉 ,

G = {i}

s1

b1 a1

s2

t1

b2 a2

f1
t2

s3 t3

t4

h2c2

g2
e1

u4

u3

u2

u1

d3

f3

e3

a3i1 i4

v1

v3

s4

d4c4

h4
g4

v2

v4

c3

g = 〈ε, g2, ε, g4〉 ,h = 〈ε, h2, ε, h4〉 , i = 〈i1, ε, ε, i4〉}
d = 〈ε, ε, d3, d4〉 , e = 〈e1, ε, e3, ε〉 , f = 〈f1, ε, f3, ε〉 ,

Fig. 5.5. An instance of the executability problem

event 2, because 2 is a causal descendant of 1, and 12 is not. Event 2 is
followed by event 3 and then 4 (both have priority over event 12 because they
are causally related to event 2, which is in conflict with event 12). Event 5
may or may not be explored next, but in fact the moment at which it is added
is irrelevant, since whenever it is added it is marked as a terminal event:

St(5) = 〈s1, t1, u2, v2〉 = St(1)

The search procedure continues with events 6, 7, and then with events 8 and
9 (or 9 and 8). Finally, it explores events 10, 11, and 12, not necessarily in
this order, but marking all of them as terminals, because:

St(10) = 〈s1, t1, u2, v2〉 = St(1)
St(11) = St(12) = 〈s2, t2, u1, v1〉 = St(6)

No further events can be added, and so, since no event labeled by i is ever
explored, the search procedure wrongly claims that i is not executable.

Our examples indicate that there does not seem to be a simple way of
generalizing depth-first strategies to the case of products while preserving
completeness. Any other candidate one might come up with should be tested
on the example of Fig. 5.5. Consider for instance the following approach. Since
in products with only one component the sets T and T of local and global
transitions coincide, we can define depth-first strategies on T∗ as in Def. 5.13.
Now, we can call a strategy ≺ on [T∗] depth-first if ≺=≺ddf for some depth-
first strategy ≺df on T∗. In other words, we define depth-first strategies for
products as the distributed strategies obtained from depth-first strategies for
transition systems. While we do not know if all these strategies also fail on
the example of Fig. 5.5, we can show that some of them do. Consider the

90 5 More on the Executability Problem

u1

i
f

e

c a

g

db

h

t1s1

s2 v2

t2 u2

s3

u4

u3 t3

v3

t4

s4 v4

v1

Fig. 5.6. Petri net representation of the product of Fig. 5.5

lexicographic strategy ≺l on T∗. Clearly, ≺l is a depth-first search strategy on
T∗. Table 5.3 shows the projections onto the four components of the product
of the event histories, sorted according to the strategy ≺dl . The final prefix is
the one of Fig. 5.7.

Notice that ≺dl is based on two arbitrary orders: the order of the compo-
nents of the product and the order of the global transitions. It is not difficult
to see that, as long as the order on global transitions is the alphabetical order,
the final prefix remains unsuccessful for any order of the components.1 If we
change the order on global transitions, then we can have a final prefix that
contains i. For instance, if we modify the alphabetical order by declaring that
b is smaller than a, and keep the order on the components, then the first two
events generated by the search procedure are labeled by d and b enabling
an event labelled with i, which is then bound to be added some events later.
However, finding the right order on transitions seems to require deep insight
into the semantics of the product.

1 For another order of the components the final prefix may differ from the one
shown in Fig. 5.7, but it does not contain any event labeled by i.

5.4 Strategies Preserved by Extensions Are Well-Founded 91

u1 v1t1

s3

2

t2

1011

t2

1

3

56

7

89

a

gf

db

c

he

db

s1

u3

4

12 db

u2 v2s2

u4t3

s1 t1 u1 v1

v2t2s2

t4 v3

v1u1t1s1

s2 u2 v2

u2

Fig. 5.7. Final prefix of the product of Fig. 5.5

5.4 Strategies Preserved by Extensions Are
Well-Founded

We have defined an adequate strategy on [T∗] as a well-founded strategy that
is preserved by extensions (see Def. 4.41 on p. 62). In this section we show a
result due to Chatain and Khomenko, stating that every order preserved by
extensions is necessarily well-founded. So in fact the well-foundedness condi-
tion of Def. 4.41 on p. 62 is redundant.

92 5 More on the Executability Problem

Table 5.3. Projections of event histories sorted according to ≺d
l

Event T1 T2 T3 T4

1 d d

2 a a da d

3 a ag da dg

4 af a daf d

5 af ag dafd dgd

6 afb agb daf dg

7 afb agbc dafc dgc

8 afb agbch dafc dgch

9 afbe agbc dafce dgc

10 afbe agbc dafced dgchd

11 afbeb agbchb dafce bf

12 b b

The proof makes use of the theory of well-quasi-orders.

Definition 5.17. An order ≺ on a set X is a well-quasi-order if every
infinite subset Y ⊆ X contains an infinite ≺-chain, i.e., an infinite set
{y1, y2, . . .} ⊆ Y such that y1 ≺ y2 ≺ y3 ≺

The following lemma presents two basic properties of well-quasi-orders.

Lemma 5.18. (1)Well-quasi-orders are well-founded.
(2) If ≺ is a well-quasi-order and ≺′ refines ≺, then ≺′ is also a well-quasi-

order.

Proof. (1) We prove the contrapositive. Let ≺ be a non-well-founded order
on a set X. Then there is an infinite descending chain x1 Â x2 Â x3 Â
But this implies that the set Y = {x1,x2,x3, . . .} contains no infinite ≺-chain,
and so ≺ is not a well-quasi-order.

(2) If ≺′ refines ≺ then every ≺-chain is also a ≺′-chain. ¤

Lemma 5.18 suggests a way to prove that a given order is well-founded: show
that it refines some well-quasi-order. This is the way we proceed, choosing the
subword order (defined below) as well-quasi-order. (The fact that the subword
order is a well-quasi-order is known as Higman’s lemma.)

In the rest of the section we

• introduce the subword order on T∗ (Def. 5.19),
• lift it to a subtrace order on [T∗], the set of traces (Def. 5.20),
• show that the subtrace order is a well-quasi-order (Lemma 5.21), and
• prove that every strategy preserved by extensions refines the subtrace order

(Lemma 5.22).

5.4 Strategies Preserved by Extensions Are Well-Founded 93

Definition 5.19. Given w,w′ ∈ T∗ such that w 6= w′, we say that w
is a subword of w′, denoted by w ≺sw w′ if w 6= w′ and there exist
words u1, . . . ,uk,v0, . . . ,vk ∈ T∗ such that w = u1 u2 . . . uk and w′ =
v0 u1 v1 u2 . . . vk−1 uk vk.

Loosely speaking, w is a subword of w′ if it can be obtained from w′

through deletion of letters. It is easy to see that ≺sw is an order on words.
Higman’s lemma [63] states that the subword order is a well-quasi-order.

Both the subword order and Higman’s lemma can be lifted to traces.

Definition 5.20. Given [w], [w′] ∈ [T∗], we say that [w] is a subtrace of
[w′], denoted by [w] ≺st [w′] if v ≺sw v′ for some v ∈ [w] and v′ ∈ [w′].

Lemma 5.21. The subtrace relation is a well-quasi-order.

Proof. We first show that the subtrace relation is an order, i.e., irreflexive
and transitive (Def. 4.1 on p. 41). Transitivity follows immediately from the
transitivity of ≺sw. Irreflexivity follows from the fact that all the words of a
trace have the same length, while all subwords of a word w are shorter than
w. To show that ≺st is a well-quasi-order, take an arbitrary infinite subset
X ⊆ [T∗]. Then, the set X ′ of words contained in the elements of X is also
infinite. Since the subword order is a well-quasi-order, X ′ contains an infinite
chain w1 ≺sw w2 ≺sw w3 But then [w1] ≺st [w2] ≺st [w3] ¤

We can now prove the key lemma:

Lemma 5.22. Every strategy on [T∗] preserved by extensions refines the sub-
trace order.

Proof. Let ≺ be a strategy on [T∗] preserved by extensions. Let [w], [w′] ∈
[T∗] such that [w] ≺st [w′]. We show [w] ≺ [w′].

Assume w.l.o.g. w ≺sw w′. By the definition of the subword order,
there exist u1, . . . ,uk and v0, . . . ,vk such that w = u1 u2 . . . uk and w′ =
v0 u1 v1 u2 . . . vk−1 uk vk. We proceed by induction on k, with the convention
that if k = 0 then w is the empty word and w′ = v0. If k = 0, then w is a prefix
of w′, and so [w] ≺ [w′] because, by definition, strategies refine the prefix or-
der. If k > 0, then let w̃ = u1 u2 . . . uk−1 and w̃′ = v0 u1 v1 u2 . . . uk−1 vk−1.
By induction hypothesis, [w̃] ≺ [w̃′]. Since ≺ is preserved by extensions, we
have [w̃ uk] = [w̃] [uk] ≺ [w̃′] [uk] = [w̃′ uk]. Since ≺ refines the prefix order,
we have [w̃ uk] ¹ [w̃′ uk] [vk] (notice that vk may be empty). So, finally,

[w] = [w̃ uk] ≺ [w̃′ uk] ¹ [w̃′ uk] [vk] = [w′]

and we are done. ¤

The main result of the section follows easily:

94 5 More on the Executability Problem

Theorem 5.23. Every strategy on [T∗] that is preserved by extensions is also
well-founded.

Proof. Let ≺ be a strategy on [T∗] preserved by extensions. By Lemma 5.22,
≺ refines the subtrace order. By Lemma 5.21, ≺ refines a well-quasi-order.
By Lemma 5.18(2), ≺ is itself a well-quasi-order. By Lemma 5.18(1), ≺ is
well-founded. ¤

Corollary 5.24. A search strategy on [T∗] is adequate if and only if it is
preserved by extensions.

Bibliographical Notes

Complete prefixes were introduced by McMillan in [84], although not under
this name. There is rather substantial experimental evidence showing that
they are reasonably small for many concurrent systems. For instance, exper-
iments of this kind have been conducted in [84, 87, 40, 41, 39, 107]. Many
other papers have experimentally studied the complexity of different verifi-
cation problems with a complete prefix as input. The deadlock problem was
studied by McMillan in [84, 85], Melzer and Römer in [88], Heljanko in [58],
and Khomenko and Koutny in [70]. Esparza and Schröter studied the global
reachability problem in [42] (see also [109]). Both problems were studied by
Heljanko in [56, 58, 60] and by Khomenko in [69]. Heljanko also studies nested
local state reachability problems in compact “full prefixes” in [59].

These papers rely on different algorithmic techniques. In [84], McMillan
used a branch-and-bound technique. In [88], Melzer and Römer observed that
the deadlock problem (and in fact also the reachability problem) could be
solved using Integer Linear Programming, and obtained experimental results
using a commercial Integer Programming tool. Khomenko and Koutny de-
veloped in [70] a specialized algorithm for solving Integer Linear program-
ming problems, and showed that it was faster than the commercial package.
In [56, 58], Heljanko used a reduction to logic programs with stable model
semantics, another NP-complete problem. The search for stable models is
implemented by using the smodels system [96]. However, a SAT mapping
similar to the one shown in this section is immediate from these results as
remarked on p. 25 of Chap. 4.2 in [60]. In [42], Esparza and Schröter compare
the performance of different algorithms.

The Parikh-lexicographic strategy was defined by Niebert and Qu in [92].
It is very similar to a total adequate strategy of [40] that also compares two
traces in three steps, but differs from the Parikh-lexicographic strategy only
in the last one. There, instead of comparing the lexicographically smallest
representatives of the two traces, it compares their Foata normal forms.

5.4 Strategies Preserved by Extensions Are Well-Founded 95

The counterexample showing that depth-first strategies are not complete is
due to Esparza, Kanade, and Schwoon [38]. Theorem 5.23 (every strategy pre-
served by extensions is well-founded) is due to Chatain and Khomenko [23].

6

Search Procedures for the Repeated
Executability Problem

The repeated executability problem consists of deciding if some infinite history
of the system executes a goal transition infinitely often. We provide search
procedures for this problem. We start with the transition system case and
then continue with the generalization to products. As in the last section, we
give a search scheme for transition systems that is sound and complete for
every search strategy. Then, we generalize the search scheme to a scheme for
products, and show that the scheme yields a complete search procedure for
every adequate search strategy.

6.1 Search Scheme for Transition Systems

We fix a transition system A = 〈S, T, α, β, is〉 and a set of transitions R ⊆ T .
We wish to solve the problem of whether some infinite history of A executes
some transition of R infinitely often. We define the following search scheme.

Definition 6.1. Let ≺ be a search strategy on T ∗. An event e is feasible if
no event e′ < e is a terminal. A feasible event e is a terminal if there exists
a feasible event e′ ≺ e, called the companion of e, such that St(e′) = St(e)
and at least one of (a) e′ < e or (b) #R(e′) ≥ #R(e) holds, where #R(e)
denotes the number of occurrences of transitions of R in the history H(e).

A terminal is successful if it satisfies (a) and #R(e′) < #R(e) holds. The
≺-final prefix is the prefix of the unfolding of A containing the feasible events.

The intuition behind terminals of type (a) is easy. Let c be the computation
satisfying H(e′) c = H(e). Since St(e) = St(e′), we can repeat c infinitely
often. If #R(e′) < #R(e), then some transition of R occurs in c, and the search
is successful. If not, we can still label e as terminal because, loosely speaking,
for any infinite computation extending H(e) and containing a transition of R
infinitely often there is a corresponding computation extending H(e′).

Terminals of type (b) are a bit more delicate. The example below shows a
case in which they are required.

98 6 Search Procedures for the Repeated Executability Problem

Example 6.2. Consider the instance of the repeated executability problem
shown in Fig. 6.1(a). The transition system has the infinite computation
a (r c)ω, which executes an infinite number of transitions of R.

The final prefix for a breadth-first strategy ≺ (i.e., e ≺ e′ if and only if
|H(e)| < |H(e′)|) is shown in Fig. 6.1(b). The events are numbered in the order
in which they are added by the search procedure. Event 3 is not a terminal of
type (b), because even though 2 ≺ 3 holds, we have #R(2) = 0 < 1 = #R(3).
Event 4 is a terminal of type (b) with event 1 as the companion. Event 5 is
a terminal of type (a) with event 1 as companion. We have H(1) r c = H(5),
and so event 5 is a successful terminal because the computation r c contains
a transition of R.

We can now show that the search scheme obtained by dropping the condi-
tion #R(e′) ≥ #R(e) in the terminals of type (b) is no longer complete. The
new final prefix is shown in Fig. 6.1(c). This time event 3 is a terminal of type
(b) with event 2 as the companion. Event 4 is a terminal of type (b) with 1 as
companion. Both terminals are unsuccessful, and thus the search procedure
system is incomplete, i.e., even though the infinite computation a (r c)ω exists
the final prefix is not successful.

It is easy to see that the search scheme of Def. 6.1 is well-defined, finite,
and sound for every search strategy.

Proposition 6.3. The search scheme of Def. 6.1 is well-defined for every
strategy ≺. Moreover, the ≺-final prefix is finite.

Proof. Well-definedness is proved as in Prop. 4.9 on p. 45. In particular,
Lemma 4.8 on p. 45 (feasible events have histories of length at most |S|+ 1)
still holds: As usual, if |H(e)| > |S|+ 1 then there are events e′, e′′ such that
e′′ < e′ < e and St(e′′) = St(e′), and so e′ is a terminal of type (a). For sound-
ness, assume that a terminal e with companion e′ is successful. Since e′ < e,
some computation c satisfies H(e′) c = H(e). Since #R(e′) < #R(e), this c
contains some transition r ∈ R. Since St(e′) = St(e), the sequence H(e′) cω

is an infinite history containing infinitely many occurrences of r. ¤

Completeness is, as usual, a bit more delicate.

Theorem 6.4. The search scheme of Def. 6.1 is complete for every strategy.

Proof. Assume that A has an infinite history containing infinitely many oc-
currences of R-transitions, but the final prefix contains no successful termi-
nals. We derive a contradiction following the general scheme of the proof of
Thm. 4.11 on p. 46.

Witnesses. We call an event e of the unfolding of A a witness if #R(e) >
|S|+ 1. We make the following two observations:

6.1 Search Scheme for Transition Systems 99

r

s1

s3

s2

c

b

a

(a)

R = {r}

s1

s2 s3

s3 s2

1 2

3 4

s2

5

a

r

c

c

b

(b)

s1

s2 s3

s2

1 2

3

a

r c

b

s3

4

(c)

Fig. 6.1. An instance of the repeated executability problem (a), its corresponding
final prefix (b), and final prefix with the condition #R(e′) ≥ #R(e) dropped (c)

• A has a history containing infinitely many occurrences of transitions of R
if and only if the unfolding of A contains witnesses.
The only-if direction is obvious. For the if direction, we use the same argu-
ment as for soundness. Let e be a witness. Since #R(e) > |S|+ 1, the his-
tory H(e) contains more than |S|+ 1 occurrences of R-transitions. By the
pigeonhole principle, e has two distinct predecessors, say e′ and e′′, both
labeled with transitions of R, such that St(e′) = St(e′′). Assume w.l.o.g.
that e′′ < e′, and that c is the computation satisfying H(e′) = H(e′′) c.
Then H(e′′) cω is an infinite history containing infinitely many occurrences
of R-transitions.

• If e is a witness, then some predecessor of e is a terminal.
We have just seen that for every witness e there exist events e′′ < e′ < e
such that St(e′) = St(e′′). If e′ is feasible, then e′ is a terminal of type (a).
If e′ is not feasible, then, by the definition of feasibility, some predecessor
of e′ is a terminal.

100 6 Search Procedures for the Repeated Executability Problem

Since A has a history containing infinitely many occurrences of transitions of
R, the unfolding of A contains witnesses. Since the final prefix is unsuccessful,
each witness has an unsuccessful terminal in its past, which we call the spoiler
of the witness.

Minimal witnesses. Let em be a minimal witness w.r.t. the order ¿ defined as
in the proof of Thm. 4.11 on p. 46 (e¿ e′ if either l(e) < l(e′) or l(e) = l(e′)
and es ≺ e′s) and let es be its spoiler. Since es is an unsuccessful termi-
nal, it has a companion e′ ≺ es such that St(e′) = St(es). Moreover, since
es is unsuccessful, either it satisfies (a) and #R(e′) = #R(es), or it satis-
fies (b), and in both cases #R(e′) ≥ #R(es) holds. Since St(e′) = St(es),
the sequence H(e′) cs is also a history of A. Let e′m be the event satis-
fying H(e′m) = H(e′) cs. Since #R(e′) ≥ #R(es), we have #R(H(e′m)) =
#R(H(e′) cs) = #R(H(e′)) + #R(cs) ≥ #R(H(es)) + #R(cs) = #R(H(em))
and so #R(e′m) ≥ #R(em). But then, since em is a witness, so is e′m. Let e′s
be the spoiler of e′m.

Contradiction. This part is exactly as in the proof of Thm. 4.11 on p. 46.
Since both e′ < e′m and e′s < e′m hold, there are three possible cases, namely
e′s < e′, e′s = e′ and e′ < e′s, and all three lead to contradiction. ¤

As for the executability problem, one way to reduce the size of the final
prefix is to require the strategy ≺ to be a total order. However, in this case
the number of non-terminals of the final prefix may grow quadratically in the
number of states of A.

Theorem 6.5. If ≺ is a total order on T ∗, then the ≺-final prefix of Def. 6.1
has at most |S|2 non-terminal events.

Proof. Given an event e, if H(e) contains more than |S| occurrences of tran-
sitions of R, then there are events e1 < e2 ≤ e labeled by transitions of
R such that St(e1) = St(e2), and so e2 is a terminal. Therefore, for every
non-terminal event e of the final prefix we have #R(e) ≤ |S|.

We prove that for any state s ∈ S there are at most |S| non-terminal events
such that St(e) = s. Assume the contrary, and let e1, . . . , e|S|+1 be pairwise
different non-terminal events such that St(ei) = s for all 1 ≤ i ≤ |S|+1. Since
#R(ei) ≤ |S| for all 1 ≤ i ≤ |S|+ 1, by the pigeonhole principle there are two
non-terminal events ej 6= ek such that #R(ej) = #R(ek). Since ≺ is a total
order we have that either ej ≺ ek or ek ≺ ej . So either ej or ek is a terminal
of type (b), a contradiction.

Since for each state s ∈ S there are at most |S| non-terminal events such
that St(e) = s, the final prefix contains at most |S|2 non-terminal events. ¤

We can ask whether there exist search procedures such that the maximal
number of non-terminal events is linear in |S|, instead of quadratic. The answer
is affirmative. The nested-depth-first-search algorithm, due to Courcoubetis,
Vardi, Wolper, and Yannakakis, is a linear-time algorithm for the repeated

6.2 Search Scheme for Products 101

executability problem of transition systems. In a first phase, the algorithm uses
depth-first search to sort the transitions of the set R. Recall that depth-first
search traverses every transition twice: a first time when the search discovers
the transition, and a second time when it backtracks along the transition.
Transition t is defined to be smaller than t′ if the depth-first search backtracks
through t (visits t for the second time) before it backtracks through t′. In a
second phase, the algorithm conducts a depth-first search for each transition
t ∈ R in the order defined by the first search. This search, however, stops if t
is hit again, or if a state that has already been visited while searching from
smaller transitions is discovered. This guarantees that in the second phase
each transition is explored at most twice.1

It is a simple exercise to formulate the nested-depth-first search algorithm
as a search procedure. The crucial point for us is that the search scheme
underlying the nested-depth-first search algorithm is not correct for every
strategy: its correctness relies on properties of depth-first search. Unfortu-
nately, as mentioned in Sect. 5.3, depth-first search strategies do not lead to
complete search procedures in the case of products. In other words, a direct
generalization of the nested-depth-first-search algorithm to products does not
yield a correct search procedure.

6.2 Search Scheme for Products

We fix a product A = 〈A1, . . . ,An,T〉, where Ai = 〈Si, Ti, αi, βi, isi〉, and
a set of global transitions R ⊆ T. The problem to solve is whether some
infinite global history of A executes transitions of R infinitely often. We call
the elements of R (global) R-transitions, and call the events labeled by them
R-events.

We generalize the search scheme of Def. 6.1 to products. Following the ideas
introduced in Sect. 4.4, we replace St(e) by St(e), and H(e) by H(e). The
remaining question is how to generalize #R(e). Recall that in the transition
system case we defined #R(e) as the number of occurrences of transitions of
R in H(e).

Definition 6.6. Let e be an event, and let h be any history of the trace H(e).
We denote by #R([h]) the number of occurrences of R-transitions in h, and
define #R(e) = #R([h]).

Notice that #R(e) is well-defined because every transition occurs the same
number of times in all histories of H(e).

Example 6.7. Consider again the product of Fig. 2.2 on p. 7 with the Petri net
representation shown in Fig. 2.4 on p. 10, and choose R = {〈t1, ε〉}. Consider
the history trace [h], where
1 Actually, the nested-depth-first-search algorithm interleaves the two phases, but

this is not relevant for our discussion.

102 6 Search Procedures for the Repeated Executability Problem

h = 〈t1, ε〉 〈ε, u1〉 〈t3, u2〉 〈t5, ε〉 〈ε, u3〉 .

The trace [h] contains four elements, namely

〈t1, ε〉 〈ε, u1〉 〈t3, u2〉 〈t5, ε〉 〈ε, u3〉 ,
〈t1, ε〉 〈ε, u1〉 〈t3, u2〉 〈ε, u3〉 〈t5, ε〉 ,
〈ε, u1〉 〈t1, ε〉 〈t3, u2〉 〈t5, ε〉 〈ε, u3〉 , and
〈ε, u1〉 〈t1, ε〉 〈t3, u2〉 〈ε, u3〉 〈t5, ε〉 .

These four histories only differ in the order in which global transitions occur.
They all contain one single occurrence of R-transitions, and so #R([h]) = 1.

Furthermore, we have [h] = [h1,h2], where

h1 = 〈t1, ε〉 〈t3, u2〉 〈t5, ε〉 and h2 = 〈ε, u1〉 〈t3, u2〉 〈ε, u3〉 .

It is possible to compute #R([h]) directly from h1 and h2. If an R-transition
has k participants, then its occurrence is recorded in k components. If we
give each of these records a weight of 1/k, then we can compute #R([h]) as
the weighted sum over all components of [h] of the number of occurrences of
R-transitions. In our example, the occurrence of 〈t1, ε〉 is recorded only by the
first component, and so it has weight 1. If we had R = {〈t3, u2〉}, then each
of the occurrences of 〈t3, u2〉 in h would have weight 1/2.

We are now ready to define the search scheme for products.

Definition 6.8. Let ≺ be a search strategy on [T∗]. An event e is feasible if
no event e′ < e is a terminal. A feasible event e is a terminal if there exists a
feasible event e′ ≺ e, called the companion of e, such that St(e′) = St(e) and
at least one of (a) e′ < e or (b) #R(e′) ≥ #R(e) holds.

A terminal is successful if it satisfies (a) and #R(e′) < #R(e) . The ≺-
final prefix is the prefix of the unfolding of A containing the feasible events.

As happened in the executability case, this search scheme is well-defined
and sound for every strategy, but not complete for every search strategy. The
proof of well-definedness and soundness is so close to that of the transition
system case that we leave it as an easy exercise for the reader.

Example 6.9. Modify the product of Fig. 4.6 on p. 59 as follows: Turn each
transition ij into a self loop (i.e., set β(i1) = s5, . . . , β(i4) = v5). Then, transi-
tion i can occur infinitely often; for instance, a cdg h (i)ω is an infinite global
history of the new product. Set R = {i}, and run the search procedure con-
sisting of the search scheme of Def. 6.8 with a strategy that assigns priorities
to events according to the numbering shown in Fig. 4.8 on p. 61. This pro-
cedure marks events 10 and 8 as unsuccessful terminals. Event 8 has event 7
as companion, because #R(8) = 0 = #R(7), and similarly event 10 has event
9 as companion. So neither event 11 nor event 12 is a feasible event, and the
search procedure is unsuccessful.

6.2 Search Scheme for Products 103

As could be expected, the search scheme is however complete for adequate
strategies. Before proving it, we show it at work on an example.

Example 6.10. Consider again the product of Fig. 2.2 on p. 7 having the Petri
net representation shown in Fig. 2.4 on p. 10. We construct the final prefix
for R = {〈t1, ε〉} and the distributed size-lexicographic strategy, i.e., ≺=≺dsl.
We take the same order as in Ex. 5.2 on p. 74.

The final prefix is shown in Fig. 6.2. Notice that in this example it happens
to be identical to the complete prefix of Ex. 5.2 on p. 74 shown in Fig. 5.1
on p. 75 but this is of course not true in general. Events are numbered ac-
cording to the order in which they are added. Event 7 is a terminal because
St(7) = 〈s4, r3〉 = St(4), 4 ≺ 7, and 1 = #R(4) ≥ #R(7) = 0. To see that
4 ≺ 7 holds, consider the distributions of the history traces of both events:

H(4) = [〈t1, ε〉 〈t3, u2〉 , 〈ε, u1〉 〈t3, u2〉], and
H(7) = [〈t2, ε〉 〈t4, u2〉 , 〈ε, u1〉 〈t4, u2〉].

We start by comparing the first components. Since 〈t1, ε〉 is smaller than
〈t2, ε〉, no further comparisons are necessary, and we conclude H(4) ≺ H(7).
Since the events 4 and 7 are not causally related, event 7 is an unsuccessful
terminal.

Events 11 and 12 are terminals of type (a), both having event 4 as com-
panion. Event 11 is successful, because it is a causal successor of event 4, and
#R(4) = 1 < 2 = #R(11). Event 12 is an unsuccessful terminal.

Theorem 6.11. The search scheme of Def. 6.8 is complete for every adequate
strategy.

Proof. Let ≺ be an arbitrary adequate strategy. Assume that A has an infinite
global history containing infinitely many occurrences of R-transitions, but
the final prefix contains no successful terminals. We derive a contradiction,
following the general scheme of the proof of Thm. 4.11 on p. 46.
Witnesses. Let K be the number of reachable global states of A. We call an
event e of the unfolding of A a witness if #R(e) > nK + 1. We make the
following two observations:

• A has an infinite global history containing infinitely many occurrences of
transitions of R if and only if the unfolding of A contains witnesses.
The proof is very similar to that of the corresponding observation in
Thm. 6.4. The only-if direction is obvious. For the if direction, let e be
a witness. Since #R(e) > nK + 1, there is a component of A, say Ai,
that participates in at least K + 1 events labeled with transitions from R.
Since the i-events of a history are causally ordered, these K + 1 events
are pairwise causally ordered. By the pigeonhole principle, at least two of
them, say e′ and e′′, satisfy St(e′) = St(e′′). Assume w.l.o.g. that e′′ < e′

holds, and that c is the computation trace satisfying H(e′) = H(e′′) [c].
Then H(e′′) ([c])ω is an infinite history trace of A containing infinitely
many occurrences of R-transitions.

104 6 Search Procedures for the Repeated Executability Problem

11 12

10

4

s1 r1

t1 t2 u1

r2s3s2

〈t3, u2〉 〈t4, u2〉

s4r3s4

t5 u3

r1

u1

r2s3

t2t1

s2

s1

〈t3, u2〉 〈t4, u2〉

s4r3s4 r3

r3

132

7

8 5

9 6

Fig. 6.2. Repeated executability final prefix of the product of Fig. 2.2 on p. 7 for
R = {〈t1, ε〉}

• If e is a witness, then some predecessor of e is a terminal.
Replace St(e) by St(e) in the corresponding part of the proof of Thm. 4.11
on p. 46.

Since A has an infinite global history containing infinitely many occur-
rences of R-transitions, the unfolding of A contains witnesses. Since the final
prefix is unsuccessful, each witness has an unsuccessful terminal in its past,
which we call the spoiler of the witness.

Minimal witnesses. As in the proof of Thm. 4.43 on p. 62, let em be a witness
that is minimal w.r.t. ≺, let es be its spoiler, and let [cs] be the computation
trace satisfying H(em) = H(es) [cs]. Since es is an unsuccessful terminal, it
has a companion e′ ≺ es such that St(e′) = St(es). Moreover, since es is
unsuccessful, either it satisfies (a) and #R(e′) = #R(es), or it satisfies (b),
and in both cases #R(e′) ≥ #R(es) holds. Since St(e′) = St(es), the trace
H(e′) [cs] is also a history trace of A. Let e′m be the event satisfying H(e′m) =

6.2 Search Scheme for Products 105

H(e′) [cs]. Since #R(e′) ≥ #R(es), we have #R(H(e′) [cs]) ≥ #R(H(es) [cs]),
and so #R(e′m) ≥ #R(em). But then, since em is a witness, so is e′m.

Contradiction. This part is exactly as in the proof of Thm. 4.43 on p. 62. ¤

As in the transition system case, we can show that the number of non-
terminal events of the final prefix is at most quadratic on the number of
reachable global states of A. However, the bound on the size of the prefix also
includes a factor bounded by the number of components of A.

Theorem 6.12. Let CR be any set of components such that for every transi-
tion t ∈ R at least one component Ai ∈ CR participates in t. Let K be the
number of reachable global states of A.

If ≺ is a total adequate search strategy on [T∗], then the ≺-final prefix
generated by the search scheme of Def. 6.8 with ≺ as search strategy has at
most |CR|K2 feasible non-terminal events.

Proof. Given an event e, if H(e) contains more than |CR|K occurrences of
transitions of R, then by the pigeonhole principle there is a component Aj ∈
CR such that more than K events of past(e) are j-events. Since the j-events
of a configuration are all causally related, two of them satisfy e′′ < e′ < e and
St(e′′) = St(e′). So e′ is a terminal. Therefore, for every feasible non-terminal
event e of the final prefix we have #R(e) ≤ |CR|K.

Proceed now as in the proof of Thm. 6.5. ¤

Notice that the set of all components is always a possible choice for CR,
which leads to |CR| = n and so to an nK2 bound. In the particular case
in which one fixed component participates in all transitions of R we have
|CR| = 1 and we obtain a K2 bound. This special case will in fact happen
when we consider the model checking problem in Chap. 8.

Bibliographical Notes

The repeated executability problem has been studied in great detail for tran-
sition systems. Courcoubetis, Vardi, Wolper, and Yannakakis proposed the
nested-depth-first search algorithm in [26]. The algorithm was further im-
proved by Holzmann, Peled, and Yannakakis in [66], and is implemented in the
Spin model checker [65]. Couvreur presented an alternative algorithm inspired
by Tarjan’s procedure for the computation of strongly connected components
in [27]. A similar algorithm was proposed by Geldenhuys and Valmari [45].
These algorithms are discussed and compared (and slightly improved) by Es-
parza and Schwoon in [112].

Depth-first search is difficult to implement in a parallel or distributed
setting. For this reason, the research community working on parallel model
checking algorithms has also studied solutions to the repeated executability

106 6 Search Procedures for the Repeated Executability Problem

problem not requiring depth-first search. In particular, Brim and Barnat have
discovered breadth-first algorithms similar to our search procedures for tran-
sition systems [18].

Heljanko considers in [59] the complexity of model checking using prefixes
of unfoldings. However, [59] does not use a specialized search scheme as pre-
sented in Def. 6.8, and so the results do not carry over to the search scheme
presented here.

The repeated executability problem for products was studied by the au-
thors in [35, 36], and the contents of this chapter are taken from there.

7

Search Procedures for the Livelock Problem

In this chapter we present search procedures for the livelock problem. They are
a bit more technical than those for the executability and repeated executability
problems. As in the former chapters, we first present a search scheme for
transition systems which is complete for arbitrary search strategies. Then, we
generalize it for products, showing along the way several pitfalls that must be
avoided.

7.1 Search Scheme for Transition Systems

We fix a transition system A = 〈S, T, α, β, is〉, and partition the set T into a
set V of visible and a set I = T \ V of invisible transitions. We also fix a set
L ⊆ V of livelock monitors.

A livelock is an infinite history of the form h t c, where h ∈ T ∗ is a finite
history, t ∈ L is a livelock monitor, and c ∈ Iω is an infinite computation
containing only invisible transitions. We call the occurrence of t after the
history h the livelock’s root. Intuitively, livelocks are undesirable behaviors
in which right after the livelock’s root the system enters an infinite loop of
unobservable actions. We wish to solve the problem of whether A has some
livelock.

Example 7.1. Figure 7.1 shows an instance of the livelock problem. It has sev-
eral livelocks. For instance, the infinite histories a c (f i)ω and a b d g (i f)ω are
livelocks with (the only occurrences of) transitions c and b as roots. However,
the infinite history a b (d g h)ω is not a livelock because h is a visible transi-
tion. Notice that whereas a livelock’s root is always the occurrence of a livelock
monitor, the converse does not hold in general. In particular, a livelock history
may contain several instances of livelock monitor transitions.

Our solution to the livelock problem requires us to slightly modify the
definition of unfolding. In order to present this modification it is useful to

108 7 Search Procedures for the Livelock Problem

s1

s2

a

cb

d f i

s4

s6

h

s3

s5 g

e

V = {b, c, h}
L = {b, c}

Fig. 7.1. An instance of the livelock problem for transition systems

imagine a nondeterministic program which on input A behaves as follows.
The program has a variable v that ranges over the states of A, intended
to store the current state of the system. The initial value of v is the initial
state is. Moreover, the program has a Boolean flag f , initially set to 0. The
program repeatedly chooses a transition t enabled at the current state (stored
in v), executes it, and updates v to the target state of t. If t happens to be
a livelock monitor, then after updating v the program nondeterministically
chooses between setting f to 0 or to 1. Clearly, A has a livelock if and only
if in some execution the program sets f to 1 and then executes an infinite
sequence of invisible transitions. We say that the program is in main mode or
in livelock mode if the current value of f is 0 or 1, respectively.

We define a new unfolding that instead of the possible executions of A
models the possible executions of the nondeterministic program as described
above. Recall that if the current prefix generated so far contains a node labeled
by a state s, and s enables a transition t, then we add a new event e to the
prefix, labeled by t. In this chapter, if t belongs to the set L of livelock monitors
(and only in this case), we add not only the event e, but also a second event
ed, labeled by t as well. We call ed the duplicate of e. The addition of e and ed
reflects the nondeterministic choice between the main mode and the livelock
mode. We call the new unfolding defined this way the d-unfolding of A.

The search procedure defined below explores a finite prefix of the d-
unfolding. It also has a main mode and a livelock mode. In the main mode, its
goal is to compute all the livelock monitors that can be executed from the ini-
tial state. When it adds the event ed, the search procedure enters the livelock
mode, whose goal is to determine whether there is an infinite computation
rooted at ed and containing only invisible transitions.

7.1 Search Scheme for Transition Systems 109

Example 7.2. Figure 7.1 is an instance of the livelock problem. A prefix of the
d-unfolding is shown in Fig. 7.2 (this prefix will actually be the final prefix of
the search procedure). Events 10 and 17 are the duplicates of events 2 and 3.

In order to distinguish between the events belonging to the two search
modes, we introduce the following definition.

Definition 7.3. An event of the d-unfolding of A is visible if it is labeled by
a visible transition, and invisible otherwise. An event e of the d-unfolding of
A is of

• type 0 if no event e′ ≤ e is a duplicate;
• type 1 if exactly one event e′ ≤ e is a duplicate, and all events e′′ satisfying

e′ < e′′ ≤ e are invisible;
• type 2 if it is not of type 0 or type 1.

If e is of type 1, then we denote by d(e) the unique duplicate preceding e.

The events of type 0 and 1 correspond to the main and the livelock modes.
The events of type 2 will not be explored by the search procedures, or, more
precisely, events of type 2 explored by the search will be labeled as terminals.

Definition 7.4. Let ≺ be an arbitrary strategy on T ∗.
An event e of the d-unfolding of A is feasible if no event e′ < e is a

terminal.
A feasible event e of type 0 is a terminal if there is a feasible event e′ ≺ e

of type 0, called the companion of e, such that St(e′) = St(e).
A feasible event e of type 1 is a terminal if there is a feasible event e′ ≺ e

of type 1, called the companion of e, such that St(e′) = St(e) and

• (1a) d(e′) ≺ d(e); or
• (1b) d(e′) = d(e) and e′ < e; or
• (1c) d(e′) = d(e) and #I(e′) ≥ #I(e),

where #I(e) denotes the number of events e′′ satisfying d(e) < e′′ ≤ e.

A feasible event of type 2 is always a terminal.
A terminal is successful if it is of type (1b). The ≺-final prefix is the prefix

of the unfolding of A containing the feasible events.

The intuition behind the terminals is rather simple. When adding events
of type 0 (main search mode) we are looking for the transitions of L that are
reachable from the initial state. Therefore, we can stop whenever we hit a
state we have seen before, because the transitions we would explore from the
event e will be explored from its companion e′. When adding events of type 1
(livelock mode) we are searching for infinite sequences of invisible transitions.
For terminals of type (1a) the reasoning is that, loosely speaking, if some
infinite sequence of invisible transitions starts at the event d(e), then there is
also such a corresponding sequence starting at d(e′), and it will be found from

110 7 Search Procedures for the Livelock Problem

there. A terminal of type (1b) signals that such a sequence has been found:
Since e′ < e, there is a computation c such that H(e) = H(e′)c, and since
St(e′) = St(e), it corresponds to a loop of invisible transitions that can be
executed infinitely often. Terminals of type (1c) are similar to the unsuccessful
terminals for the repeated executability problem. Notice that in the livelock
case the set R is replaced with the set I of invisible transitions.

Example 7.5. Figure 7.1 shows an instance of the livelock problem. Fig. 7.2
shows the final prefix generated by a search procedure consisting of the search
scheme of Def. 7.4 and the following strategy. Events of type 0 have priority
over events of type 1, which have priority over events of type 2. The numbering
of events in the final prefix corresponds to the order in which they are added
by the strategy.

Terminals of type 0 (events 5, 7, 8, and 9) are shown in dark grey, terminals
of type 1 (events 14, 16, and 17) are line patterned, and terminals of type 2
(only event 18) are cross patterned. Type 0 events (if they are not terminals)
are in white, and type 1 events (again, if they are not terminals) are light
grey. The events are numbered according to the order in which they have
been added to the prefix.

Events 5, 7, 8, and 9 are terminals of type 0 with 3, 6, 2, and 3 as compan-
ions, respectively. Events 10 and 17 are the duplicates of the events 2 and 3,
respectively. Event 14 is a terminal of type (1c) with event 13 as companion:
d(13) = 10 = d(14) and #I(13) = 2 = #I(14). Event 16 is a successful termi-
nal of type (1b) with event 13 as companion and corresponds to the livelock:
a b d g (i f)ω with b as root. Event 17 is a terminal of type (1a) with event
12 as companion (we have d(12) = 10 ≺ 17 = d(17)). Finally, event 18 is a
terminal of type 2.

We prove well-definedness and soundness of the search scheme for every
strategy.

Lemma 7.6. Let ≺ be an arbitrary strategy, and let (F, T) be a pair of sets of
events satisfying the conditions of Def. 7.4 for the sets of feasible and terminal
events, respectively. Then for every non-terminal event e ∈ F \ T the history
H(e) has length at most 2|S|.
Proof. Let e be a feasible, non-terminal event. We show first that past(e)
contains at most |S| events of type 0. Assume the contrary. Then, by the
pigeonhole principle two events e′ and e′′ of past(e) satisfy St(e′) = St(e′′).
Since in the transition system case any two events of past(e) are causally
related, we have w.l.o.g. e′′ < e′ ≤ e, and so e′ is a terminal of type 0, con-
tradicting that e is feasible and a non-terminal. Similarly, past(e) contains at
most |S| events of type 1, because otherwise two of them, say e′′ < e′ ≤ e,
satisfy St(e′) = St(e′′), and so e′ is a terminal of type (1b). Since events of
type 2 are terminals, we have that past(e) contains at most 2|S| events, and
so all non-terminals have a history of at most this length. ¤

7.1 Search Scheme for Transition Systems 111

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

2

7

54

b

s3

d

s5

g

s6

e

s4

3

6

8 9

c

s4

f

s6

h

s3 s4

i

1

10 17

11

13

15

16

14

12

s1

a

s2

bd

s3

d

s5

g

s6

h

s3

i

s4

f

s6

e

s4

f

s6

cd

s4

18

Fig. 7.2. The final prefix of the livelock problem instance of Fig. 7.1

Proposition 7.7. Let ≺ be an arbitrary strategy. The search scheme of
Def. 7.4 is well-defined. Moreover, the ≺-final prefix is finite.

Proof. Let (F1, T1) and (F2, T2) be two pairs of sets of events satisfying the
conditions of Def. 7.4 on the feasible and terminal events. By Lemma 7.6, and
since there are only finitely many histories of length at most 2|S|+1, the sets
F1 and F2 are finite. We prove F1 = F2, which also implies T1 = T2. Assume
F1 6= F2, and let e be a ≺-minimal event satisfying e ∈ (F1\F2)∪(F2\F1) (this
event exists because F1 and F2 are finite). Assume w.l.o.g. that e ∈ F1 \ F2.
Since e /∈ F2 there is an event e′ < e such that e′ ∈ T2, and since e′ ∈ F1

we have e′ ∈ T2 \ T1. As element of T2, the event e′ must be a terminal of
type 0, 1, or 2. If e′ is of type 2, then e′ ∈ F2, because terminals are feasible,
and e′ /∈ F1 (otherwise, since all feasible events of type 2 are terminals, we

112 7 Search Procedures for the Livelock Problem

would have e ∈ T1). So e′ ∈ F2 \ F1. Since e′ < e and ≺ refines the causal
order, we have e′ ≺ e, contradicting the ≺-minimality of e. If e′ is of type 0
or 1, then e′ has a companion e′′ ≺ e′ satisfying e′′ ∈ F2. Moreover, we have
e′′ /∈ F1 (otherwise we would have e ∈ T1). So e′′ ∈ F2 \ F1, contradicting the
≺-minimality of e.

Since the ≺-final prefix contains the feasible events, and these are finitely
many, the prefix is finite. ¤

Proposition 7.8. The search scheme of Def. 7.4 is sound for every strategy.

Proof. If the final prefix is successful, then, whatever the strategy, it has a
terminal of type (1b). Let e be this terminal, and let e′ be its companion. Since
e′ < e, there is a computation c satisfying H(e′)c = H(e). Moreover, since e
and e′ are of type 1, c contains only invisible transitions. Since St(e′) = St(e),
the computation c can be iterated infinitely often, and so the history H(e′) cω

is a livelock. ¤

For the completeness proof we need the following lemma.

Lemma 7.9. For every executable transition t of A and for every strategy ≺,
the ≺-final prefix of Def. 7.4 contains at least one event of type 0 labeled by t.

Proof. If t is executable in A, then the d-unfolding contains at least one event
of type 0 labeled by t. Call such an event a t-witness. Assume that no t-witness
is feasible. Then every t-witness ew has a spoiler, i.e., an unsuccessful terminal
es < ew. Since ew is of type 0, so is es. We can now choose a minimal t-witness
em exactly as in the proof of Thm. 4.11 on p. 46, and derive a contradiction.
So some t-witness is feasible, and so it belongs to the ≺-final prefix. ¤

Theorem 7.10. The search scheme of Def. 7.4 is complete for every strategy.

Proof. Assume thatA has a livelock, but the final prefix contains no successful
terminals. We derive a contradiction following the general scheme of the proof
of Thm. 4.11 on p. 46.

Witnesses. We call an event e of type 1 a pre-witness if it is of type 1, the
event d(e) is feasible, and #I(e) > |S|+ 1. A pre-witness e is a witness if no
pre-witness e′ satisfies d(e′) ≺ d(e).

Let an event be a root event (a root for short) if it is of type 0 and it is
labeled by a transition that is the root of a livelock. We make the following
two observations.

(a)A has a livelock if and only if its d-unfolding contains a witness.
Assume that A has at least one livelock h t c, where c is an infinite com-
putation containing only invisible transitions. We prove first that the d-
unfolding contains a pre-witness. By Lemma 7.9, the final prefix contains

7.1 Search Scheme for Transition Systems 113

at least one event e of type 0 labeled by t. Let ed be the duplicate of e.
Since e is labeled by t and h t c is a history of A, the computation c starts
at the state St(e). Since c is infinite and contains only invisible transitions,
infinitely many causal successors of e in the d-unfolding are labeled by in-
visible transitions, and, since ed is the duplicate of e, the same holds for
ed. So for every number k there is a causal successor ek of ed such that
the number of events between ed and ek is at least k. In particular, there
is a successor e′ of ed satisfying #I(e′) > |S|+ 1. Then e′ is a pre-witness
because d(e′) = ed and since e is feasible, so is ed. Now we prove that the
d-unfolding also contains a witness. Observe that, since the set of feasi-
ble events is finite (Prop. 7.7), the set {d(e) | e is a pre-witness} is finite.
So this set has a ≺-minimal element, say d. Any pre-witness e satisfying
d(e) = d is a witness.
For the other direction, let e be a witness. Then there are at least |S|+ 1
events e′ satisfying d(e) < e′ < e. By the pigeonhole principle, two of them,
say e1 < e2, satisfy St(e1) = St(e2). Let l be the computation satisfying
H(e2) = H(e1) l. The history H(e1) lω is a livelock.

(b) If e is a witness, then some predecessor of e is a terminal.
We have just seen that for every witness e there exist events e1, e2 such that
d(e) < e1 < e2 < e and St(e1) = St(e2). So we have d(e1) = d(e2) = d(e).
If e2 is feasible, then it is a terminal of type (1b). If e2 is not feasible, then,
by the definition of feasibility, some predecessor of e2 is a terminal.

Since A has a livelock, the unfolding of A contains witnesses by (a). By (b),
for each witness ew there is a terminal es < ew, and since the final prefix
is unsuccessful, es is unsuccessful. We call es the spoiler of ew. Notice that,
since d(ew) is feasible by the definition of a witness and since es is a terminal,
we have d(ew) ≤ es. We prove that es satisfies (1c) by excluding all other
possibilities.

(1) es is not of type 0.
By the definition of event of type 1, the event d(ew) is of type 1. Since
d(ew) ≤ es and the successors of an event of type 1 must be of type 1 or
type 2, es is not of type 0.

(2) es is not of type (1a).
Since d(ew) ≤ es < ew, we have d(es) = d(ew). Since d(es) is a root, from
St(d(es)) we can execute an infinite computation of invisible transitions.
Now, let e′ be the companion of es. Since e′ is of type 1, the event d(e′)
exists. Moreover, the events e′′ satisfying d(e′) < e′′ ≤ e′ cannot be visible,
because otherwise they would be of type 2 and so terminals, contradicting
the fact that e′ is a feasible event. So they are all invisible. Since St(e′) =
St(es), we can execute an infinite sequence of invisible events starting from
St(e′), and therefore we can do the same from St(d(e′)). So some successor
of d(e′), say e′m, is a pre-witness. But then d(e′m) = d(e′) ≺ d(es) = d(em),
contradicting the fact that d(ew) is ≺-minimal among pre-witnesses.

114 7 Search Procedures for the Livelock Problem

(3) es is not of type (1b).
Obvious, because es is unsuccessful.

(4) es is not of type 2.
Obvious, because es < ew, and ew is of type 1.

Minimal witnesses. Define the order ¿ as in the proof of Thm. 4.11 on p. 46.
Let em be a ¿-minimal witness, and let es be its spoiler. Since es is of type
(1c), it has a companion e′ ≺ es such that St(e′) = St(es), d(e′) = d(es), and
#I(e′) ≥ #I(es). Let cs be the computation satisfying H(em) = H(es) cs.
Since St(e′) = St(es), the sequence H(e′) cs is also a history. Since #I(e′) ≥
#I(es), the event e′m satisfying H(e′m) = H(e′) cs is also a pre-witness. Since
d(e′m) = d(e′) = d(es) = d(em), the event e′m is a witness.

Contradiction. The contradiction is derived exactly as in the proof of Thm.
4.11 on p. 46. ¤

As usual, if ≺ is a total order then we get a polynomial bound for the size
of the final prefix. If we restrict ourselves to strategies satisfying the following
mild condition, then the bound is quadratic.

Definition 7.11. A strategy ≺ is a livelock strategy if it satisfies the following
condition for every two type 1 events e, e′: if e ≺ e′, then d(e) ≺ d(e′) or
d(e) = d(e′).

The intuition behind this definition is particularly clear for a total livelock
strategy ≺. Assume e1 and e2 are duplicates and e1 ≺ e2 holds, i.e., the
strategy gives priority to e1 over e2. Let e′1 and e′2 be any two events of type 1
such that e1 < e′1 and e2 < e′2. Then, since ≺ is a total livelock strategy and
d(e′1) = e1, d(e′2) = e2, we have e′1 ≺ e′2. So, loosely speaking, when a duplicate
e1 is added, a livelock strategy gives priority to exploring its successors: no
successors of another duplicate e2 Â e1 can be explored before the search
finishes the exploration of the successors of e1.

Theorem 7.12. If ≺ is a total livelock strategy, then the ≺-final prefix of
Def. 7.4 contains at most |S|2 + |S| non-terminal events.

Proof. The final prefix has at most |S| non-terminal events of type 0, because
otherwise two type 0 events e, e′ satisfy St(e) = St(e′) , and since ≺ is a total
order one of them is a terminal.

We have seen in the proof of Lemma 7.6 that the history of a non-terminal
event of type 1 contains at most |S| events of type 1. Therefore, for every
non-terminal event e of type 1 we have #I(e) ≤ |S|. We prove that for any
state s ∈ S there are at most |S| non-terminal events such that St(e) = s.
Assume the contrary, and let e1, . . . , e|S|+1 be pairwise different non-terminal
events such that St(ei) = s for all 1 ≤ i ≤ |S|+ 1. Consider two cases:

• There are ej 6= ek of type 1 such that d(ej) 6= d(ek).
Since ≺ is total, we can assume w.l.o.g. that ej ≺ ek holds. Since ≺ is a

7.2 Search Scheme for Products 115

livelock strategy, we have d(ej) ≺ d(ek), and so ek is a terminal of type
(1a), a contradiction.

• All of e1, . . . , e|S|+1 are type 1 events satisfying d(e1) = . . . = d(e|S|+1).
Then, since #I(ei) ≤ |S| for all 1 ≤ i ≤ |S|+1, by the pigeonhole principle
there are two non-terminal events ej 6= ek such that #I(ej) = #I(ek).
Since ≺ is a total order we have that either ej ≺ ek or ek ≺ ej . So either
ej or ek is a terminal of type (1c), a contradiction.

Since for each state s ∈ S there are at most |S| non-terminal events of
type 1 such that St(e) = s, the final prefix contains at most |S|2 non-terminal
events of type 1.

Because all type 2 events are terminals, there are in total at most |S|2+ |S|
non-terminal events. ¤

7.2 Search Scheme for Products

We fix a product A = 〈A1, . . . ,An,T〉 of transition systems, where Ai =
〈Si, Ti, αi, βi, isi〉. We partition the set T of global transitions into a set V of
visible and a set I = T \V of invisible transitions. We also fix a set L ⊆ V of
livelock monitors.

The livelock problem consists of deciding whether A has an infinite global
history of the form h t c, where h ∈ T∗, t ∈ L, and c ∈ Iω, i.e., c only contains
invisible global transitions. We call this history a livelock with root t.

For our application to the model checking problem of LTL we do not need
to solve the livelock problem for arbitrary instances. It suffices to solve it for
instances satisfying the following useful constraint.

Visibility constraint: Some component of the product participates
in all visible global transitions.

In particular, this implies that in the unfolding of A any two V-events are
either causally related or in conflict. In the LTL model checking approach
of Chap. 8 the component taking part in all visible actions is the one also
responsible for detecting executions of the system that violate the temporal
formula being model checked.

In order to generalize the search scheme of Def. 7.4, our first task is to
define the d-unfolding of A. Recall that the d-unfolding of a transition system
A actually models the behavior of a nondeterministic program that simulates
the execution of A but has two possible modes of operation.

In the transition system case the d-unfolding was obtained by duplicating
events labeled with L-transitions. So our first attempt could be to duplicate
events labeled with L-transitions. Intuitively, this corresponds to having a
nondeterministic program for each component of A, each with its own variable
and flag. The addition of a duplicate event ed models that all the components

116 7 Search Procedures for the Livelock Problem

participating in the transition labeling the event e enter the livelock mode.
However, this can lead to a problem. Imagine a system whose components can
be partitioned into two groups, say G1 and G2, such that no component of G1

participates in any invisible transition and no component of G2 participates
in any livelock monitor. Then, none of the nondeterministic programs can
detect any livelock. The programs for the components of G1 can enter the
livelock mode, but never execute any invisible transition; the programs for
the components of G2 can execute invisible transitions, but never enter the
livelock mode. So we can have products that exhibit a livelock, but where the
final prefix generated by the naive generalization of Def. 7.4 is unsuccessful.

Example 7.13. Consider the product in Fig. 7.3(a), where we take T =
{〈a, ε〉 , 〈ε, b〉 , 〈ε, c〉 , 〈ε, d〉}. For clarity, we use a, b, c, d instead of 〈a, ε〉, 〈ε, b〉,
〈ε, c〉, 〈ε, d〉 in what follows. Notice that the first component does not partic-
ipate in any invisible transition and the second one does not participate in
any livelock monitor. The global history ab (cd)ω is a livelock. Figure 7.3(b)
shows the final prefix obtained by the naive generalization of Def. 7.4. Intu-
itively, when event 5 is added the program of the first component enters the
livelock mode. Event 4, shown in dark grey, is a terminal of type 0 having
event 2 as companion. Since terminals of type 0 are unsuccessful, the final
prefix is unsuccessful.

c

V = {a}
L = {a}

d

r2

r3

s2

a b

r1s1

a ad

s1

s2

r1

b

r2

c

r3

r2

d4

3

251

(a)

(b)

s2

Fig. 7.3. An instance of the livelock problem (a) and a failed attempt at a final
prefix (b)

7.2 Search Scheme for Products 117

To solve this problem we assume that every component participates in the
duplicate events. In Ex. 7.13, when we add event 5, the duplicate of event
1, we synchronize with the other component. Figure 7.4(b) shows the new
prefix. Non-terminal events of type 1 are shown in light grey, and terminal

���
���
���
���

���
���
���
���

���
���
���

���
���
���

V = {a}
L = {a}

(a)

c d

r2

r3

s2

a b

r1s1 s1

a

s2

1 5 2

6

7

ad

3

d

r2

r3 r2

c

r3

b

r2

r2

r1

4

(b)

8

d

c

b

s2 r1

Fig. 7.4. An instance of the livelock problem (a) and a correct final prefix revealing
a livelock (b)

events of type 1 are line-patterned. Event 8 is a successful terminal with 6 as
companion.

We define the d-unfolding as follows:

Definition 7.14. Let e be an event of the unfolding of A labeled by a global
transition t = 〈t1, . . . , tn〉. For every component Ai, let ei be the largest i-event
(w.r.t. the causal order <) such that ei < e, and let pi be either the unique
i-place of e•i , or the place isi if there are no i-events ei < e. The duplicate
of e is a new event ed, also labeled by t, such that •e = {p1, . . . , pn}, and
e• = {p′1, . . . , p′n}, where p′i is a new place for every i ∈ {1, . . . , n}. If ti = ε,
then p′i carries the same label as pi. If ti 6= ε, then p′i carries the label β(ti).

118 7 Search Procedures for the Livelock Problem

Example 7.15. In the final prefix of Fig. 7.4(b) event 5 is the duplicate of event
1. In this case the places p1 and p2 of Def. 7.14 are the initial states s1 and
r1, i.e., the two places at the top of the figure.

Notice that we have St(e) = St(ed). We can see ed as adding a new “branch”
to the prefix from the global state St(e).

We can now generalize Def. 7.4. The definition of type 0, type 1, and type 2
events does not change at all. By #I(e) we denote the number of events e′′

such that d(e) < e′′ ≤ e; all of them are labeled by global transitions of I.

Definition 7.16. Let ≺ be a strategy on [T∗]. An event e of the d-unfolding
of A is feasible if no event e′ < e is a terminal.

A feasible event e of type 0 is a terminal if there is a feasible event e′ ≺ e
of type 0, the companion of e, such that St(e′) = St(e).

A feasible event e of type 1 is a terminal if there is a feasible event e′ ≺ e
of type 1, the companion of e, such that St(e′) = St(e) and

• (1a) d(e′) ≺ d(e); or
• (1b) d(e′) = d(e) and e′ < e; or
• (1c) d(e′) = d(e) and #I(e′) ≥ #I(e).

A feasible event of type 2 is always a terminal.
A terminal is successful if it satisfies (1b). The ≺-final prefix is the prefix

of the unfolding of A containing the feasible events.

Well-definedness and soundness of the search scheme are proved as in the
transition system case.

Lemma 7.17. Let ≺ be an arbitrary strategy, and let (F, T) be a pair of sets
of events satisfying the conditions of Def. 7.16 for the sets of feasible and
terminal events, respectively. Then for every non-terminal feasible event e ∈
F \ T , every component Hi(e) of the history H(e) has length at most 2K,
where K is the number of reachable states of A.

Proof. Let e be an arbitrary non-terminal feasible event. Use the same argu-
ment as in the proof of Lemma 7.6 (replacing St by St) to prove that for each
i ∈ {1, . . . , n} the history Hi(e) contains at most K events of type 0 and at
most K events of type 1. ¤

Proposition 7.18. The search scheme of Def. 7.16 is well-defined for every
strategy ≺. Moreover, the ≺-final prefix is finite.

Proof. Analogous to the proof of Prop. 7.7. ¤

Proposition 7.19. The search scheme of Def. 7.16 is sound for every strat-
egy.

7.2 Search Scheme for Products 119

Proof. Analogous to the proof of Prop. 7.8. ¤

So far we have not made use of the visibility constraint we mentioned at
the beginning of the section. The following slight modification of Ex. 7.13
shows that the scheme of Def. 7.16 is not complete for systems that do not
satisfy this constraint.

���
���
���
���

���
���
���
���

���
���
���

���
���
���

V = {a,b}
L = {a}

(a)

c d

r2

r3

s2

a b

r1s1

4

3

25

6

1

s1

a

s2

ad

r1

b

r2

c

r3

d

r2

r2

b

(b)

s2 r1

Fig. 7.5. Another instance of the livelock problem (a) and the role of the visibility
constraint (b)

Example 7.20. Consider again the product of Fig. 7.3(a), but change the set
of visible transitions from {a} to {a,b}, as shown in Fig. 7.5(a). This product
does not satisfy the visibility constraint, because neither of the two compo-
nents participates in both a and b.

The global history ba (cd)ω is a livelock with root a. In Fig. 7.5(b) we
show the final prefix obtained by Def. 7.16. The terminals are events 4 and
6. Event 4 is, as before, a terminal of type 0. Event 6, which was invisible
in Ex. 7.13, is now visible, and so, since event 5 is a duplicate, it becomes a
terminal of type 2. Since terminals of type 0 and 2 are unsuccessful, the final
prefix is unsuccessful.

To understand why the search procedure fails, observe that in the case
of a transition system, given a livelock h t c with t as root there is an event
e labeled by t such that the infinite computation c starts at St(e). So it is
correct to search for infinite invisible computations that start from St(e), and
this is the purpose of the duplicate ed.

120 7 Search Procedures for the Livelock Problem

In the case of a product, given a livelock h t c with root t there may be
no event e labeled by t such that the global computation c starts at St(e).
In Ex. 7.20, the only candidate for e is event 1, but the computation (cd)ω

starts at 〈s2, r2〉, while St(1) = 〈s2, r1〉. So it may be wrong to search for
infinite invisible computations that start from St(e), which is the purpose of
ed. All these computations may contain visible transitions corresponding to
events that are concurrent to e.

However, if the product satisfies the visibility constraint, then we are on
the safe side. In such a product, since e is visible, no visible event can be
concurrent to e. Therefore, the events concurrent to e correspond to invisible
transitions that extend the computation c without changing its property of
containing only invisible transitions.

Definition 7.21. A livelock h t c of A with root t is good if the d-unfolding
contains an event e such that h t is a realization of past(e).

An event e of the unfolding of A is a root event if it is of type 0 and A
has a livelock h t c with root t such that e is labeled by t, and St(e) is the
global state reached after the execution of h t.

We can prove the following lemmata, which will replace Lemma 7.9 in the
completeness proof.

Lemma 7.22. Let A be a product satisfying the visibility constraint. If A has
a livelock, then it also has a good livelock.

Proof. Assume A has a livelock h t c. Then, by the same argument as in
Lemma 7.9, the d-unfolding contains a configuration C such that h t is a real-
ization of C. Let e be the event of C corresponding to the occurrence of t, and
h′ t c′ be the realization of C in which h′ t is a realization of past(e). In this
realization, the transitions of h′ t correspond to the events e′ ∈ C satisfying
e′ ≤ e, while the transitions of c′ correspond to the events e′ ∈ C satisfying
e′ co e. So no component that participates in t participates in the transitions
of c′. By the visibility constraint, the transitions of c′ are invisible, and so
h′ t c′ is a livelock with root t. Since h′ t is a realization of the configuration
past(e), the livelock is good. ¤

Lemma 7.23. Let ≺ be an adequate strategy. If the product A has at least
one livelock, then the ≺-final prefix of Def. 7.16 contains at least one root
event.

Proof. Assume A has a livelock. By Lemma 7.22 it has a good livelock h t c.
So the d-unfolding contains an event e of type 0 labeled by t such that h t
is a realization of past(e). It follows that St(e) is the state reached after the
execution of h t, and so the d-unfolding contains at least one root event e. Let
em be a ≺-minimal root event (em exists because ≺ is well-founded). Assume
that em is not feasible. Then, some event es < em is a terminal and, since em

7.2 Search Scheme for Products 121

is of type 0, es is also of type 0. Let e′ be the companion of es. As in the proof
of Thm. 4.43 on p. 62, and using the fact that ≺ is preserved by extensions,
we can construct another root event e′m satisfying e′m ≺ em, contradicting the
minimality of em. So em is feasible, and so it belongs to the ≺-minimal prefix.
¤

We can finally prove the completeness result.

Theorem 7.24. The search procedure of Def. 7.16 is complete for every ad-
equate strategy.

Proof. Let ≺ be an arbitrary adequate strategy. Assume that A has a livelock,
but the final prefix contains no successful terminals. We derive a contradiction
following the general scheme of the proof of Thm. 4.11 on p. 46.

Witnesses. We call an event e of type 1 a pre-witness if it is of type 1, the
event d(e) is feasible, and #I(e) > nK+1, where K is the number of reachable
global states of A. A pre-witness e is a witness if there is no pre-witness e′ 6= e
such that d(e′) ≺ d(e).

We make the following two observations:

(a) A has a livelock if and only if its d-unfolding contains a witness.
Assume that A has a livelock. By Lemma 7.23, the final prefix contains
at least one root event. Let e be a root event of the final prefix, and
let ed be its duplicate (notice that, by definition, root events are labeled
by transitions of L). Since St(ed) = St(e), there is a livelock h t c with
root t such that St(ed) coincides with the global state reached after the
execution of h t. It follows that the computation c can occur from St(ed).
So there is a causal successor e′ > ed satisfying #I(e′) > nK + 1. Since
d(e′) = ed, the event e′ is a pre-witness. To prove that the d-unfolding also
contains a witness, observe that the set of feasible events is finite, and so
the set {d(e) | e is a pre-witness} is also finite. So this set has at least one
≺-minimal event e′′ = d(ew) for some pre-witness ew, making ew also a
witness.
For the other direction, let e be a witness. Then there are at least nK + 1
events e′ satisfying d(e) < e′ < e. By the pigeonhole principle there is
a component, say the ith, such that there are at least K + 1 i-events
between d(e) and e. All these events are causally ordered and so, again by
the pigeonhole principle, two of them, say e1 < e2, satisfy St(e1) = St(e2).
Let [c] be any computation trace satisfying H(e2) = H(e1)[c]. Then any
realization of the configuration past(d(e)) followed by cω is a livelock.

(b) If e is a witness, then some predecessor of e is a terminal. The proof is as
in Thm. 7.10, just observing that #I(e) > nK + 1 implies that for some
component, say the ith, there are at least K+1 i-events between d(e) and
e.

By (a), and since A has a livelock, the unfolding of A contains witnesses.
By (b), and since the final prefix is unsuccessful, for each witness ew there

122 7 Search Procedures for the Livelock Problem

is an unsuccessful terminal es < ew. We call es the spoiler of ew. We prove
that es has type (1c) exactly as in Thm. 7.10 (replacing, as usual, histories
by distributed histories).
Minimal witnesses. As in the proof of Thm. 4.43 on p. 62, let em be a ≺-
minimal witness, and let es be its spoiler. Since es has type (1c), it has a
companion e′ ≺ es such that d(e′) = d(es), St(e′) = St(es), and #I(e′) ≥
#I(es). Let [cs] be a computation trace satisfying H(em) = H(es)[cs]. Since
St(e′) = St(es), H(e′)[cs] is also a history trace. Since #I(e′) ≥ #I(es), the
event e′m satisfying H(e′m) = H(e′)[cs] is also a pre-witness. Since d(e′m) =
d(e′) = d(es) = d(em), the event e′m is a witness.
Contradiction. As in the proof of Thm. 4.43 on p. 62. ¤

As for transition systems, we obtain a quadratic bound on the number of
non-terminal events for total livelock strategies.

Theorem 7.25. If ≺ is a total livelock strategy, then the ≺-final prefix of
Def. 7.16 contains at most nK2 +K non-terminal events.

Proof. The proof is very similar to that of Thm. 7.12. The final prefix has at
most K non-terminal events of type 0, because otherwise two type 0 events
e, e′ satisfy St(e) = St(e′), and since ≺ is a total order one of them is a
terminal.

We have seen in the proof of Lemma 7.17 that for every non-terminal event
e of type 1 in the final prefix and for every component Ai the configuration
past(e) contains at most K i-events of type 1. It follows that past(e) contains
at most nK events of type 1, and so #I(e) ≤ nK. We prove that for any
global state s the final prefix contains at most nK non-terminal events such
that St(e) = s. Assuming the contrary, let e1, . . . , enK+1 be pairwise different
non-terminal events such that St(ei) = s for all 1 ≤ i ≤ nK + 1. Consider
two cases:

• There are ej 6= ek of type 1 such that d(ej) 6= d(ek).
Since ≺ is total, we can assume w.l.o.g. that ej ≺ ek holds. Since ≺ is a
livelock strategy, we have d(ej) ≺ d(ek), and so ek is a terminal of type
(1a), a contradiction.

• All of e1, . . . , enK+1 are type 1 events satisfying d(e1) = . . . = d(eK+1).
Then, since #I(ei) ≤ nK for all 1 ≤ i ≤ nK+1, by the pigeonhole principle
there are two non-terminal events ej 6= ek such that #I(ej) = #I(ek). Since
≺ is a total order we have either ej ≺ ek or ek ≺ ej . So either ej or ek is
a (1c)-terminal, a contradiction.

Since for each global state there are at most nK non-terminal events e of
type 1 such that St(e) = s, the final prefix contains at most nK2 non-terminal
events of type 1.

Because all type 2 events are terminals, there are in total at most nK2+K
non-terminal events. ¤

7.2 Search Scheme for Products 123

Bibliographical Notes

In the literature livelocks are also called divergences. The livelock problem for
products was studied by the authors in [35, 36], and the contents of this chap-
ter are an extended and modified version of these references. The approach is
heavily based on ideas of Valmari in tester-based verification [117]. See also
more recent work by Helovuo, Valmari, Hansen, and Penczek in tester-based
verification [62, 55, 54].

The nondeterministic algorithm for guessing when to move from main
mode to livelock detection mode bears close resemblance to the liveness-to-
safety reduction by Biere, Artho, and Schuppan [14].

8

Model Checking LTL

In this chapter we present the main result of this work, a search procedure for
model checking products of transition systems against specifications written
in Linear Temporal Logic (LTL).1 The chapter is divided in several sections.

In Sects. 8.1 and 8.2 we recall the syntax and semantics of LTL, show how
to interpret LTL on products, and define the model checking problem.

In Sect. 8.3 we introduce the concept of Büchi tester for an LTL property.
Loosely speaking, a tester of a product is a new component added to the
product in order to observe and register the occurrences of (some) global
transitions. A tester may “recognize” a history of the product based on the
occurrences it has observed. The tester for an LTL property is designed to
recognize the histories that violate the property. We show that every LTL
property has a Büchi tester.

Section 8.4 presents a first approach to the model checking problem, in
which the Büchi tester is synchronized with the product in a very tight way:
Every global transition of the product is synchronized with at least one transi-
tion of the tester. This is the classical approach due to Vardi and Wolper, and
we observe that it is not suitable for the unfolding method. Since the tester is
a sequential transition system, its synchronization with the product yields a
new product in which no two global transitions can ever occur concurrently.
As a result our search procedures generate final prefixes which are at least as
large as the transition system of the new product, and so unfolding techniques
have no advantage over the classical approach.

In Sect. 8.5 a second approach is presented in which, intuitively, the tester
is far more loosely coupled with the product: It only observes those occurrences
of global transitions which are relevant for the LTL property being checked.
Since these are typically only a small number, the new product can retain
much of the concurrency present in the original one.

1 To be precise, the net unfolding approach can be more efficient than traditional
methods only for the so-called stuttering-invariant subset of LTL; see Sect. 8.5
for details.

126 8 Model Checking LTL

8.1 Linear Temporal Logic

The set of formulas of Linear Temporal Logic (LTL) over a given nonempty
set AP of atomic propositions is inductively defined as follows:

• every atomic proposition is an LTL formula,
• if ψ1 is an LTL formula, then ¬ψ1 and Xψ1 are LTL formulas; and
• if ψ1, ψ2 are LTL formulas, then ψ1 ∨ ψ2 and ψ1 Uψ2 are LTL formulas.

Formulas are interpreted over infinite words whose letters are sets of atomic
propositions, i.e., infinite words over the alphabet 2AP . Intuitively, atomic
propositions correspond to the basic assertions about which we wish to reason,
and the ith letter of a word corresponds to the assertions that hold at the ith
time instant. Given a formula ψ and a word π = x0x1x2 . . ., where xi ∈ 2AP

for every i ≥ 0, we denote by π |= ψ that π satisfies ψ. The satisfaction
relation |= is inductively defined as follows, where p denotes an element of
AP and πi denotes the suffix xixi+1xi+2 . . . of π:

π |= p if p ∈ x0,
π |= ¬ψ1 if π 6|= ψ1,
π |= ψ1 ∨ ψ2 if π |= ψ1 or π |= ψ2,
π |= Xψ1 if π1 |= ψ1, and
π |= ψ1 Uψ2 if ∃n ≥ 0 such that πn |= ψ2 and πi |= ψ1 for all 0 ≤ i < n.

As usual, we read Xψ as “next ψ” and ψ1 Uψ2 as “ψ1 until ψ2”. Loosely
speaking, Xψ holds if ψ holds at the next time instant, and ψ1 Uψ2 holds if
eventually ψ2 holds and ψ1 holds until then.

We employ the usual shorthands for LTL formulas: true = ¬p ∨ p for an
arbitrary p ∈ AP , false = ¬true, ψ1 ∧ ψ2 = ¬(¬ψ1 ∨ ¬ψ2), ψ1 ⇒ ψ2 = ¬ψ1 ∨
ψ2, ψ1 Rψ2 = ¬(¬ψ1 U¬ψ2), Fψ1 = true Uψ1, and Gψ1 = false Rψ1.

Example 8.1. G (p ⇒ X¬p) and F (p ∧ X p) are LTL formulas over the set
{p} of atomic propositions. Loosely speaking, they assert “if p holds at a time
instant then it does not hold at the next one” and “there exist two consecutive
time instants at which p holds”, respectively. Let ({p} ∅)ω and ∅ ∅ {p} {p} (∅)ω
denote the infinite sequences {p} ∅ {p} ∅ {p} ∅ . . ., and ∅ ∅ {p} {p} ∅ ∅ ∅ . . ., re-
spectively. We have

({p} ∅)ω |= G (p⇒ X¬p) ∅ ∅ {p} {p} (∅)ω 6|= G (p⇒ X¬p)
({p} ∅)ω 6|= F (p ∧X p) ∅ ∅ {p} {p} (∅)ω |= F (p ∧X p)

In fact, as the reader has probably observed, the second formula is equivalent
to the negation of the first.

8.2 Interpreting LTL on Products

Let A = 〈A1, . . . ,An,T〉 be a product, where Ai = 〈Si, Ti, αi, βi, isi〉. The
basic assertions we are interested in are of the form “the current local state

8.2 Interpreting LTL on Products 127

of the ith component is sj”, and so we choose AP =
⋃n
i=1 Si as the set of

atomic propositions.
Given an infinite global history h = t1 t2 t3 . . . of A, there is a unique

sequence s0 s1s2 . . . of global states such that s0 = is and 〈si, ti+1, si+1〉 is
a step of A for every i ≥ 0 (this is the sequence of global states visited by
A along the execution of h). We define the infinite sequence π(h) of sets of
atomic propositions as follows: for every i ≥ 0, the ith element of π(h) is
the set of local states of the global state si (i.e., the set of local states of
the components at the ith time instant). Observe that, by the definition of
step, if Si and Si+1 are the ith and (i+ 1)th elements of π(h), then we have
Si+1 = (Si \ •ti) ∪ t•i .

Example 8.2. Consider the product of Fig. 8.1. We consider LTL over the set
of atomic propositions AP = {t1, t2, u1, u2}. The sequence h = abc (ab)ω

is an infinite history. The sequence of global states visited along its ex-
ecution is 〈t1, u1〉 〈t1, u2〉 〈t1, u1〉 (〈t2, u1〉 〈t2, u2〉)ω, and we have π(h) =
{t1, u1} {t1, u2} {t1, u1} ({t2, u1} {t2, u2})ω.

c

t1

t2

a b

u1

u2

T = {a = 〈ε, a〉 ,b = 〈ε, b〉 , c = 〈c, ε〉}
Fig. 8.1. A running example for LTL model checking

We can now interpret an LTL formula ψ on π(h). We say that h satisfies ψ if
π(h) |= ψ, and write h |= ψ. We say that A satisfies ψ, and write A |= ψ, if
every infinite history of A satisfies ψ. So, loosely speaking, a product satisfies
a property if all its infinite histories satisfy it.2 The model checking problem
consists of deciding, given A and ψ, whether A |= ψ holds.

Example 8.3. Consider the setting of Ex. 8.2 and the formulas

G (u1 ⇒ X¬u1) and F (u1 ∧Xu1) .

Since π(h) contains {t1, u1} {t2, u1} as subword, we have

2 Note that, by this definition, in the rest of this book finite histories ending in a
deadlock state are not among the infinite histories of A.

128 8 Model Checking LTL

π(h) 6|= G (u1 ⇒ X¬u1) and π(h) |= F (u1 ∧Xu1) .

So, by definition, we have

h 6|= G (u1 ⇒ X¬u1) and h |= F (u1 ∧Xu1) .

The reader can easily check that the history (ab)ω violates F (u1 ∧Xu1). So
both properties are violated by at least one history; hence

A 6|= G (u1 ⇒ X¬u1) and A 6|= F (u1 ∧Xu1) .

Notice that this is the case even though each of the properties is equivalent
to the negation of the other. In general, A |= ψ implies A 6|= ¬ψ, but the
converse does not hold.

8.2.1 Extending the Interpretation

So far we know how to interpret a formula ψ on the infinite histories of the
product A, but it is convenient to extend the interpretation to what we call
the ψ-histories of A. The reason is that in order to solve the model check-
ing problem we will later construct an automaton accepting exactly these
histories.

Let APψ be the set of atomic propositions that appear in ψ. A ψ-state is a
tuple r = 〈r1, . . . , rn〉 such that for every i ∈ {1, . . . , n} either ri ∈ Si∩APψ or
si = ⊥, where ⊥ is an special symbol. Given a global state s = 〈s1, . . . , sn〉, we
assign to it a ψ-state sψ = 〈s1ψ, . . . , snψ〉 as follows. For every i ∈ {1, . . . , n},

siψ =
{
si if si ∈ APψ, and
⊥ otherwise.

So, intuitively, sψ is the information on the global state s available to an
observer that can only see the local states of APψ.

A tuple 〈r, t, r′〉, where r, r′ are ψ-states and t is a global transition, is a
ψ-step if there exists a step 〈s, t, s′〉 such that r = sψ and r′ = s′ψ. We de-
fine ψ-computations and ψ-histories by taking the definitions of computation
and history, respectively, and replacing steps by ψ-steps. A sequence t1 . . . tk
of global transitions is a ψ-computation if there is a sequence r0, . . . , rk of
ψ-states such that 〈ri−1, ti, ri〉 is a ψ-step for every i ∈ {1, . . . , k}. A ψ-
computation is a ψ-history if one can choose the sequence r0, . . . , rk such
that r0 = isψ. Infinite ψ-computations and infinite ψ-histories are defined
analogously. To gain some intuition, imagine that an observer can only see
the local states of APψ and the transitions having them as source or target
states. A sequence of transitions is a ψ-history if this observer cannot conclude
that it is not a history by just observing the marking changes in all the places
in APψ.

8.3 Testers for LTL Properties 129

Example 8.4. Consider again the product of Fig. 8.1, and assume that we have
APψ = {u1} (the exact formula ψ is irrelevant for this example). The triple
〈 〈t1, u1〉 , c, 〈t2, u1〉 〉 is a step, and 〈 〈⊥, u1〉 , c, 〈⊥, u1〉 〉 is its corresponding
ψ-step. It follows that c c is a ψ-history because of the two ψ-steps

〈 〈⊥, u1〉 , c, 〈⊥, u1〉 〉 〈 〈⊥, u1〉 , c, 〈⊥, u1〉 〉 .

Observe however that c c is not a history.
On the other hand, the sequence aa is not a ψ-history. To see why, assume

there are ψ-steps 〈r0,a, r1〉 and 〈r1,a, r2〉 such that r0 is the initial ψ-state,
i.e., r0 = 〈⊥, u1〉. By the definition of ψ-step we have r1 = 〈⊥,⊥〉. But, since
a can only occur at global states such that the second component is in state
u1, there is no r2 such that 〈r1,a, r2〉 is a ψ-step.

As in the case of histories, it is easy to see that given an infinite ψ-history
σ = t1 t2 t3 . . . of A, there is a unique sequence r0 r1 r2 . . . of ψ-states such
that r0 = isψ and 〈ri−1, ti, ri〉 is a ψ-step of A for every i ≥ 1. We denote this
sequence by πψ(σ), and call it the ψ-sequence of σ. We say that σ satisfies ψ,
denoted by σ |= ψ, if πψ(σ) |= ψ.

8.3 Testers for LTL Properties

Deciding whether all infinite histories of a product A satisfy ψ is equivalent
to deciding whether some infinite history violates ψ, which in turn is equiv-
alent to deciding if some infinite history satisfies ¬ψ. The tester approach to
the model checking problem reduces this last question to the simpler one of
checking if some history of a new product, which depends on ψ, satisfies a
fixed property.

The tester approach looks at A as a device that recognizes a language L1

of infinite words, namely the ψ-histories corresponding to the infinite histories
of A. In a nutshell, it provides the following procedure to check a formula:

• Construct a tester recognizing the set L2 of all ψ-histories satisfying ¬ψ.
• Using this tester, construct a new product recognizing the intersection

L1 ∩ L2, i.e., the set of ψ-histories of A violating ψ.
• Check whether L1 ∩ L2 is empty or not.

We will see that the check can be reduced to the repeated executability
problem. Then, in Sect. 8.5 we additionally resort to also solving the livelock
problem for efficiency reasons. We know how both of these problems can be
solved from the previous chapters.

The testers suitable for checking LTL properties are called Büchi testers.
A Büchi tester of A, or simply a tester, is a triple BT = (B, F, λ), where
B = (S, T, α, β, is) is a transition system, F ⊆ S is a set of accepting states,
and λ:T → T is a labeling function that assigns to each transition of B a global

130 8 Model Checking LTL

transition of A. A tester BT recognizes an infinite sequence t1 t2 t3 . . . ∈ Tω

if there is an infinite history h = u1 u2 u3 . . . of B and an accepting state s ∈ F
such that ti = λ(ui) for every i ≥ 1 and h visits the state s infinitely often,
i.e., the sequence π(h) contains infinitely many occurrences of s. The language
of BT is the set of words of Tω recognized by BT .

Example 8.5. Figure 8.2 shows a tester of the product of Fig. 8.1 for the prop-
erty F t2. The names of the tester transitions have been omitted; we show only
the global transitions of the product they are labeled with. The states drawn
using two circles are the accepting states, and states drawn with a single circle
are the non-accepting states. The tester recognizes the sequence c(ab)ω, but
not (ab)ω.

c

a,b

a,b

Fig. 8.2. A tester of the product of Fig. 8.1 for F t2

Let ψ be a formula of LTL. A tester BT tests the property ψ or is a tester
for ψ if it recognizes the infinite ψ-histories of A that satisfy ψ.

In the rest of this chapter we show that every LTL formula over AP has
a Büchi tester. This is a very well-known topic in the area of model checking,
and there exist many different constructions. We sketch a very simple one,
without giving a formal proof of correctness. Readers familiar with LTL to
Büchi automata translations may wish to jump directly to Sect. 8.4.

8.3.1 Constructing a Tester

The construction proceeds in two steps. First, we construct a generalized Büchi
tester for ψ, and then transform it into a Büchi tester.

A generalized Büchi tester of A is a triple GT = 〈B, {F0, . . . , Fk−1}, λ〉,
where B and λ are as for Büchi testers, and F0, . . . , Fk−1 are sets of accepting
states. GT recognizes an infinite sequence t1 t2 t3 . . . ∈ Tω if there is an infinite
history h = u1 u2 u3 . . . and accepting states s0 ∈ F0, . . . , sk−1 ∈ Fk−1 such
that ti = λ(ui) for every i ≥ 1 and h visits each of the states s0, . . . , sk−1

infinitely often. The language of GT is the set of words it recognizes.

From Formulas to Generalized Büchi Testers

The key notion for the construction of the tester is that of Hintikka sequence
of a ψ-history σ. The Hintikka sequence is an infinite sequence of sets of sub-

8.3 Testers for LTL Properties 131

formulas of ψ and their negations. Intuitively, the ith set of this sequence
contains the subformulas of ψ (and their negations) that hold after the occur-
rence of the first i transitions of σ.

Before formally defining Hintikka sequences, we need to introduce atoms:

Definition 8.6. Let ψ be a formula of LTL. The closure cl(ψ) of an LTL
formula ψ is the set containing all the subformulas of ψ and their negations.
An atom a of ψ is a propositionally consistent subset of cl(ψ), i.e., a subset
satisfying the following two conditions:

• For every subformula ¬φ of ψ: φ ∈ a if and only if ¬φ 6∈ a.
• For every subformula φ1 ∨ φ2 of ψ: φ1 ∨ φ2 ∈ a if and only if φ1 ∈ a or

φ2 ∈ a.
Notice that if a subset of the closure has a model then it must be an atom.

Example 8.7. The closure of ψ = t1 U (¬Xu1) is the set

cl(ψ) = {t1,¬t1, u1,¬u1,Xu1,¬Xu1, ψ,¬ψ}.

The set {t1,¬u1,Xu1, ψ} is an atom, but the set {t1,¬u1, ψ} is not: by the
first condition in the definition of an atom, either Xu1 or ¬Xu1 must belong
to an atom (but not both).

Definition 8.8. Let σ = t1 t2 t3 . . . be a ψ-history. For every i ≥ 0, let ai
be the set of all formulas φ in the closure of ψ such that ti+1 ti+2 ti+3 . . . |=
φ. The Hintikka sequence of σ, denoted by hin(σ), is the infinite sequence
a0 a1 a2

Notice that for every i ≥ 0 the set ai of formulas has a model, and so
it is an atom. So a Hintikka sequence is a sequence of atoms. Observe also
the relation between πψ(σ) and hin(σ). Loosely speaking, the ith element of
πψ(σ) contains the elements of APψ that hold after the occurrence of the first
i transitions of σ. The ith element of hin(σ) contains not only those elements,
but all the formulas in the closure of ψ that hold at that point.

Example 8.9. Let ψ = t1 U (¬Xu1), and consider the history σ = a c (ba)ω

of the product of Fig. 8.1. We have

π(σ) = 〈t1, u1〉 〈t1, u2〉 (〈t2, u2〉 〈t2, u1〉)ω.

In order to obtain the Hintikka sequence, we start with πψ(σ) and transform
its elements into subsets of APψ. Abusing notation, we also call the result
πψ(σ):

πψ(σ) = 〈t1, u1〉 〈t1,⊥〉 (〈⊥,⊥〉 〈⊥, u1〉)ω

= {t1, u1} {t1} (∅ {u1})ω.

132 8 Model Checking LTL

We now add to each set of atomic propositions the other formulas of the closure
of ψ that hold at that point. For instance, we add to {t1, u1} the formulas ψ′

from the closure of ψ such that 〈t1, u1〉 〈t1,⊥〉 (〈⊥,⊥〉 〈⊥, u1〉)ω |= ψ′, and to
〈t1,⊥〉 the formulas ψ′′ such that 〈t1,⊥〉 (〈⊥,⊥〉 〈⊥, u1〉)ω |= ψ′′. We have

hin(σ) = {t1, u1,¬Xu1, ψ} {t1,¬u1,¬Xu1, ψ}
({¬t1,¬u1,Xu1,¬ψ} {¬t1, u1,¬Xu1, ψ})ω.

Notation 4. In what follows, we continue abusing notation and identifying a
ψ-state 〈r1, . . . , rn〉 with the set {r1, . . . , rn}\{⊥}. With this convention, if ri
and ai are the ith elements of πψ(σ) and hin(σ), respectively, then we have
ri = ai ∩APψ.

Characterizing Hintikka Sequences

We obtain an alternative, more syntactic, characterization of the Hintikka
sequences of the ψ-histories that satisfy ψ, i.e., of the set {hin(σ) | σ |= ψ}.

For this, let σ be a ψ-history such that σ |= ψ, and let hin(σ) = a0 a1 a2
We enumerate properties satisfied by a0 a1 a2 . . . until we reach a point at
which the conjunction of these conditions is not only necessary but also suf-
ficient. We mean by this that every other sequence a′0 a

′
1 a

′
2 . . . satisfying the

same conditions must be the Hintikka sequence of some ψ-history σ′ satisfying
ψ.

By the definition of the Hintikka sequence, the atom a0 contains all the
subformulas ψ′ of ψ such that σ |= ψ′. Since σ |= ψ, we have that, in particular:

(1) a0 contains ψ.

Since σ is a ψ-history, the atom a0 is the one corresponding to the initial
ψ-state of A, and so:

(2) (a0 ∩APψ) = isψ = (is ∩APψ).

For all i ≥ 0, the two consecutive atoms ai ai+1 of a Hintikka sequence
must satisfy additional conditions. The first one handles next operators:

(3) For every formula Xψ1 in the closure of ψ, ai contains Xψ1 if and only if
ai+1 contains ψ1.

The next condition is related to the until operator and is a consequence
of the following fundamental equivalence law of LTL:

ψ1 Uψ2 ≡ ψ2 ∨ (ψ1 ∧X (ψ1 Uψ2)) (8.1)

(where ≡ denotes logical equivalence). Intuitively, this means that ψ1 Uψ2

holds now if and only if it is either the case that ψ2 holds now, or ψ1 holds
now and ψ1 Uψ2 holds at the next time instant. It follows that for all i ≥ 0
every pair aiai+1 of consecutive atoms of a Hintikka sequence must also satisfy:

8.3 Testers for LTL Properties 133

(4) For every formula ψ1 Uψ2 in the closure of ψ, ai contains ψ1 Uψ2 if and
only if either ai contains ψ2, or ai contains ψ1 and ai+1 contains ψ1 Uψ2.

Conditions (1)–(4) are not yet sufficient for a sequence to be a Hintikka
sequence, as shown by the following example.

Example 8.10. Consider the product of Fig. 8.1 and let ψ = u1 Uu2. We have
APψ = {u1, u2}. The sequence of atoms ({u1,¬u2, u1 Uu2})ω satisfies (1)–
(4). However, it is not a Hintikka sequence. The reason is that if an atom of
a Hintikka sequence contains the formula u1 Uu2, then, by the semantics of
until formulas, u2 must hold at some later point, and so some later atom must
contain u2. Loosely speaking the formula u1 Uu2 “promises” that eventually
u2 will hold, and the sequence above keeps “delaying” the promise for ever.

So we add a new condition:

(5) For every formula ψ1 Uψ2 in the closure of ψ and for every i ≥ 0, if ai
contains ψ1 Uψ2 then there is an index j ≥ i such that aj contains ψ2.

Observe that conditions (1)–(4) are local, while condition (5) is global,
i.e., in order to check it we need to examine arbitrarily large “windows” of
the sequence of atoms.

We still have a last problem to solve.

Example 8.11. Consider the product of Fig. 8.1 and let ψ = u1 U t2. The
sequence

{u1,¬t2, u1 U t2} ({¬u1, t2, u1 U t2})ω

is a sequence of atoms satisfying (1)–(5). However, no ψ-history σ exists such
that πψ(σ) is equal to this sequence of atoms. Intuitively, the reason is that
no global transition of A can “transform” the first atom of the sequence into
the second. For that, the global transition should make the second component
leave the state u1, and should also make the first component enter the state t2.
Formally, there should be a global transition t such that 〈 〈⊥, u1〉 , t, 〈t2,⊥〉 〉
is a ψ-step. But no such transition exists.

So every two consecutive atoms ai, ai+1 have to be consistent with some ψ-
step, meaning that there is a ψ-step 〈ri, ti+1, ri+1〉 consistent with it:

(6) For every i ≥ 0: there exists a global transition ti+1 such that 〈ri, ti+1, ri+1〉
is a ψ-step, where ri = ai ∩APψ and ri+1 = ai+1 ∩APψ.

We have now gathered enough conditions and present the following result
without proof:

Proposition 8.12. An infinite sequence of atoms is a Hintikka sequence for
a formula ψ if and only if it satisfies conditions (1)–(6).

134 8 Model Checking LTL

The Generalized Büchi Tester

We now more formally show how to make from the definition of Hintikka
sequences a Büchi tester for a particular product of transition systems A.
After this we will also show how condition (5) mentioned above is han-
dled with acceptance sets. We define a generalized Büchi tester GT ψ =
〈Bψ, {F0, . . . , Fk−1}, λψ〉 of a product of transition systems A and prove that
it tests the formula ψ. We first define the transition system Bψ and the labeling
function λψ.

• The states of Bψ consist of all the atoms together with a special state isψ,
which is also the initial state of the tester.

• The set of transitions of Bψ contains:
– A transition for every global transition ti and every pair ai ai+1 of

states which together satisfy the conditions (3)–(4), (6). The source and
target of the transition are ai and ai+1, respectively, and the transition
is labeled by ti.

– To connect the initial state to the rest of the tester: A transition for
every global transition ti and every pair ai ai+1 of states which together
satisfy the conditions (3)–(4), (6) and ai also satisfies (1)–(2). The
source and target of the transition are isψ and ai+1, respectively, and
the transition is labeled by ti.

It remains to choose sets F0, . . . , Fk−1 of accepting states in such a way
that the histories of Bψ that visit each of F0, . . . , Fk−1 infinitely often satisfy
condition (5). This is not difficult. Let ψ0 Uψ′0, . . . , ψk−1 Uψ′k−1 be the U -
subformulas of ψ. For every i ∈ {0, . . . k − 1}, define Fi as follows:

• Fi contains the states a such that ψiUψ′i /∈ a or ψ′i ∈ a.
Proposition 8.13. An infinite history σ = t1 t2 t3 . . . of A satisfies condi-
tions (1)–(6) if and only if it is recognized by GT ψ.

Putting together this proposition and Prop. 8.12 we get:

Corollary 8.14. An infinite history σ = t1 t2 t3 . . . of A satisfies ψ if and
only if GT ψ recognizes σ.

Example 8.15. Figure 8.3 shows the tester of the product of Fig. 8.1 for the
formula ψ = F (u1 ∧ Xu1). Notice that u1 holds in the initial state. We
have ψ = F (u1 ∧ Xu1) ≡ (u1 ∨ ¬u1)U (u1 ∧ Xu1). Thus we get cl(ψ) =
{u1,¬u1, u1 ∨ ¬u1,¬(u1 ∨ ¬u1),Xu1,¬Xu1, u1 ∧ Xu1,¬(u1 ∧ Xu1), (u1 ∨
¬u1)U (u1 ∧Xu1),¬((u1 ∨ ¬u1)U (u1 ∧Xu1))}. By analyzing the formula
further, we get that u1 ∨¬u1 holds in all atoms, and whether u1 ∧Xu1 holds
in an atom or not is fully determined by whether u1 and Xu1 hold in the same
atom. Thus, the contents of each atom is fully determined by whether any of
the following three formulas hold or not: {u1,Xu1, (u1 ∨¬u1)U (u1 ∧Xu1)}.
We now obtain a tester by restricting our attention to those atoms that are
reachable from the initial state of the tester by the transition relation of the
tester defined above.

8.3 Testers for LTL Properties 135

u1,¬Xu1, ψ

¬u1,Xu1, ψ

¬u1,¬Xu1, ψ

u1,Xu1, ψ

u1,¬Xu1,¬ψ

¬u1,Xu1,¬ψ

¬u1,¬X u1,¬ψ

u1, ψ

c

c
c

c

c

c

c

c c

a

a

a a

a ab b

b

c

Fig. 8.3. A tester of the product of Fig. 8.1 for F (u1 ∧Xu1)

From Generalized Büchi Testers to Büchi Testers

It is easy to see that for every generalized Büchi tester there is a Büchi tester
that recognizes the same language. This is a well known construction (see,
e.g., [26]). Intuitively, the transition system of the Büchi tester consists of k
copies of the transition system of the generalized Büchi tester, one for each
set of accepting states. The transitions are chosen so that the Büchi tester
stays in the ith copy until it hits a state of Fi; when this happens, instead
of moving to a successor state in the ith copy it moves to the corresponding
state in the (i + 1)th copy modulo k. The accepting states are the states in
the first copy of the set F0. The Büchi tester so defined satisfies the following
property: between two visits to states of the first copy of F0 there must be a
visit to the second copy of F1, to the third copy of F2, and so forth.

136 8 Model Checking LTL

8.4 Model Checking with Testers: A First Attempt

We define a synchronization of a tester and product in which the tester ob-
serves all global transitions of the product. We show that this synchronization
reduces the model checking problem to the repeated executability problem.

It is convenient to introduce some notation. Given a global transition
t = 〈t1, . . . , tn〉 of A and a transition u of a tester BT , we use 〈t, u〉 as
an abbreviation of the tuple 〈t1, . . . , tn, u〉. Similarly, given a global state
s = 〈s1, . . . , sn〉 of A and a state r of BT , we abbreviate 〈s1, . . . , sn, r〉 to
〈s, r〉.
Definition 8.16. Let BT = (B, F, λ) be a tester. The full synchronization of
A and BT is the product A‖BT = 〈A1, . . .An,B,U〉, where the synchroniza-
tion constraint U contains a global transition 〈t, u〉 for every global transition
t of A and every transition u of BT such that λ(u) = t.

Given a sequence σ = 〈t1, u1〉 〈t2, u2〉 〈t3, u3〉 . . . of transitions of A‖BT ,
we call σA = t1 t2 t3 . . . the projection of σ on A, and σBT = u1 u2 u3 . . .
the projection of σ on BT . It follows immediately from the definition of full
synchronization that σ is a history of A ‖ BT if and only if σA and σBT
are histories of A and BT , respectively. We say that σ visits accepting states
infinitely often if there are infinitely many indices i ≥ 1 such that the target
state of the transition ui is an accepting state of BT .

Proposition 8.17. Let BT ¬ψ be a tester for ¬ψ. A history of A violates ψ
if and only if it is the projection on A of an infinite history of A‖BT ¬ψ that
visits accepting states infinitely often.

Proof. Recall that a history of A violates ψ if and only if it satisfies ¬ψ,
and so if and only if it is recognized by BT ¬ψ. So it suffices to show that a
history of A is recognized by BT if and only if it is the projection on A of an
infinite history of A‖BT that visits accepting states infinitely often.

If BT recognizes an infinite history t1t2 . . . of A, then there is an in-
finite history u1u2u3 . . . of BT such that ti = λ(ui) for every i ≥ 1 and
u1u2u3 . . . visits accepting states of BT infinitely often. By the definition of
A ‖ BT , we have 〈ti, ui〉 ∈ U for every i ≥ 1. It follows that the sequence
〈t1, u1〉 〈t2, u2〉 . . . is an infinite history of A‖BT , that visits accepting states
infinitely often.

Conversely, assume that some infinite history h = 〈t1, u1〉 〈t2, u2〉 . . . of
A‖BT visits accepting states infinitely often. Since h is a history of A‖BT ,
its projection on A is a history of A. By the definition of U, we have ti ∈ λ(ui)
for every i ≥ 1, and the target state of ui is an accepting state of BT for in-
finitely many i ≥ 1. It follows that BT recognizes h. ¤

Example 8.18. Consider the transition systemA shown in Fig. 8.4. Suppose we
want to check whether A satisfies ψ1 = F (u1 ∧Xu1), i.e., whether all global

8.4 Model Checking with Testers: A First Attempt 137

histories of A eventually contain two consecutive time steps in which A is in
state u1. A Büchi tester BT ¬ψ1 = BT G (u1⇒X¬u1) is shown in Fig. 8.5. Note
that this tester is much simpler than the tester of Fig. 8.3 for two reasons: first
of all there are no invisible transitions in Fig 8.4, and secondly the extra initial
state has been optimized away while still preserving the language accepted by
the tester. The full synchronization of the transition system of Fig. 8.4 and the
tester of Fig. 8.5, namely A‖BT ¬ψ1 , is in Fig. 8.6. The full synchronization
A‖BT ¬ψ1 has an infinite history (〈a, t1〉 〈b, t2〉)ω, and thus the infinite history
(ab)ω of A violates ψ.

a b

u1

u2

Fig. 8.4. A transition system A under LTL model checking

t2(b)t1(a)

Fig. 8.5. A tester of the transition system of Fig. 8.4 for G (u1 ⇒ X¬u1)

Proposition 8.17 allows us to reduce the model checking problem to the
repeated executability problem. Recall that in the repeated executability prob-
lem we check if there exists an infinite history that executes global transitions
from a set R infinitely often. In contrast, in order to apply Prop. 8.17 we
have to check if the history visits accepting states infinitely often. To reduce
the latter to the former, it suffices to choose the set R so that it contains the
global transitions whose occurrence leads to an accepting state.

Theorem 8.19. Let A be a product and let ψ be a property of LTL. Let BT ¬ψ
be a tester for ¬ψ. Let R be the set of global transitions 〈t, u〉 of A ‖ BT ¬ψ
such that the target state of u is an accepting state of BT ¬ψ. A satisfies ψ
if and only if the answer to the instance of the repeated executability problem
given by A‖BT ¬ψ and R is negative.

138 8 Model Checking LTL

a

u1

u2

b t1(a) t2(b)

U = {a = 〈a, t1〉 ,b = 〈b, t2〉}
Fig. 8.6. Full synchronization of the tester of Fig. 8.5 with the transition system of
Fig. 8.4

Proof. By Prop. 8.17 A violates ψ if and only if some infinite history h of
A‖BT ¬ψ visits accepting states infinitely often. This is the case if and only
if the projection of h on BT ¬ψ is an infinite history of BT ¬ψ containing in-
finitely many transitions whose target state is an accepting state of BT ¬ψ.
Finally, this is the case if and only if h contains infinitely many occurrences
of global transitions of R. ¤

While this approach is perfectly sensible when A only has one component,
it has a serious problem for general products when used with the unfolding
method. To understand why, we take a closer look at the definition of full
synchronization (Def. 8.16). Recall that 〈t, u〉 if and only if t ∈ T, u 6= ε,
and t ∈ λ(u). In particular, it follows that BT ¬ψ participates in all global
transitions of A ‖BT ¬ψ. But, in this case, the final prefix of A ‖BT ¬ψ does
not contain any pair of concurrent events, and so the unfolding method does
not present any advantage over exploring all the global states of the product.

8.5 Stuttering Synchronization

The solution to the problem above is to replace the full synchronization by a
“less intrusive” synchronization, in which the tester does not participate in all
global transitions. This approach, which is the subject of this section, comes
at a price (not very high, as we shall see): it only works for the stuttering-
invariant fragment of LTL.

Definition 8.20. Two infinite words π, π′ ∈ (2AP)ω are stuttering equivalent
if there are two infinite sequences of positive integers 0 = i0 < i1 < i2 < . . .
and 0 = j0 < j1 < j2 < . . . such that for every k ≥ 0 :

π(ik) = π(ik+1) = . . . = π(i(k+1)−1) = π′(jk) = π′(jk+1) = . . . = π′(j(k+1)−1) .

8.5 Stuttering Synchronization 139

A formula ψ of LTL is stuttering-invariant if π |= ψ implies π′ |= ψ for every
two stuttering equivalent words π, π′.

Loosely speaking, two stuttering equivalent words can be divided into blocks
of letters whose starting points are at indexes i0, i1, i2, . . . for π and at indexes
j0, j1, j2, . . . for π′ such that for every k ≥ 0 the blocks starting at ik and jk
consist of repetitions or “stutterings” of the same alphabet letter. A formula is
stuttering equivalent if it is “insensitive” to the length of these blocks: a word
satisfies the formula if and only if every other word stuttering equivalent to
it satisfies the formula.

Example 8.21. Formulas like F p and pU q are stuttering-invariant. Loosely
speaking, they promise that something will eventually happen, but do not
specify when, which makes them insensitive to stuttering. On the contrary,
the formula X p is not stuttering-invariant, since we have ∅ ({p})ω |= X p, but
∅ ∅ ({p})ω 6|= X p.

In the tester approach, full synchronization is essentially unavoidable if we
wish to check properties that are not stuttering-invariant. Intuitively, testers
for properties that are not stuttering-invariant need to “count” the number of
occurrences of global transitions up to a finite number. For instance, in order
to decide if the property (X)kp holds, where (X)k denotes the concatenation
of k “next” operators, the tester has to be able to determine the moment
at which A has executed exactly k global transitions. For this it needs to
synchronize with all global transitions of the product that may occur during
the first k steps of a computation.

Stuttering-invariant properties play a very prominent role in formal veri-
fication. Lamport has famously argued that every sensible LTL specification
must be stuttering-invariant (see Bibliographical Notes at the end of this chap-
ter). The reason is that whether a property holds or not should not depend on
the “granularity” of the system. It is very difficult to agree on what is a step
of a system; what looks like a step at a level of abstraction becomes a series
of steps at the next level. Therefore, a property like “the system will react
after at most five steps” makes little sense in many situations and should be
replaced by “the system will eventually react”.

The stuttering-invariant fragment of LTL is the set of LTL formulas that
are stuttering-invariant. It is easy to prove by structural induction that X -
free formulas are stuttering-invariant. Moreover, Wilke and Peled have proved
in [100] that every stuttering-invariant formula is equivalent to some X -free
formula. So the stuttering-invariant fragment can be replaced by the fragment
of X -free formulas, denoted by LTL-X, without loss of expressive power.

Let us now consider our particular context, in which the set of atomic
propositions AP is the set of local states of all components.

Definition 8.22. A global transition t is stuttering w.r.t. ψ (or just stutter-
ing, when ψ is clear from the context) if APψ ∩ •t = APψ ∩ t•, where APψ

is the set of atomic propositions that occur in ψ.

140 8 Model Checking LTL

Observe that if t is stuttering then S = (S \ •t)∪t• holds for every S ⊆ APψ.
Intuitively, the occurrence of a stuttering transition does not change the values
of the atomic propositions that appear in ψ. The non-stuttering projection of
a sequence σ of global transitions is the sequence obtained by removing all
occurrences of stuttering transitions from σ.

The following proposition follows easily from the definitions:

Proposition 8.23. Let ψ be a stuttering-invariant formula, and let σ, σ′ be
two infinite sequences of global transitions having the same non-stuttering
projection. Then σ |= ψ if and only if σ′ |= ψ.

Proof. Let σ = t1 t2 t3 . . . and σ′ = t′1 t′2 t′3 Define an infinite increasing
sequence of positive integers as follows. If the non-stuttering projection of σ
is an infinite sequence ti1 ti2 ti3 . . ., then take the sequence 0 = i0 < i1 < i2 <
i3 < If it is a finite sequence ti1 ti2 . . . tik , then take 0 = i0 < i1 < . . . <
ik < ik+1 < ik+2 . . . where ik+l = ik + l for every l ≥ 1. Define the sequence
0 = j0 < j1 < j2 < j3 . . . analogously, taking the sequence σ′ instead of σ.

Consider the sequences π(σ) = S0S1S2 . . . and π(σ′) = S ′0S ′1S ′2 We
prove by induction on k that

Sik = Sik+1 = . . . = Sik+1−1 = S ′jk = S ′jk+1 = . . . = S ′jk+1−1.

For the induction basis, let k = 0. We have S0 = S ′0 by definition of π(σ)
and π(σ′). The chains of equalities Si0 = Si0+1 = . . . = Si1−1 and S ′j0 =
S ′j0+1 = . . . = S ′j1−1 follow from the fact that that the sequence t1 . . . ti1−1

only contains stuttering transitions. For the induction step, let k > 0. By
induction hypothesis we have Sik−1 = S ′jk−1. We first prove Sik = S ′jk . By
definition of π(σ) and π(σ′) we have

Sik = (Sik−1 \ •tik) ∪ t•ik and S ′jk = (S ′jk−1 \ •tjk) ∪ t•jk .

Then, since σ and σ′ have the same non-stuttering projection, we have
tik = tjk and so Sik = S ′jk . As in the base case, the chains of equalities
Sik = Sik+1 = . . . = Sik+1−1 and S ′jk = S ′jk+1 = . . . = S ′jk+1−1 follow from
the fact that that the sequence tik+1 . . . tik+1−1 only contains stuttering tran-
sitions. ¤

We are now ready to define a new notion of synchronization between
a tester for a stuttering-invariant property and a product.

Definition 8.24. Let BTψ = (Bψ, Fψ, λψ) be a tester for a stuttering-invariant
formula ψ. The stuttering synchronization of A and BTψ is the product
A‖s BTψ = 〈A1, . . .An,Bψ,U〉, where the synchronization constraint U con-
tains:

• a transition 〈t, u〉 for every non-stuttering transition t of A and every
transition u of BT ψ such that t = λ(u); and

8.5 Stuttering Synchronization 141

• a transition 〈t, ε〉 for every stuttering transition t of A.

A transition 〈t, u〉 of A‖s BTψ is stuttering if t is stuttering or, equivalently,
if u = ε.

Intuitively, the tester in a stuttering synchronization only observes the
non-stuttering transitions executed by the product. All others occur “silently”,
without the knowledge of the tester. This motivates the following definition:

Definition 8.25. An infinite history of A is recurrent if it contains infinitely
many occurrences of non-stuttering transitions. An infinite history of the stut-
tering synchronization A‖s BT¬ψ is recurrent if its projection on A is recur-
rent or, equivalently, if the tester participates in infinitely many transitions.

We will now show that Prop. 8.17 still holds for recurrent histories.

Proposition 8.26. Let ψ be a stuttering-invariant formula of LTL and let
BT¬ψ be a tester for ¬ψ. A recurrent infinite history of A violates ψ if and
only if it is the projection on A of an infinite history of A‖s BT¬ψ that visits
accepting states infinitely often.

Proof. (⇒): Let t1 t2 t3 . . . be a recurrent infinite history of A that violates
ψ. Let ti1 ti2 ti3 . . . be the sequence obtained by removing all occurrences of
stuttering transitions from t1 t2 t3 By Prop. 8.23, and since ψ is stuttering-
invariant, ti1 ti2 ti3 . . . also violates ψ, and so it is recognized by BT¬ψ. So there
is a history u1 u2 u3 . . . of BT¬ψ that visits accepting states of BT¬ψ infinitely
often and satisfies tij = λ(uj) for every j ≥ 1. By the definition of stuttering
synchronization, the sequence c1 c2 c3 . . . given by

c1 = 〈t1, ε〉 〈t2, ε〉 . . . 〈ti1−1, ε〉 〈ti1 , u1〉 , and
cj =

〈
tij+1, ε

〉 〈
tij+2, ε

〉
. . .

〈
tij+1−1, ε

〉 〈
tij+1 , uj

〉
for every j > 1,

is a sequence of global transitions of A‖s BT¬ψ. Moreover, since t1 t2 t3 . . . is
a history of A and u1u2u3 . . . is a history of BT¬ψ, we have that c1 c2 c3 . . .
is a history of A ‖s BT¬ψ that visits accepting states infinitely often. Since
t1 t2 t3 . . . is the projection of c1 c2 c3 . . . on A, we are done.
(⇐): Let h = 〈t1, u1〉 〈t2, u2〉 〈t3, u3〉 . . . be an infinite history of A ‖s BT¬ψ
that visits accepting states infinitely often (here ti is a global transition of
A, and ui is a transition of either BT or ε). We prove that hA = t1 t2 t3 . . .
violates ψ.

Let 〈ti1 , ui1〉 〈ti2 , ui2〉 〈ti3 , ui3〉 . . . be the subsequence of h containing all
transitions 〈ti, ui〉 such that ui 6= ε. By the definition of A ‖s BT¬ψ, the
sequence ui1 ui2 ui3 . . . is a history of BT ¬ψ (the tester only “moves” when
ui 6= ε). Since h visits accepting states infinitely often, so does ui1 ui2 ui3
It follows that BT ¬ψ recognizes the sequence ti1ti2ti3 . . ., and so ti1ti2ti3 . . .
violates ψ. By the definition of stuttering synchronization, ti is non-stuttering
if and only if ui 6= ε. So ti1ti2ti3 . . . is the non-stuttering projection of hA

and, in particular, hA and ti1ti2ti3 . . . are stuttering equivalent. Since ψ is

142 8 Model Checking LTL

stuttering-invariant, hA violates ψ (Prop. 8.23). ¤

Consider now the case of non-recurrent histories. If an infinite history h′

of A ‖s BT¬ψ is non-recurrent, then it can be split into a minimal length
prefix h and a suffix c that starts at the smallest index i such that c =
〈ti, ε〉 〈ti+1, ε〉 〈ti+2, ε〉 . . . contains only stuttering transitions. Let 〈s, q〉 be the
global state reached by h′ after executing h, i.e., right before the execution
of 〈ti, ε〉. The key intuition is that we can detect whether h′ violates ψ by
looking at the tester’s state q reached after executing h. Prop. 8.28 proves
that it suffices to check whether, loosely speaking, BT with q as initial state
recognizes some infinite sequence of A containing only stuttering transitions.
The intuition is that all such sequences are “indistinguishable”; if the tester
recognizes any of them it will also recognize c.

Definition 8.27. A state q of BT is stutter-accepting if some computation
starting at q visits accepting states infinitely often and contains only transi-
tions of BT labeled by stuttering transitions of A.

Proposition 8.28. Let ψ be a stuttering-invariant formula of LTL and let
BT¬ψ be a tester for ¬ψ. A non-recurrent infinite history of A violates ψ if
and only if it is the projection on A of an infinite history h′ = hc (split into
h and c as described above) of A‖s BT¬ψ satisfying the following properties:

• the tester’s state reached by the occurrence of h is stutter-accepting; and
• c contains only stuttering transitions.

Proof. (⇒): Let t1 t2 t3 . . . be an infinite non-recurrent history of A that
violates ψ. By Prop. 8.17, t1 t2 t3 . . . is the projection on A of an infinite
history 〈t1, u1〉 〈t2, u2〉 〈t3, u3〉 . . . of A ‖ BT ¬ψ (the full synchronization of
A and BT ¬ψ) that visits accepting states infinitely often. Moreover, by the
definition of full synchronization we have

λ(u1u2u3 . . .) = λ(u1)λ(u2)λ(u3) . . . = t1 t2 t3

Notice, however, that 〈t1, u1〉 〈t2, u2〉 〈t3, u3〉 . . . need not be a history of A‖s
BT¬ψ.

Since t1 t2 t3 . . . is non-recurrent, it has a finite non-stuttering projection
ti1ti2 . . . tik , and so the following two infinite sequences λ(u1u2u3 . . .) and
λ(ui1ui2 . . . uikuik+1uik+2 . . .) are stuttering equivalent. Since λ(u1u2u3 . . .) =
t1 t2 t3 . . . and t1 t2 t3 . . . violates ψ and ψ is stuttering-invariant, the se-
quence λ(ui1ui2 . . . uikuik+1uik+2 . . .) violates ψ too, and is recognized by the
tester BT ¬ψ. So BT ¬ψ has a history v1v2v3 . . . that visits accepting states in-
finitely often and satisfies λ(v1v2v3 . . .) = λ(ui1ui2 . . . uikuik+1uik+2 . . .). De-
fine

h = 〈t1, ε〉 . . . 〈ti1−1, ε〉 〈ti1 , v1〉
〈ti1+1, ε〉 . . . 〈ti2−1, ε〉 〈ti2 , v2〉
. . .〈
ti(k−1)+1, ε

〉
. . . 〈tik−1, ε〉 〈tik , vk〉 , and

c = 〈tik+1, ε〉 〈tik+2, ε〉 〈tik+3, ε〉

8.5 Stuttering Synchronization 143

By the definition of stuttering synchronization, hc is a history of A ‖s BT¬ψ
and, by construction, c contains only stuttering transitions. Consider now
the state of the tester reached by the execution of hBT ¬ψ = v1 . . . vk. Since
v1v2v3 . . . visits accepting states infinitely often, λ(vk+j) = tik+j for every
j > 0, and since tik+j is stuttering for every j > 0, the state is stutter-
accepting.

(⇐): Let h = 〈t1, u1〉 〈t2, u2〉 . . . 〈tk, uk〉 and let c = 〈tk+1, ε〉 〈tk+2, ε〉 . . . be
sequences satisfying the properties. We show that the projection of hc on A
violates ψ.

Let 〈s, q〉 be the state of A ‖s BT¬ψ reached after the occurrence of
h. Since q is stutter-accepting, some computation v1v2v3 . . . of BT ¬ψ vis-
its accepting states infinitely often. So u1 . . . ukv1v2v3 . . . is an infinite his-
tory of BT ¬ψ that visits accepting states infinitely often, which implies that
λ(u1 . . . ukv1v2v3 . . .) violates ψ. Since the projection of hc on A is stuttering
equivalent to λ(u1 . . . ukv1v2v3 . . .), it violates ψ as well. ¤

Propositions 8.26 and 8.28 allow us to reduce the model checking problem
for stuttering-invariant properties to instances of the repeated executability
and the livelock problems. Recall that an instance of the livelock problem
consists of a product with a distinguished subset V of visible transitions,
and an even more distinguished subset L of visible transitions called livelock
monitors. A livelock is a history h t c such that t is a livelock monitor and c
is an infinite computation containing only invisible transitions. The reduction
declares the non-stuttering transitions visible, and the stuttering transitions
invisible. The livelock monitors are defined as the non-stuttering transitions
whose occurrence leaves the tester in a stutter-accepting state. In this way,
after the occurrence of the livelock monitor the product can execute an infinite
computation of stuttering transitions, and the tester can execute an infinite
computation that visits accepting states infinitely often and is labeled by
stuttering transitions only.

However, we still have to solve a small problem. If the initial state of
the tester happens to be stutter-accepting, then in the history hc the finite
history h may be empty. In this case no livelock monitor leaves the tester in
a stutter-accepting state, because the tester is in such a state from the very
beginning! This technical problem can be solved by instrumenting A‖s BT¬ψ:

Definition 8.29. The instrumentation of A ‖s BT¬ψ, which we denote by
I(A‖s BT¬ψ), is obtained by

• adding to each component Ai of A a new initial state is ′i and a new tran-
sition it i leading from is ′i to the old initial state isi;

• adding to BT ψ a new initial state is ′BT and a new transition itBT leading
from is ′BT to the old initial state isBT ; and

• adding to the synchronization constraint a new transition 〈it, itBT 〉, where
it = 〈it1, it2, . . . , itn〉.

144 8 Model Checking LTL

We can now state and prove the desired theorem.

Theorem 8.30. Let A be a product and let ψ be a stuttering-invariant prop-
erty of LTL. Let BT ¬ψ be a tester for ¬ψ. Define:

• V as the set containing the non-stuttering transitions of I(A‖s BT¬ψ) and
the transition 〈it, itBT 〉; and

• R and L as the subsets of V containing those transitions 〈t, u〉 such that
the target state of u is, respectively, an accepting state and a stutter-
accepting state of BT ¬ψ.

A satisfies ψ if and only if the answers to

• the instance of the repeated executability problem given by I(A ‖s BT¬ψ)
and R; and

• the instance of the livelock problem given by I(A‖s BT¬ψ), V, and L

are both negative.

Proof. (⇒): We prove the contrapositive. If the answer to the repeated ex-
ecutability problem is positive, then I(A ‖s BT¬ψ) has an infinite history
containing infinitely many occurrences of transitions of R. After removing
the first transition from this sequence, we get a history of A ‖s BT¬ψ. By
the definition of R, this history visits accepting states infinitely often. By
Prop. 8.26, some (recurrent) history of A violates ψ.

If the answer to the livelock problem is positive, then I(A ‖s BT¬ψ) has
an infinite history h t c such that t is a livelock monitor and c contains only
invisible transitions. By the definition of a livelock monitor, the state of the
tester reached after the execution of t is stutter-accepting. By the definition
of V, the computation c contains only stuttering transitions. By Prop. 8.28,
some (non-recurrent) history of A violates ψ.

(⇐): We prove the contrapositive. If some recurrent history of A violates
ψ, then, by Prop. 8.26 and the definition of instrumentation, I(A ‖s BT¬ψ)
has a history that visits accepting states infinitely often. By the definition
of R, the answer to the repeated executability problem is positive. If some
non-recurrent history of A violates ψ, then, by Prop. 8.28, A ‖s BT¬ψ has
a history hc such that c contains only stuttering transitions and the state
of the tester reached after the occurrence of h is stutter-accepting. By the
definition of the instrumentation, (〈it, itBT 〉 hc) is a history of I(A‖s BT¬ψ).
If h is non-empty, then its last transition is a livelock monitor. If h is empty,
then the initial state is is stutter-accepting and, by the definition of L, the
transition 〈it, itBT 〉 is a livelock monitor. In both cases, the answer to the
livelock problem is positive. ¤

Theorem 8.30 reduces the model checking problem for stuttering-invariant
formulas to the repeated executability and the livelock problems, for which
we have given algorithms in the previous chapters. To see that this is the
case, notice that the visibility constraint defined in the beginning of Sect. 7.2

8.5 Stuttering Synchronization 145

is satisfied, as the tester participates in all visible global transitions of the
stuttering synchronization. In order to obtain a model checking algorithm we
still have to show how to compute the set of stutter-accepting states of BT .
The next proposition shows that this is a simple task.

Proposition 8.31. The set of stutter-accepting states of BT can be computed
in linear time in the size of product A‖s BT¬ψ.

Proof. Whether a given transition of A is stuttering or not can be easily
checked by inspecting its source and target states (Def. 8.22), and takes only
linear time in the size of A. Let BT ′ be the result of removing from BT all
transitions u whose label λ(u) is a non-stuttering transition of A. By the
definition of stutter-accepting, we have to compute the states q of BT ′ such
that some computation of BT ′ starting at q visits accepting states infinitely
often. A way to do this in linear time is to proceed in two steps:

(1) compute the strongly connected components of BT ′ that contain at least
one accepting state and at least one edge whose both source and destina-
tion states belong to the component; and

(2) return the states from which any of these components can be reached by
a path of BT ′.

The algorithm is clearly correct. Step (1) can be performed in linear time
using Tarjan’s algorithm (see, e.g., [114]), while step (2) can be performed by
means of a backward search starting at the states computed in (1). ¤

Example 8.32. Consider the product of transition systems A in Fig. 8.7. We
want to check whether the LTL formula ψ = FG (¬u2) holds in A. Since
APψ = {u2}, a global transition t is stuttering if {u2} ∩ •t = {u2} ∩ t•

(Def. 8.22). So the stuttering transitions are a1,a2,a3, and b.
In order to check ψ we create a Büchi tester BT ¬ψ = BT GF (u2), depicted

in Fig. 8.8.3 In order to further simplify the figure we have used some conven-
tions. By d(τ) we mean that the tester has four transitions d(a1), d(a2), d(a3),
and d(b), labeled with a1,a2,a3, and b, respectively. Similarly for f(τ). The
transitions e(a4) and g(a4) are labeled by a4. Since the transitions f(τ) are
labeled by stuttering transitions of the product, v2 is also stutter-accepting
The tester accepts all infinite histories of A which visit infinitely many global
states at which u2 holds.

The stuttering synchronization of A and BT ¬ψ is a product P, whose
Petri net representation is shown in Fig. 8.9 (some global transitions which
can never occur have been removed from P to reduce clutter). The figure also
shows the sets R, V, and L defined in Thm. 8.30. The set V contains the
transition i and the non-stuttering transitions of P, i.e., a4 and c. Since v2 is

3 This tester is not the tester generated by the procedure described earlier, but an
optimized one accepting the same language.

146 8 Model Checking LTL

a3 c3

t1

t2

b3

r1

r2

b1 a1 a2

s1

s2

b2 a4 c4

u1

u2

T = {a1 = 〈a1, ε, ε, ε〉 , a2 = 〈ε, a2, ε, ε〉 , a3 = 〈ε, ε, a3, ε〉 ,
a4 = 〈ε, ε, ε, a4〉 ,b = 〈b1, b2, b3, ε, ε〉 , c = 〈ε, ε, c3, c4〉}

Fig. 8.7. A product of transition systems A under LTL model checking

d(τ)

v1

f(τ)

v2

e(a4) g(c4)

Fig. 8.8. Büchi tester of A for GF (u2)

the only accepting and stuttering-accepting state of the tester, the sets R and
L coincide, and both contain the transition a4. Graphically, we signal that
a4 belongs to R by drawing it with a double rectangle, and we signal that it
belongs to L by coloring it light grey.

Notice that the transitions d and f of the tester do not produce any tran-
sition in the stuttering synchronization. However, it is because of f that v2 is
stutter-accepting, and that is the reason why a4 is added to L.

Figure 8.10 shows the final prefix for the repeated executability problem
using the distributed size-lexicographic search strategy. Event 4 is a successful
terminal having event 1 as companion. Terminal and companion correspond
to the infinite global history (a4a3c)ω, which constitutes a counterexample to
the property ψ.

Similarly, Fig. 8.11 shows the final prefix for the livelock problem us-
ing a variant of the distributed size-lexicographic strategy. Also this prefix
contains a successful terminal, corresponding to the infinite global history
a4(a3a2a1b)ω of A. This is a second counterexample to ψ.

Consider now the family A1,A2, . . . of products defined as follows. The
product An consists of n − 2 transition systems like the one on the left
of Fig. 8.7 and the two transition systems on the right of the same fig-
ure. Its global transitions are: a1, . . . ,an, where the ith component of ai
is ai, and all other components are equal to ε; b = 〈b1, . . . , bn−2, ε, ε〉; and

8.5 Stuttering Synchronization 147

t0r0 s0 v0u0

a1

r2 s2 t2 u2 v2

s1 u1

b = 〈b1, b2, b3, ε, ε〉 c = 〈ε, ε, c3, c4, g〉

i = 〈it1 , it2 , it3 , it4 , itBT 〉

V = {i, a4, c}
R = L = {a4}

v1

a2 a3 a4 = 〈ε, ε, ε, a4, e〉

t1r1

Fig. 8.9. Petri net representation of the stuttering synchronization P

c = {ε, . . . , ε, cn−1, cn}. The product of Fig. 8.7 is the element of the family
corresponding to n = 2. The transitions a1, . . . ,an of An are concurrent, and
so An has more than 2n reachable global states. A model checking approach
based on the (naive) exploration of the interleaving semantics can take expo-
nential time. On the other hand it is easy to see that, whatever the strategy,
the final prefixes for the repeated reachability and the livelock problems only
grow linearly in n.

Bibliographical Notes

Temporal logic was first studied in the area of mathematical logic, most promi-
nently by Arthur Prior; see, e.g., [105]. Linear temporal logic (LTL) was sug-
gested as a formalism for program specification by Pnueli [104]. The idea of
using Büchi automata to check LTL specifications was developed by Vardi
and Wolper in a series of papers (see [119] for an early reference and [120] for
a more polished journal version). Our algorithm for transforming an LTL for-
mula into a Büchi automaton is fairly primitive. Better ones can be found in
[46, 44]. Lamport was the first to introduce the idea of invariance under stut-

148 8 Model Checking LTL

t0r0 s0 v0u0

a1 a2 a3

r2 s2 t2 u2 v2

r1 s1 v1

b, unsuccessful c, successful

t1

1

23

4

56

7

a4 ∈ R

t1 u1 v1s1r1

t1 u1

i

Fig. 8.10. The final prefix for the repeated reachability problem of P

tering and to explain why it is a vital for temporal logics [79]. Our discussion
of stuttering equivalence uses notation adapted from [24].

The reduction of the model checking problem to the repeated executabil-
ity and livelock problems was introduced in [35] and later refined in [37]. It
is heavily based on ideas of Valmari on tester-based verification [117]; see
also [62, 55, 82] for more recent work. Part of the motivation for using an
approach in which testers are synchronized with the system and the result is
unfolded, instead of directly unfolding the system, was the high complexity
results obtained by the second author in [59]. The model checking algorithm
has been parallelized and extended to high-level Petri nets by Schröter and
Khomenko [110].

The design of unfolding-based model checking algorithms is a delicate and
error prone task. In [33], the first author introduced an algorithm for a simple
branching time logic. Unfortunately, the algorithm contains a flaw, which was
later dealt with by Graves [52]. Some years later, another algorithm for LTL-
X was presented by Wallner in [122]. Again, it contained a subtle mistake
which could lead to an incorrect answer for certain formulas. Due to these
experiences, we have presented the proofs of our results in detail.

8.5 Stuttering Synchronization 149

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

t0

t2

i

t1

1

35a1

b, unsuccessful

s0

a2

s2

s1

7

t1

u2

4

2 a4

u1

u0r0

r2

r1

6

v2

v1

v0

a3

c, unsuccessful

r1 s1 u1 v1

t2

t1

(a4)d ∈ L

t1

8

9 a3

s2

s1

12

a210

s1

b, successful

r2

r1

a1

r1

11

t1

u2

13

v2

u1 v1

c, unsuccessful

t1

Fig. 8.11. The final prefix for the livelock problem of P

9

Summary, Applications, Extensions, and Tools

9.1 Looking Back: A Two-Page Summary of This Book

We have shown that unfoldings can be used as the basis of a model checking
algorithm for products of transition systems and properties expressible in
Linear Temporal Logic (LTL). In favorable cases (products with a high degree
of concurrency) the algorithm only needs to construct very small prefixes of the
unfolding, beating other algorithms based on the interleaving representation
of the product.

The model checking algorithm has been presented following a bottom-up
approach. First, algorithms for basic verification problems (executability, re-
peated executability, livelock), have been developed. Second, these algorithms
have been combined to yield the model checker. In this section, with the ben-
efit of hindsight, we summarize the main ideas behind the model checking
algorithm, this time in a top-down fashion.

The model checking algorithm is based on the automata-theoretic ap-
proach. Given a property of LTL, we construct a tester (a Büchi automa-
ton) accepting, loosely speaking, the behaviors of the product that violate the
property. By fully synchronizing the tester and the product we can reduce the
model checking problem to a repeated executability problem. Unfortunately,
this synchronization destroys all the concurrency present in the product. Since
the unfolding approach has no advantages for products exhibiting no concur-
rency, this idea does not work.

The way out is to let testers synchronize only with some of the transitions
of the product, “destroying” as little concurrency as possible. However, there
is collateral damage. First, since testers cannot know how many events oc-
cur between two events they have observed, they can only be used to check
stuttering-invariant properties, and so we have to restrict ourselves to the frag-
ment LTL-X. Second, since testers do not observe all transition occurrences,
identifying runs that violate the property becomes more difficult. Given such
a run, there are two possible cases: the tester observes infinitely many events
of the run, or it observes only finitely many. In the first case, the tester has

152 9 Summary, Applications, Extensions, and Tools

all the necessary information to declare a violation, and the model checking
problem still reduces to a repeated reachability problem. In the second case,
however, the following scenario is possible:

• After synchronizing with the product for the last time, the tester deduces
that if the product continues to run forever, then it will violate the prop-
erty. Loosely speaking after the last synchronization the tester observes
danger.

• After synchronizing with the tester for the last time, the product (more
precisely, some components of the product, not necessarily all) continues
to run forever.

In this scenario, neither the tester nor the product has the necessary infor-
mation to declare a violation. The tester knows there is danger, but, since it
never synchronizes with the product again, it ignores that the product runs
forever. The product knows it runs forever, but, since it never synchronizes
with the tester again, it ignores that the tester has observed danger.

This problem is solved by changing the definition of the unfolding: when-
ever the tester observes danger, it synchronizes with all the components of
the product to tell them the news. Thus, any component running forever can
declare the violation. In this case, the model checking problem reduces to a
livelock problem.

The repeated executability and livelock problems can be solved by means
of search procedures. Search procedures consist of a search scheme and a search
strategy. In the case of transition systems, search schemes exist that are sound,
complete, and quadratic for all total strategies, where quadratic means that
the number of events explored by the search grows at most quadratically in
the number of global states of the product. This no longer holds for products.
If a scheme is sound and complete for every total strategy, then there are
strategies for which it is not quadratic. If a scheme is quadratic for every total
strategy, then there are strategies for which it is not complete. However, some
schemes are sound, complete, and quadratic for all total adequate strategies.
We have identified some total adequate strategies.

While it is not directly needed for model checking of LTL-X, we have
extensively studied the executability problem. In a nutshell, we have the same
situation as for the repeated executability and livelock problems, but replacing
quadratic by linear.

9.2 Some Experiments

The material of this book attacks some questions of the theory of concur-
rency which we think have intrinsic interest. In particular, we have pre-
sented some fundamental results about which search strategies lead to correct
search procedures. However, at least equally important is whether the the-
ory leads to more efficient verification algorithms in terms of time, space,

9.3 Some Applications 153

or both. This question must be answered experimentally, and in fact many
of the papers mentioned in the last chapters contain experimental sec-
tions [39, 41, 42, 56, 57, 58, 60, 61, 70, 71, 74, 85, 84, 86, 87, 88, 109, 110, 121]
in which the performance of the unfolding technique is measured and com-
pared with the performance of other techniques. In particular, [110] compares
the performance of PUNF, an implementation of a model checking algorithm
similar to the one described in this book, and the Spin model checker.

9.3 Some Applications

The unfolding technique can be seen as a general-purpose approach to the
analysis and verification of concurrent systems. As such, it has been applied to
analyze (models of) distributed algorithms, communication protocols, hard-
ware and software systems, etc. There are two specific areas in which the
unfolding technique seems to be particularly suitable:

• Analysis and synthesis of asynchronous logic circuits.
Asynchronous circuits have no global clock. It is commonly agreed that
they have important advantages, like absence of clock skew problems and
low power consumption, but are notoriously difficult to design correctly.
Signal transition graphs (STGs) are a popular formalism for specifying
asynchronous circuits [25]. They are Petri nets in which the firing of a
transition is interpreted as the rising or falling of a signal in the circuit. Not
every STG can be implemented as a physical circuit. A central question
related to implementability of an STG is whether it contains state coding
conflicts. In a number of papers, a group at the University of Newcastle
consisting of Alex Yakovlev, Maciej Koutny, and Victor Khomenko has
developed an unfolding-based toolset which allows us to detect and solve
these conflicts [74, 76, 75].

• Monitoring and diagnosis of discrete event systems.
In the area of telecommunication networks and services, faults are often
transient. When a fault occurs, sensors can detect problems caused by it
and raise alarms. Alarms are collected by local supervisors having only
partial knowledge of the system’s structure. In order to repair a fault, it
is first necessary to diagnose it. For this one constructs “correlation sce-
narios” showing which faults are compatible with the observed pattern of
alarms. Unfoldings are an ideal tool for this task, since they keep informa-
tion about causal relationship and spatial distribution. A group at INRIA
Rennes led by Albert Benveniste and Claude Jard works on the develop-
ment of unfolding-based techniques for monitoring and diagnosis of these
systems [9, 10, 20].

154 9 Summary, Applications, Extensions, and Tools

9.4 Some Extensions

Petri nets and products of transition systems are fundamental and very sim-
ple models of concurrency, playing similar roles as finite automata or Turing
machines in sequential computation. When modelling real systems it is conve-
nient to add other features, which requires us to extend the definition of the
unfolding, as well as the techniques to generate finite prefixes. Several such
extensions have been studied in the literature, and we discuss briefly some of
them.

• Bounded Petri nets.
In this book we have considered Petri nets in which a place can contain at
most one token. (This follows immediately from the fact that we defined
markings as sets of places.) More generally, one can allow a place to con-
tain a larger number of tokens, a capacity. Markings are then defined as
multisets of places (or, equivalently, as mappings M :P → IN, where P is
the set of places). The transition rule must be modified accordingly. When
a transition t occurs at a marking M , it no longer leads to the set-marking
M ′ = (M \ •t) ∪ t•, as defined in the book, but to the multiset-marking
M ′ = (M − •t)+ t•, where + and − denote multiset addition and multiset
difference, respectively. The definition of the unfolding can be extended
to nets with bounded capacity. Complete prefixes for this case have been
discussed in numerous papers (see, e.g., [41]).

• Unbounded Petri nets.
Petri nets can be further generalized by allowing a place to contain arbi-
trarily many tokens. Unbounded Petri nets may have infinitely many reach-
able markings. It is not difficult to define the unfolding of an unbounded
net. However, for unbounded Petri nets the existence of finite complete
prefixes is not guaranteed. Some properties of unbounded Petri nets can
be checked by means of a clever backwards reachability algorithm based on
the theory of well-quasi-orders [1]. In [2], Abdulla, Purushothaman Iyer,
and Nylén use the unfolding technique to give a more efficient version of
this algorithm for nets with a high degree of concurrency.

• Petri nets with read arcs.
Read arcs are arcs connecting a place to a transition. Intuitively, the tran-
sition can only occur if the place carries a token, but its occurrence does
not remove the token from the place. Read arcs are useful for modelling
systems in which different agents can concurrently read the value of a
variable, a register, or any other unit storing information. In [121], Vogler,
Semenov, and Yakovlev define the unfolding of a Petri net with read arcs
and show how to construct a complete prefix. The algorithm for the detec-
tion of terminal events is unfortunately more complicated. However, they
also identify a class, called read-persistent nets, for which this additional
complexity disappears. The class is of interest for modelling asynchronous
circuits

9.4 Some Extensions 155

• High-level Petri nets.
In all the Petri net models discussed so far, tokens have no identity. For
modelling purposes it is very convenient to allow tokens to carry data.
This leads to high-level Petri net models, of which the most popular are
Jensen’s colored Petri nets [68]. The unfolding of a colored Petri net can
be constructed by first expanding the colored net into a low-level net of
the kind used in this book, and then unfolding this net. However, this
procedure may be extremely inefficient: many of the transitions of the
expansion (often a large majority) can never occur. These transitions are
“dead wood” that delay the construction of the unfolding, but do not
contribute to it. In some cases the low-level net can even be too large to
fit into the memory of a high-end workstation, even though the unfolding
itself is still quite manageable. In [110], Schröter and Khomenko have
extended the model checking algorithm of this book to high-level nets.
The algorithm constructs the necessary prefixes of the unfolding directly
from the high-level Petri net, shortcutting the expansion to a low-level
model.

• Time Petri nets.
Time Petri nets are an extension of Petri nets with timing information
with the goal of modelling concurrent real-time systems. In time Petri
nets, each transition is associated with an earliest and a latest firing delay.
Intuitively, each token is assigned a clock which starts to tick when the
token is “born” (created by the firing of an input transition of the place
the token lives in) and stops when it “dies” (consumed by the firing of an
output transition). A transition can fire only if the age of all the tokens
it consume lies in the interval determined by the earliest and the latest
firing delays.1 The processes of time Petri nets have been studied by Aura
and Lilius in [5]. An algorithm for the construction of a complete prefix
has been proposed by Chatain and Jard [22]. Another construction with
a discrete-time semantics has been given by Fleischhack and Stehno [43].

• Networks of timed automata.
Timed automata [3] are the most popular formal model of real-time sys-
tems. In a sense, networks of timed automata are to time Petri nets what
products of transition systems are to Petri nets (there are many other im-
portant differences concerning the urgency of actions which are beyond the
scope of this paper). Complete prefixes for networks of timed automata
have been proposed by Bouyer, Haddad, and Reynier [16], and by Cassez,
Chatain, and Jard [19].

1 There are different dialects of time Petri nets in which this condition takes a
slightly different form.

156 9 Summary, Applications, Extensions, and Tools

9.5 Some Tools

A number of tools concerning different aspects of the unfolding technique
(unfolders, checkers) have been implemented. At the time of writing this book,
the tools below are available online. We refrain from providing the URLs since
these change very often. The tools should be easy to locate with the help of
a search engine.

• PEP. The PEP tool (Programming Environment based on Petri Nets)
is a comprehensive set of modelling, compilation, simulation, and verifi-
cation components, linked together within a Tcl/Tk-based graphical user
interface. The verification component includes an unfolder that generates
a finite complete prefix of a given net. PEP 1.0 was developed at the
group of Eike Best by a number of people coordinated by Eike Best and
Bernd Grahlmann. At the time of writing the current version is PEP 2.0,
maintained by Christian Stehno.

• The Model Checking Kit. The Model Checking Kit is a collection of
programs which allow us to model a finite-state system using a variety
of modelling languages, and verify it using a variety of checkers, includ-
ing deadlock checkers, reachability checkers, and model checkers for the
temporal logics CTL and LTL. It has a textual user interface. The Kit in-
cludes implementations of several unfolding-based verification algorithms.
The tools of the Kit were contributed by different research groups. The
Kit itself was designed and implemented by Claus Schröter and Stefan
Schwoon.

• Mole. Developed by Stefan Schwoon, Mole is an overhaul of a former
program by Stefan Römer. Mole constructs a complete prefix of a given
Petri net using the search strategy described in [40]. The strategy is similar
to the Parikh-lexicographic strategy. Mole is designed to be compatible
with the tools in the PEP project and with the Model Checking Kit.

• Unfsmodels. A research prototype of an LTL-X model checker based on
unfoldings using the approach presented in this book. The search for pos-
sible extensions is done using a tool to find stable models of logic programs
called smodels [96]. Part of the functionality requires other tools, which
may be difficult to find. Developed by the second author.

• PUNF. PUNF (Petri Net Unfolder) builds a finite and complete prefix
of a safe Petri net. It is an efficient parallel implementation, and can be
used both as a separate utility and as a part of the PEP tool. The prefixes
generated by PUNF can be passed as input to the CLP model checker.
Developed by Victor Khomenko.

• CLP. CLP (Checker based on Linear Programming) uses a finite complete
prefix of a Petri net and can check deadlock-freeness and the reachability
of a given marking. It can also check if there exists a reachable marking
satisfying the given predicate. CLP can be used both as a separate utility
and as a part of the PEP tool. CLP is developed by Victor Khomenko.

References

1. Parosh Aziz Abdulla, Karlis Cerans, Bengt Jonsson, and Yih-Kuen Tsay. Al-
gorithmic analysis of programs with well quasi-ordered domains. Information
and Computation, 160(1-2):109–127, 2000.

2. Parosh Aziz Abdulla, S. Purushothaman Iyer, and Aletta Nylén. Unfoldings of
unbounded Petri nets. In E. Allen Emerson and A. Prasad Sistla, editors, CAV,
volume 1855 of Lecture Notes in Computer Science, pages 495–507. Springer,
2000.

3. Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183–235, 1994.

4. André Arnold. Finite Transition Systems: Semantics of Communicating Sys-
tems. Prentice Hall, 1994.

5. Tuomas Aura and Johan Lilius. A causal semantics for time Petri nets. The-
oretical Computer Science, 243(1-2):409–447, 2000.

6. Paolo Baldan, Roberto Bruni, and Ugo Montanari. Pre-nets, read arcs and
unfolding: A functorial presentation. In Martin Wirsing, Dirk Pattinson, and
Rolf Hennicker, editors, WADT, volume 2755 of Lecture Notes in Computer
Science, pages 145–164. Springer, 2002.

7. Paolo Baldan, Andrea Corradini, and Barbara König. Verifying finite-state
graph grammars: An unfolding-based approach. In Philippa Gardner and
Nobuko Yoshida, editors, CONCUR, volume 3170 of Lecture Notes in Com-
puter Science, pages 83–98. Springer, 2004.

8. Paolo Baldan, Stefan Haar, and Barbara König. Distributed unfolding of Petri
nets. In Luca Aceto and Anna Ingólfsdóttir, editors, FoSSaCS, volume 3921
of Lecture Notes in Computer Science, pages 126–141. Springer, 2006.

9. Albert Benveniste, Eric Fabre, Claude Jard, and Stefan Haar. Diagnosis of
asynchronous discrete event systems, a net unfolding approach. IEEE Trans-
actions on Automatic Control, 48(5):714–727, 2003.

10. Albert Benveniste, Stefan Haar, Eric Fabre, and Claude Jard. Distributed mon-
itoring of concurrent and asynchronous systems. In Roberto M. Amadio and
Denis Lugiez, editors, CONCUR, volume 2761 of Lecture Notes in Computer
Science, pages 1–26. Springer, 2003.

11. Eike Best and Raymond R. Devillers. Sequential and concurrent behaviour in
Petri net theory. Theoretical Computer Science, 55(1):87–136, 1987.

158 References

12. Eike Best and Javier Esparza. Model checking of persistent Petri nets. In Egon
Börger, Gerhard Jäger, Hans Kleine Büning, and Michael M. Richter, editors,
CSL, volume 626 of Lecture Notes in Computer Science, pages 35–52. Springer,
1991.

13. Eike Best and César Fernández. Nonsequential Processes. EATCS Monographs
on Theoretical Computer Science. Springer, 1988.

14. Armin Biere, Cyrille Artho, and Viktor Schuppan. Liveness checking as safety
checking. Electronic Notes in Theoretical Computer Science, 66(2), 2002.

15. Blai Bonet, Patrik Haslum, Sarah Hickmott, and Sylvie Thiébaux. Directed
unfolding of Petri nets. In Workshop on Unfolding and Partial Order Tech-
niques (UFO) in 28th International Conference on Application and Theory of
Petri Nets and Other Models of Concurrency, 2007. To appear.

16. Patricia Bouyer, Serge Haddad, and Pierre-Alain Reynier. Timed unfoldings
for networks of timed automata. In Graf and Zhang [50], pages 292–306.

17. Julian C. Bradfield and Colin Stirling. Local model checking for infinite state
spaces. Theoretical Computer Science, 96(1):157–174, 1992.

18. Luboš Brim and Jǐŕı Barnat. Tutorial: Parallel model checking. In Dragan
Bosnacki and Stefan Edelkamp, editors, SPIN, volume 4595 of Lecture Notes
in Computer Science, pages 2–3. Springer, 2007.

19. Franck Cassez, Thomas Chatain, and Claude Jard. Symbolic unfoldings for
networks of timed automata. In Graf and Zhang [50], pages 307–321.

20. Thomas Chatain and Claude Jard. Symbolic diagnosis of partially observable
concurrent systems. In David de Frutos-Escrig and Manuel Núñez, editors,
FORTE, volume 3235 of Lecture Notes in Computer Science, pages 326–342.
Springer, 2004.

21. Thomas Chatain and Claude Jard. Time supervision of concurrent systems
using symbolic unfoldings of time Petri nets. In Paul Pettersson and Wang Yi,
editors, FORMATS, volume 3829 of Lecture Notes in Computer Science, pages
196–210. Springer, 2005.

22. Thomas Chatain and Claude Jard. Complete finite prefixes of symbolic un-
foldings of safe time Petri nets. In Susanna Donatelli and P. S. Thiagarajan,
editors, ICATPN, volume 4024 of Lecture Notes in Computer Science, pages
125–145. Springer, 2006.

23. Thomas Chatain and Victor Khomenko. On the well-foundedness of adequate
orders used for construction of complete unfolding prefixes. Information Pro-
cessing Letters, 104(4):129–136, 2007.

24. Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model Checking. The
MIT Press, 1st edition, 1999.

25. Jordi Cortadella, Michael Kishinevsky, Alex Kondratyev, Luciano Lavagno,
and Alexandre Yakovlev, editors. Logic Synthesis of Asynchronous Controllers
and Interfaces. Number 8 in Springer Series in Advanced Microelectronics.
Springer, 2002.

26. Costas Courcoubetis, Moshe Y. Vardi, Pierre Wolper, and Mihalis Yannakakis.
Memory-efficient algorithms for the verification of temporal properties. Formal
Methods in System Design, 1(2/3):275–288, 1992.

27. Jean-Michel Couvreur. On-the-fly verification of linear temporal logic. In
Jeannette M. Wing, Jim Woodcock, and Jim Davies, editors, World Congress
on Formal Methods, volume 1708 of Lecture Notes in Computer Science, pages
253–271. Springer, 1999.

References 159

28. Jean-Michel Couvreur, Sébastien Grivet, and Denis Poitrenaud. Designing an
LTL model-checker based on unfolding graphs. In Mogens Nielsen and Dan
Simpson, editors, Proc. of ICATPN 2000, LNCS 1825. Springer, 2000.

29. Jean-Michel Couvreur, Sébastien Grivet, and Denis Poitrenaud. Unfolding of
products of symmetrical Petri nets. In José Manuel Colom and Maciej Koutny,
editors, ICATPN, volume 2075 of Lecture Notes in Computer Science, pages
121–143. Springer, 2001.

30. Jörg Desel and Wolfgang Reisig. Place/Transition Petri nets. In Reisig and
Rozenberg [106], pages 122–173.

31. Volker Diekert and Grzegorz Rozenberg, editors. The Book of Traces. World
Scientific Publishing Co., Inc., 1995.

32. Joost Engelfriet. Branching processes of Petri nets. Acta Informatica, 28:575–
591, 1991.

33. Javier Esparza. Model checking using net unfoldings. Science of Computer
Programming, 23:151–195, 1994.

34. Javier Esparza. Decidability and complexity of Petri net problems - An intro-
duction. In Reisig and Rozenberg [106], pages 374–428.

35. Javier Esparza and Keijo Heljanko. A new unfolding approach to LTL model
checking. In Ugo Montanari, José D. P. Rolim, and Emo Welzl, editors, ICALP,
volume 1853 of Lecture Notes in Computer Science, pages 475–486. Springer,
2000.

36. Javier Esparza and Keijo Heljanko. A new unfolding approach to LTL model
checking. Series A: Research Report 60, Helsinki University of Technology,
Laboratory for Theoretical Computer Science, Espoo, Finland, April 2000.

37. Javier Esparza and Keijo Heljanko. Implementing LTL model checking with
net unfoldings. In Matthew B. Dwyer, editor, SPIN, volume 2057 of Lecture
Notes in Computer Science, pages 37–56. Springer, 2001.

38. Javier Esparza, Pradeep Kanade, and Stefan Schwoon. A note on depth-first
unfoldings. International Journal on Software Tools for Technology Transfer
(STTT), 2007. To appear, Online First DOI 10.1007/s10009-007-0030-5.

39. Javier Esparza and Stefan Römer. An unfolding algorithm for synchronous
products of transition systems. In Jos C. M. Baeten and Sjouke Mauw, editors,
CONCUR, volume 1664 of Lecture Notes in Computer Science, pages 2–20.
Springer, 1999.

40. Javier Esparza, Stefan Römer, and Walter Vogler. An improvement of McMil-
lan’s unfolding algorithm. In Tiziana Margaria and Bernhard Steffen, editors,
TACAS, volume 1055 of Lecture Notes in Computer Science, pages 87–106.
Springer, 1996.

41. Javier Esparza, Stefan Römer, and Walter Vogler. An improvement of McMil-
lan’s unfolding algorithm. Formal Methods in System Design, 20(3):285–310,
2002.

42. Javier Esparza and Claus Schröter. Reachability analysis using net unfold-
ings. In Proceeding of the Workshop Concurrency, Specification & Program-
ming 2000, volume II of Informatik-Bericht 140, pages 255–270. Humboldt-
Universität zu Berlin, 2000.

43. Hans Fleischhack and Christian Stehno. Computing a finite prefix of a time
Petri net. In Javier Esparza and Charles Lakos, editors, ICATPN, volume 2360
of Lecture Notes in Computer Science, pages 163–181. Springer, 2002.

160 References

44. Paul Gastin and Denis Oddoux. Fast LTL to Büchi automata translation. In
Gérard Berry, Hubert Comon, and Alain Finkel, editors, CAV, volume 2102 of
Lecture Notes in Computer Science, pages 53–65. Springer, 2001.

45. Jaco Geldenhuys and Antti Valmari. More efficient on-the-fly LTL verification
with Tarjan’s algorithm. Theoretical Computer Science, 345(1):60–82, 2005.

46. Rob Gerth, Doron Peled, Moshe Y. Vardi, and Pierre Wolper. Simple on-the-fly
automatic verification of linear temporal logic. In Piotr Dembinski and Marek
Sredniawa, editors, PSTV, volume 38 of IFIP Conference Proceedings, pages
3–18. Chapman & Hall, 1995.

47. Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent
Systems – An Approach to the State-Explosion Problem. Springer, 1996. Vol-
ume 1032 of Lecture Notes in Computer Science.

48. Patrice Godefroid and Pierre Wolper. Using partial orders for the efficient
verification of deadlock freedom and safety properties. Formal Methods in
System Design, 2(2):149–164, 1993.

49. Ursula Goltz and Wolfgang Reisig. The non-sequential behaviour of Petri nets.
Information and Control, 57(2/3):125–147, 1983.

50. Susanne Graf and Wenhui Zhang, editors. Automated Technology for Ver-
ification and Analysis, 4th International Symposium, ATVA 2006, Beijing,
China, October 23-26, 2006, volume 4218 of Lecture Notes in Computer Sci-
ence. Springer, 2006.

51. Bernd Grahlmann. The PEP tool. In Grumberg [53], pages 440–443.
52. Burkhard Graves. Computing reachability properties hidden in finite net un-

foldings. In S. Ramesh and G. Sivakumar, editors, FSTTCS, volume 1346 of
Lecture Notes in Computer Science, pages 327–341. Springer, 1997.

53. Orna Grumberg, editor. Computer Aided Verification, 9th International Con-
ference, CAV ’97, Haifa, Israel, June 22-25, 1997, Proceedings, volume 1254
of Lecture Notes in Computer Science. Springer, 1997.

54. Henri Hansen. Alternatives to Büchi automata. PhD thesis, Tampere Univer-
sity of Technology, Department of Information Technology, Tampere, Finland,
2007.

55. Henri Hansen, Wojciech Penczek, and Antti Valmari. Stuttering-insensitive
automata for on-the-fly detection of livelock properties. Electronic Notes in
Theoretical Computer Science, 66(2), 2002.

56. Keijo Heljanko. Deadlock and Reachability Checking with Finite Complete Pre-
fixes. Licentiate’s thesis, Helsinki University of Technology, Department of
Computer Science and Engineering, 1999. Also available as: Series A: Re-
search Report 56, Helsinki University of Technology, Department of Computer
Science and Engineering, Laboratory for Theoretical Computer Science.

57. Keijo Heljanko. Minimizing finite complete prefixes. In Hans-Dieter Burkhard,
Ludwik Czaja, Sinh Hoa Nguyen, and Peter Starke, editors, Proceedings of
the Workshop Concurrency, Specification & Programming 1999, pages 83–95,
Warsaw, Poland, September 1999. Warsaw University.

58. Keijo Heljanko. Using logic programs with stable model semantics to solve
deadlock and reachability problems for 1-safe Petri nets. Fundamenta Infor-
maticae, 37(3):247–268, 1999.

59. Keijo Heljanko. Model checking with finite complete prefixes is PSPACE-
complete. In Palamidessi [97], pages 108–122.

References 161

60. Keijo Heljanko. Combining Symbolic and Partial Order Methods for Model
Checking 1-Safe Petri Nets. Doctoral thesis, Helsinki University of Technology,
Department of Computer Science and Engineering, 2002. Also available as:
Series A: Research Report 71, Helsinki University of Technology, Department
of Computer Science and Engineering, Laboratory for Theoretical Computer
Science.

61. Keijo Heljanko, Victor Khomenko, and Maciej Koutny. Parallelisation of the
Petri net unfolding algorithm. In Joost-Pieter Katoen and Perdita Stevens,
editors, TACAS, volume 2280 of Lecture Notes in Computer Science, pages
371–385. Springer, 2002.

62. Juhana Helovuo and Antti Valmari. Checking for CFFD-preorder with tester
processes. In Susanne Graf and Michael I. Schwartzbach, editors, TACAS,
volume 1785 of Lecture Notes in Computer Science, pages 283–298. Springer,
2000.

63. Graham Higman. Ordering by divisibility in abstract algebras. Proceedings of
the London Mathematical Society, 3(2):326–336, 1952.

64. C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
65. Gerard J. Holzmann. The Spin Model Checker: Primer and Reference Manual.

Addison-Wesley, 2003.
66. Gerard J. Holzmann, Doron A. Peled, and Mihalis Yannakakis. On nested

depth first search. In 2nd SPIN Workshop, pages 23–32, 1996.
67. Ryszard Janicki and Maciej Koutny. Semantics of inhibitor nets. Information

and Computation, 123(1):1–16, 1995.
68. Kurt Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Prac-

tical Use, Volumes I-III. EATCS Monographs in Theoretical Computer Sci-
ence. Springer, 1997.

69. Victor Khomenko. Model Checking Based on Prefixes of Petri Net Unfoldings.
PhD thesis, School of Computing Science, Newcastle University, 2003. British
Lending Library DSC stock location number: DXN061636.

70. Victor Khomenko and Maciej Koutny. LP deadlock checking using partial
order dependencies. In Palamidessi [97], pages 410–425.

71. Victor Khomenko and Maciej Koutny. Towards an efficient algorithm for un-
folding Petri nets. In Larsen and Nielsen [81], pages 366–380.

72. Victor Khomenko and Maciej Koutny. Branching processes of high-level Petri
nets. In Hubert Garavel and John Hatcliff, editors, TACAS, volume 2619 of
Lecture Notes in Computer Science, pages 458–472. Springer, 2003.

73. Victor Khomenko, Maciej Koutny, and Walter Vogler. Canonical prefixes of
Petri net unfoldings. Acta Informatica, 40(2):95–118, 2003.

74. Victor Khomenko, Maciej Koutny, and Alexandre Yakovlev. Detecting state
encoding conflicts in STG unfoldings using SAT. Fundamenta Informaticae,
62(2):221–241, 2004.

75. Victor Khomenko, Maciej Koutny, and Alexandre Yakovlev. Logic synthe-
sis for asynchronous circuits based on STG unfoldings and incremental SAT.
Fundamenta Informaticae, 70(1-2):49–73, 2006.

76. Victor Khomenko, Agnes Madalinski, and Alexandre Yakovlev. Resolution of
encoding conflicts by signal insertion and concurrency reduction based on STG
unfoldings. In ACSD, pages 57–68. IEEE Computer Society, 2006.

77. H. C. M. Kleijn and Maciej Koutny. Process semantics of general inhibitor
nets. Information and Computation, 190(1):18–69, 2004.

162 References

78. Barbara König and Vitali Kozioura. AUGUR - A tool for the analysis of graph
transformation systems. Bulletin of the EATCS, 87:126–137, 2005.

79. Leslie Lamport. What good is temporal logic? In R. E. A. Mason, editor,
Information Processing 83, pages 657–668. Elsevier, 1983.

80. Rom Langerak and Ed Brinksma. A complete finite prefix for process algebra.
In Nicolas Halbwachs and Doron Peled, editors, CAV, volume 1633 of Lecture
Notes in Computer Science, pages 184–195. Springer, 1999.

81. Kim Guldstrand Larsen and Mogens Nielsen, editors. CONCUR 2001 - Con-
currency Theory, 12th International Conference, Aalborg, Denmark, August
20-25, 2001, Proceedings, volume 2154 of Lecture Notes in Computer Science.
Springer, 2001.

82. Timo Latvala and Heikki Tauriainen. Improved on-the-fly verification with
testers. Nordic Journal of Computing, 11(2):148–164, 2004.

83. Yu Lei and S. Purushothaman Iyer. An approach to unfolding asynchronous
communication protocols. In John Fitzgerald, Ian J. Hayes, and Andrzej Tar-
lecki, editors, FM, volume 3582 of Lecture Notes in Computer Science, pages
334–349. Springer, 2005.

84. Kenneth L. McMillan. Using unfoldings to avoid the state explosion problem
in the verification of asynchronous circuits. In Gregor von Bochmann and
David K. Probst, editors, CAV, volume 663 of Lecture Notes in Computer
Science, pages 164–177. Springer, 1992.

85. Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,
1993.

86. Kenneth L. McMillan. A technique of state space search based on unfolding.
Formal Methods in System Design, 6(1):45–65, 1995.

87. Kenneth L. McMillan. Trace theoretic verification of asynchronous circuits
using unfoldings. In Pierre Wolper, editor, CAV, volume 939 of Lecture Notes
in Computer Science, pages 180–195. Springer, 1995.

88. Stephan Melzer and Stefan Römer. Deadlock checking using net unfoldings.
In Grumberg [53], pages 352–363.

89. Stephan Melzer, Stefan Römer, and Javier Esparza. Verification using PEP. In
Martin Wirsing and Maurice Nivat, editors, AMAST, volume 1101 of Lecture
Notes in Computer Science, pages 591–594. Springer, 1996.

90. Robin Milner. Communication and Concurrency. Prentice Hall, 1989.
91. Peter Niebert, Michaela Huhn, Sarah Zennou, and Denis Lugiez. Local first

search - A new paradigm for partial order reductions. In Larsen and Nielsen
[81], pages 396–410.

92. Peter Niebert and Hongyang Qu. The implementation of Mazurkiewicz traces
in POEM. In Graf and Zhang [50], pages 508–522.

93. Mogens Nielsen, Gordon D. Plotkin, and Glynn Winskel. Petri nets, event
structures and domains. Theoretical Computer Science, 13(1):85–108, 1981.

94. Mogens Nielsen, Grzegorz Rozenberg, and P. S. Thiagarajan. Behavioural
notions for elementary net systems. Distributed Computing, 4:45–57, 1990.

95. Mogens Nielsen, Grzegorz Rozenberg, and P. S. Thiagarajan. Transition
systems, event structures and unfoldings. Information and Computation,
118(2):191–207, 1995.

96. Ilkka Niemelä and Patrik Simons. Smodels - An implementation of the stable
model and well-founded semantics for normal logic programs. In Jürgen Dix,
Ulrich Furbach, and Anil Nerode, editors, LPNMR, volume 1265 of Lecture
Notes in Computer Science, pages 421–430. Springer, 1997.

References 163

97. Catuscia Palamidessi, editor. CONCUR 2000 - Concurrency Theory, 11th In-
ternational Conference, University Park, PA, USA, August 22-25, 2000, Pro-
ceedings, volume 1877 of Lecture Notes in Computer Science. Springer, 2000.

98. Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
99. Doron Peled. Combining partial order reductions with on-the-fly model-

checking. Formal Methods in System Design, 8(1):39–64, 1996.
100. Doron Peled and Thomas Wilke. Stutter-invariant temporal properties are

expressible without the next-time operator. Inf. Process. Lett., 63(5):243–246,
1997.

101. Carl Adam Petri. Kommunikation mit Automaten. Bonn: Institut für Instru-
mentelle Mathematik, Schriften des IIM Nr. 2, 1962.

102. Carl Adam Petri. Kommunikation mit automaten. New York: Griffiss Air
Force Base, Technical Report RADC-TR-65–377, 1:1–Suppl. 1, 1966. English
translation.

103. Carl Adam Petri. Non-sequential processes. Technical Report ISF-77-5,
Gesellschaft für Mathematik und Datenverarbeitung, 1977.

104. Amir Pnueli. The temporal logic of programs. In FOCS, pages 46–57. IEEE,
1977.

105. Arthur Prior. Past, Present and Future. Oxford: Clarendon Press, 1967.
106. Wolfgang Reisig and Grzegorz Rozenberg, editors. Lectures on Petri Nets I:

Basic Models, Advances in Petri Nets, the volumes are based on the Advanced
Course on Petri Nets, held in Dagstuhl, September 1996, volume 1491 of Lecture
Notes in Computer Science. Springer, 1998.

107. Stefan Römer. Theorie und Praxis der Netzentfaltungen als Basis für die Ver-
ifikation nebenläufiger Systeme. PhD thesis, Technische Universität München,
Fakultät für Informatik, München, Germany, 2000.

108. Grzegorz Rozenberg and Joost Engelfriet. Elementary net systems. In Reisig
and Rozenberg [106], pages 12–121.

109. Claus Schröter. Halbordnungs- und Reduktionstechniken für die automatische
Verifikation von verteilten Systemen. PhD thesis, Universität Stuttgart, 2006.

110. Claus Schröter and Victor Khomenko. Parallel LTL-X model checking of high-
level Petri nets based on unfoldings. In Rajeev Alur and Doron Peled, edi-
tors, CAV, volume 3114 of Lecture Notes in Computer Science, pages 109–121.
Springer, 2004.

111. Claus Schröter, Stefan Schwoon, and Javier Esparza. The model-checking kit.
In Wil M. P. van der Aalst and Eike Best, editors, ICATPN, volume 2679 of
Lecture Notes in Computer Science, pages 463–472. Springer, 2003.

112. Stefan Schwoon and Javier Esparza. A note on on-the-fly verification algo-
rithms. In Nicolas Halbwachs and Lenore D. Zuck, editors, TACAS, volume
3440 of Lecture Notes in Computer Science, pages 174–190. Springer, 2005.

113. Colin Stirling and David Walker. Local model checking in the modal mu-
calculus. Theoretical Computer Science, 89(1):161–177, 1991.

114. Robert E. Tarjan. Depth-first search and linear graph algorithms. SIAM
Journal of Computing, 1(2):146–160, 1972.

115. Antti Valmari. Stubborn sets for reduced state space generation. In Grze-
gorz Rozenberg, editor, Applications and Theory of Petri Nets, volume 483 of
Lecture Notes in Computer Science, pages 491–515. Springer, 1989.

116. Antti Valmari. A stubborn attack on state explosion. In Edmund M. Clarke and
Robert P. Kurshan, editors, CAV, volume 531 of Lecture Notes in Computer
Science, pages 156–165. Springer, 1990.

164 References

117. Antti Valmari. On-the-fly verification with stubborn sets. In Costas Courcou-
betis, editor, CAV, volume 697 of Lecture Notes in Computer Science, pages
397–408. Springer, 1993.

118. Antti Valmari. The state explosion problem. In Reisig and Rozenberg [106],
pages 429–528.

119. Moshe Y. Vardi and Pierre Wolper. An automata-theoretic approach to au-
tomatic program verification (preliminary report). In LICS, pages 332–344.
IEEE Computer Society, 1986.

120. Moshe Y. Vardi and Pierre Wolper. Reasoning about infinite computations.
Information and Computation, 115(1):1–37, 1994.

121. Walter Vogler, Alexei L. Semenov, and Alexandre Yakovlev. Unfolding and
finite prefix for nets with read arcs. In Davide Sangiorgi and Robert de Simone,
editors, CONCUR, volume 1466 of Lecture Notes in Computer Science, pages
501–516. Springer, 1998.

122. Frank Wallner. Model checking LTL using net unfoldings. In Alan J. Hu and
Moshe Y. Vardi, editors, CAV, volume 1427 of Lecture Notes in Computer
Science, pages 207–218. Springer, 1998.

123. Glynn Winskel. Event structures. In Wilfried Brauer, Wolfgang Reisig, and
Grzegorz Rozenberg, editors, Advances in Petri Nets, volume 255 of Lecture
Notes in Computer Science, pages 325–392. Springer, 1986.

124. Glynn Winskel. An introduction to event structures. In J. W. de Bakker,
Willem P. de Roever, and Grzegorz Rozenberg, editors, REX Workshop, vol-
ume 354 of Lecture Notes in Computer Science, pages 364–397. Springer, 1988.

125. Pierre Wolper and Patrice Godefroid. Partial-order methods for temporal ver-
ification. In Eike Best, editor, CONCUR, volume 715 of Lecture Notes in
Computer Science, pages 233–246. Springer, 1993.

Index

ψ-history 128, 132
i-event 22, 117
i-place 22
i-root 22
1-equivalent 51

Abdulla 154
accepting state 129, 134
action 12
adequate order 62
adequate search strategies 59
adequate strategy 120
ample sets 38
applications 153
Arnold 2, 12
Artho 123
asynchronous circuit 153
atom 131
atomic proposition 126
Aura 155

Büchi automaton 130, 147, 151
Büchi tester 125, 129, 130
Barnat 106
Benveniste 153
Best 37, 156
Biere 123
Bonet 68, 72
bounded Petri net 154
Bouyer 155
Bradfield 39
branching processes 16, 38
breadth-first 33, 86
Brim 106

canonical name 18, 19

canonical prefix 71

Cassez 155

causal net 37

causal order 43

causal predecessor 23, 42

causality 23

causally closed 25

causally related 23

CCS 2, 12

Chatain 62, 91, 95, 155

closure 131

CLP 156

CNF-3SAT 31

colored net 155

companion 43, 97, 114, 118

complete prefix 73

completeness

executability

product 62

transition system 46

livelock

product 120, 121

transition system 112

repeated executability

product 103

transition system 98

component 6

computation 5

computation tree 13

concurrency 23

concurrent 23

configuration 25

166 Index

conflict 23
conflict-free 25
counterexample

generalizing executability 58
Courcoubetis 100, 105
Couvreur 105
CSP 2, 12

d-unfolding 108, 117, 120
depth-first 33, 86
Devillers 37
diagnosis 153
discrete event system 153
distributed strategy 64, 65
duplicate 117
duplicate event 108

elementary net system 12, 37
enabling 5, 7, 8
Engelfriet 37
equivalent 51
Esparza 38, 94, 95, 105
event

type 0 109, 118
type 1 109, 118
type 2 109, 118

events 16
executability problem 36, 41

product 48
transition system 41

extensions 154

feasible event 43, 97, 102, 109, 118
Fernández 37
final prefix 109, 116, 118, 146
finiteness

executability
product 57
transition system 45

livelock
product 118
transition system 110

repeated executability
product 105
transition system 98

firing 8
Fleischhack 155
flow relation 8
Foata normal form 94

full synchronization 136

Geldenhuys 105
generalized Büchi tester 130, 134
global computation 7
global history 127
global reachability problem 78
global state 6
global transition 6
global transition word 7
goal transition 41
Goltz 37
Grahlmann 156
Graves 148

Haddad 155
Hansen 123
Haslum 68, 72
Heljanko 38, 39, 78, 94, 106, 156
Helovuo 123
Hickmott 68, 72
high-level Petri net 155
Higman’s lemma 92
Hintikka sequence 130, 132, 133
history 5, 42, 54
Holzmann 105
Huhn 38

independence 50
independence relation 51
infinite computation 5
infinite global computation 7
infinite history 6
infinite word 126
inhibitor arcs 38
initial marking 8
initial state 5
input node 8
insensitive to stuttering 139
instrumentation 143
interleaving representation 10
interleaving semantics 10
interpreting LTL 126
invisible 36
invisible transition 107, 115

Jard 153, 155
Jensen 155

Kanade 95

Index 167

Khomenko 38, 71, 94, 95, 153, 155, 156
Koutny 38, 71, 94, 153

label 18
labeled Petri net 14
labeled transition system 13
labeling function 129
Lamport 139, 148
language 130
lexicographic order 48
lexicographic strategy 65
Lilius 155
linear temporal logic 125, 126, 151
livelock 107, 116

good 120
transition system 107

livelock mode 108
livelock monitor 107, 115
livelock problem 36, 107, 129, 143

product 115
livelock strategy 114
livelock’s root 107
local configuration 53
LTL 125, 126, 144, 151
LTL model checking 1, 115
LTL property 125
LTL tester 129
LTL-X 139, 148, 156
Lugiez 38

main mode 108
marking 8
Mazurkiewicz 50, 72
Mazurkiewicz trace 50, 64, 72
McMillan 1, 38, 72, 94
Melzer 94
minimal witness 47, 114, 122
mode of operation 115
model checking 3, 144
model checking LTL 125, 144
model checking problem 127
Mole 156
monitoring 153

nested-depth-first search 101
net 8
networks of timed automata 155
Niebert 38, 82, 94
Nielsen 37

node 8
non-stuttering projection 140
non-stuttering transition 140
nondeterministic program 108, 115
nonsequential processes 37
NP 30
numbering 16
Nylén 154

occurrence 13
occurrence net 37
occurrence sequence 9
occurring 8
order 41

partial order 41
strict partial order 41

orders 42
output node 8

Parikh 63, 94
Parikh mapping 64
Parikh strategy 63
Parikh-lexicographic strategy 82
partial order 41
partial run 37
partial-order reduction 38
past 53
Peled 105
Penczek 123
PEP 156
Petri 12
Petri net 8
Petri net representation 8, 9
Petri net unfolder 156
place 8
Plotkin 37
Pnueli 147
possible extension 29
pre-witness 121
prefix 19
prefix order 65
preserved by extensions 62, 66
Prior 147
priority

livelock strategy 114
priority relation 41
product 2, 6
properties of branching processes 22
PUNF 153, 156

168 Index

Purushothaman Iyer 154

Qu 82, 94

Römer 38, 94, 156
reachability 9
read arcs 38, 154
realization 25
recurrent infinite history 141
refined order 42
Reisig 37
repeated executability problem 36, 97,

129, 137, 143
product 101
transition system 97

Reynier 155
root event 120
Rozenberg 37

satisfaction relation 126
Savitch 36
Schröter 38, 94, 155, 156
Schuppan 123
Schwoon 95, 105, 156
search procedure 3, 33, 152
search scheme 33, 41, 103, 110, 152

executability
product 56
transition system 43

livelock
product 115
transition system 107

repeated executability
product 101
transition system 97

search strategy 33, 41, 152
product 48
transition system 41

semantics 10
semantics of LTL 126
Semenov 154
signal transition graph 153
size strategy 63
sleep sets 38
soundness

executability
product 57
transition system 46

livelock

product 118
transition system 112

repeated executability
product 102
transition system 98

Spin 105, 153
spoiler 46
state 5
state explosion problem 1, 38
state space 3
state space methods 1
state space reduction 38
Stehno 155, 156
step 5, 7
step of an unfolding 19
STG 153
Stirling 39
strict partial order 41
strongly connected component 145
stubborn sets 38
stutter-accepting 142
stutter-accepting state 145
stuttering 138, 141
stuttering equivalence 138
stuttering synchronization 138, 140,

145
stuttering transition 139
stuttering-invariant 139
stuttering-invariant formula 140
stuttering-invariant fragment 139
success condition 34
successful 34
successful terminal 34, 97, 102, 109,

118
synchronization 151
synchronization constraint 6
synchronization degree 30
synchronization vectors 2
synchronous product 2, 5
syntactic characterization 132
syntax of LTL 126

tableau systems 39
Tarjan 105
Tarjan’s algorithm 145
terminal 34
terminal event 43, 97, 102, 109, 118
termination condition 34
tester 123, 129, 148, 151

Index 169

the model checking kit 156
the unfolding 19
Thiagarajan 37
Thiébaux 68, 72
time Petri net 155
token 8
tools 156
total adequate strategy 64
total livelock strategy 114, 122
total order 48
total search strategy 58
trace 51
transition 5, 8
transition system 5
transition word 5
true-concurrency 1

unbounded Petri nets 154
unfolder 156
unfolding 13
unfolding a product 28
unfolding a transition system 21
unfolding method 1
unfolding procedure 34
unfolding products 13
Unfsmodels 156

Valmari 105, 123, 148
Vardi 100, 105, 125, 147
verification 3
verification using unfoldings 26

visibility constraint 115, 119, 120, 144
visible 36
visible event 109
visible transition 107, 115
Vogler 38, 71, 154

Walker 39
Wallner 148
well-defined 63

executability
product 57
transition system 45

livelock
product 118
transition system 110

repeated executability
product 102
transition system 98

well-founded 91
well-founded order 62
well-quasi-order 92
Winskel 37
witness 46, 98, 103, 112, 121
Wolper 100, 105, 125, 147
word 5

Yakovlev 153, 154
Yannakakis 100, 105

Zennou 38

