
On the Complexity of Consistency and Complete State Coding
for Signal Transition Graphs

Javier Esparza
Institute for Formal Methods in Computer Science

Univ. Stuttgart, Germany
esparza@informatik.uni-stuttgart.de

Petr Jančar∗

Center of Applied Cybernetics
Dept of CS, TU Ostrava, Czechia

Petr.Jancar@vsb.cz

Alexander Miller
Institute for Formal Methods in Computer Science

Univ. Stuttgart, Germany
Alexander.Miller@informatik.uni-stuttgart.de

July 4, 2006

Abstract

Signal Transition Graphs (STGs) are a popular formalism for the specification of asynchronous
circuits. A necessary condition for the implementability of an STG is the existence of a consistent
and complete state encoding. For an important subclass of STGs, the marked graph STGs, we
show that checking consistency is polynomial, but checking the existence of a complete state
coding is co-NP-complete. In fact, co-NP-completeness already holds for acyclic and 1-bounded
marked graph STGs and for live and 1-bounded marked graph STGs. We add some relevant
results for free-choice, bounded, and general STGs.

1 Introduction

Signal transition graphs (STGs) are a popular formalism for specifying asynchronous circuits [3, 12].
They are Petri nets in which the firing of a transition is interpreted as rising or falling of a signal in
the circuit. Not every STG can be implemented as a physical circuit. A central question related to
implementability of an STG is whether it admits a so-called consistent and complete state coding.
Most papers in the literature consider only the completeness part, assuming that the STG is already
consistent, and call the existence of a complete state coding the CSC property. This property, and the
stronger unique state coding property (USC property for short) have been studied in many papers (see
e.g. [1, 9, 10, 11, 14, 16, 17]).

In this paper we reason about the computational complexity of deciding if a given STG has a
consistent and complete state coding, viewing the consistency problem separately. We obtain new
results for STGs whose underlying nets are marked graphs and free-choice nets; for completeness, we
also sketch some straightforward results for STGs whose underlying nets are more general—bounded
or even arbitrary.

∗This author is supported by the Czech Ministry of Education, Grant No. 1M0567

1

We first explore the consistency problem for marked graph STGs. In [7] a polynomial algorithm
was given to check consistency of live, bounded, and cyclic free-choice STGs, which include live and
bounded marked graph STGs as a subclass. Here we show that consistency is polynomial for arbitrary
marked graph STGs by means of a new algorithm based on linear programming.

A natural question is whether these polynomiality results also hold for the CSC or USC problems
(i.e., the problems of checking the CSC or USC properties), at least for the class of live and 1-bounded
marked graph STGs. Our main result shows that both problems are co-NP-complete, and so that
polynomial algorithms are unlikely. This result explains why the algorithms of [1, 9, 10, 11, 14, 16, 17]
have exponential runtime or can only decide some necessary or sufficient conditions for the CSC or
USC properties to hold. These algorithms are discussed in detail in the final section.

Our co-NP-completeness result is rather robust. We prove that the CSC and USC problems remain
co-NP-hard for 1-bounded and acyclic marked graph STGs, and that they remain in co-NP for arbitrary
marked graph STGs and for live and bounded free-choice STGs.

Moving to more general classes, we show that the consistency, CSC and USC problems are
PSPACE-complete for 1-bounded STGs, and that the consistency problem remains PSPACE-hard in
the free-choice case. Finally, we clarify the relation between the consistency, USC and CSC problems
for general STGs, and the fireability and reachability problems for general Petri nets.

The paper is structured as follows. Section 2 presents basic definitions and a characterization
of consistency. Section 3 presents the results about marked-graph STGs; it is the core of the paper.
Section 4 deals with free-choice and Section 5 with general STGs. Section 6 contains conclusions and
discusses related work.

Remark. This report is the full version of the conference paper [8].

2 Basic definitions

A net is a triple (P, T, F), where P and T are disjoint sets of places and transitions, respectively, and
F is a function (P × T)∪ (T × P) → {0, 1}. Places and transitions are generically called nodes; we
also note that a net can be viewed as a (bipartite) graph. Places are graphically represented as circles;
transitions are usually drawn like boxes, but we use just their labels in the figures. If F (x, y) = 1 then
we say that there is an arc from x to y. The preset of a node x, denoted by •x, is the set of its input
nodes, i.e., the set {y ∈ P ∪ T | F (y, x) = 1}. The postset of x, denoted by x•, contains its output
nodes, i.e., the set {y ∈ P ∪ T | F (x, y) = 1}.

A marking M of a net (P, T, F) is a mapping P → IN (where IN denotes the set of natural
numbers including 0). Graphically, a marking is represented by drawing M(p) tokens on the circle
representing the place p. A marking M enables a transition t if it puts at least one token on each place
p ∈ •t, i.e., if M(p) ≥ 1 for each p ∈ •t. If t is enabled at M , then it can fire (or occur) and its firing
(occurrence) leads to a new marking L, obtained by removing a token from each place in the preset
of t, and adding a token to each place in its postset; formally, L(p) = M(p) + F (t, p) − F (p, t) for

every place p. M
t
−→ denotes that t is enabled at M , and M

t
−→M ′ moreover denotes that firing t

leads to M ′.

The notation M
σ
−→, M

σ
−→M ′ is extended to finite sequences σ ∈ T ∗ in the natural way. When

M
σ

−→M ′, for σ = t1t2 · · · tn, we sometimes speak about an occurrence sequence from M to M ′,
meaning the sequence

M
t1−−→M1

t2−−→· · ·Mn−1
tn−−→M ′

2

By the Parikh vector of σ ∈ T ∗, denoted by ~σ or P (σ), we mean the mapping T → IN such that ~σ(t)
is the number of occurrences of t in σ.

The incidence matrix of N is the matrix CN :P×T → {−1, 0,+1} given by CN (p, t) = F (t, p)−
F (p, t). We note that if M

σ
−→M ′ then M + CN · ~σ = M ′. (We naturally identify the mapping ~σ

with a (nonnegative integer) vector; that’s why we use the term ‘Parikh vector’.)

A Petri net is a pair (N,M0) where N is a net and M0 is a marking of N , called the initial
marking. A marking M is called reachable if there exists an occurrence sequence from M0 to M ; we
also denote this by M0 −→

∗ M . We call

M0 + CN · X ≥ 0

the marking inequation. We note that M0
σ

−→M implies M0 +CN ·~σ = M ; ~σ is thus a (nonnegative
integer) solution of the marking inequation.

A marking M of a net N is n-bounded if M(p) ≤ n for every place p. A Petri net (N,M0) is
n-bounded if all its reachable markings are n-bounded.

A transition t is fireable in (N,M0) if there is σ such that M0
σ
−→M and M

t
−→. A Petri net

(N,M0) is live if each transition t is fireable in (N,M) for each M reachable from M0. A transition
is dead at a marking M if t is not fireable in (N,M).

A net N is called a marked graph if every place has at most one input and at most one output
transition. N = (P, T, F) is a free-choice net if: for each place p and every transition t, if F (p, t) = 1
then F (p′, t′) = 1 for every p′ ∈ •t, t′ ∈ p•. In a free-choice net, if some output transition of a place
is enabled at a marking, then all its output transitions are enabled, and it is possible to “freely” choose
among them.

Signal transition graphs. Let A = {a1, . . . , an} be a set (alphabet) of signals partitioned into
input and output signals. Rising and falling of a signal a is denoted by a+ and a−, respectively.
(In some proofs we also use the notation +a and −a, which is more convenient for using sub- and
superscripts.) We call an element of L = A × {+,−} a label. A signal transition graph (STG) is a
triple S = (N,M0, `), where (N,M0) is a Petri net and ` is a labelling function that assigns to each
transition of N a label in L.

A signal transition graph is a specification of the behaviour of the circuit under some assumptions
on the environment. An STG S is implementable if there exists a state coding mapping λ (we also
use the term binary encoding) that associates to each reachable marking M a vector of signal values
λ(M) ∈ {0, 1}n satisfying the following two properties:

(1) Consistency. If M
t
−→L and t is labelled by a+

i , then the i-th components of λ(M) and λ(L)
are 0 and 1, respectively, and all other components have the same value in λ(M) and λ(L). If t

is labelled by a−

i , then the i-th components of λ(M) and λ(L) are 1 and 0, respectively, and all
other components have the same value in λ(M) and λ(L).

(2) Completeness: if two different reachable markings M,L satisfy λ(M) = λ(L), then they
enable exactly the same output labels.

Consistency is obviously necessary for implementability. Completeness is necessary because the
state of an implementation is completely determined by the signal values of all signals. Therefore, if
some output signal is enabled at M but not at L, M and L must correspond to different states of the
implementation, and so they must differ in the value of at least one signal.

3

We define the consistency problem as the problem of deciding if a given STG is consistent, i.e.,
if it admits a binary encoding λ satisfying (1). The Complete State Coding problem, CSC problem
for short, is the problem to decide if a given STG (usually already assumed consistent) has the CSC
property, i.e., admits a binary encoding satisfying (1) and (2). A stricter version is the USC problem
(unique state coding) where we ask if a given STG has the USC property, i.e., admits an injective
binary encoding λ satisfying (1) (thus λ(M) 6= λ(L) for any two different reachable M,L).

STGs naturally inherit many notions from their underlying (Petri) nets. We already used this when

speaking about ‘enabling a label’, e.g. M
a+

−−→ (meaning that M enables a transition with label a+).
Thus we will freely speak about n-bounded, live, marked graph, or free-choice STGs, etc. We can
also use notions like a is dead at M (meaning that each transition with label a+ or a− is dead at M).

We also freely use notation like M
u
−→M ′ for sequences of labels (meaning that there is a transi-

tion sequence σ = t1t2 · · · tm such that M
σ
−→M ′ and u = `(t1)`(t2) · · · `(tm)). We can occasionally

even mix, and consider u as a sequence of transitions and labels, when this should not cause confusion.
We also use expressions like u is a-free, meaning that there is no a+ nor a− in u; and if u contains
transitions, we mean that those transitions do not have labels a+, a−. Recall that P (u) denotes the
Parikh vector of u; We denote by P (u)(a+) the number of transitions with label a+ in u.

Finally we note that since the circuit implementation of an STG can be seen as a finite object with
at most 2n states, where n is the number of signals, STGs used in practice are bounded, most of them
are even 1-bounded; but in principle unbounded STGs can make sense.

We finish the section by a characterization of consistency, i.e., we look in more detail on when an
STG is inconsistent.

Proposition 2.1 An STG S = (N,M0, `) is inconsistent (i.e., it admits no consistent binary encoding)
iff there is

a pair (M,a)
where M0 −→

∗ M and a is a signal

such that one of the following conditions holds:

(1) M enables ua+ and va−

for some a-free sequences u, v,

(2) M enables a+ua+ or a−ua−

for some a-free sequence u,

(3) M is reachable by w1a
+u and by w2a

−v

for some a-free sequences u, v (and some w1, w2).

Proof: If there is a pair (M,a) such that one of the conditions holds then S is obviously inconsistent.

If there is no such pair then we can (soundly) define the following (partial) encoding λ:
For each reachable M and signal a we put

• λ(M)(a) = 0 if M enables ua+ for an a-free sequence u

• λ(M)(a) = 1 if M enables ua− for an a-free sequence u

We note that if λ(M)(a) is (sofar) undefined then M is a-dead; we then put

4

• λ(M)(a) = 1 when M can be reached by wa+u for some a-free sequence u

• λ(M)(a) = 0 when M can be reached by wa−u for some a-free sequence u

• λ(M)(a) = 0 otherwise (i.e., when M is reachable only by a-free sequences)

(In the last case we could use λ(M)(a) = 1 as well.)
One can easily check that λ is a consistent binary encoding.

3 Marked graphs

In this section we show that consistency can be decided in polynomial time for all marked graph STGs
and that both the CSC problem and the USC problem are co-NP-complete for them, even in the case
of 1-bounded acyclic marked graphs and in the case of live 1-bounded marked graphs.

3.1 Consistency

In [7] it is shown that consistency of live, bounded, and cyclic free-choice STGs can be decided
in polynomial time. (A Petri net is cyclic if the initial marking is reachable from every reachable
marking, i.e., if it is always possible to return to the initial marking). Since live and bounded marked
graphs are always cyclic (see for instance [4]), and marked graphs are a special case of free-choice
nets, [7] provides a polynomial algorithm deciding consistency of live and bounded marked graph
STGs. We now show a polynomial algorithm for all marked graph STGs.

We start by recalling some simple properties of marked graphs and derive a simpler variant of
Proposition 2.1, valid for marked graphs. One such property is that if M enables a sequence with n

occurrences of t and M
t′

−→M ′ for t′ 6= t then M ′ enables a sequence with n occurrences of t as
well; if t′ = t then M ′ enables a sequence with n−1 occurrences of t.

By P (u)(t) we denote the number of occurrences of t in a transition sequence u (P stands for the
Parikh vector).

Claim 3.1 Let M be a marking of a marked graph.
If M

u
−→M1 and M

v
−→M2 then M

w
−−→M ′ for some w and M ′ such that

∀t : P (w)(t) = max {P (u)(t), P (v)(t) }.

Moreover, if M1
t
−→ and P (v)(t) ≤ P (u)(t) then M ′ t

−→.

Proof: We can perform u and then a sequence consisting of P (v)(t)−P (u)(t) occurrences of each t

for which P (u)(t) < P (v)(t).

Slightly abusing notation, by max(u, v) we will denote the w guaranteed by the claim.

Proposition 3.1 A marked graph STG S = (N,M0, `) is inconsistent iff one of the following condi-
tions holds:

5

(1’) there is a reachable M (M0 −→
∗ M) such that

M
a+

−−→ and M
a−

−−→ for some signal a,

(2’) there is a reachable M such that

M
a+ua+

−−−−−→ or M
a−ua−

−−−−−→
for some signal a and some a-free sequence u.

Proof: If (1’) or (2’) holds then S is obviously inconsistent.

Now assume that S is inconsistent. Then we know that there is a reachable M and a signal a such
that one of the conditions (1), (2), (3) of Proposition 2.1 holds. It is sufficient to show that this implies
(1’) or (2’).

If (M,a) satisfies (2) then (2’) holds. If (M,a) satisfies (1), i.e. M
ua+

−−−→ and M
va−

−−−→ for a-free

sequences u, v, then M
max(u,v)
−−−−−−→M ′ and M ′ a+

−−→, M ′ a−

−−→ (recall Claim 3.1); thus (1’) holds.

We finish by deriving a contradiction from the assumption that the inconsistency of S can not be
shown by using (1) nor (2) while we have (M,a) satisfying (3). Hence

M0
w1t1u

−−−−→M and M0
w2t2v

−−−−→M

where `(t1) = a+, `(t2) = a−, and u, v are a-free.

Necessarily, all transitions labelled by a+ or a− are dead in M – otherwise there would exist
(M ′, a) satisfying (2). Thus both t1, t2 are dead in M , which means that w1 contains the maximal
possible number of occurrences of t2, while w2 contains the maximal possible number of occurrences
of t1.

Let w1 = u1t2v1 where v1 is t2-free. Similarly w2 = u2t1v2 where v2 is t1-free. We note that
P (u2)(t2) ≤ P (u1)(t2), and P (u1)(t1) ≤ P (u2)(t1).

Hence M0
max(u1,u2)

−−−−−−−−→M ′ where M ′ enables both t1 and t2, so we have both M ′ a+

−−→ and

M ′ a−

−−→. Thus (M ′, a) satisfies (1) – a contradiction.

It is now sufficient to show that conditions (1’), (2’) of Proposition 3.1 can be checked in polyno-
mial time.

To this aim, we recall further useful observations about marked graphs. We note that, given a
marked graph STG S = (N,M0, `), we can check in polynomial time if there is a circuit of N which
is not marked at M0 (i.e., its places have no tokens in M0). The places of such a circuit can be safely
removed, since no transition in the circuit can ever occur.

We call a marked graph (N,M0) normalized if every circuit of N is marked at M0.

Claim 3.2 Let (N,M0) be a normalized marked graph, and consider the inequation M0+CN ·X ≥ 0,
where CN is the incidence matrix of N . An integer vector X0 ≥ 0 is a solution of this inequation if
and only if M0

σ
−→ for a transition sequence σ whose Parikh vector is X0.

Moreover, if M0
σ
−→M then M0 + CN · X0 = M .

Proof: The only nonobvious claim is that a solution X0 implies the existence of an appropriate σ.
But this can be done easily by induction on |X0|: among the transitions t with X0(t) ≥ 1, some

6

must be enabled at M0 – otherwise we would construct a circuit unmarked in M0; we can fire such a
transition and use the induction hypothesis.

Now we come to the polynomiality claims, which can be quickly established by using linear
programming (which is a well-known polynomial problem).

Proposition 3.2 For normalized marked graph STGs, checking (1’) of Proposition 3.1 can be done in
polynomial time.

Proof: Let S = (N,M0, `) be a normalized marked graph STG. If S satisfies (1’) then N contains
transitions t1, t2 with `(t1) = a+ and `(t2) = a− such that there is σ for which

M0
σ
−→M, M

t1−−→ ,M
t2−−→ .

We note that M ≥ Mt1 + Mt2 where Mt denotes the marking that puts one token in each input place
of t and no tokens elsewhere. The Parikh vector of σ is thus a solution of the linear inequation

M0 + CN · X ≥ Mt1 + Mt2

On the other hand, if the inequation has a nonnegative, rational solution X0 then the integer vector
bX0c is also a solution, as one can easily check. Claim 3.2 then guarantees the existence of an
appropriate σ, meaning that S satisfies (1’).

Thus checking (1’) can be done by solving the inequations for all appropriate pairs t1, t2.

Proposition 3.3 For normalized marked graph STGs not satisfying (1’), checking (2’) can be done in
polynomial time.

Proof: Let S = (N,M0, `) be a normalized marked graph STG which does not satisfy (1’); i.e., no
reachable M can enable both a+ and a−. From this we can derive that (M0, a) does not satisfy (1) of
Proposition 2.1. Therefore, in every occurrence sequence containing occurrences of the signal a, the
first occurrence of a always has the same sign. Which sign this is, + or −, can be determined very
efficiently, e.g. by firing any maximal transition sequence in which each transition of S occurs at most
once (such a sequence contains all transitions that can ever be enabled).

Consider signal a, and assume we have found that a+ is fireable as the first of a+, a−. (The case
with a− being the first is similar.)

Let us now solve the linear programming problems

maximize f(X)
subject to X ≥ 0, M0 + CN · X ≥ 0

minimize f(Y)
subject to Y ≥ 0, M0 + CN · Y ≥ 0

where
f(X) =

∑

t∈`−1(a+)

X(t) −
∑

t∈`−1(a−)

X(t)

7

If we find that it is NOT the case that both problems have optimal solutions Xop, Yop with
f(Xop) = 1 and f(Yop) = 0 then we claim ‘(2’) holds’.

To check (2’), we run the above procedure for each signal a separately, and claim that (2’) holds
when one signal gives rise to this claim, otherwise we claim that (2’) does not hold. The overall time
of this algorithm is surely polynomial; it remains to show its correctness.

Let us again consider signal a where a+ is fireable as the first (of a+, a−). It is obvious that
condition (2’) holds for signal a iff there is a transition sequence σ, with Parikh vector X , such that
M0

σ
−→ and f(X) ≥ 2 (there are two a+’s without any a− in-between) or f(X) ≤ −1 (two a−’s

without any a+ in-between).

So if (2’) holds for signal a then the procedure for a surely gives rise to the claim ‘(2’) holds’.

If (2’) does not hold for a then we have f(X) ∈ {0, 1} for each integer admissible solution X

(due to Claim 3.2). We want to show that the procedure for a finds some optimal solutions Xop, Yop

with f(Xop) = 1 and f(Yop) = 0 (and thus does not give rise to the claim ‘(2’) holds’).

To see this we recall that all solutions of X ≥ 0 , M0 + CN ·X ≥ 0 constitute a polyhedron. The
optimal solutions Xop, Yop exist iff f(X) is bounded from above and from below on the polyhedron,
and then such solutions can be found in the extremal points. The fact that f(X) ∈ {0, 1} for all
integer X easily implies that f(X) is bounded for all (admissible) X; thus the optimal solutions exist.

We now note that every row of CN contains at most one +1 and at most one −1, which means
that matrix CN is (totally) unimodular. Hence the extremal points of the polyhedron are integer
vectors (cf., e.g., [13]). Thus the procedure for a indeed finds some optimal solutions Xop, Yop with
f(Xop) = 1 and f(Yop) = 0 .

Theorem 3.1 Consistency of marked graph STGs can be decided in polynomial time.

Proof: The polynomial algorithm first normalizes the STG and then uses the algorithms guaran-
teed by Propositions 3.2 and 3.3 to check if one of the conditions (1’), (2’) of Proposition 3.1 holds.

3.2 Complete state coding

In this subsection we show the announced co-NP-completeness results for the CSC problem and the
USC problem on (consistent) marked graph STGs.

The next lemma is the main technical result of the paper. We say that an occurrence sequence is
balanced if for every signal a the sequence contains the same number of occurrences of transitions
labelled by a+ and of transitions labelled by a−.

Lemma 3.1 The following problem is NP-complete:
Instance: a (consistent) STG S = (N,M0, `) such that (N,M0) is a 1-bounded, acyclic marked
graph.
Question: is there an occurrence sequence M0

σ
−→M1

τ
−→M2 of S such that τ is nonempty and

balanced?

Proof: Membership in NP is clear: In any net (N,M0) which is 1-bounded and acyclic, each tran-
sition can appear at most once in any occurrence sequence. So a nondeterministic algorithm can just

8

guess a sequence στ of pairwise distinct transitions and verify that it is performable from M0 and that
τ is nonempty and balanced.

The main point is NP-hardness, which we show by a reduction from CNF-SAT. Let ϕ be a boolean
formula in conjunctive normal form

• with m clauses c1, . . . , cm,

• and n variables x1, . . . , xn.

(E.g., formula (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x4) has 2 clauses and 4 variables.)

Our aim is to show a polynomial construction of a certain STG Sϕ = (N,M0, `), with (N,M0)

being a 1-bounded acyclic marked graph, so that ϕ is satisfiable iff Sϕ admits M0
σ

−→M1
τ
−→M2 for

some sequence σ and some nonempty balanced sequence τ .

The construction is based on the fact that there is a truth assignment

A : {x1, x2, . . . , xn} → {0, 1}

satisfying ϕ if and only if there is a consistent choice of literals, by which we mean a mapping

l : {c1, c2, . . . , cm} → {x1, x1, x2, x2, . . . , xn, xn}

attaching to each clause ci one of its literals, denoted l(ci), in such a way that l(ci) 6= l(cj) for all i, j

(i.e., it is forbidden that one clause ‘chooses’ x while another clause ‘chooses’ x).

We can easily observe that any consistent choice of literals l naturally provides a satisfying truth
assignment A (which can be specified arbitrarily for variables not appearing in the range of l); and
any satisfying truth assignment enables to define (maybe several) consistent choices of literals.

We now describe the STG Sϕ, providing also informal comments which will ease the later cor-
rectness proof. Figure 1 shows the overall structure of Sϕ.

V 1
T

...
V n

T

V 1
F

...
V n

F

N$

CN
1

...
CN

m

CP
1

...
CP

m

Figure 1: The overall structure of Sϕ

We need a few remarks about the notation. We construct Sϕ = (N,M0, `) where N is an acyclic
marked graph. All the minimal elements with respect to the flow relation will be places, and precisely
those places will be initially marked (i.e., each will carry one token). We say that there is an arc
from transition t1 to transition t2 when there is an (intermediate) place p (initially unmarked) and arcs
t1 → p, p → t2. (This is, in fact, a usual convention which we also use for drawing marked graphs.)

Each symbol of Figure 1 (i.e., each V 1
T , . . . , CP

m) stands for an acyclic marked graph. The arrow
V 1

T → N$ has the following meaning: V 1
T has a transition t which is the unique maximal element in

9

V 1
T (w.r.t. the order induced by the flow relation), N$ has a transition u which is the unique minimal

element in N$, and the (overall) net N contains an arc leading from t to u (with an intermediate
place—using our convention). The meaning of the other arrows in the structure is analogous.

It will be clear (after we finish the construction) that any complete behaviour of Sϕ can be divided
into three phases:

I. first, all transitions in V 1
T , . . . , V n

T , CN
1 , . . . , CN

m occur,

II. then all transitions of N$ follow,

III. and finally all transitions in V 1
F , . . . , V n

F , CP
1 , . . . , CP

m occur.

The complete behaviours of Sϕ differ only in the order in which transitions occur in the phases I and
III. We proceed to describe the marked graphs corresponding to N$, V

1
T , . . . , V n

T , CN
1 , . . . , CN

m . Since
we need to use both sub- and superscripts, we change the notation and write +a and −a instead of a+

and a−. The net N$, enabled after the whole phase I is finished, has one single (complete) behaviour,
shown in Figure 2.

+$ −x1 −x2 · · · −xn −c1 −c2 · · · −cm −$

Figure 2: (Linear) behaviour of N$

This means that the signal set of Sϕ contains (among others):

• a signal ci for every clause (1 ≤ i ≤ m);

• a signal xj for every variable (1 ≤ j ≤ n);

• a (special) signal $.

Signal $ will not appear anywhere else but in N$. It will be the case that any nonempty balanced
sequence must include all transitions of N$, and so such a sequence will necessarily contain the
whole phase II.

For the rest of the proof let bal denote any non-empty and balanced sequence such that

M0
σ
−→M1

bal
−−→M2. In bal , each falling −xj (1 ≤ j ≤ n) must be compensated by a raising

+xj; the label +xj will appear just on the maximal (i.e., the last) transition of V
j
T (cf. Figure 3) and

on the minimal (i.e., the first) transition of V
j
F (cf. Figure 4). So precisely one of the subnets V

j
T , V

j
F

will contribute to bal . We interpret this as ‘choosing’ a truth assignment A.

Similarly, each falling −ci (1 ≤ i ≤ m) must be compensated by a raising +ci; the label +ci will
appear just once in CN

i and once in CP
i , now ‘almost’ as the last transition and ‘almost’ as the first

transition, respectively. Again, exactly one of the subnets CN
i , CP

i will contribute to bal .

Now we continue with the details of our construction. We extend the signal set used so far by

• a signal p
j
i for each pair i, j (1 ≤ i ≤ m, 1 ≤ j ≤ n) such that clause ci contains literal xj (p

stands for ‘positive’);

• a signal n
j
i for each pair i, j (1 ≤ i ≤ m, 1 ≤ j ≤ n) such that clause ci contains literal xj (n

stands for ‘negative’).

10

(As usual, we can assume that no clause ci of formula ϕ contains a complementary pair of literals.)

Given j (1 ≤ j ≤ n), let {ci1 , ci2 , . . . , cia} be the set of clauses containing (positive) literal xj .
The (sub)net V

j
T (representing setting xj to ‘true’) is depicted in Figure 3. Thus V

j
T ‘emits’ labels

• +p
j
i1

...
...

• +p
j
ia

+xj

Figure 3: The net V
j
T

+p
j
i1

,+p
j
i2

, . . . ,+p
j
ia

in any order, and then finishes by +xj .

Now let {ck1
, ck2

, . . . , ckb
} be the set of clauses containing (negative) literal xj . The (sub)net V

j
F

(representing setting xj to ‘false’) is depicted in Figure 4. Thus, after the label −$ of N$ occurs, V
j
F

+xj

−n
j
k1

...
...

−n
j
kb

Figure 4: The net V
j
F

‘emits’ label +xj and then labels −n
j
k1

,−n
j
k2

, . . . ,−n
j
kb

in any order.

We now define the subnets CN
i , CP

i . Recall that the sequence bal will contain either transitions of
CN

i or CP
i , but not of both. This corresponds to ‘choosing’ either a positive or a negative literal l(ci)

from ci. Which literal is chosen will depend on which transitions of the corresponding net occur in
bal , and is explained later.

The nets CN
i and CP

i have no concurrency. They use additional ‘parenthetical’ signals. More
precisely, we enhance the signal set by

• a signal �
j
i for each pair i, j, 1 ≤ i ≤ m and 1 ≤ j ≤ ni, where ni is the number of negative

literals in ci;

• a signal 4j
i for each pair i, j, 1 ≤ i ≤ m and 1 ≤ j ≤ pi, where pi is the number of positive

literals in ci.

Given i (1 ≤ i ≤ m), let {xj1 , xj2 , . . . , xja
} be the set of negative literals of the clause ci.

The (sub)net CN
i has a (marked) place as the least element (w.r.t. the flow relation). And the only

(complete) behaviour of CN
i is the sequence of labels shown in Figure 5. The key observation is that if

the label +ci of CN
i belongs to the balanced sequence bal , then bal must also contain −�

a
i , and thus,

by balancedness, also +�
a
i . But then bal also contains +n

ja

i , and so it must also contain −n
ja

i . If we
add the label −n

ja

i of CN
i to bal , then we are forced to add −�

a−1
i as well, and thus also +�

a−1
i and

+n
ja−1

i ; etc. So if labels of CN
i occur in bal , then bal contains an occurrence of some +n

j
i , where xj

11

+�
1
i +n

j1
i −n

j2
i −�

1
i +�

2
i +n

j2
i −n

j3
i −�

2
i · · ·

· · · +�
a−1
i +n

ja−1

i −n
ja

i −�
a−1
i +�

a
i +n

ja

i +ci −�
a
i

Figure 5: (Linear) behaviour of CN
i

is a literal of ci, such that the ‘balancing’ occurrence of −n
j
i does not come from CN

i , and so it must
come from V

j
F . We interpret this as ‘choosing’ the literal xj of ci, i.e., as setting l(ci) = xj .

The (sub)net CP
i is similar. We let {xk1

, xk2
, . . . , xkb

} be the set of positive literals of the clause
ci. The least element of CP

i (w.r.t. the flow relation) is a transition labelled by 41
i ; it follows from the

overall structure that this transition is enabled after −$ occurs. The only (complete) behaviour of C P
i

(after being enabled) is the sequence of labels shown in Figure 6. And we reason similarly as above.

+41
i +ci −pk1

i −41
i +42

i +pk1

i −pk2

i −42
i · · ·

· · · +4b
i +p

kb−1

i −p
kb

i −4b
i

Figure 6: (Linear) behaviour of CP
i

If the label +ci from CP
i belongs to bal , then bal must also contain +41

i , and thus also −41
i etc. So

if labels of CP
i occur in bal , then bal contains an occurrence of some −p

j
i , where xj is a literal of ci,

such that the ‘balancing’ occurrence +p
j
i does not come from CN

i , and so it must come from V
j
T . We

interpret this as ‘choosing’ the literal xj of ci, i.e., as setting l(ci) = xj .

For illustration, Figure 7 shows the STG Sϕ for a simple formula ϕ. In fact, it is a slightly different
variant of Sϕ, using more concurrency and additional signals T j , F j which stress the correspondence
with setting variable xj to true or false. (The shaded region shows a balanced sequence, which will
be also discussed later.)

We have thus completed the (obviously polynomial) construction of Sϕ, and we can easily check
that Sϕ is a consistent 1-bounded acyclic marked graph. We have also provided some intuition why
the reduction works, i.e., why

ϕ is satisfiable ⇐⇒ Sϕ admits M0
σ
−→M1

τ
−→M2 for some nonempty balanced τ .

Now we summarize the correctness arguments, first informally and then in more detail.

If ϕ is satisfiable, then we ‘choose’ a satisfying truth assignment A and for each clause ci we
‘choose’ a literal li such that A makes li true, where ‘choose’ has the meaning described above. This
leads to a balanced sequence bal . On the other hand, if a balanced sequence bal can be found, then
the corresponding ‘choice’ of literals must be consistent (and so ϕ is satisfiable): if both xj and xj are
‘chosen’, then both +n

j
i and −p

j
k appear in bal , and both V

j
T an V

j
F must contribute to bal , which, as

we have seen, is not possible. A more detailed formulation of these arguments follows.

(“=⇒”) Suppose that ϕ is satisfiable; we shall show that there is an occurrence sequence
M0

σ
−→M1

τ
−→M2 in Sϕ such that τ is nonempty and balanced. Let

l : {c1, c2, . . . , cm} → {x1, x1, x2, x2, . . . , xn, xn}

be a consistent choice of literals (which must exist since ϕ is satisfiable).

12

•

•

•

•

•

•

+p1
1

+p1
2 +T 1 +x1 −T 1

+p2
2 +T 2 +x2 −T 2

+p3
1 +T 3 +x3 −T 3

+�
1
1

+n2
1

+c1

−�
1
1

+�
1
2

+n3
2

+c2

−�
1
2

+$

−x1

−x2

−x3

−c1

−c2

−$

+F 1 +x1 −F 1

+F 2 +x2 −F 2 −n2
1

+F 3 +x3 −F 3 −n3
2

+41
1

+c1

−p1
1

−41
1 +42

1

+p1
1

−p3
1

−42
1

+41
2

+c2

−p1
2

−41
2 +42

2

+p1
2

−p2
2

−42
2

F
ig

ur
e

7:
S

T
G

S
ϕ

fo
r
ϕ

≡
(x

1
∨

x
2
∨

x
3
)
∧

(x
1
∨

x
2
∨

x
3
)

13

We now define certain sequences σ(X), τ(X) for the appropriate subnets X . The required se-
quence σ will then be defined as

σ = σ(V 1
T) . . . σ(V n

T) σ(CN
1) . . . σ(CN

n)

and τ will be defined as τ = τ1 τ2 τ3 , where

τ1 = τ(V 1
T) . . . τ(V n

T) τ(CN
1) . . . τ(CN

n)

τ2 = τ(N$)

τ3 = τ(V 1
F) . . . τ(V n

F) τ(CP
1) . . . τ(CP

n)

As expected, we define
τ(N$) = +$ −x1 . . .−xn −c1 . . .−cm −$

For each j, 1 ≤ j ≤ n, we proceed as follows. If xj is in the range of l (xj was chosen by at least
one clause), we define τ(V j

T) to be a sequence finishing by +xj and otherwise consisting of precisely
those +p

j
i for which xj = l(ci); σ(V j

T) contains all others +p
j
i appearing in V

j
T . And we define τ(V j

F)
as the empty sequence.

If xj is in the range of l, we define σ(V j
T) to be a sequence containing all transitions (i.e, labels)

of V
j
T , and we define τ(V j

T) as empty. But now τ(V j
F) is nonempty; it starts with +xj and otherwise

contains precisely those −n
j
i for which xj = l(ci).

The above definition is sound since both xj , xj can not belong to the range of l (l is consistent).
If none of xj , xj belongs to the range of l, we can define σ(V j

T) as a sequence consisting of all +p
j
i

in V
j
T , and we put τ(V j

T) = +xj and τ(V j
F) empty.

Now for each i, 1 ≤ j ≤ m, we proceed as follows. If l(ci) = xj (thus τ(V j
T) is nonempty), we

define τ(CP
i) as the sequence

+41
i +ci . . . −p

kd

i −4d
i

where kd = j (recall Figure 6); thus +ci and −p
j
i is left to be compensated in τ(CP

i). And we define
σ(CN

i) as the whole behaviour of CN
i , and τ(CN

i) as empty.

If l(ci) = xj (thus τ(V j
F) is nonempty), we define

σ(CN
i) = +�

1
i +n

j1
i . . . −n

jd

i −�
d−1
i

τ(CN
i) = +�

d
i +n

jd

i . . . +ci −�
a
i

where jd = j (recall Figure 5); thus +ci and +n
j
i is left to be compensated in τ(CP

i). And we define
τ(CP

i) as empty.

It is now straightforward to check that the defined sequence στ can really occur from M0, and
that τ is nonempty and balanced. (For each j, 1 ≤ i ≤ m, either τ(V j

T) or τ(V j
F) is nonempty; thus

the occurrence −xj of τ(N$) is compensated. For each i, 1 ≤ i ≤ m, either τ(CN
i) or τ(CP

i) is
nonempty. Suppose that it is τ(CN

i), the other case being similar. Then τ(CN
i) is balanced except of

the two ‘superfluous’ occurrences: +ci and +n
j
i , where l(ci) = xj . But +ci is compensated by −ci

of τ(N$), and +n
j
i is compensated by −n

j
i of τ(V j

F).)

14

Remark. The formula ϕ of Figure 7 is satisfiable. The shaded region corresponds to the balanced
sequence for the choice l(c1) = x2, l(c2) = x1 (and setting x3 to true).

(“⇐=”) We now assume that there is an occurrence sequence M0
σ

−→M1
τ
−→M2 in Sϕ such that τ is

nonempty and balanced; we shall show that ϕ is satisfiable. We can easily check that τ must contain
at least one transition of N$; but this obviously implies that τ contains all transitions of N$.

Hence τ can be written
τ = τ ′

1 τ ′

2 τ ′

3

where
τ ′

2 = τ(N$) = +$ −x1 . . .−xn −c1 . . .−cm −$

For each j, 1 ≤ j ≤ n, the occurrence −xj in τ ′

2 must be compensated by +xj in either τ ′

1 or τ ′

3; so
precisely one of the nets V

j
T and V

j
F contributes to τ . This naturally corresponds to a truth assignment

A.

For each i, 1 ≤ j ≤ m, the occurrence −ci in τ ′

2 must be compensated by +ci in either τ ′

1 or τ ′

3. It
is thus clear that precisely one of the nets CN

i and CP
i contributes to τ ; in this contribution, precisely

one +n
j
i , or −p

j
i respectively, is left to be compensated. This naturally defines a choice of literals l ;

we will show that this choice l is consistent.

The only possibility how such ‘superfluous’ +n
j
i (l(ci) = xj) is compensated in τ is by −n

j
i

in V
j
F , which means that +xj of V

j
F appears in τ (i.e., A(xj) = 0). If it is −p

j
i which is to be

compensated (l(ci) = xj), τ must contain +p
j
i of V

j
T , which means that +xj of V

j
T appears in τ (i.e.,

A(xj) = 1).

This implies that the above mentioned choice of literals l is indeed consistent, which means that
ϕ is satisfiable.

The previous lemma is now used to derive the desired co-NP-hardness results.

Proposition 3.4 Both the CSC problem and the USC problem are co-NP-hard for (consistent) STGs
whose underlying nets are 1-bounded acyclic marked graphs.

Proof: We use the STG Sϕ constructed in the proof of Lemma 3.1, recalling that it is a consistent
1-bounded acyclic marked graph; let us denote its (unique) consistent binary encoding by b.

Assume now that Sϕ does not have the USC property. This means that there are occurrence
sequences

M0
σ1−−→M1, M0

σ2−−→M2

such that

• M1 6= M2

(i.e., σ1 and σ2 do not contain the same transitions),

• b(M1) = b(M2) .

We explore the following cases C1), C2), C3), covering all possibilities.

15

C1) Some of σ1, σ2 contains +$ but not −$ (turns out impossible) :

In this case, both σ1, σ2 must contain +$ and not −$ (since b(M1) = b(M2)). (I.e., both M1,
M2 are in the ‘middle segment’.)

But this is impossible, since we obviously cannot have both M1 6= M2 and b(M1) = b(M2).

C2) Both σ1, σ2 do not contain +$ or both contain −$ (turns out impossible) :

(I.e., either both M1, M2 are in the ‘left segment’ or both are in the ‘right segment’.)

Let us assume the subcase where both σ1, σ2 do not contain +$.

We observe that σ1 and σ2 must contain the same transitions of V
j
T , for each j (since b(M1) =

b(M2)).

So there must be a transition of CN
i (for some i), which is, say, in σ2 but not in σ1; i.e., σ2

contains a longer prefix of the behaviour of CN
i (cf. Figure 5) than σ1. But then the differ-

ence between the two prefixes must obviously be balanced, which can be easily checked to be
impossible.

The subcase where both σ1, σ2 contain −$ can be similarly shown to be impossible.

C3) One of σ1, σ2 does not contain +$, and the other contains −$:

We can assume that σ1 does not contain +$ and σ2 contains −$. (I.e., M1 is in the ‘left
segment’, M2 is in the ‘right segment’.)

This implies that there is (nonempty) τ such that M0
σ1−−→M1

τ
−→M2; necessarily, τ is bal-

anced. And from the proof of Lemma 3.1 we know that this is possible if and only if ϕ is
satisfiable.

Thus cases C1), C2) turn out to be impossible, and C3) is possible if and only if there is a (nonempty)
τ such that M0 −→

∗ M1
τ
−→M2; necessarily, τ is balanced. Moreover, such M1,M2 (with b(M1) =

b(M2)) enable different sets of signals, so the CSC property is violated – when viewing all signals as
output signals. Therefore recalling Lemma 3.1 finishes the proof.

Proposition 3.5 Both the CSC problem and the USC problem are co-NP hard for live 1-bounded
marked graph STGs.

Proof: Consider the USC problem. We reuse the Petri net Sϕ from the proof of Lemma 3.1. We
note that the behaviour obtained by firing all transitions of Sϕ is not balanced; i.e., b(M0) and b(Mf),
where b is the consistent boolean encoding and Mf is the final marking, differ on some signals.

Remark. For concreteness, these unbalanced signals are xj , ci, n
jd

i (for d = 2, 3, . . . , a),
p

kd

i (for d = 1, 2, . . . , b−1).

We define a new STG S ′

ϕ by adding a ‘final segment’ to Sϕ: we add a fresh signal f and construct a
‘linear’ net Nf with the behaviour

+f `1 `2 · · · `k −f

16

where `i are the labels compensating the unbalance of Sϕ; they include −xj , −ci, +n
j2
i , etc.; we note

that each nonempty sequence of transitions of Nf is unbalanced. The net Nf will be prompted in S ′

ϕ

after all transitions of Sϕ occur; the final transition of Nf will then restore the initial marking M0.

Hence S′

ϕ is an STG whose underlying net is a live and 1-bounded marked graph. It is easy to see
that any sequence containing precisely one occurrence of each transition of S ′

ϕ is balanced. Let b′ be
the unique consistent boolean encoding of S ′

ϕ.

We show that Sϕ has the USC property iff S ′

ϕ has the USC property, which proves the second part
of the proposition.

It is trivial that if Sϕ does not have the USC property, then S ′

ϕ does not have it either. For the
other direction, assume that S ′

ϕ does not have the USC property. Then there is a witness of the USC-
violation, i.e. two occurrence sequences

M0
σ1−−→M1, M0

σ2−−→M2

as in the proof of Proposition 3.4.

Let us assume that the witness is minimal in the sense that neither σ1 nor σ2 can be shortened. We
prove that this minimal witness also corresponds to a USC-violation in the Petri net Sϕ. It suffices to
show that neither σ1 nor σ2 contain a transition labelled by the signal f .

Assume that one of σ1 and σ2, say σ2, contains an occurrence of the signal f . Since b′(M1) =
b′(M2), we can easily check that the assumption b′(M2)(f) = 1 would force M1 = M2, a contradic-
tion. So b′(M2)(f) = 0, which means that the last occurrence of f in σ2 is −f . But then σ2 can be
(rearranged and) written as σ2 = σ′

2σ where σ contains precisely one occurrence of each transition of

S′

ϕ. This implies M0
σ′

2−−→M2, which contradicts our minimality assumption.

Consider now the CSC property. Assume that all signals are output signals. We show that Sϕ

has the CSC property iff S ′

ϕ has the CSC property. As in the USC case, it is trivial that if Sϕ does
not have the CSC property, then S ′

ϕ does not have it either. For the other direction, assume Sϕ has
the CSC property. We have shown in Lemma 3.1 that in this case Sϕ has the USC property as well.
So, by the first part of this proof concerning the USC property, S ′

ϕ has the USC property. Since USC
implies CSC, S ′

ϕ has the CSC property, and we are done.

We now show the upper bound, a lemma which was already (implicitly) proved in [1].

Lemma 3.2 Both the CSC problem and the USC problem are in co-NP for (bounded or unbounded)
marked graph STGs.

Proof: Let S = (N,M0, `) be a normalized and consistent marked graph STG. (We recall that
consistency of S can be checked in polynomial time.) It is sufficient to deal with the CSC problem;
the claim for the USC problem will follow easily.

We observe that S does not have the CSC property if and only if there are sequences u1, u2 such
that

• M0
u1−−→M1, M0

u2−−→M2,

• M1 6= M2,

• for each signal a:

P (u1)(a
+) − P (u1)(a

−) = P (u2)(a
+) − P (u2)(a

−)

17

• M1,M2 enable different output signals

To check that there is such a ‘CSC-violation’, a nondeterministic (polynomial) algorithm guesses a
place p such that M1(p) 6= M2(p), and guesses further whether M1(p) > M2(p) or M2(p) > M1(p)
holds. The algorithm proceeds to guess an output signal a, and which of M1,M2 enables a. Assume
w.l.o.g. the guess is that M1 enables a and M2 does not. The algorithm guesses which places of M1

carry at least one token (including all the input places of some transition labeled by a) and which
places of M2 carry no token (including at least one input place of each transition labeled by a). The
algorithm translates all these guesses into a system of linear inequalities, guesses an integer solution
of polynomial size, and checks in polynomial time that it is indeed a solution. (Variables for transition
sequences are replaced by variables for their Parikh vectors, and Claim 3.2 is used.)

Putting together Propositions 3.4 and 3.5 and Lemma 3.2 we obtain:

Theorem 3.2 The CSC problem and the USC problem are co-NP-complete for marked graph STGs,
and stay co-NP-hard for live and 1-bounded marked graph STGs as well as for 1-bounded acyclic
marked graph STGs.

Remark. Notice that in the marked graphs produced by the reduction from the proof of Lemma 3.1
there are different transitions carrying the same label. The case with injective labelling (each transition
has its unique label) might well admit a polynomial algorithm but we leave this problem open here.

4 Live and bounded free-choice nets

As already mentioned, [7] shows that consistency can be decided in polynomial time for live and
bounded free-choice STGs that are moreover cyclic, meaning that the initial marking is reachable
from every reachable marking. It is not known whether the polynomiality result still holds if the
cyclicity condition is removed, and we leave this problem open.

We now show co-NP-completeness of the CSC problem and of the USC problem for live and
bounded free-choice STGs. Since live and bounded marked graphs are cyclic, Theorem 3.2 gives
co-NP-hardness even for cyclic live and bounded free-choice STGs. So we just need to show that the
complementary problem is in NP. We proceed similarly as in the marked graph case, first recalling a
known result analogous to Claim 3.2; for this we use the following notation:

For a net N = (P, T, F) and X : T → IN, we denote by NX = (PX , TX , FX) the subnet of N

defined as follows: TX is the set of transitions of T for which X(t) ≥ 1, PX = •TX ∪ T •

X , and FX is
the projection of F on (PX ×TX)∪(TX ×PX). We also recall that Q ⊆ P is a trap in N = (P, T, F)
if Q• ⊆ •Q. (If a trap is marked, i.e., has at least one token, it cannot be unmarked). Here we consider
only nonempty traps Q 6= ∅.

Lemma 4.1 ([15]) Let (N,M0) be a live and bounded free-choice Petri net, and let CN be its inci-
dence matrix.

An integer vector X0 ≥ 0 is the Parikh vector of a transition sequence enabled at M0 if and only
if

1. M0 + CN · X0 ≥ 0, and

2. M = M0 + CN · X0 marks all traps of NX0
.

18

Theorem 4.1 The CSC problem and the USC problem are co-NP-complete for live and bounded free-
choice STGs.

Proof: As mentioned above, co-NP-hardness follows from Theorem 3.2 (even when the Petri nets
are also cyclic).

A nondeterministic polynomial algorithm for showing that a given (consistent) live and bounded
free-choice STG does not have the CSC property (or the USC property) can be constructed as in the
proof of Lemma 3.2, using Lemma 4.1 instead of Claim 3.2.

A little difficulty is the fact that a (nonnegative integer) solution of M0 + CN · X ≥ 0 may not
be the Parikh vector of an occurrence sequence. The algorithm handles this problem by guessing
(and requiring in the system of inequalities) which components of X are positive and which are zero;
then it guesses a subset P ′ of places of NX , verifies that P ′ does not contain a trap in NX (which
can be easily done in polynomial time) and requires (in the constructed system of inequalities) that
M0 + CN · X is positive for all places of NX outside P ′.

In the next section we show the importance of the assumption of liveness.

5 More general nets

Here we study the complexity of the consistency, CSC, and USC problems for more general classes
of STGs.

By a straightforward use of standard techniques of Petri net theory (using the reachability problem
for k-bounded nets) we can show:

Proposition 5.1 The consistency problem, the CSC problem and the USC problem are PSPACE-
complete for k-bounded nets (for any fixed k).

The relevant proofs can be found in the appendix.

It is worth to note that free-choice does not make this simpler:

Proposition 5.2 The consistency problem for 1-bounded free-choice STGs (not necessarily live) is
PSPACE-complete.

Proof: An arbitrary 1-bounded STG can be transformed into a 1-bounded free-choice STG by means
of the operation illustrated in Figure 8 1 while preserving consistency.

In more detail: For changing an arbitrary 1-bounded STG into a 1-bounded free-choice STG, we
use transformations of the following type:

• into an original arc from a place p to a transition t insert a fresh label f + (i.e., add a new freshly
labelled transition and an additional place), and

• split t into t1, t2, adding a new place p′ and arcs t1 → p′, p′ → t2, where t1 (t2) inherits the
current input (output) places of t; put `(t1) = `(t) and `(t2) = f−

1This operation is closely related to the “releasing arcs”-technique, see e.g. [4]

19

l1 l2 l3

l1

l2

l3

f+

1 f+

2

f−

1

f−

2

Figure 8: Transforming a 1-bounded STG into a 1-bounded free-choice STG

Figure 8 shows the result of two such transformations, where f2 was inserted before f1 (in fact,
the order of the f−

i labels is irrelevant); f−

2 now has the original output places of l2.

Using sufficiently many such transformations, we can obviously transform each 1-bounded STG
S = (N,M0, `) into S = (N,M0, `) which is 1-bounded and free-choice; M0 coincides with M0 on
places from N and is 0 elsewhere.

Important is that S is consistent iff S is consistent. For this, it is sufficient to show that using
the described transformation, i.e. the step performed for one arc and changing an intermediate S ′

to S′′, keeps the (in)consistency untouched. We can easily note that if S ′ is inconsistent then so is
S′′. And 1-boundedness guarantees that S ′′ can not be inconsistent due to the added f+, f−; thus an
inconsistency witness in S ′′ naturally ‘translates’ into S ′.

Using reductions from and to the reachability problem of general Petri nets, we can show

Proposition 5.3 The consistency problem and the CSC problem for general STGs are decidable but
EXPSPACE-hard.

The proofs are also in the appendix.

6 Conclusions and related work

We have explored the complexity of the consistency and the CSC problem for several classes of
STGs. The main result shows that deciding the CSC property is co-NP-complete even for 1-bounded
and acyclic marked graph STG and for 1-bounded and live marked graph STGs. The same result holds
for the USC property. This result explains why none of the existing approaches for checking the USC
or the CSC property in marked graph STGs is polynomial or complete.

In [14] the USC property was studied for live and 1-bounded marked graph STGs with injective
labeling (i.e., one up-transition and one down-transition per signal). A sufficient condition for the
USC property to hold is presented, and it is shown that it can be checked in polynomial time. The
condition is conjectured to be also necessary, which would imply that checking the USC property is
polynomial. The reduction used in our NP-completeness result transforms a formula into an STG in
which several signals have two up- and two down-transitions, and so it does not apply to this case.
The complexity of the USC property for this particular case is left for future research.

20

In [16] the result of [14] is extended to the case in which the STG may have several up- and
down-transitions per signal. The paper presents a generalization of the sufficient condition of [14].
Our NP-completeness result shows that if P6=NP then the condition is not necessary or it cannot be
checked in polynomial time, or both. In fact, we conjecture that the condition is neither necessary,
nor can be checked in polynomial time (it requires to establish a property for a potentially exponential
number of objects).

In [17] it is shown that a live and 1-bounded marked-graph STGs violates the USC property iff
the STG has a so-called complementary path. The paper proposes an algorithm that searches for such
paths. The worst-case complexity of the algorithm is exponential, and by our result this is unavoidable
unless P6=NP.

In [11] a polynomial algorithm is presented that detects all violations of the CSC property in a
live and bounded free-choice STG. However, the algorithm may also give false positives, i.e., it may
detect false violations. Our result shows that if P6=NP then every polynomial algorithm must produce
false positives or false negatives.

In [1] a procedure is described that, given a marked-graph STG, constructs in polynomial time an
Integer Linear Programming (ILP) problem such that the STG violates the CSC property if and only
if the problem has a solution. Our result shows that, unless P6=NP, ILP is necessary, and cannot be
replaced by ordinary Linear Programming (recall that Linear Programming problems can be solved in
polynomial time).

In [9, 10] it is shown how to check the CSC property for arbitrary bounded STGs using net
unfoldings and ILP-solvers or SAT-solvers. Given a bounded STG S, an object is constructed called
the unfolding of S. This unfolding is used to generate an ILP problem (a boolean formula) such
that S violates the CSC property iff the ILP problem has a solution (iff the formula is satisfiable).
If S is a live and 1-bounded marked graph, then the unfolding of S has polynomial size in S ([5],
Theorem 4.14). This shows that, even for marked graphs, ILP-solvers or SAT-solvers are unlikely to
be replaceable by other tools with polynomial running time: if P6=NP, then no polynomial algorithm
taking the unfolding of S as input can decide the CSC or the USC property.

Finally, it could be argued that the important problem in practice is not to decide whether a given
STG satisfies the CSC property, but to transform an STG that does not satisfy the CSC property
into another one that does. In [2] an automatic, very efficient procedure for such a transformation
is presented. Unfortunately, the procedure adds many additional signals (one per place of the STG),
and so in most cases its output is only useful as a first approximation to the design. The optimization
of this first approximation has to be carried out by a (possibly automatic) trial and error procedure
in which a candidate for an optimized STG is guessed. The candidate must be checked for the CSC
property, which brings us back to the problem discussed in this paper.

Acknowledgments. The first author thanks Jordi Cortadella and José Carmona for helpful discus-
sions.

References

[1] J. Carmona and J. Cortadella. ILP models for the synthesis of asynchronous control circuits. In 2003
International Conference on Computer-Aided Design (ICCAD’03), November 9-13, 2003, San Jose, CA,
USA, pages 818–826. IEEE Computer Society / ACM, 2003.

[2] J. Carmona, J. Cortadella, and E. Pastor. A structural encoding technique for the synthesis of asyn-
chronous circuits. In Proc. Int. Conf. on Application of Concurrency Theory to System Design, pages
157–166. IEEE Computer Society, 2001.

21

[3] T.-A. Chu. Synthesis of Self-Timed VLSI Circuits from Graph-theoretic Specifications. PhD thesis, MIT,
1987.

[4] J. Desel and J. Esparza. Free Choice Petri Nets, volume 40 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 1995.

[5] J. Esparza. Model checking using net unfoldings. Science of Computer Programming, 23:151–195, 1994.
[6] J. Esparza. Decidability and complexity of Petri net problems – an introduction. In G. Rozenberg and

W. Reisig, editors, Lectures on Petri Nets I: Basic Models. Advances in Petri Nets, number 1491 in
Lecture Notes in Computer Science, pages 374–428, 1998.

[7] J. Esparza. A polynomial-time algorithm for checking consistency of free-choice signal transition graphs.
Fundamenta Informaticae, 62(2):197–220, 2004.

[8] J. Esparza, P. Jančar, and A. Miller. On the complexity of consistency and complete state coding for signal
transition graphs. In Proceedings of the 6th International Conference on Application of Concurrency to
System Design (ACSD 2006), Turku, Finland, June 2006. IEEE Computer Society.

[9] V. Khomenko, M. Koutny, and A. Yakovlev. Detecting State Coding Conflicts in STGs Using Integer
Programming. In Proc. of the Design, Automation and Test in Europe Conference and Exhibition, pages
338–345. IEEE Computer Society, 2002.

[10] V. Khomenko, M. Koutny, and A. Yakovlev. Detecting State Coding Conflicts in STG Unfoldings using
SAT. In Proc. of the 4th Int. Conf. on Application of Concurrency to System Design, pages 16–25. IEEE
Computer Society, 2004.

[11] E. Pastor and J. Cortadella. Polynomial algorithms for the synthesis for hazard-free circuits from sig-
nal transition graphs. In 1993 International Conference on Computer-Aided Design (ICCAD’93), Santa
Clara, CA, USA, pages 250–254. IEEE Computer Society / ACM, 1993.

[12] L. Rosenblum and A. Yakovlev. Signal graphs: from self-timed to timed ones. In Proc. Int. Workshop on
Timed Petri nets, pages 199–207. IEEE Computer Society, 1985.

[13] A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1986.
[14] P. Vanbekbergen, F. Catthoor, G. Goossens, and H. D. Man. Optimized synthesis of asynchronous control

circuits from graph-theoretic specifications. In 1990 International Conference on Computer-Aided Design
(ICCAD’90), pages 184–197. IEEE Computer Society, 1990.

[15] H. Yamasaki, J. Huang, and T. Murata. Reachability analysis of petri nets via structural and behavioral
classifications of transitions. Petri Net Newsletter, (60):5–21, 2001.

[16] C. Ykman-Couvreur, B. Lin, G. Goossens, and H. D. Man. Synthesis and optimization of asynchronous
controllers based on extended lock graph theory. In 4th European Conference on Design Automation,
Paris, France, pages 512–517. IEEE Computer Society, 1993.

[17] M. Yu and P. Subrahmanyam. A new approach for checking the unique state coding property of signal
transition graphs. In Proc. 3rd Int. European Conference on Design Automation, pages 312–321. IEEE
Computer Society, 1992.

7 Appendix (Bounded nets and general nets)

This appendix provides proofs for the results mentioned in Section 5. I.e., it demonstrates the hard-
ness of the consistency problem and the CSC problem in the general case, where the underlying net
of an STG can be an arbitrary Petri net, and in the subcase when a bound on the number of tokens
in each place is given (which can be viewed as ‘capacity’). This is done by showing suitable poly-
nomial reductions from the reachability problem to the consistency problem and to the CSC problem
respectively.

In fact, the reachability problem can also provide an upper bound, so the consistency and CSC
problems can be roughly viewed as equivalent with the reachability (w.r.t. the computational com-
plexity). We also clarify the case of consistency in more detail, by showing a relation to the fireability
problem (which is straightforwardly equivalent to the coverability problem).

22

The proof ideas use the usual techniques, so we do not describe them very formally nor in great
detail. For completeness, we start by recalling definitions and the known complexity results for reach-
ability and fireability. (Precise references can be found, e.g., in [6].)

The reachability problem (RP)

Instance: a Petri net (N,M0) and a marking M .

Question: Is M0 −→∗ M ?

Theorem 7.1 For (general) Petri nets, RP is decidable and EXPSPACE-hard. For k-bounded nets
(for any fixed k), RP is PSPACE-complete.

The fireability problem (FP)

Instance: a Petri net (N,M0) and a transition t.

Question: Is t fireable (i.e., is there some M such that M0 −→∗ M
t

−→) ?

Theorem 7.2 For (general) Petri nets, FP is EXPSPACE-complete. For k-bounded nets (for any fixed
k), FP is PSPACE-complete.

7.1 Nonreachability reduces to consistency

We show how an instance (N,M0),M1 of the reachability problem in general nets can be transformed
into an STG which is consistent if and only if M1 is not reachable in (N,M0). Moreover, if (N,M0) is
1-bounded then the constructed STG is also 1-bounded. In addition, we clarify the difference between
conditions (1) and (2) of Proposition 2.1 on one hand and condition (3) on the other hand. Conditions
(1), (2) turn out to be equivalent to the fireability problem; it is condition (3) which is as difficult as
reachability.

We start with a simple construction that we use several times:

Construction 1: Given a net (N,M0), we denote by S(N,M0) the STG obtained as follows:

• As the set of signals of S(N,M0) we take the set of transitions of N .

• In N , we replace every transition t by a place pt and two transitions t1, t2, labeled by t+, t−,
respectively. Transition t1 inherits the input places of t, and has pt as the unique output place;
transition t2 has pt as the unique input place and inherits the output places of t.

• We add a (run-)place r, and an arc r → t1 and t2 → r, for every transition t of N .

• The initial marking of S(N,M0) coincides with M0 on the places inherited from N ; moreover, r

carries 1 token, and places pt are empty.

Observation 7.1 The STG S(N,M0) is consistent, and it tightly simulates the behaviour of (N,M0).

Proposition 7.1 The reachability problem for general Petri nets (for k-bounded Petri nets) is polyno-
mially reducible to the inconsistency problem for general STGs (for k-bounded STGs).

Proof: Assume an instance of the reachability problem: (N,M0), M1. We consider the following
construction of an STG S:

23

• Start with S(N,M0) as described in Construction 1.

• Add a transition tf labelled by a fresh label f+, and an arc from (the run-place) r to tf . (Thus
the added tf can fire at most once, by which a dead marking is reached, corresponding to a
reachable marking of N .)

• Add a new (starting) place s ; the initial marking of S will put 1 token in s; all other places
(including r) will be initially empty.

• Add a transition z1, labelled by a fresh a+. It takes the token from s and installs M1 in the
places inherited from N . (Marking M1 thus becomes ‘frozen’.)

• Finally add transitions z2, z3, labelled with a+ and a−, a place pz , and the arcs

s → z2(a
+) → pz → z3(a

−) → r

as well as additional arcs from z3 which install M0 in the places inherited from N .

We observe that the constructed S can start either with firing z1 (label a+), reaching the ‘frozen’
M1, or with firing z2z3 (a+a−) after which it behaves like S(N,M0), with a possibility to ‘freeze’ any
reachable marking of (N,M0). We also note that if (N,M0) is k-bounded then S is also k-bounded.

It is clear that S can not provide any inconsistency witness (M,a) of the form (1) and (2) of
Proposition 2.1; there might be a witness satisfying (3) but this happens if and only if M1 is reachable
in (N,M0).

The previous reduction was based on condition (3). For completeness, we show that the existence
of inconsistency witness of form (1) or (2) is ‘easier’, namely polynomially equivalent to the fireability
problem.

Claim 7.1 The problem of deciding, given an STG S, if there is a pair (M,a) satisfying conditions
(1) or (2) of Proposition 2.1 is polynomially equivalent to the fireability problem.

Proof: We first show that the problem if S provides a pair (M,a) satisfying (1) can be reduced to the
fireability problem.

Let us fix a (a signal), and define

• S+
a is a ‘copy’ of S from which we remove all transitions labelled by a− together with their

adjacent arcs, and we add a (‘run’-)place r+
a with 1 token. For every transition t of S+

a which
is not labeled by a+ we add arcs r+

a → t, t → r+
a ; in the case of t labelled a+ we only add

r+
a → t.

We observe that S+
a behaves like S until a first occurrence of an a-label; this a-label must be a+, and

the computation of S+
a is thus finished.

Similarly we proceed for a−:

• S−

a is a ‘copy’ of S from which we remove all transitions labelled by a+ together with their
adjacent arcs, and we add a (‘run’-)place r−a with 1 token. For every transition t of S−

a which
is not labeled by a− we add arcs r−a → t, t → r−a ; in the case of t labelled a− we only add
r−a → t.

24

We now put STGs S+
a , S−

a side by side. We add new places p+
a , p−a , initially empty, and a new

transition taf with arcs p+
a → taf , p−a → taf . Moreover, for each t in S+

a labelled by a+ we add t → p+
a ,

and for each t in S−

a labelled by a− we add t → p−a .

We have thus got a Petri net (N,M0) where taf is fireable if and only if the initial marking M of
S satisfies (1).

To reach our goal, we still modify the net (N,M0):

• Add a new (run-)place r, initially with a token, and let r+
a , r−a be initially empty.

• For each transition t of S, add an additional copy of t (to (N,M0)), with the arcs r → t, t → r.
For each arc p → t in S, add arcs p1 → t, p2 → t where p1, p2 are the copies of p in S+

a , S−

a

respectively. Similarly for the ouput arcs t → p.

• Finally add a transition ta, with arcs r → ta, ta → r+
a , ta → r+

a .

We observe that the arisen net (N ′,M ′

0) in the first phase simulates S synchronously on both the places
in S+

a and the places in S−

a . To enable taf , this first phase must stop by firing ta (which unmarks r

and marks r+
a , r−a). Transition taf can then indeed be enabled if and only if the corresponding M ,

reachable in S and copied in both S+
a and S−

a , satisfies (1).

Thus we have described a polynomial algorithm which, given an STG S and signal a, constructs
(N ′,M ′

0) so that S has an inconsistency witness (M,a) satisfying (1) iff ta
f is fireable in (N ′,M ′

0).

The construction can be completed by subnets S+
b and S−

b for all signals b, and some straightforward
modifications, one of them ensuring that firing any tb

f will enable an additional distinguished transition
tf .

By such a technique, we can extend the overall construction to show that

there is a polynomial algorithm which, given an STG S, constructs a net (NS ,MS), with
a distinguished transition tf , so that S has an inconsistency witness (M,a) satisfying (1)
or (2) iff tf is fireable in (NS ,MS).

For the other direction, assume an instance (N,M0), t of the fireability problem. We start with
constructing S(N,M0) by Construction 1; then we add a new transition z, whose only input place is pt

and whose label is t+. it is clear that the so constructed STG S has some (M,a) satisfying (1), or (2),
iff t is fireable in (N,M0).

7.2 Nonreachability reduces to CSC

Proposition 7.2 The reachability problem for general Petri nets (for k-bounded Petri nets) is polyno-
mially reducible to the negation of the CSC-problem for general STGs (for k-bounded STGs).

Proof: We use the single-place-zero reachability problem. So an instance is (N,M0) and a place p0,
and the question is if there is a reachable M with M(p0) = 0. Given such an instance, we construct a
(consistent) STG S as follows:

• We start with the (consistent) STG S(N,M0) from Construction 1; recall that it has a run-place
r.

25

• We now add two transitions t1, t2, labelled by fresh a+, a−, places p1, r1, and the depicted arcs:

r → t1(a
+) → p1 → t2(a

−) → r1

• We still add two further transitions, t3, t4 labelled by fresh b+, b−, a place p2, and the depicted
arcs:

r → t3(b+) → p2 → t4(b−), t4 → r1, t4 → p0

• Finally we add a new transition t5 labelled by o+, where o is defined as the only output signal;
and we add the arcs r1 → t5, p0 → t5.

We observe that the constructed S is still consistent, we denote the consistent boolean encoding by b.

Now assume that (N,M0) can reach M such that M(p0) = 0. Then in S = (N ′,M ′

0, `) we have

• M ′

0 −→∗ M ′ where M ′(p0) = 0

• M ′ a+a−

−→ M1 where M1(p0) = 0

• M ′ b+b−
−→ M2 where M2(p0) = 1

So M1 6= M2 and necessarily b(M1) = b(M2); but M1 does not enable o+ and M2 does. Hence S

does not have the CSC-property.

On the other hand, if all reachable M in (N,M0) satisfy M(p) ≥ 1 then S obviously has the
CSC-property.

Finally we note that if (N,M0) is k-bounded then the STG S is ‘almost’ k-bounded. The only
problem (increasing to k+1) can be caused by the arc t4 → p0. But we can replace it by an arc
t4 → p′ for a new place p′, and add a further transition t′5 labelled by o+, with the arcs r1 → t′5,
p′ → t′5.

7.3 PSPACE-completeness for bounded nets

Let us consider k-bounded STGs. Propositions 7.1 and 7.2 show that both the consistency prob-
lem and the CSC problem are PSPACE-hard. For showing that these problems are in PSPACE,
it is sufficient to consider nondeterministic algorithms for the complementary problems (recall that
PSPACE=NPSPACE). But such algorithms are obvious; so we have

Proposition 7.3 Both the consistency problem and the CSC problem are PSPACE-complete for
(explicitly-)bounded nets.

7.4 Reduction to reachability

To provide some upper bound on the complexity of the consistency and CSC problems in the general
case, we show reductions to the reachability problem. By a reduction we mean showing how an
instance (of the consistency or CSC problem) can be answered by solving possibly several instances
of the reachability problem, all of them being constructed in polynomial time.

26

Proposition 7.4 Consistency problem (for general STGs) is reducible to the reachability problem.

Proof: Due to Claim 7.1, it sufficient to handle condition (3) of Proposition 2.1. Given an STG, to
decide if there is M reachable by w1a

+u and by w2a
−v for some a-free sequences u, v, we can let

run two copies S ′, S′′ of S independently (each having its own run-place). S ′ has a possibility to
‘freeze’ a marking reached by a sequence where a+ was the last a-transition, S ′′ has a possibility
to ‘freeze’ a marking reached by a sequence where a− was the last a-transition. In the final phase,
the markings in both copies S ′, S′′ will be ‘compared’: for each place of S, a transition taking from
p′, p′′, the copies of p in S ′, S′′, can fire as long as possible. The everywhere-zero marking can thus
be reached iff the markings reached in S ′ and S′′ coincide.

Proposition 7.5 The CSC problem (for general STGs) is reducible to the reachability problem.

Proof:
Let us have an STG S = (N,M0, `) (which can be supposed to be consistent). For each signal a,

we add places pa+ and pa−, and we solve which of a+, a− can be enabled first. In the first case, we
put 1 token in pa− and 0 tokens in pa+, and in the second case vice versa. And we add arcs so that
each a+-transition takes a token from pa− and puts a token in pa+, and each a−-transition takes from
pa+ and puts in pa−.

So the modified net faithfully simulates the original S; moreover, each reachable marking contains
explicit information about the current (consistent) binary encoding.

We can again use two copies of S, use run-places for distinct phases of computation etc., so that
this allows to choose any two reachable markings M1, M2 after which it will be guaranteed that a
specified (sub)marking will be reachable iff M1, M2 have the same binary encoding and one en-
ables a certain output signal but the other not. (We can solve this for each output signal separately.)

27

