On the Verification of Broadcast Protocols

Javier Esparza *

Abstract

We analyze the model-checking problems for
safety and liveness properties in parameterized
broadcast protocols, a model introduced in [5].
We show that the procedure suggested in [5]
for safety properties may not terminate, whereas
termination is guaranteed for the procedure of
[1] based on upward closed sets. We show that
the model-checking problem for liveness proper-
ties is undecidable. In fact, even the problem of
deciding if a broadcast protocol may exhibit an
infinite behavior is undecidable.

Keywords:
checking

concurrency, verification, model

1 Introduction

In [5], Emerson and Namjoshi present an ab-
stract reachability procedure —called the EN-
procedure in the sequel—for the construction of a
“covering graph”. It generalizes the Karp-Miller
procedure to construct a covering graph for Petri
nets [9]. The EN-procedure can be applied to
classes of systems satisfying some abstract con-
ditions (essentially, computability of the least up-
per bounds of certain chains). By combining it

*(contact author) Institut fiir Informatik, Tech-
nische Universitdt Miinchen, Arcisstr. 21, D-80290
Miinchen, Germany. E-mail: esparzain.tum.de, Phone:
++49-89-28922405, Fax: ++49-89-28928207

tLab. Specification and Verification, ENS de Cachan,
E-mail: finkellsv.ens-cachan.fr

HInstitut fiir Informatik, Technische Universitit
Miinchen, E-mail: mayrriin.tum.de

Alain Finkel®

Richard Mayr!

with the automata-theoretic approach to model-
checking [11], Emerson and Namjoshi show that
it can be used to verify safety and liveness prop-
erties. Similar constructions have been studied
in the framework of well-structured transition
systems [6].

The termination of the EN-procedure depends
on the class of systems being considered. In [5]
termination is proved to be guaranteed for the
parameterized systems of [4, 8]; termination for
Petri nets and vector addition systems was al-
ready proved in [9].

In the case of parameterized systems, the EN-
procedure can be used to prove that a property
holds independently of the number of processes
participating in the protocol. In other words, it
can show that all the elements of an infinite fam-
ily of finite-state systems satisfy a certain prop-
erty.

One of the most interesting points of [5] is the
application of the EN-procedure to a new pa-
rameterized model called parameterized broad-
cast protocols—shortened to broadcast protocols
in the sequel. Broadcast protocols are systems
composed of a finite but arbitrarily large number
of indistinguishable processes that communicate
by rendezvous (two processes exchange a mes-
sage) or by broadcasts (a process sends a message
to all other processes). While the case in which
processes communicate only by rendezvous had
already been studied in [8, 4], the extension to
broadcasts is considered in [5] for the first time.
The addition of broadcasts allows to model sim-
plified versions of cache coherence protocols like
MESI-protocols.

Page 1

In [5] it is shown that broadcast protocols sat-
isfies the abstract conditions necessary for the
applicability of the EN-procedure. However, nei-
ther the termination issue nor the decidability of
the model-checking problems for safety and live-
ness properties are examined. In this paper we
address these points and obtain the following re-
sults:

e The EN-procedure may not terminate for
broadcast protocols.

e The model-checking problem for safety
properties is decidable. The decision
procedure—which obviously cannot be the
EN-procedure—is the instance for broadcast
protocols of an abstract backwards reacha-
bility algorithm introduced in [1].

e The model-checking problem for liveness
properties is undecidable.

The paper is organized as follows: Section 2 in-
troduces broadcast protocols and formalizes the
model-checking problems for safety and liveness
properties. Sections 3, 4, 5 present the results
above, respectively.

2 Broadcast Protocols: Basic
Definitions
2.1 Syntax

A broadcast protocol is a triple (S, L, R) where
S is a finite set of states. L is a finite set of
labels composed of: a set X; of local labels, a
set X, x {?} and X, x {!} of input and output
rendez-vous labels, and two sets ¥ x {?7} and
5y x {!'} of input and output broadcast labels,
where ¥, 33, ¥y are disjoint finite sets.

Along the paper a,b,c,... denote elements of
¥ = ¥ U X, U3, Rendezvous and broad-
cast labels like (a,?) or (b,!!) are shortened to
a? and b!!. Elements of X are called actions.
R C S x L xS is a set of transitions satisfy-
ing the following property: for every a € ¥ and
every state s € S, there exists a state s’ € S such

Figure 1: A broadcast protocol

that s 25 o', Intuitively, this condition guaran-
tees that a a process is always willing to receive
a broadcasted message.

We represent broadcast protocols graphically as
shown in Figure 1. Loops of the form s s
are omitted (the protocol of Figure 1 does not
contain any, but they will appear in other exam-
ples).

In this paper we consider broadcast protocols
satisfying the following additional constraints:
(1) For each state s and each broadcast label a??

??
there is exactly one state s’ such that s — s
(determinism). (2) Each label of the form a!, a?
and a!! appears in exactly one transitions.

These constraints are only used to simplify the
presentation. All our decidability /undecidability
results are valid for general broadcast protocols.

2.2 Semantics

Let B = (S, L, R) be a broadcast protocol where
S ={s1,.--,8n}. A configuration of B is a func-
tion ¢: § — IN. Intuitively, c(s;) indicates how
many processes are in the state s;. We iden-
tify ¢ with the vector (c(s1),...,c(sy)) € IN™.
We denote by u; the configuration given by
u;(s;) = 0;;. Moves between configurations are
either rendezvous (two processes exchange a mes-
sage and move to new states) or broadcasts (a

Page 2

process sends a message to all other processes;
all processes move to new states). The semantics
of B is the smallest subset of IN" x ¥ x IN" satis-
fying the three conditions below, where a triple
(c,a,¢') € N™ x & x IN" is denoted by ¢ = ¢':

o if 5; = s; then ¢ = ¢’ for every c, ¢’ such
that ¢(s;) > 0 and ¢’ = ¢ — u; + u;;

! ?
o if 5;; — s, and s;, — sj, then ¢ = ¢’ for
every ¢, ¢’ such that ¢(iy) > 0, ¢(iz) > 0
and

d=c-

u;; — g, +uy +uy,

o if s; LN sj then ¢ < ¢’ for every c, ¢’ such
that ¢(s;) > 0 and ¢’ can be computed from
c in the following three steps:

Ci = C—u;
C2(3k) = Z cl(sl)

a??
{stlsi—>si}

o .

c = Cg+u]

Notice that the configuration ¢’ is completely de-
termined by ¢ and the action a. In the example
of Figure 1 we have

(3,1,2) = (4,0,2)
(3,1,2) 2 (3,2,1)
(3,1,2) % (2,1,3)

Given a broadcast protocol with n states, we call
the n xn matrices having unit vectors as columns
broadcast matrices. Given an action a € X, it is
easy to see that there exists a broadcast matrix
M, and a vector v, such that ¢/’ = M, -¢ + v,
holds whenever ¢ - ¢’. For example, for the
action a in the example of Figure 1 we have

0 01 0
M,=1 0 0 0 Vg = 1
1 10 -1

Since broadcast matrices are closed under prod-
uct, this observation can be generalized to ar-
bitrary sequences o € X*: If ¢ 5 ¢’ then
¢ = M, - ¢ + v, for some broadcast matrix M,
and vector v,.

The language of B from an initial configuration
co, denoted by L(B,cg) is the set of sequences
o € ©* such that ¢y = ¢ for some configuration
co. The w-language of B from ¢y, denoted by
L,(B,cyp), is defined accordingly.

A parameterized configuration is a partial func-
tion p: § — IN. We identify it with a set of
configurations, namely those extending p to a
total function. So we identify the parameterized
configuration of the broadcast protocol of Fig-
ure 1 given by p(s1) = p(s2) = L (undefined)
and p(s3) = 3 with the set of configurations
{(n1,n2,3) | n1,ne € N}.
The language of B from an initial parameterized
configuration pg, denoted by L(B, py), is defined
as

L(B,po) = | L(B.¢)

cEpo

So L(B, pp) contains all sequences of actions that
the protocol can execute from all initial configu-
rations that belong to the initial parameterized
configuration pg. L,(B,pg) is defined analo-
gously.

2.3 Model-Checking Problems

Following the automata-theoretic approach to
model-checking (see for instance [11]), we for-
malize a linear safety property as a regular set
of dangerous sequences of actions the protocol
should not engage in. Similarly, a liveness prop-
erty is formalized as an w-regular language over
3.

Notice that, for reasons of simplicity in the pre-
sentation, we consider languages over 3, corre-
sponding to properties on the actions of the sys-
tem. In [5] properties on the configurations sat-
isfying certain conditions are considered instead;
for that, configurations are labeled with atomic
properties. For all the purposes of this paper
both presentations are equivalent.

We study the decidability of the following two
model-checking problems:

Safety properties

Given: a broadcast protocol B, a pa-
rameterized configuration pg, a regular

Page 3

language L.
To decide: if L(B,po) N L = (.

Liveness properties

Given: a broadcast protocol B, a pa-
rameterized configuration pg, an w-
regular language L.

To decide: if L(B,pg) N L = 0.

These two problems can be approached using
well-known automata-theoretic techniques. For
the safety problem, we take a finite automa-
ton A = (Q,%,0,q0, F) accepting the language
L. The combined system of a protocol B with
n states and an automaton A is a subset of
(N" x Q) x ¥ x (N x Q) defined by: (c,q) =
(¢/,¢") ifand only if ¢ = ¢’ in B and ¢ = ¢' in A.
Clearly, L(B,pg) N L = (if and only if no path
of the combined system starting at any (c,qq),
where ¢ € pg, ever visits a combined state of the
form (c¢’,q) where ¢ € F. For the liveness prob-
lem we replace A by a Biichi automaton, and
‘visits a state’ by ‘visits a state infinitely often’.

3 The EN-Procedure may not
Terminate

The EN-procedure for the construction of the
covering graph is described below. We exhibit
a broadcast protocol for which it does not termi-
nate. It is then straightforward to show that the
procedure may not terminate either for combined
systems.

Fix for the rest of this section a broadcast proto-
col B = (S,L,R), where S = {s1,...,8,}, and
a parameterized initial configuration py.

Let (N U {w})" be the set of w-configurations
of B. The semantics of broadcast protocols is
generalized to w-configurations by letting w+n =
w—n =w for all n € IN. Let e; and ey be w-
configurations. We say e; = ey if e; is pointwise
smaller than or equal to ez, where n < w for
every n € N U {w}. Clearly, < is a complete
partial order on w-configurations The least upper
bound (lub) of a chain is the vector of lubs of the
component chains. For a sequence of actions o,

define T, as the affine operator given by T, (e) =
M, (e) + v,.

The EN-procedure examines pairs (e, a), where e
is an w-configuration and a € X. It is initialized
with the empty graph and the set of unexamined
pairs {(eg,a) | a € £}, where ey is defined by

eo(si) = { po(si) if po(s;) defined

w otherwise.

The procedure goes as follows:

0. Add the node ej to the graph.
1. Choose an unexamined pair (e, a);
if there are none, stop.
2. If there is no €’ such that e = ¢/,
then mark (e,a) as examined and go to 1.
3. Ife % €' for some €' then
3.1 If the graph contains an
w-configuration d > €’
then make d the a-successor of e;
3.2 else, if the graph contains a path
from d to e such that d < €,
then let o be the sequence of
actions of this path,
let 1 be the lub of the chain
d 2 Tpe(d) 2 T2,(d) < ...,
and make 1 the a-successor of e;
3.4 else, create e’ as the a-successor of e.
4. Mark (e, a) as examined and go to 1.

Two questions arise: (a) is the [ub of a chain
effectively computable? and, (b) does the proce-
dure terminate, i.e., is the covering graph finite?
In [5], Emerson and Namjoshi answer (a) posi-
tively (this is essentially a consequence of the fact
that there are only finitely many broadcast ma-
trices for a given n), but they do not study (b).
We present an example, inspired by [3], showing
that the procedure may not terminate.

Consider the broadcast protocol B of Figure 2.
Initially there is a process in state sp and ar-
bitrarily many processes in state R. Following
the terminology of [4, 8], the example consists
of a control process, which is always in one of
the states sg, s1, s2, and an arbitrary number of
identical user processes, initially in state R. The
protocol simulates a machine operating on two

Page 4

Figure 2: A protocol with an infinite covering
graph

counters modeled by the states c; and cq, which
draw their items from a repository, modeled by
state R. The meaning of the different actions is:

add 1 to cy;
reset co to 0;
transfer one item from c¢; to co;
reset ¢, to 0;
transfer one item from cy to c;.

0 T8

We construct the covering graph from ey, the
w-configuration putting 1 process in sy, w pro-
cesses in R, and 0 processes elsewhere. We use a
multiset notation for w-configurations; for exam-
ple, {s2,3c1} denotes the w-configuration putting
one process in so, 3 processes in c¢1, and w pro-
cesses in R. Notice that every w-configuration
reachable from ey puts w processes in R, and
so we omit this part. With this notation we
have eg = {sp}. An initial part of the con-
figurations of B reachable from ey is shown in
Figure 3. Notice that the sequence of actions
abcdeabc?de?abc®de? - - - abc™de™ - -- can be exe-
cuted from eg, and that all the w-configurations
reached along this sequence are different. So,
in particular, there are infinitely many reachable
configurations from eg.

{s0} ——

a
{s1,cl} d
b
{s2,c1}
b% cl
{sl,cl,c2} {s2,c2} d

4_

a d
{s0, c2} «—
b el

{s0, c1}

{s1, c1, 2¢2} {s2,¢cl,c2} —
A

Q
a -

{sl1,2c1,¢2}) ~——— {s0,2c2}

a e

{s0, cl1,c2}
e
{s0, 2c1}

a

Figure 3: Semantics of the protocol of Figure 2

Page 5

Proposition 3.1 The covering graph for the
broadcast protocol of Figure 2 and the w-
configuration ey = {so} is infinite.

Proof: Let o7 be an arbitrary sequence of ac-
tions such that ey > e; — e2, €1 <X e, and
e1 # ey. Since in every configuration reach-
able from ey the total number of processes in
the states si, s9, 53 is 1, both e; and e, coincide
on these states. Since e; # €9, T contains at
least one occurrence of b and d. Assume that the
last occurrence of b precedes the last occurrence
of d (the other case is similar). Then, 7 has the
form 71b79dT3, where 1573 contains no b’s and 73
contains no d’s.

For the construction of the covering graph we
are allowed to replace ey by the [ub of the chain
e; < ey < e3--- where e; = T !(e;). We prove
that e; = ey for every ¢ > 2, and so that the lub
is e9. This shows that for the protocol of Figure
2 the EN-procedure and the EN-procedure with-
out step 3.2 compute the same graph. Since the
latter computes an infinite graph, the covering
graph is infinite.

To show e; = e2, we observe that, since es and e;
coincide on the states s1, s2, s3 and R, it suffices
to prove ez(c1) = e;j(c1) and eq(ce) = ei(co).
We prove es(c1) = €;(c1), the other case being

similar.
i—2

By the definition of T’;, we have e Des — e
for every ¢ > 2. Since the occurrence of d re-
moves all processes from c;, e3(c1) and e;(cp)
are determined by the suffix of 7 and 7¢ starting
right after the last occurrence of d. This
suffix is 73 in the two cases, and so we have
ex(c1) = #(73,a) + #(73.€) — #(73,¢) = €i(c1),
where # denotes the number of occurrences of
an action in a sequence. [|

Since the protocol of Figure 2 contains both
broadcast and rendezvous actions, the EN-
procedure might still terminate for broadcast
protocols with only broadcast moves. Unfortu-
nately, this is not the case. To prove it, given
a broadcast protocol B = (S,L,R), we define
the broadcast protocol Ezp(B) as the result of
performing the following two operations:

@ all! =©

al??

az2??
S’

az2!!

a2??

Figure 4: Simulation of a rendezvous by broad-
casts

e cach transition s — s’ where a is a local
n
action is replaced by the transition s —» s,

27
and a transition ¢ —> ¢ is added for each
state t;

. oy a! a?
e each pair of transitions s — s’ and t — ¢/,
where a is a rendezvous action, is replaced
by the construction shown in Figure 4'.

Observe that Ezp(B) only contains broadcast
actions. We also define a morphism ¢ between
the action sequences of B and Ezp(B) as fol-
lows: ¢(a) = aiaz if a is a rendezvous action,
and ¢(a) = a otherwise.

It is immediate to see that if ¢ = ¢’ in B, then

¢ 29 o in Exp(B), and vice versa. Here we

interpret ¢ as the configuration of Exzp(B) that
coincides with ¢ on the states of B and puts no
process in the new states. We now have:

Proposition 3.2 Let B the broadcast protocol
shown in Figure 2. The covering graph for the
protocol Exp(B) and the w-configuration {so} is
infinite.

Proof: The sequence
¢(abcdeabc®de?abcide? - - - abcde™ - -) can
be executed from ey in Ezp(B), and all the
w-configurations reached along this sequence
are different. So there are infinitely many
reachable configurations from ey in Ezp(B).
The argument used in the proof of Proposition

1The construction introduces two new states per ren-
dezvous

Page 6

3.1, namely that every sequence 7 must contain
occurrences of b and d, is still valid, and in fact
the prof can be carried out in the same way. =

The Exp construction also leads to the following
result:

Proposition 3.3 The safety and liveness prob-
lems for arbitrary protocols can be reduced to the
same problems for broadcast protocols with only
broadcast actions.

Proof: Given an arbitrary protocol B
and a regular or w-regular language L,
we have L(B,pg) N L = § if and only if
L(Ezp(B),po) N (L) = 0. u

We finish this section with a small remark. It
was shown in [8] that non-broadcast protocols
with a control process and arbitrarily many user
processes are more complicated to analyze than
those in which all processes are identical. So one
could ask if this is also the case for broadcast pro-
tocols. The answer is no. We can eagsily simulate
the protocol of Figure 2 by another one in which
all processes are identical: it suffices to add a new
state Init and two new transitions Init M S0
and Init ™7 R, and put all processes initially
in the Init state. The new protocol must first do
an init, by which essentially a process tells the
others that it becomes the control process and

the others become user processes.

4 A Model-Checking Algo-
rithm for Safety Properties

Let B be a broadcast protocol with states S =
{s1,--. ,8n} and a parameterized initial configu-
ration pg, and let A = (Q, %, 4, qo, F') be an au-
tomaton. The model-checking problem for safety
properties can be reformulated as follows: Can
some combined state n € IN" x F' be reached from
a combined state (cg,qo) such that ¢y € po?

We can use this observation to apply a general
algorithm presented in [1] (see also [7]), which we
“instantiate” here for broadcast protocols. The

algorithm constructs the set of predecessors of N,
and checks whether it has an empty intersection
with (pg,qo). The two key observations are:

e IN” x F' is an upwards-closed set, i.e., if n €
IN" x F then n’ € N" x F for every n’ < n,
where (c,q) < (c',¢') if ¢ < ¢’ (pointwise)
and ¢ = ¢'.

o < is a well-order, i.e, an order such that in
any infinite sequence ny, ny, ... there exists
two indices 7 < j such that n; < nj;.

We have the following proposition, where
pred(C) denotes the set of immediate predeces-
sors of C (i.e. C can be reached in one step):

Proposition 4.1 Let C be an upwards-closed
set of combined states. Then:

1. The set of minimal elements of C is finite.
2. The set pred(C) is upwards-closed.

3. The minimal elements of pred(C) are effec-
tively computable.

Proof: 1. Follows immediately from the fact
that < is a well-ordering.

2. It suffices to prove that for each action a
the set of immediate predecessors of C' through
the action a is upwards-closed. This is the set
of combined states (c,q) such that the following
conditions hold for some minimal element (¢’, ¢')
of C:

(1) My-c+vy, >,

(2) c(s) > 1, where s is the unique state such
that s 25 s', and

(3) ¢ =>¢.

Since M, is a broadcast matrix, this set is
upward-closed.

3. Again, it suffices to prove the result for
the the set of immediate predecessors of C
through the action a. Since M, is a broadcast
matrix, the minimal elements of these set are
the combined states satisfying (1), (2) and (3)

Page 7

above, but substituting “=" for “>” in (1). This
set is clearly computable. [

The algorithm to compute the set of predeces-
sors iteratively computes the minimal elements
of N" x F, pred(IN" x F), pred?(IN" x F), etc.
Since < is a well-ordering, there is an n such
that the minimal elements of pred™(IN" x F') and
pred*(IN" x F) = J; = 1®pred"(IN" x F) coin-
cide, and so the algorithm terminates.

5 The Model-Checking Prob-
lem for Liveness Properties is
Undecidable

We prove that it is undecidable if L, (B, pg) = 0,
i.e. it is undecidable if the broadcast protocol B
with initial parameterized configuration py can
execute an infinite sequence. The undecidability
of the model-checking problem follows.

The proof is by reduction from a problem on
counter machines. It is closely related to the un-
decidability of a similar problem for lossy counter
machines proved in [10] (in fact, it follows as a
corollary from the results in [10]), and has been
inspired by the undecidability proofs of [2].

We start by introducing some notations and def-
initions. A counter machine is a tuple M =
(Q,C, A, qo, H) where Q is a set of states, C' is a
set of counters, ¢ is an initial state, H is a set
of halting states, and A is a set of transitions.
Transitions are of three types:

c:=c+1 . .
e ¢ ——— ¢', which increase counter c,

=c—1 .
o ¢ “=“5 ¢, which decrease counter c; these
transitions can only be taken if the counter
has a positive value;

® q =0, q', zero-tests that can only occur if
the value of the counter is 0.

A configuration of M is a tuple (q,j1,--- ,Jm),
where ¢ is a state, and 71,...,7J,, are natural
numbers indicating the contents of the counters.
The semantics of a counter machine is a relation

— between configurations, defined as expected.
A run is either an infinite sequence ¢; — ¢y —
. or a finite sequence ¢; — ... = ¢, where ¢,
is halting.
A configuration (g, j1,. .. ,jm) is initial if ¢ = qo,
and n-bounded if Y, ;... ji < n. A runis ini-
tial if its first configuration is initial, n-bounded
if all its configurations contain only n-bounded
configurations, and bounded if it is n-bounded for
some number 7.

Theorem 5.1 The following problem is unde-
cidable:

Given: a broadcast protocol B, a pa-
rameterized configuration pg.
To decide: if Ly,(B,po) = 0.

Proof: We proceed by reduction from the fol-
lowing undecidable problem:

Given: a 2-counter machine M.
To decide: Does M halt on the input
(0,0) ?

Let M’ be a counter machine with 3 counters,
behaving as follows. Initially, M’ sets all coun-
ters to 0; then it simulates M on the counters ¢y
and co, but after each step in the simulation it
increases c3 by 1. If M halts, then M' goes back
to its initial state.

We make the following two observations about
M

e M’ has an infinite bounded initial run if and
only if M halts for (0,0).

The only bounded initial run of M’, if any,
corresponds to the infinite iteration of the
accepting run of M on (0,0) (all other infi-
nite runs continuously increase c3).

e Every infinite bounded run of M’ (not nec-
essarily initial!) contains infinitely many ini-
tial configurations.

Such a run must set c3 to 0 infinitely often,
and this can only be done after visiting an
initial configuration.

Page 8

We simulate in a weak sense the machine M’ by
a broadcast protocol B. In B we have a state
for each state and each counter of M’, and two
special states D and I. D is a special ‘dead’
state and I is introduced to keep an invariant
(see below). The total number of processes in
the counters of B plus the number of processes in
I never increases. The following table describes
the simulation:

Counter machine | Broadcast protocol
c:i=c+1 ince!
qg——¢ qg—4q
T ince? c
c=c—1 dec:!
q > q q > q
dec.?
c——=1
c=0_ reset:!!
q——>4q —
resetc??
—D

The parameterized configuration py puts 1 pro-
cess in the initial state gp, unboundedly many in
I, and 0 processes elsewhere.

The only situation in which the broadcast pro-
tocol does not faithfully simulate a step of the
counter machine occurs when a reset, broadcast
is executed at a configuration having at least one
process in the counter c. We call such a broad-
cast a cheat.

Take an arbitrary run of the broadcast protocol
and compute for all configurations ¢ the sum
S(e) = c(e1) + ... + c(e3) + ¢(I). The sums
form a non-increasing sequence. Moreover,
the sequence decreases only when the protocol
cheats. We prove:

(1) If M halts for input (0,0), then L, (B, po) #
0.

If M halts for input (0,0), then M’ has a
bounded infinite initial run, which iterates
infinitely often the accepting run of M on (0, 0).
Let b be the bound of this run. We consider
the configuration ¢ € po that puts b processes
in I. We claim that B has an infinite run from
c. This run exactly mimics the infinite run of
M'. Since the run is b-bounded, there are no
deadlocks. Since in this run the protocol only

reset.!!
executes ¢ ——— ¢’ when there are no processes

in ¢, there are no cheats. So this run of B faith-
fully simulates the run of M’, and so it is infinite.

(2) If L,(B,po) # 0, then M halts for input
(0,0).

Let ¢ € po be a configuration such that B
has an infinite run from c¢. Since each cheat
strictly decreases the sum S(c), the run contains
only finitely many cheats. Take a suffix of the
run containing no cheats. Since the suffix is
infinite, it contains no deadlocks either, and
so it corresponds to an infinite run r of M'.
Moreover, r is bounded, because no counter can
ever be larger than b. Now recall that every
infinite bounded run of M’ contains infinitely
many initial configurations. So some suffix r’ of
r is an initial run of M’. Clearly M halts for
the input (0,0). []

6 Conclusions

In this paper we have studied (parameterized)
broadcast protocols, a model introduced by
Emerson and Namjoshi in [5]. We have shown
that the covering graph procedure proposed
there for the verification of safety properties may
not terminate, whereas termination is guaran-
teed for the procedure of [1] based on upward
closed sets. So, while the covering graph tech-
nique is certainly adequate for several classes of
systems, it is not the most suitable for broad-
cast protocols. Finally, we have shown that the
model-checking problem for liveness properties is
undecidable. In fact, even the problem of decid-
ing if a broadcast protocol may exhibit an infinite
behaviour is undecidable.

Acknowledgements

Many thanks to Kedar Namjoshi for helpful dis-
cussions.

Page 9

References

[1]

[5]

8]

[10]

[11]

Abdulla, P., Cerans, K., Jonnson, B.,
Tsay, Y.K. General Decidability Theorems
for Infinite State Systems. LICS, 1996.

Abdulla, P., Jonnson, B. Undecidable Ver-
ification problems for Programs with Unre-
liable Channels. ICALP, LNCS 820, 1994.

Dufourd, C., Finkel, A., Schnoebelen, P. Re-
set Nets Between Decidability and Undecid-
ability. ICALP, LNCS 1443, 1998.

Emerson, E.A., Namjoshi, K.S. Automatic
Verification of Parameterized Synchronous
Systems. CAV, LNCS 1102, 1996.

Emerson, E.A., Namjoshi, K.S. On Model
Checking for Non-Deterministic Infinite-
State Systems LICS, 1998.

Finkel, A., Reduction and covering of in-
finite reachability trees. Information and
Computation, 89(2):144-179, 1990.

Finkel, A., Schnoebelen, P. Well-structured
Transition Systems Everywhere! Research
Report LSV-98-4, Lab. Specification and
Verification, ENS de Cachan, France, 1998.
To appear in TCS.

German, S.M., Sistla, A.P. Reasoning about
Systems with Many Processes. JACM 39(3),
1992.

Karp, R., Miller, R. Parallel Program
Schemata, JCSS 3, 1969.

Mayr, R. Lossy Counter Machines Technical
Report TUM-19827, Technische Universitat
Miinchen, 1998.

Vardi, M., Wolper, P. An Automata-
Theoretic Approach to Automatic Program
Verification. LICS, 1986.

Page 10

