
33

P1: VLM
JACM5706-33 Journal of the ACM October 1, 2010 22:5

Newtonian Program Analysis

JAVIER ESPARZA, STEFAN KIEFER, AND MICHAEL LUTTENBERGER

Technische Universität München

Abstract. This article presents a novel generic technique for solving dataflow equations in interproce-
dural dataflow analysis. The technique is obtained by generalizing Newton’s method for computing a
zero of a differentiable function to ω-continuous semirings. Complete semilattices, the common pro-
gram analysis framework, are a special class of ω-continuous semirings. We show that our generalized
method always converges to the solution, and requires at most as many iterations as current methods
based on Kleene’s fixed-point theorem. We also show that, contrary to Kleene’s method, Newton’s
method always terminates for arbitrary idempotent and commutative semirings. More precisely, in
the latter setting the number of iterations required to solve a system of n equations is at most n.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Program Verification—Formal
Methods; F.3.2 [Logics and Meanings of Programs]: Semantics of Programming Languages—Pro-
gram analysis; F.4.3 [Mathematical Logic and Formal Languages]: Formal Languages—algebraic
language theory

General Terms: Languages, Theory, Verification

Additional Key Words and Phrases: Newton’s method, polynomial fixed-point equations, interproce-
dural program analysis, semirings

ACM Reference Format:
Esparza, J., Kiefer, S, and Luttenberger, M. 2010. Newtonian program analysis. J. ACM 57, 6,
Article 33, (October 2010), 47 pages.
DOI = 10.1145/1857914.1857917 http://doi.acm.org/10.1145/1857914.1857917

1. Introduction

This article presents a novel generic technique for solving dataflow equations in
interprocedural dataflow analysis. It is obtained by generalizing Newton’s method,
the 300-year-old technique for computing a zero of a differentiable function.

Our approach to interprocedural analysis is very similar to Sharir and Pnueli’s
functional approach [Sharir and Pnueli 1981; Jones and Muchnick 1982; Knoop

This work was partially supported by the DFG project Algorithms for Software Model Checking.
Preliminary versions of this work have appeared in Esparza et al. [2007a, 2007b].
Authors’ address: J. Esparza, S. Kiefer, and M. Luttenberger, Institut für Informatik, Technische
Universität München, 85748 Garching, Germany, e-mail: {esparza,kiefer,luttenbe}@in.tum.de.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute
to lists, or to use any component of this work in other works requires prior specific permission and/or
a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701,
New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2010 ACM 0004-5411/2010/10-ART33 $10.00
DOI 10.1145/1857914.1857917 http://doi.acm.org/10.1145/1857914.1857917

Journal of the ACM, Vol. 57, No. 6, Article 33, Publication date: October 2010.

P1: VLM
JACM5706-33 Journal of the ACM October 1, 2010 22:5

33:2 J. ESPARZA ET AL.

and Steffen 1992; Reps et al. 1995, 2005; Sagiv et al. 1996; Nielson et al. 1999]
Sharir and Pnueli [1981] assume the following as given: a (join-) semilattice1 of
values, a mapping assigning to every program instruction a value, and a concate-
nation operator that, given the values of two sequences of instructions, returns
the value corresponding to their concatenation. Sharir and Pnueli assume that the
concatenation operator distributes over the lattice’s join.2 Sharir and Pnueli define
a system of abstract data flow equations, containing one variable for each program
point. They show that for every procedure P of the program and for every program
point p of P , the least solution of the system is the join of the values of all valid
program paths starting at the initial node of P and leading to p. Sharir and Pnueli’s
result was later extended by Knoop and Steffen [1992] to programs with local
variables and to non-distributive concatenation operators, which allows us to deal
with certain nondistributive analyses [Nielson et al. 1999].

We slightly generalize Sharir and Pnueli’s setting. Loosely speaking, we allow
to replace the join operator with any operator satisfying the same algebraic proper-
ties with the possible exception of idempotence. In algebraic terms, we extend the
framework from lattices considered in Sharir and Pnueli [1981] to ω-continuous
semirings [Kuich 1997], an algebraic structure with two operations, usually called
sum and product. The interest of this otherwise simple extension is that our frame-
work now encompasses equations over the semiring of the nonnegative reals with
addition and multiplication. This allows us to compare the efficiency of generic
solution methods for dataflow analysis when applied to the reals with the efficiency
of methods supplied by classic numerical mathematics, in particular Newton’s
method.

It is well-known that Newton’s method, when it converges to a solution, usually
converges much faster than classical fixed-point iteration (see, e.g., Ortega and
Rheinboldt [1970]). Furthermore, Etessami and Yannakakis [2009] have recently
proved that Newton’s method is guaranteed to converge for an analysis concerning
the probability of termination of recursive programs. These facts raise the ques-
tion whether Newton’s method can be generalized to the more abstract dataflow
setting, where values are arbitrary entities, while preserving the good properties of
Newton’s method.

In the first part of the article, we show that the generalization is indeed possible.
Inspired by work of Hopkins and Kozen [1999] on Kleene algebras, we show that
the notion of a differential of a function lying at the heart of Newton’s method, and
the method itself can be suitably generalized. This allows us to apply Newton’s
method to, for instance, language equations. We then apply the method to two small
case studies: a may-alias analysis and an average runtime analysis.

In the second part of this article, we study the properties of Newton’s method
on idempotent semirings, the classical domain of program analysis. Recall that the
method is iterative: it constructs better and better approximations to the solution

1 For reasons that will be clear later, we use join-semilattices rather than meet-semilattices, deviating
from the classical dataflow analysis literature such as Kildall [1973], Kam and Ullman [1977], and
Sharir and Pnueli [1981]. As a consequence, we also replace greatest fixed points by least fixed points,
meet-over-all-paths by join-over-all-paths, etc. This change is purely notational.
2 Actually, in Sharir and Pnueli [1981], the value of a program instruction is the function describing
its effect on program variables, and the extension operator is function composition. However, the
extension to an arbitrary distributive concatenation operator is unproblematic.

Journal of the ACM, Vol. 57, No. 6, Article 33, Publication date: October 2010.

P1: VLM
JACM5706-33 Journal of the ACM October 1, 2010 22:5

Newtonian Program Analysis 33:3

n1

n2

n3

n5

n6 n7

n8 n9

n11

n12

n13

n4 n10 n14

YX Z

a

bcall X

call Y

c
d

ecall Y call Y

call Z
call X

g

icall X

h

FIG. 1. Flowgraphs of three procedures.

of the equation system. We obtain a characterization of the approximants, and
apply it to the case of commutative idempotent semirings, previously studied by
Hopkins and Kozen in a beautiful paper [1999]. Hopkins and Kozen propose a
generic solution method for the equations, and prove that it terminates after O(3n)
iterations, where n is the number of equations. We show that their method is in fact
Newton’s method, and, applying our characterization of the approximants, show
that it terminates after at most n iterations.

Finally, in a short section we extend our framework to the non-distributive case.
We show that Newton’s method, like the classical fixed-point iteration, computes
an overapproximation of the join of the values of all valid program paths.

In the rest of this introduction, we go again through the article’s skeleton sketched
above, but providing some more details.

1.1. A SUMMARY OF SHARIR AND PNUELI’S APPROACH. Sharir and Pnueli
[1981] assume as given a lattice of data values with a join operator. They show
how to compute for every program point p of every procedure P the join of the
values of all valid program paths leading from the initial node of P to p. This is
called the join-over-all-valid-paths for p, or JOP(p) for short. The computation,
which works for distributive analyses, proceeds in two steps: first, the join over all
same-level valid program paths is computed, where a path is same-level if every
procedure call has a matching return. We denote this join by JOP0(p). The second
step is usually described today in terms of summary edges (see, e.g., Reps et al.
[1995]). JOP0(p) is used to construct a new flowgraph without procedure calls.
Edges calling P are replaced by edges with the same source and target nodes, but
labelled with JOP0(exP) (the effect of P) where exP is the exit node of P; new
edges are added leading from the source of each call to P to P’s entry point. The
result is a flowgraph without procedure calls, such that JOP(p) for the old and new
graphs coincide. The JOP for flowgraphs without procedures (the intraprocedural
case) is the least solution of a system of linear dataflow equations [Kildall 1973;
Kam and Ullman 1977].

Sharir and Pnueli [1981] show that JOP0 is equal to the least solution of a system
of dataflow equations. We sketch how to construct the equations by means of an
example. Consider a program with three procedures X, Y, Z , whose flowgraphs
are shown in Figure 1. Nodes correspond to program points, and edges to program

Journal of the ACM, Vol. 57, No. 6, Article 33, Publication date: October 2010.

P1: VLM
JACM5706-33 Journal of the ACM October 1, 2010 22:5

33:4 J. ESPARZA ET AL.

instructions. For instance, procedure X can execute b and terminate, or execute a,
call itself recursively, and, after the call has terminated, call Y .

To define the equations, Sharir and Pnueli assume a complete lattice3 of values
with a join operator ∨; a mapping φ assigning to each non-call edge (m, n) a lattice
value φ(m, n), and a concatenation operator · that distributes over ∨ and has a
neutral element (1). The system of equations contains a variable and an equation
for each program node. If n is the initial node of a procedure then it contributes
the equation vn = 1, where vn denotes n’s variable. Otherwise, it contributes the
equation

vn =
∨

m∈pred(n)

vm · h(m, n)

where pred(n) denotes the set of immediate predecessors of n, and h(m, n) is
defined as follows: if (m, n) is a call edge calling, for example, procedure X , then
h(m, n) is the variable for the return node of X ; otherwise h(m, n) = φ(m, n).

The system of equations for Figure 1 can be more compactly represented if vari-
ables for all program points other than return points are eliminated by substitution.
Only three equations remain, namely those for the return points n4, n10, and n14. If
moreover, and abusing language, we reuse X, Y, Z to denote the variables for these
points, and a, . . . , i to denote the values φ(n1, n2), . . . , φ(n11, n14), we obtain the
system

X = a · X · Y ∨ b
Y = c · Y · Z ∨ d · Y · X ∨ e (1)
Z = g · X · h ∨ i

which very closely resembles the structure of the flowgraphs. Since the right-hand
sides of the equations are monotonic mappings, and distributes over ∨, the existence
of the least fixed point is guaranteed by Kleene’s fixed-point theorem.

1.2. A SLIGHT GENERALIZATION: FROM SEMILATTICES TO SEMIRINGS. Let us
examine the properties of the join operator ∨. First of all, since the lattice is
complete, it is defined for arbitrary sets of lattice elements. Furthermore, it is
associative, commutative, idempotent, and concatenation distributes over it. If we
use the symbols 0 for the bottom element of the lattice (corresponding to an abort
operation) and 1 for the element corresponding to a NOP instruction, then we have
0 ∨ a = a ∨ 0 = a and 1 · a = a · 1 = a for every a. It is argued in Seidl
and Fecht [2000] that one can transform every program analysis to an essentially
equivalent one that satisfies 0 · a = a · 0 = 0. So the lattice, together with the two
operations ∨ and · and the elements 0 and 1, constitutes an idempotent semiring.
In the following, we write ‘+’ for ‘∨’ to conform with the standard semiring
notation.

Idempotence of the join operator is not crucial for the existence of the least
fixed point; it can be replaced by a weaker property. Consider the relation � on
semiring elements defined as follows: a � a+b for all elements a, b. A semiring is

3 More precisely, Sharir and Pnueli [1981] initially consider semilattices with a least and a greatest
element that satisfy the ascending-chain property (every nondecreasing chain eventually becomes
stationary). However, the paper later concentrates on finite lattices, which are complete.

Journal of the ACM, Vol. 57, No. 6, Article 33, Publication date: October 2010.

P1: VLM
JACM5706-33 Journal of the ACM October 1, 2010 22:5

Newtonian Program Analysis 33:5

n1

n2

n3

n5

n6 n7

n8 n9

n11

n12

n13

n4 n10 n14

YX Z

0.4

0.6call X

call Y

0.3
0.4

0.3call Y call Y

call Z
call X

0.3

0.7call X

1

FIG. 2. Probabilistic flowgraphs.

naturally ordered if this relation is a partial order, and a naturally ordered semiring
in which infinite sums exist and satisfy standard properties is called ω-continuous.
Using Kleene’s fixed-point theorem it is easy to show that systems of equations
over ω-continuous semirings still have a least fixed point with respect to the partial
order � (see, for instance Kuich [1997]).

As an example of application of this more general setting, assume that the
program of Figure 1 is probabilistic, and the values a, . . . , i are real numbers
corresponding to the probabilities of taking the transitions. A particular case is
shown in Figure 2. The semiring operations are addition and multiplication over
the nonnegative reals. Notice that addition is not idempotent. The semiring is ω-
continuous if a new element ∞ with the usual properties is added. It is not difficult
to show [Esparza et al. 2004; Etessami and Yannakakis 2009] that the least solution
of the system

X = 0.4XY + 0.6
Y = 0.3Y Z + 0.4Y X + 0.3
Z = 0.3X + 0.7

yields the probability of termination of each procedure. (Incidentally, notice that,
contrary to the intraprocedural case, this probability may be different from 1 even
if every execution can be extended to a terminating execution.)

1.3. SOLVING SYSTEMS OF EQUATIONS. Current generic algorithms for solving
Sharir and Pnueli’s equations (like the classical worklist algorithm of dataflow
analysis) are based on variants of Kleene’s fixed-point theorem [Kuich 1997]. The
theorem states that the least solution μ f of a system of equations X = f (X) over an
ω-continuous semiring is equal to the supremum of the sequence (κ (i))i∈N of Kleene
approximants given by κ (0) = 0 (the vector of 0-elements) and κ (i+1) = f (κ (i)).
This yields a procedure (let us call it Kleene’s method) to compute or at least
approximate μ f . If the domain satisfies the well-known ascending chain condition
[Nielson et al. 1999], then the procedure terminates, because there exists an i such
that κ (i) = κ (i+1) = μ f .

Kleene’s method is generic and robust: it always converges when started at 0,
for any ω-continuous semiring and for any system of equations. On the other
hand, it often fails to terminate, and it can converge very slowly to the solution.
We illustrate this point by means of two simple examples. Consider the equation

Journal of the ACM, Vol. 57, No. 6, Article 33, Publication date: October 2010.

P1: VLM
JACM5706-33 Journal of the ACM October 1, 2010 22:5

33:6 J. ESPARZA ET AL.

X = a · X +b over the lattice of subsets of the language {a, b}∗. The least solution
is the regular language a∗b, but we have κ (i) = {b, ab, . . . , ai−1b} for i ≥ 1,
that is, the solution is not reached in any finite number of steps. For our second
example, consider a very simple probabilistic procedure that can either terminate
or call itself twice, both with probability 1/2. The probability of termination of this
program is given by the least solution of the equation X = 1/2 + 1/2 · X2 (where
X2 abbreviates X · X). It is easy to see that the least solution is equal to 1, but we
have κ (i) ≤ 1 − 1

i+1 for every i ≥ 0, that is, in order to approximate the solution
within i bits of precision we have to compute about 2i Kleene approximants. For
instance, we have κ (200) = 0.9990, that is, 200 iterations produce only three digits of
precision.

After our slight generalization of Sharir and Pnueli’s framework, quantitative
analyses like the probability of termination fall within the scope of the approach.
So we can look at numerical mathematics for help with the inefficiencies of Kleene’s
method.

As could be expected, faster approximation techniques for equations over the
reals have been known for a long time. In particular, Newton’s method, suggested
by Isaac Newton more than 300 years ago, is a standard efficient technique to
approximate a zero of a differentiable function, and can be adapted to our problem.
Since the least solution of X = 1/2 + 1/2 · X2 is a zero of 1/2 + 1/2 · X2 − X , the
method can be applied, and it yields ν(i) = 1−2−i for the i th Newton approximant.
So the i th Newton approximant already has i bits of precision, instead of log i bits
for the Kleene approximant.

However, Newton’s method also has a number of disadvantages, at least at first
sight. Newton’s method on the real field is by far not as robust and well behaved as
Kleene’s method on semirings. The method may converge very slowly, converge
only locally (only when started in a small neighborhood of the zero), or even not
converge at all [Ortega and Rheinboldt 1970]. So we face the following situation.
Kleene’s method, a robust and general solution technique for arbitrary ω-continuous
semirings, is inefficient in many cases. Newton’s method is usually very efficient,
but it is only defined for the real field, and it is not robust.

As part of their study of Recursive Markov Chains, Etessami and Yannakakis
[2009] showed that a variant of Newton’s method is robust for certain systems
of equations over the real semiring: the method always converges when started
at zero. In other words, moving from the real field to the real semiring (only
nonnegative numbers) makes the instability problems disappear. Inspired by this
work, in this paper we obtain a more general result. We show that Newton’s
method can be generalized to arbitrary ω-continuous semirings, and prove that
on these structures it is as robust as Kleene’s method. Since lattices, the classical
domain of program analysis, are very close to idempotent semirings, we study
in detail Newton’s method in idempotent semirings. We pay special attention to
idempotent semirings with commutative multiplication. Loosely speaking, these
semirings correspond to counting analysis, in which one is interested in how often
program points are visited, but not in which order. These semirings do not always
satisfy the ascending chain condition, and Kleene’s method may not terminate.
We show that a very elegant iterative solution method for these semirings due to
Hopkins and Kozen [1999], is exactly Newton’s method, and always terminates in
a finite number of steps. As mentioned above, we further use our characterization

Journal of the ACM, Vol. 57, No. 6, Article 33, Publication date: October 2010.

P1: VLM
JACM5706-33 Journal of the ACM October 1, 2010 22:5

Newtonian Program Analysis 33:7

of Newton approximants to show that the least fixed point is reached after at most
n iterations, a tight bound, improving on the O(3n) bound of Hopkins and Kozen
[1999].

The article is divided into two parts. The first part introduces our generalization of
Newton’s method, and ends with two examples of application to program analysis
problems: a may-alias analysis for a program transforming a tree into a list, and
an average runtime analysis for lazy evaluation of And/Or-trees. The second part
presents the proofs of our results, investigates Newton’s method in idempotent and
commutative semirings, and extends our approach to semi-distributive program
analyses. It is wellknown that in this case fixed-point iteration overapproximates
the join-over-all-paths value (see, e.g., Knoop and Steffen [1992], Reps et al.
[1995], Sagiv et al. [1996], and Nielson et al. [1999]). We show that the same
property holds for Newton’s method.

The first part of the article is organized as follows. Section 2 introduces ω-
continuous semirings, systems of fixed-point equations, and some semirings inves-
tigated in the rest of the article. Section 3 recalls Newton’s method, and generalizes
it to arbitrary ω-continuous semirings. Section 4 presents the case studies. The
second part starts with Section 5 where we prove the fundamental properties of
our generalization, mainly convergence to the least fixed point. Section 6 char-
acterizes the Newton approximants in terms of derivation trees, a generalization
of the derivation trees of language theory. Section 7 uses this characterization to
prove that for idempotent and commutative semirings Newton’s method always
terminates in at most n iterations for a system of dimension n. Finally, Section 8
deals with nondistributive program analyses.

2. ω-Continuous Semirings

Definition 2.1. A semiring is a tuple 〈S, +, ·, 0, 1〉 where S is a set containing
two distinguished elements 0 and 1, and the binary operations +, · : S × S → S
satisfy the following conditions:

(1) 〈S, +, 0〉 is a commutative monoid.

(2) 〈S, ·, 1〉 is a monoid.

(3) 0 · a = a · 0 = 0 for all a ∈ S.

(4) a · (b + c) = a · b + a · c and (a + b) · c = a · c + b · c for all a, b, c ∈ S.
A semiring 〈S, +, ·, 0, 1〉 is ω-continuous if the following additional conditions
hold:

(5) The relation �:= {(a, b) ∈ S × S | ∃d ∈ S : a + d = b} is a partial order.

(6) Every ω-chain (ai)i∈N (i.e., ai � ai+1 with ai ∈ S) has a supremum with
respect to � denoted by supi∈N

ai .

(7) Given an arbitrary sequence (bi)i∈N, define∑
i∈N

bi := sup{b0 + b1 + · · · + bi | i ∈ N}

Journal of the ACM, Vol. 57, No. 6, Article 33, Publication date: October 2010.

P1: VLM
JACM5706-33 Journal of the ACM October 1, 2010 22:5

33:8 J. ESPARZA ET AL.

(the supremum exists by condition (6)). For every sequence (ai)i∈N, for every
c ∈ S, and for every partition (I j) j∈J of N:

c·
(∑

i∈N

ai

)
=

∑
i∈N

(c·ai),

(∑
i∈N

ai

)
·c =

∑
i∈N

(ai ·c),
∑
j∈J

⎛⎝∑
i∈I j

a j

⎞⎠ =
∑
i∈N

ai .

An (ω-continuous) semiring is idempotent, if a + a = a holds for all a ∈ S. It
is commutative, if a · b = b · a for all a, b ∈ S. In an ω-continuous semiring we
define the Kleene-star ∗ : S → S by

a∗ :=
∑
k∈N

ak = sup{1 + a + a · a + · · · + ak | k ∈ N} for a ∈ S.

For ω-continuous semirings, we have the following important property that
addition and multiplication, and subsequently polynomials are ω-continuous, too.

LEMMA 2.2. In any ω-continuous semiring 〈S, +, ·, 0, 1〉 addition and mul-
tiplication are ω-continuous, that is, for any ω-chain (ai)i∈N and any c ∈ S we
have

c · (sup
i∈N

ai) = sup
i∈N

(c · ai), (sup
i∈N

ai) · c = sup
i∈N

(ai · c), c + (sup
i∈N

ai) = sup
i∈N

(c + ai).

PROOF. By (5) and (6) in the previous definition, for any ω-chain (ai)i∈N, there
exists a sequence (di)i∈N such that d0 = a0 and ai +di = ai+1 (i.e., di is a difference
of ai+1 and ai), and so supi∈N

ai = ∑
i∈N

di . The result follows by applying (7) to
this sequence.

Example 2.3. Common examples of ω-continuous semirings are the real semi-
ring, that is, nonnegative real numbers extended by infinity 〈R≥0 ∪{∞}, +, ·, 0, 1〉,
and the language semiring over some finite alphabet �, that is, 〈2�∗

, ∪, ·, ∅, {ε}〉
where · stands for the canonical concatenation of languages, and ε for the empty
word. In both of these instances the natural order coincides with the canonical order
on the respective carrier, that is, in the real semiring we have � ≡ ≤, and in the
language semiring � ≡ ⊆.

In the following, we often write ab instead of a · b.

2.1. VECTORS, POLYNOMIALS AND POWER SERIES. Let S be an ω-continuous
semiring and let X be a finite set of variables. A vector is a mapping v : X → S
which assigns every variable X ∈ X the value v(X). We usually write v X for v(X).
If there is some natural total order given on X like, for example, the lexicographic
order in the case X = {X, Y, Z} or the total order on the indices in the case
X = {X1, X2, X3} we will also write a vector v as a column vector of dimension
|X | enumerating the values starting with the lowest variable as the topmost value.
The set of all vectors is denoted by V .

Given a countable set I and a vector v i for every i ∈ I , we denote by
∑

i∈I v i

the vector given by
(∑

i∈I v i
)

X = ∑
i∈I (v i)X for every X ∈ X . Throughout the

article, we use bold letters like ‘v’ or ‘a’ for vectors.
A monomial is a finite expression a1 X1a2 X2 · · · ak Xkak+1 , where k ≥ 0,

a1, . . . , ak+1 ∈ S and X1, . . . , Xk ∈ X . Note that this general definition of mono-
mial is necessary as we do not require that multiplication is commutative. A poly-
nomial is an expression of the form m1 + · · · + mk where k ≥ 0 and m1, . . . , mk

Journal of the ACM, Vol. 57, No. 6, Article 33, Publication date: October 2010.

P1: VLM
JACM5706-33 Journal of the ACM October 1, 2010 22:5

Newtonian Program Analysis 33:9

are monomials. A power series is an expression of the form
∑

i∈I mi , where I is a
countable set and mi is a monomial for every i ∈ I .

Given a monomial f = a1 X1a2 X2 . . . ak Xkak+1 and a vector v , we define f (v),
the value of f at v , as a1vX1a2vX2 · · · akvXk ak+1. We extend this to any power series
f = ∑

i∈I fi by f (v) = ∑
i∈I fi (v).

A vector of power series is a mapping f that assigns to each variable X ∈ X
a power series f (X). Again we write f X for f (X). Given a vector v , we define
f (v) as the vector satisfying (f (v))X = f X (v) for every X ∈ X , that is, f (v) is
the vector that assigns to X the result of evaluating the power series f X at v . So,
f naturally induces a mapping f : V → V .

2.2. FIXED-POINT EQUATIONS AND KLEENE’S THEOREM. The partial order �
on the semiring S can be lifted to a partial order on vectors, also denoted by �,
and defined by v � v ′ if v X � v ′

X for every X ∈ X .
Given a vector of power series f , we are interested in the least fixed point of f ,

that is, the least vector v with respect to � satisfying v = f (v). We briefly recall
Kleene’s theorem, which guarantees that the least fixed point exists.

A mapping f : S → S is monotone if a � b implies f (a) � f (b), and ω-
continuous if for any infinite chain a0 � a1 � a2 � · · · we have sup{ f (ai)} =
f (sup{ai }). These definitions are extended to mappings f : V → V from vectors
to vectors by requiring them to hold in every component of f . The following result
is taken from Kuich [1997] and relies on the fact that multiplication and addition
are ω-continuous on ω-continuous semirings, see Lemma 2.2.

PROPOSITION 2.4. Let f be a vector of power series. The mapping induced
by f is monotone and ω-continuous. Hence, by Kleene’s theorem, f has a unique
least fixed point μ f . Further, μ f is the supremum (with respect to �) of the Kleene
sequence given by κ (0) = f (0), and κ (i+1) = f (κ (i)).4

2.3. SOME SEMIRING INTERPRETATIONS. We recall that different interesting
pieces of information about the program of Figure 1 correspond to the least solution
of Equations (1) from page 4 over different semirings.5 For the rest of the section
let � = {a, b, . . . , i} be the set of actions in the program, and let σ denote an
arbitrary element of �.

2.3.1. Language Interpretation. Consider the following semiring. The carrier
is 2�∗

(i.e., the set of languages over �). The semiring element σ is interpreted
as the singleton language {σ }. The sum and product operations are union and
concatenation of languages, respectively. We call this structure language semiring
over �. Under this interpretation, Eq. (1) are nothing but the following context-free
grammar in Backus-Naur form:

X → aXY | b Y → cYZ | dYX | e Z → gXh | i

The least solution of (1) is the triple (L(X), L(Y), L(Z)), where, for U ∈ {X, Y, Z},
L(U) denotes the set of terminating executions of the program with U as main

4 Defining κ (0) = 0 would be more straightforward, but less convenient for this article.
5 This will be no surprise for the reader acquainted with abstract interpretation, but the examples will
be used all throughout the article.

Journal of the ACM, Vol. 57, No. 6, Article 33, Publication date: October 2010.

P1: VLM
JACM5706-33 Journal of the ACM October 1, 2010 22:5

33:10 J. ESPARZA ET AL.

procedure, or, in language-theoretic terms, the language of the associated grammar
with U as axiom.

2.3.2. Relational Interpretation. Assume that an action σ corresponds to a pro-
gram instruction whose semantics is described by means of a relation Rσ (V, V ′)
over a set V of program variables (as usual, primed and unprimed variables cor-
respond to the values before and after executing the instruction). Consider now
the following semiring. The carrier is the set of all relations over (V, V ′). The
semiring element σ is interpreted as the relation Rσ . The sum and product op-
erations are union and join of relations, respectively, that is, (R1 · R2)(V, V ′) =
∃V ′′ R1(V, V ′′) ∧ R2(V ′′, V ′). Under this interpretation, the U -component of the
least solution of (1) is the summary relation RU (V, V ′) containing the pairs V, V ′
such that if procedure U starts at valuation V , then it may terminate at valuation V ′.

2.3.3. Counting Interpretation. Assume we wish to know how many as, bs, etc.
we can observe in a (terminating) execution of the program, but we are not interested
in the order in which they occur. In the terminology of abstract interpretation, we
abstract an execution w ∈ �∗ by the vector (na, . . . , ni) ∈ N

|�| where na, . . . , ni
are the number of occurrences of a, . . . , i in w . We call (na, . . . , ni) the Parikh
image of w . The Parikh images of L(X), L(Y), L(Z) are the least solution of (1)
for the following semiring. The carrier is 2N

|�|
. The j th action of � is interpreted

as the singleton set {(0, . . . , 0, 1, 0 . . . , 0)} with the “1” at the j th position. The
sum operation is set union, and the product operation is given by

S · T = {(sa + ta, . . . , si + ti) | (sa, . . . , si) ∈ S, (ta, . . . , ti) ∈ T } .

2.3.4. Probabilistic Interpretations. Assume that the choices between actions
are stochastic. For instance, actions a and b are chosen with probability p and
(1 − p), respectively. The probability of termination is given by the least solution
of (1) when interpreted over the following semiring (the real semiring) [Esparza
et al. 2004; Etessami and Yannakakis 2009]. The carrier is the set of nonnegative
real numbers, enriched with an additional element ∞. The semiring element σ is
interpreted as the probability of choosing σ among all enabled actions. Sum and
product are the standard operations on real numbers, suitably extended to ∞.

Assume now that actions are assigned not only a probability, but also a duration.
Let dσ denote the duration of σ . We are interested in the expected termination time
of the program, under the condition that the program terminates (the conditional
expected time). For this we consider the following semiring. The elements are the
set of pairs (r1, r2), where r1, r2 are nonnegative reals or ∞. We interpret σ as
the pair (pσ , dσ), that is, the probability and the duration of σ . The sum operation
is defined as follows (where to simplify the notation we use +e and ·e for the
operations of the semiring, and + and · for sum and product of reals):

(p1, d1) +e (p2, d2) =
(

p1 + p2,
p1 · d1 + p2 · d2

p1 + p2

)
(p1, d1) ·e (p2, d2) = (p1 · p2, d1 + d2)

The reader can easily check that this definition satisfies the semiring axioms. The
U -component of the least solution of (1) is now the pair (tU , eU), where tU is the
probability that procedure U terminates, and eU is its conditional expected time.

Journal of the ACM, Vol. 57, No. 6, Article 33, Publication date: October 2010.

P1: VLM
JACM5706-33 Journal of the ACM October 1, 2010 22:5

Newtonian Program Analysis 33:11

FIG. 3. Newton’s method to find a zero of a one-dimensional function g(X).

3. Newton’s Method for ω-Continuous Semirings

We introduce our generalization of Newton’s method for ω-continuous semirings.
In Section 3.1, we consider the univariate case, i.e. the case of one equation in a sin-
gle variable, which already allows us to introduce all important ideas. Here, we first
recall Newton’s method as known from calculus, that is, as a method for approxi-
mating a zero of a differentiable function. We then take a close look at the analytical
definition, and identify the obstacles for a generalization to ω-continuous semirings.
Finally, we propose a definition that overcomes the obstacles. In Section 3.2, we
turn to the multivariate case and state a fundamental theorem which shows that our
generalization of Newton’s method is well defined and converges to the least fixed
point. This lays the foundation to what we call Newtonian program analysis, the
application of the generalized version of Newton’s method to program analysis.
We illustrate the concepts at the end of this section.

3.1. THE UNIVARIATE CASE. Given a differentiable function g : R → R, New-
ton’s method computes a zero of g, that is, a solution of the equation g(X) = 0.
The method starts at some value ν(0) “close enough” to the zero, and proceeds
iteratively: given ν(i), it computes a value ν(i+1) closer to the zero than ν(i). For
that, the method linearizes g at ν(i), that is, computes the tangent to g passing
through the point (ν(i), g(ν(i))), and takes ν(i+1) as the zero of the tangent (i.e., the
x-coordinate of the point at which the tangent cuts the x-axis), see Figure 3 for an
illustration.

It is convenient for our purposes to formulate Newton’s method in terms of
the differential of g at a given point v ∈ R. Recall that the differential of g is
the mapping Dg|v : R → R that assigns to each v ∈ R the linear function
describing the tangent of g at the point (v, g(v)) in the coordinate system having
(v, g(v)) as origin. If we denote the differential of g at v by Dg|v , then we have
Dg|v (X) = g′(v) · X (for example, if g(X) = X2 + 3X + 1, then Dg|3(X) = 9X).
In terms of differentials, Newton’s method is formulated as follows. Starting at
some ν(0), compute iteratively ν(i+1) = ν(i) + 	(i), where 	(i) is the solution of the
linear equation Dg|ν(i) (X) + g(ν(i)) = 0 (assume for simplicity that the solution of
the linear system is unique). In particular, for a univariate function g on the real

Journal of the ACM, Vol. 57, No. 6, Article 33, Publication date: October 2010.

P1: VLM
JACM5706-33 Journal of the ACM October 1, 2010 22:5

33:12 J. ESPARZA ET AL.

numbers, we obtain for 	(i)

0 = Dg|ν(i) ((i)) + g(ν(i)) = g′(ν(i)) · 	(i) + g(ν(i)), that is, 	(i), = − g(ν(i))

g′(ν(i))

and, thus, the standard formulation of Newton’s method:

ν(i+1) = ν(i) + 	(i) = ν(i) − g(ν(i))

g′(ν(i))
.

Computing the solution of a fixed-point equation, f (X) = X amounts to com-
puting a zero of g(X) = f (X) − X , and so we can apply Newton’s method. Since
for every real number v , we have Dg|v (X) = D f |v (X) − X , the method looks as
follows:

Starting at some ν(0), compute iteratively

ν(i+1) = ν(i) + 	(i) (2)

where 	(i) is the solution of the linear equation

D f |ν(i) (X) + f (ν(i)) − ν(i) = X. (3)

So Newton’s method “breaks down” the problem of finding a solution to a
non-linear system f (X) = X into finding solutions to the sequence (3) of linear
systems.

3.1.1. Generalization. Generalizing Newton’s method to arbitrary ω-
continuous semirings requires us to overcome two obstacles. First, the notion of
differential seems to require a richer algebraic structure than a semiring: differen-
tials are usually defined in terms of derivatives, which are the limit of a quotient of
differences, which requires both the sum and product operations to have inverses.
Second, Eq. (3) contains the term f (ν(i)) − ν(i), which again seems to be defined
only if summation has an inverse.

3.1.1.1 THE FIRST OBSTACLE. Differentiable functions satisfy well known al-
gebraic rules with respect to sums and products of functions. We take these rules
as the definition of the differential of a power series f over an ω-continuous semi-
ring S. We remark that this definition of differential generalizes the usual algebraic
definition of derivatives.

Definition 3.1. Let f be a power series in one variable X over an ω-continuous
semiring S. The differential of f at the point v is the mapping D f |v : S → S
inductively defined as follows for every b ∈ S:

D f |v (b) =

⎧⎪⎪⎨⎪⎪⎩
0 if f ∈ S
b if f = X

Dg|v (b) · h(v) + g(v) · Dh|v (b) if f = g · h∑
i∈I D fi |v (b) if f = ∑

i∈I fi (b).

Example 3.2. First, consider a polynomial f over some commutative ω-
continuous semiring. Because of commutative multiplication, we may write any
monomial as a · Xk for some k ∈ N and a ∈ S, and so f = ∑n

k=0 ak · Xk for
suitable n ∈ N and ak ∈ S. Let f ′ denote the usual algebraic derivative of f with

Journal of the ACM, Vol. 57, No. 6, Article 33, Publication date: October 2010.

P1: VLM
JACM5706-33 Journal of the ACM October 1, 2010 22:5

Newtonian Program Analysis 33:13

respect to X , that is, f ′ = ∑n
k=1 k · ak · Xk−1 where k · ak is an abbreviation of∑k

i=1 ak . We then have

D f |v (b) = ∑n
k=0 D(ak · Xk)|v (b)

= ∑n
k=0(Dak |v (b) · (Xk)(v)+ ∑k−1

j=0 ak · (X j)(v) · DX |v (b)·(Xk−1− j)(v))

= ∑n
k=0

∑k−1
j=0 ak · v j · DX |v (b) · vk−1− j

= (
∑n

k=1 k · ak · vk−1) · b
= f ′(v) · b.

So, on commutative semirings, we have D f |v (b) = f ′(v) · b for all v, b ∈ S.
Now, assume that multiplication is not commutative, and consider the simple

case of a quadratic monomial m = a0 Xa1 Xa2. We then have

Dm|v (b) = a0 · DX |v (b) · a1 · v · a2 + a0 · v · a1 · DX |v (b) · a2
= a0 · b · a1 · v · a2 + a0 · v · a1 · b · a2.

The important point here is that the differential “remembers” the position of the
variables, and therefore does not simply append the value b.

Remark 3.3. Let � be a finite alphabet, L ⊆ �∗ a language and u ∈ �∗ a
finite word. In Brzozowski [1964], the derivative Du L of L with respect to u is
defined to be the language {w | uw ∈ L}. One may relate this notion of derivative
to our definition of differential for the special case of univariate power series
on idempotent and commutative semirings. For instance, writing the power series
f (X) = a+Xb+X Xc as the language L f := {a, Xb, X Xc} (with a, b, c, X ∈ �),
its derivative with respect to X is DX L f = {b, Xc}. Writing this language as
power series g(X) = b + Xc, we see that g(X) is related to the differential D f by
D f |v (e) = be + vce = g(v) · e in this case. If multiplication is not commutative,
then D f |v (e) = eb+evc+vec, so the equality D f |v (e) = g(v) ·e no longer holds.

3.1.1.2 THE SECOND OBSTACLE. Profiting from the fact that 0 is the unique
minimal element of S with respect to �, we fix ν(0) = f (0), which guarantees
ν(0) � f (ν(0)). We guess that with this choice ν(i) � f (ν(i)) will hold not only for
i = 0, but for every i ≥ 0 (the correctness of this guess is proved in Theorem 3.9).
If the guess is correct, then, by the definition of �, the semiring contains an element
δ(i) such that f (ν(i)) = ν(i) + δ(i). We replace f (ν(i)) − ν(i) by any such δ(i). This
leads to the following definition:

Definition 3.4. Let f be a power series in one variable. A Newton sequence
(ν(i))i∈N is given by:

ν(0) = f (0) and ν(i+1) = ν(i) + 	(i) (4)

where 	(i) is the least solution of

D f |ν(i) (X) + δ(i) = X (5)

and δ(i) is any element satisfying f (ν(i)) = ν(i) + δ(i).

Theorem 3.9 below shows that Newton sequences always exist (i.e., there is
always at least one possible choice for δ(i)), and that they all converge at least as

Journal of the ACM, Vol. 57, No. 6, Article 33, Publication date: October 2010.

P1: VLM
JACM5706-33 Journal of the ACM October 1, 2010 22:5

33:14 J. ESPARZA ET AL.

fast as the Kleene sequence. More precisely, we show that for every i ≥ 0

κ (i) � ν(i) � ν(i+1) � μ f .

Since we have μ f = supi∈N
κ (i) by Kleene’s theorem, Newton sequences converge

to μ f .
In general, there can be more than one choice for δ(i). But Theorem 3.9 also shows

that the Newton sequence (ν(i))i≥0 itself is uniquely determined by f (and S). In
other words, the choice of δ(i) does not influence the Newton approximants ν(i).

Let us consider some examples for Newton sequences.

3.1.2. Examples. We compute the Newton sequence for a program that can
execute a and terminate, or execute b and then call itself twice, recursively (the
abstract scheme of a divide-and-conquer procedure). The abstract equation of the
program is

X = a + b · X · X (6)

3.1.2.1. THE REAL SEMIRING. Consider the case a = b = 1/2 (we can interpret
a and b as probabilities). We have D f |v (X) = v · X , and one single possible choice
for δ(i), namely δ(i) = f (ν(i))−ν(i) = 1/2+1/2 (ν(i))2 −ν(i). Equation (5) becomes

ν(i) X + 1/2 + 1/2 (ν(i))2 − ν(i) = X

with 	(i) = (1 − ν(i))/2 as unique solution. We get

ν(0) = 1/2 ν(i+1) = (1 + ν(i))/2

and therefore ν(i) = 1 − 2(i+1). So the Newton sequence converges to 1, and gains
one bit of accuracy per iteration.

3.1.2.2 THE LANGUAGE SEMIRING. Consider the language semiring with
� = {a, b}. The product operation is concatenation of languages, and hence non-
commutative. So we have D f |v (X) = bv X + bXv . We show in Proposition 7.1
that when sum is idempotent (as in this case, where it is union of languages) the
definition of the Newton sequence can be simplified to

ν(0) = f (0) and ν(i+1) = 	(i), (7)

where 	(i) is the least solution of

D f |ν(i) (X) + f (ν(i)) = X. (8)

With f = a + b · X · X from Eq. (6), Eq. (8) becomes

bν(i) X + bXν(i)︸ ︷︷ ︸
D f |

ν(i) (X)

+ a + bν(i)ν(i)︸ ︷︷ ︸
f (ν(i))

= X. (9)

Its least solution (which by (7) is equal to the (i + 1)-st Newton approximant) is
a context-free language. Let G(i) be a grammar with axiom S(i) such that ν(i) =
L(G(i)). Since ν(0) = f (0), the grammar G(0) contains one single production,
namely S(0) → a. Equation (9) allows us to define G(i+1) in terms of G(i), and we
get:

G(0) = {S(0) → a}
G(i+1) = G(i) ∪ {S(i+1) → a | bS(i+1)S(i) | bS(i)S(i+1) | bS(i)S(i)}

Journal of the ACM, Vol. 57, No. 6, Article 33, Publication date: October 2010.

P1: VLM
JACM5706-33 Journal of the ACM October 1, 2010 22:5

Newtonian Program Analysis 33:15

3.1.2.3. THE COUNTING SEMIRING. Consider the counting semiring with ra =
{(1, 0)} and rb = {(0, 1)}. Since the sum operation is union of sets of vectors,
it is idempotent and Eqs. (7) and (8) hold. Since the product operation is now
commutative, we obtain for our example

b · ν(i) · X + a + b · ν(i) · ν(i) = X (10)

Using Kleene’s fixed-point theorem (Proposition 2.4), it is easy to see that the
least solution of a linear equation X = u · X + v over a commutative ω-continuous
semiring is u∗ · v , where u∗ = ∑

i∈N
ui . The least solution 	(i) of Eq. (10) is then

given by

	(i) = (rb · ν(i))∗ · (ra + rb · ν(i) · ν(i))

and we obtain:

ν(0) = ra = {(1, 0)}
ν(1) = (rb · ra)∗ · (ra + rb · ra · ra) = {(n, n) | n ≥ 0} · {(1, 0), (2, 1)}

= {(n + 1, n) | n ≥ 0}
ν(2) = ({(n, n) | n ≥ 1})∗ · ({(1, 0)} ∪ {(2n + 2, 2n + 1) | n ≥ 0})

= {(n + 1, n) | n ≥ 0}
So the Newton sequence reaches a fixed point after one iteration. In Section 7, we

show that the Newton sequence of a system of n equations over any commutative
and idempotent semiring converges after at most n iterations. Further note that the
counting semiring does not satisfy the ascending-chain property, that is, there are
monotonically increasing sequences in the counting semiring that do not become
stationary. Therefore, the Kleene sequence and its variations do not reach μ f after
a finite number of steps in general.

3.2. THE MULTIVARIATE CASE. Newton’s method can be easily generalized
to the multivariate case. Given differentiable functions g1, . . . , gn : R

n → R, the
method computes a solution of g(X) = 0, where g = (g1, . . . , gn); starting at
some ν(0), the method computes ν(i+1) = ν(i) + �(i), where �(i) is the solution of
the system of linear equations

Dg1|ν(i) (X) + g1(ν(i)) = 0

...

Dgn|ν(i) (X) + gn(ν(i)) = 0

and Dg j |ν(i) (X) is the differential of g j at ν(i), that is, the function corresponding
to the tangent hyperplane of g j at the point (ν(i), g j (ν(i)).

Given a function g : R
n → R differentiable at a point v , there exists a function

DX g|v for each variable X ∈ X such that Dg|v = ∑
X∈X DX g|v . These functions

are closely related to the partial derivatives, more precisely we have DX g|v (X) =
∂g
∂ X

∣∣∣
v
· X .

We denote the system above by Dg|ν(i) (X) + g(ν(i)) = 0. For the problem of
computing a solution of a system of fixed-point equations, the method looks as
follows:

Journal of the ACM, Vol. 57, No. 6, Article 33, Publication date: October 2010.

P1: VLM
JACM5706-33 Journal of the ACM October 1, 2010 22:5

33:16 J. ESPARZA ET AL.

Starting at some ν(0), compute iteratively

ν(i+1) = ν(i) + �(i) (11)

where �(i) is the least solution of the linear system of fixed-point
equations

D f |ν(i) (X) + f (ν(i)) − ν(i) = X . (12)

3.2.1. Generalization. Again, we use the algebraic definition of differential:

Definition 3.5. Let f be a power series over an ω-continuous semiring S and
let X ∈ X be a variable. The differential of f with respect to X at the point v is the
mapping DX f |v : V → S inductively defined as follows:

DX f |v (b) =

⎧⎪⎪⎨⎪⎪⎩
0 if f ∈ S or f ∈ X \ {X}

bX if f = X
DX g|v (b) · h(v) + g(v) · DX h|v (b) if f = g · h∑

i∈I DX fi |v (b) if f = ∑
i∈I fi .

Further, we define the differential of f at v as the function

D f |v :=
∑
X∈X

DX f |v .

Finally, the differential of a vector of power series f at v is defined as the function
D f |v : V → V with

(D f |v (b))X := D f X |v (b).

As in the univariate case, we guess that ν(i) � f (ν(i)) will hold for every
i ≥ 0. If the guess is correct, then the semiring contains an element δ(i) such that
f (ν(i)) = ν(i) + δ(i), and Eq. (12) becomes

D f |ν(i) (X) + δ(i) = X . (13)

This leads to the following definition:

Definition 3.6. Let f : V → V be a vector of power series.

—Let i ∈ N. An i th Newton approximant ν(i) is inductively defined by

ν(0) = f (0) and ν(i+1) = ν(i) + �(i),

where �(i) is the least solution of Eq. (13) and δ(i) is any vector satisfying
f (ν(i)) = ν(i) + δ(i).

—A sequence (ν(i))i∈N of Newton approximants is called Newton sequence.

Remark 3.7. One can easily show by induction that for any v, b, b′ ∈ V , and
any vector of power series f we have

D f |v (b + b′) = D f |v (b) + D f |v (b′).

Remark 3.8. If the product operation of the semiring is commutative, the dif-
ferential DX f |v (a) can be written as ∂ f

∂ X |v · aX , where ∂ f
∂ X |v denotes the usual partial

Journal of the ACM, Vol. 57, No. 6, Article 33, Publication date: October 2010.

P1: VLM
JACM5706-33 Journal of the ACM October 1, 2010 22:5

Newtonian Program Analysis 33:17

derivative of the power series f with respect to X , taken at v , as known from
algebra:

∂ f

∂ X

∣∣∣∣
v

=

⎧⎪⎪⎨⎪⎪⎩
0 if f ∈ S or f ∈ X \ {X}
1 if f = X

∂g
∂x

∣∣
v · h(v) + g(v) · ∂h

∂ X

∣∣
v if f = g · h∑

i∈I
∂ fi

∂ X

∣∣
v if f = ∑

i∈I fi .

So, in commutative semirings we may use the usual representation of the dif-
ferential by means of the gradient of a power series f , or more generally, by the
Jacobian of a vector f of power series.

The following fundamental theorem shows that there exists exactly one Newton
sequence, that it converges to the least fixed point, and that it does so at least as
fast as the Kleene sequence.

THEOREM 3.9. Let f : V → V be a vector of power series.

—There is exactly one Newton sequence (ν(i))i∈N.
—The Newton sequence is monotonically increasing, converges to the least fixed

point and does so at least as fast as the Kleene sequence. More precisely, it
satisfies

κ (i) � ν(i) � f (ν(i)) � ν(i+1) � μ f = sup
j∈N

κ (j) for all i ∈ N.

Before giving the formal proof of Theorem 3.9 (see Section 5), we present
two examples of Newtonian program analysis, which illustrate the use of our
generalized Newton’s method to program analysis.

4. Two Case Studies

We apply our results to the analysis of two small programs. In the first one, a
may-alias analysis where we use the counting semiring, Kleene iteration does not
terminate, while Newton’s method terminates in one step. In the second case,
an average runtime analysis where we use the real semiring, neither technique
terminates, but Newton’s method converges substantially faster to the solution.

4.1. A MAY-ALIAS ANALYSIS. We conduct a may-alias analysis in the spirit
of Deutsch [1994]. We consider a program listify() that transforms a binary tree
(all nonleaf nodes have two children) of pointers into a list of pointers by reading
the nodes of the tree in preorder. An implementation in C++ could look as shown
in Figure 4, where move right() follows the right child pointer, and similarly for
move left() and move up().

The flowgraphs of listify(), listifyL(), and listifyR() are shown in Figure 5.
We wish to compute may-alias information, that is, information on which data

access paths of the tree and the list may point to the same element. A data access
path of the tree can be represented as a word over the alphabet {l, r}: for instance,
the path llr corresponds to the element found as follows: start at the root node,
follow twice the pointer to the left child, then once the pointer to the right child,
and then the pointer to the data. Similarly, a data access path of the list can be
represented as a word over {s} (for successor). So may-alias information can be
represented as a set of pairs (w1, w2), where w1 ∈ {l, r}∗ and w2 ∈ {s}∗.

Journal of the ACM, Vol. 57, No. 6, Article 33, Publication date: October 2010.

P1: VLM
JACM5706-33 Journal of the ACM October 1, 2010 22:5

33:18 J. ESPARZA ET AL.

FIG. 4. Code snippet of the class Listify that serializes a tree into a list.

FIG. 5. Flowgraph for listify(), listifyL(), and listifyR().

We are interested in may-alias information at the entry point of listify(), directly
before the execution of L.push back(T→get.data()), which creates an alias. More
exactly, we wish to overapproximate the alias pairs generated by any valid program
path leading from the entry point of listify to itself, i.e., the “join-over-all-paths”
(or JOP) solution of the program.

Recall from Section 1.1 how we compute the JOP-values of a procedural pro-
gram: We first use Newton’s method to compute or overapproximate, for any pro-
cedure P , the effect of P , denoted by JOP0(P). Then, the label of an edge calling P
is replaced by JOP0(P), and additional edges (labelled with the 1-element) from

Journal of the ACM, Vol. 57, No. 6, Article 33, Publication date: October 2010.

P1: VLM
JACM5706-33 Journal of the ACM October 1, 2010 22:5

Newtonian Program Analysis 33:19

FIG. 6. Abstract flowgraphs for listify(), listifyL(), and listifyR().

the source of the call to the entry point of P are inserted. The resulting flowgraph
no longer contains procedure calls. For any program point p, we obtain JOP(p) by
solving the system of linear dataflow equations derived from that flowgraph. We
apply this approach to the listify() program.

In order to guarantee that the computation of JOP0 terminates, we use the Parikh
abstraction, in which we abstract a word w ∈ {l, r}∗ by a vector (#lw, #r w), where
#lw and #r w denote the number of l’s and r ’s in w . The result of the analysis will
be a set of triples (nl, nr , ns) ∈ N

3. A triple (nl, nr , ns) indicates that there may be
an alias between some data access path containing nl times the letter l and nr times
the letter r , and the (unique) data access path containing ns times the letter s (the
s-th element of the list).

We can then work over the counting semiring described in Section 2.3.3, with
2N

3
as carrier. Recall that the sum operation is set union, and the product operation,

denoted by ·c, is given by

N ·c M = {(nl + ml, nr + mr , ns + ms) | (nl, nr , ns) ∈ N , (ml, mr , ms) ∈ M} .

In our abstraction, T.move left() adds 1 to the number of l’s in the data access path
of the tree, leaving the number of r ’s and s’s untouched. So we replace the edge
label “T.move left()” with the one-element set {(1, 0, 0)}. Proceeding similarly
with the rest of the edges, we obtain the abstract flowgraphs of Figure 6 (we omit
the curly brackets of one-element sets).

From the abstract flowgraphs we get the equations (with li, liR and liL as abbre-
viations of listify(), listifyL() and listifyR()):

li = {(0, 0, 1)} ·c
({(0, 0, 0)} ∪ {(0, 0, 0)} ·c liL ·c liR

)
liL = {(1, 0, 0)} ·c li ·c {(−1, 0, 0)}
liR = {(0, 1, 0)} ·c li ·c {(0, −1, 0)}

which can be simplified applying the commutativity of ·c, yielding liL = li and
liR = li. So, we only have to solve the univariate quadratic equation

li = {(0, 0, 1)} ∪ {(0, 0, 1)} ·c li ·c li. (14)

Journal of the ACM, Vol. 57, No. 6, Article 33, Publication date: October 2010.

P1: VLM
JACM5706-33 Journal of the ACM October 1, 2010 22:5

33:20 J. ESPARZA ET AL.

FIG. 7. Abstract flowgraphs for listify(), listifyL(), and listifyR().

Kleene iteration does not terminate for (14): we obtain κ (i) = {(0, 0, 2 j + 1) |
0 ≤ j ≤ i}, never reaching the least solution. But, since our semiring is idempotent
and commutative, Theorem 7.7 (see Section 7.1) guarantees that Newton’s method
terminates in one step. It follows that ν(1) = {(0, 0, 2 j + 1) | 0 ≤ j} is the least
solution of (14). This is our desired overapproximation of JOP0. The interpretation
is simple: after termination of listify(), an arbitrary odd number of items may have
been added to the list, but it is not possible to have added an even number of items.

As described before, we can use JOP0 to construct a flowgraph without procedure
calls, see Figure 7, where α = {(0, 0, 2 j + 1) | j ∈ N} and dashed lines indicate
edges labelled with (0, 0, 0).Since we are interested in the value of the JOP for the
entry point, we get the linear equation

entry = {(0, 0, 0)} ∪ {(1, 0, 1)} ·c entry ∪ {(0, 1, 1)} ·c α ·c entry

where the second and third terms on the right-hand-side correspond to the loops
involving listifyL() and listifyR(). The least solution is

entry = ({(1, 0, 1)} ∪ {(0, 1, 1)} ·c α
)∗c

which corresponds to the set

{(nl, nr , ns) ∈ N
3 | (nr = 0 ∧ ns = nl)∨(nr > 0 ∧ ∃k ∈ N : ns = 2nr + nl + 2k)}.

This result gives the following information on may-aliases:

—A data access path of the tree containing no r and nl times l can only be aliased
to the nl th element of the list.

—A data access path of the tree with nr > 0 times r and nl times l can only be
aliased to the 2nr + nl th element of the list, or to the larger elements of the same
parity.

The problem that Kleene iteration does not terminate for these recursive examples
has been addressed by many researchers. The k-limiting technique was introduced
as a way to palliate the problem: basically, it computes the aliases exactly for data
access paths of length at most k, and abstracts the rest very crudely. The Parikh
abstraction can provide information on data access paths of arbitrary depth. It was
used (together with some other features) in Deutsch [1994]. Notice, however, that

Journal of the ACM, Vol. 57, No. 6, Article 33, Publication date: October 2010.

P1: VLM
JACM5706-33 Journal of the ACM October 1, 2010 22:5

Newtonian Program Analysis 33:21

FIG. 8. Flowgraph for And().

in our case we derive termination for this abstraction from a generic argument,
namely from Theorem 7.7.

4.2. AN AVERAGE RUNTIME ANALYSIS. In this example, we show how by just
changing the semiring our approach can also be applied to average runtime analysis.
We consider a program for lazy evaluation of And/Or-trees. For this example, an
And/Or-tree is a tree where (i) every node has either zero or two children, (ii) every
inner node of the tree is either an And-node or an Or-node, and (iii) on any path
from the root to a leaf And- and Or-nodes alternate.

The program constructs and evaluates nodes of the tree (to 0 or 1) only if needed.
For instance, if the left subtree of an And-node evaluates to 0, then the program
neither constructs nor evaluates the right subtree. More specifically, we assume
the existence of functions node.leaf(), node.value(), node.left() and node.right(),
where node.leaf() checks if a node is a leaf, node.value() evaluates a leaf node, and
node.left() and node.right() create the left and the right child of a node which is
not a leaf. Notice that because of lazy evaluation the program may terminate even
if the input is an infinite tree.

function And(node)
if node.leaf() then

return node.value()
else

v := Or(node.left())
if v = 0 then

return 0
else

return Or(node.right())

function Or(node)
if node.leaf() then

return node.value()
else

v := And(node.left())
if v = 1 then

return 1
else

return And(node.right())

Figure 8 shows the flowgraph of And(), the one of Or() is similar. We as-
sume that the root of the tree is always an And-node, i.e., the main procedure is
And().

Assume the probabilities that node.leaf() and node.value() return 0 or 1 are
known, as well as the time taken by each instruction. For our example, we assume

Journal of the ACM, Vol. 57, No. 6, Article 33, Publication date: October 2010.

P1: VLM
JACM5706-33 Journal of the ACM October 1, 2010 22:5

33:22 J. ESPARZA ET AL.

FIG. 9. Flowgraphs for the procedures And0 and And1.

that all probabilities are equal to 0.5, that node.leaf() and node.value() take one
time unit, and all other instructions take no time. We perform an analysis to
compute (a) the probability that the evaluation terminates (with results 0 or 1), and
(b) the average runtime. This corresponds to taking the semiring for the second
probabilistic interpretation in Section 2.3.4.

The functions And() and Or() return values, and their control flow depends on
the values returned by calls to node.leaf(), node.value(), and recursive calls to Or()
and And(). We need an analysis that captures these dependencies. For this, we use a
standard instrumentation: we interpret a program procedure, say P , that may return
k different values, say v0, . . . , vk−1, as k different procedures, P0, . . . , Pk−1, where
Pi returns vi ; more precisely, the control flow of Pi contains the valid flow paths
of P that finish with return vi . In our example, we get four procedures: And0,
And1, Or0 and Or1. The flowgraphs of And0 and And1 are shown in the first row
Figure 9. Notice, for instance, that these flowgraphs exclude paths where a call to
Or1 (i.e., a call to Or() that returns 1) is followed by the then branch of “if v = 0
then return 0”. The flowgraphs of Or0 and Or1 are similar. By construction, the
probabilities of termination of And0() and And1() are equal to the probabilities that
And() terminates with value 0 and with value 1.

Journal of the ACM, Vol. 57, No. 6, Article 33, Publication date: October 2010.

P1: VLM
JACM5706-33 Journal of the ACM October 1, 2010 22:5

Newtonian Program Analysis 33:23

Recall that the semiring values of Section 2.3.4 are of the form (p, d), where
p ∈ [0, 1] stands for the probability of a given set of paths and d ∈ [0, ∞) for
their expected execution time (duration). The second row of Figure 9 shows how to
assign semiring values to the edges. For instance, the edge labelled by node.leaf1()
gets (0.5, 1) as semiring value, because node.leaf() returns 1 with probability 0.5,
and it takes one unit of time.

Using the framework of Section 1.1, the probability that a procedure returns a
value and the expected time to return this value is given as the least solution of the
following equation system:

And0 = (0.25, 2) +e (0.5, 1) ·e (Or0 +e Or1 ·e Or0)

And1 = (0.25, 2) +e (0.5, 1) ·e Or1 ·e Or1

Or0 = (0.25, 2) +e (0.5, 1) ·e And0 ·e And0

Or1 = (0.25, 2) +e (0.5, 1) ·e (And1 +e And0 ·e And1)

(15)

where +e and ·e are the semiring operations defined in Section 2.3.4.
The equation system (15) happens to be solvable analytically. For instance, the

And0-component of the least solution is (
√

10
2 − 1, 19

6 + 37
√

10
30) ≈ (0.581, 7.067).

This means that the procedure And() terminates and returns the value 1 with
probability 0.581 and needs in average 7.067 time steps to do so. For equation
systems stemming from larger programs, the solution may not be representable
by roots, cf. Etessami and Yannakakis [2009]. Therefore, approximation methods
are generally needed. We compute the first elements of the Kleene and Newton
sequences for (15). Rounding to three decimals, we obtain:

i κ
(i)
And0

ν
(i)
And0

κ
(i)
And1

ν
(i)
And1

0 (0.250, 2.000) (0.250, 2.000) (0.250, 2.000) (0.250, 2.000)
1 (0.406, 2.538) (0.495, 3.588) (0.281, 2.333) (0.342, 3.383)
2 (0.448, 2.913) (0.568, 5.784) (0.333, 3.012) (0.409, 5.906)
3 (0.491, 3.429) (0.581, 6.975) (0.350, 3.381) (0.419, 7.194)
4 (0.511, 3.793) (0.581, 7.067) (0.370, 3.904) (0.419, 7.295)

We have κ
(i)
Or0

= κ
(i)
And1

and ν
(i)
Or0

= ν
(i)
And1

and similarly for Or1. We observe that the
Newton sequence converges faster than the Kleene sequence. In particular, while
the first entry of ν

(4)
And0

is > 0.58, further computation shows that i = 21 is the

smallest index i such that the first entry of κ
(i)
And0

is > 0.58.
The performance gap between Kleene and Newton iteration can be widened by

lowering the leaf probability from 0.5 to 0.4. In this case, the procedure And()
takes, in average, a time of about 29.81 to return the value 0; in other words, in
this case, the second entry of the And0-component of the least solution of (15)
is approximately 29.81. It takes around 222 Kleene iterations to determine that
this value is greater than 29.8, whereas 6 Newton iterations suffice to establish
the same fact. Actually, numerical analysis shows that when the leaf probability
tends to (

√
33 − 5)/2 ≈ 0.372, the average runtime tends to infinity, and the gap

between Newton and Kleene iteration grows unboundedly. However, it should be
mentioned that a Newton step is more expensive in general than a Kleene step, since
a Newton step requires solving a linear equation system of dimension 4. In Kiefer

Journal of the ACM, Vol. 57, No. 6, Article 33, Publication date: October 2010.

P1: VLM
JACM5706-33 Journal of the ACM October 1, 2010 22:5

33:24 J. ESPARZA ET AL.

et al. [2007] and Esparza et al. [2008, 2010] we have given a detailed analysis
of the convergence speed of Newton’s method applied to (numerical) fixed-point
equations. In general, the more precision is required, the better is the performance
of Newton’s method compared to Kleene iteration.

5. Proof of Fundamental Properties of the Newton Sequences

In this section, we prove Theorem 3.9 that is states that there exists exactly one
Newton sequence, that it converges to the least fixed point, and that it does so
at least as fast as the Kleene sequence. The proof is split in two propositions.
Proposition 5.6 in Section 5.1 states that there is only one Newton sequence. The
following proposition covers the rest of Theorem 3.9:

PROPOSITION 5.1. Let f : V → V be a vector of power series.

—For every Newton approximant ν(i), there exists a vector δ(i) such that
f (ν(i)) = ν(i) + δ(i). So there is at least one Newton sequence.

—Any Newton sequence satisfies κ (i) � ν(i) � f (ν(i)) � ν(i+1) � μ f =
sup j∈N

κ (j) for all i ∈ N.

The proof of Proposition 5.1 is based on two lemmata. The first one, an easy
consequence of Kleene’s theorem, provides a closed form for the least solution of a
linear system of fixed-point equations in terms of the Kleene star operator, defined
as follows:

Definition 5.2. Let g : V → V be a monotone map. The map g∗ : V → V is
defined as g∗(v) := ∑

i∈N
gi (v), where g0(v) := v , gi+1(v) := g(gi (v)) for every

i ≥ 0. Similarly, we set for all j ∈ N: g≤ j := ∑
0≤i≤ j gi (v).

The existence of
∑

i∈N
gi (v) is guaranteed by the properties of ω-continuous

semirings. Observe that v � g∗(v) and g∗(v) = v + g(g∗(v)) hold.

LEMMA 5.3. Let f : V → V be a vector of power series, and u, v ∈ V .
Then the least solution of D f |u(X) + v = X is D f |∗u(v). In particular, a Newton
sequence from Definition 3.6 can be equivalently defined by setting ν(0) = f (0)
and ν(i+1) = ν(i) + D f |∗

ν(i) (δ(i)).

PROOF. Set g(X) := D f |u(X)+v . The vector g is a power series in every com-
ponent and thus a monotone map from V to V . By Kleene’s fixed-point theorem,
the least solution of g(X) = X is given by sup{gi (0) | i ∈ N} = sup{D f |≤i

u (v) |
i ∈ N} = D f |∗u(v).

The second lemma, which is interesting by itself, is a generalization of Taylor’s
theorem to arbitrary ω-continuous semirings.

LEMMA 5.4. Let f : V → V be a vector of power series and let u, v be two
vectors. We have

f (u) + D f |u(v) � f (u + v) � f (u) + D f |u+v (v).

PROOF. It suffices to show those inequalities for each component separately,
so let w.l.o.g. f = f : V → S be a power series. We proceed by induction on the
construction of f . The base case (where f is a constant) and the case where f is a

Journal of the ACM, Vol. 57, No. 6, Article 33, Publication date: October 2010.

P1: VLM
JACM5706-33 Journal of the ACM October 1, 2010 22:5

Newtonian Program Analysis 33:25

sum of polynomials are easy, and so it suffices to consider the case in which f is a
monomial. So let

f = g · X · a

for a monomial g, a variable X ∈ X and a constant a. We have

f (u) = g(u) · uX · a and D f |u(v) = g(u) · v X · a + Dg|u(v) · uX · a.

By induction we obtain:

f (u + v) = g(u + v) · (uX + v X) · a

� (
g(u) + Dg|u(v)

) · (uX + v X) · a

= g(u) · uX · a + g(u) · v X · a + Dg|u(v) · (uX + v X) · a

� f (u) + g(u) · v X · a + Dg|u(v) · uX · a

= f (u) + D f |u(v)

and

f (u + v) = g(u + v) · (uX + v X) · a

� (
g(u) + Dg|u+v (v)

) · (uX + v X) · a

= g(u) · uX · a + g(u) · v X · a + Dg|u+v (v) · (uX + v X) · a

� f (u) + g(u + v) · v X · a + Dg|u+v (v) · (uX + v X) · a

= f (u) + D f |u+v (v)

We can now proceed to prove Proposition 5.1.

PROOF OF PROPOSITION 5.1. First, we prove for all i ∈ N that a suitable δ(i)

exists and, at the same time, that the inequality κ (i) � ν(i) � f (ν(i)) holds. We
proceed by induction on i . The base case i = 0 is easy. For the induction step, let
i ≥ 0.

κ (i+1) = f (κ (i)) (definition of κ (i))

� f (ν(i)) (induction: κ (i) � ν(i))

= ν(i) + δ(i) for some δ(i) (induction)

� ν(i) + D f |∗ν(i) (δ(i)) (v � g∗(v))

= ν(i+1) (Lemma 5.3)

= ν(i) + δ(i) + D f |ν(i) (D f |∗ν(i) (δ(i))) (g∗(v) = v + g(g∗(v)))

= f (ν(i)) + D f |ν(i) (D f |∗ν(i) (δ(i))) (definition of δ(i))

� f (ν(i) + D f |∗ν(i) (δ(i))) (Lemma 5.4)

= f (ν(i+1)) (Lemma 5.3)

Since ν(i+1) � f (ν(i+1)), there exists a δ(i+1) such that ν(i+1) + δ(i+1) � f (ν(i+1)).

Journal of the ACM, Vol. 57, No. 6, Article 33, Publication date: October 2010.

P1: VLM
JACM5706-33 Journal of the ACM October 1, 2010 22:5

33:26 J. ESPARZA ET AL.

Next, we prove f (ν(i)) � ν(i+1):

f (ν(i)) = ν(i) + δ(i) (as proved above)

� ν(i) + D f |∗ν(i) (δ(i)) (v � g∗(v))

= ν(i+1) (Lemma 5.3)

It remains to prove sup j∈N
κ (j) = μ f and ν(i) � μ f for all i . The equation

sup j∈N
κ (j) = μ f holds by Kleene’s theorem (Proposition 2.4). To prove ν(i) �

μ f , for all i , we need a lemma.

LEMMA 5.5. Let f (x) � x. For all d ≥ 0, there exists a vector e(d)(x) such
that

f d(x) + e(d)(x) = f d+1(x) and

e(d)(x) � D f | f d−1(x)(D f | f d−2(x)(. . . D f |x(e(0)(x)) . . .))

� D f |dx(e(0)(x)).

PROOF OF LEMMA. By induction on d. For d = 0, there is an appropriate e(0)(x)
by assumption. Let d ≥ 0.

f d+2(x) = f (f d(x) + e(d)(x)) (induction)

� f d+1(x) + D f | f d (x)(e
(d)(x)) (Lemma 5.4)

� f d+1(x) + D f | f d (x)(. . . D f |x(e(0)(x)) . . .) (induction)

Therefore, there exists an e(d+1)(x) � D f | f d (x)(· · · D f |x(e(0)(x)) · · ·). Since D f | y

is monotone in y and x � f (x) � f 2(x) � . . ., the second inequality also holds.
This completes the proof of the lemma.

Notice that Lemma 5.5 holds for x = ν(i) and e(0)(ν(i)) = δ(i), because we have
already shown ν(i) � f (ν(i)). Now we can prove ν(i) � μ f by induction on i . The
case i = 0 is trivial. Let i ≥ 0. We have:

ν(i+1) = ν(i) + D f |∗ν(i) (δ(i)) (Lemma 5.3)

= ν(i) +
∑
d∈N

D f |dν(i) (δ(i)) (definition of D f |∗ν(i))

� ν(i) +
∑
d∈N

e(d)(ν(i)) (Lemma 5.5)

= sup
d∈N

f d(ν(i)) (ω-continuity)

� μ f (induction:

ν(i) � f (ν(i)) � f (f (ν(i))) � . . . � μ f)

This completes the proof of Proposition 5.1.

Journal of the ACM, Vol. 57, No. 6, Article 33, Publication date: October 2010.

P1: VLM
JACM5706-33 Journal of the ACM October 1, 2010 22:5

Newtonian Program Analysis 33:27

5.1. UNIQUENESS. In Definition 3.6 the Newton approximant ν(i) is defined in
terms of a vector δ(i) satisfying ν(i) +δ(i) = f (ν(i)). In the previous section we have
shown that such a vector always exists. However, in a semiring there there may be
multiple such δ(i)’s, and so in principle there could be multiple Newton sequences.
We show now that this is not the case, that is, there is only one Newton sequence
(ν(i))i∈N, independent of the choice of δ(i):

PROPOSITION 5.6. Let f : V → V be a vector of power series. There is exactly
one Newton sequence (ν(i))i∈N.

Theorem 3.9 follows directly by combining Proposition 5.1 and Proposition 5.6.
So, for Theorem 3.9, it remains to prove Proposition 5.6, which we do in the rest
of this section.

It is convenient for this proof to introduce substitutionals, a notion related to
differentials, see Definition 3.5.

Definition 5.7. Let f be a power series over an ω-continuous semiring S and
let s ∈ N+. The substitutional of f with respect to s at the point v is the mapping
$s f |v : V → S defined as follows:

If f is a monomial, that is, of the form f = a1 X1 · · · ak Xkak+1, then

$s f |v (b) =
{

a1v X1 · · · as−1v Xs−1as bXs as+1v Xs+1 · · · akv Xk ak+1 if 1 ≤ s ≤ k

0 otherwise.

If f is a power series, that is, of the form f = ∑
i∈I fi , then

$s f |v (b) =
∑
i∈I

$s fi |v (b).

In other words: if f is a monomial with at least s variables then $s f |v (b) is
obtained from f by replacing the sth variable Xs by bXs and all other variables by
the corresponding component of v . If f is a monomial with less than s variables
then $s f |v (b) = 0. If f is a power series then the substitutional of f is the sum of
the substitutionals of f ’s monomials.

Analogously to differentials, we extend the definition of substitutionals to vectors
of power series by applying the substitution componentwise. Formally, we define
the substitutional of a vector of power series f at v as the function $s f |v : V → V
with (

$s f |v (b)
)

X := $s f X |v (b) .

Observe that, like the differential (see Remark 3.7), the substitutional is “linear”,
that is, $s f |v (b + b′) = $s f |v (b) + $s f |v (b′).

Notation 5.8. For any j ∈ N and any sequence s = (s1, . . . s j) ∈ N
j
+ we write

$s f |v (b) for $s1 f |v ($s2 f |v (· · · $s j f |v (b) · · ·)), and $s f |v (b) = b if j = 0.

The following facts are immediate from the definitions.

PROPOSITION 5.9. Let f be a monomial. Then

DX f |v (b) =
∑ {

$s f |v (b) | X is the sth variable in f
}

.

Journal of the ACM, Vol. 57, No. 6, Article 33, Publication date: October 2010.

P1: VLM
JACM5706-33 Journal of the ACM October 1, 2010 22:5

33:28 J. ESPARZA ET AL.

Let f be a vector of power series. Then:

(1) D f |v (b) = ∑
s∈N+ $s f |v (b).

(2) D f | j
v (b) = ∑

s∈N
j
+

$s f |v (b).

(3) For all s ∈ N+ we have f (v) � $s f |v (v).

Example 5.10. Consider the polynomial f = a XY X + cY . Then

$1 f |v (b) = abX vY v X + cbY

$2 f |v (b) = av X bY v X

$3 f |v (b) = av X vY bX

DX f |v (b) = abX vY v X + av X vY bX

DY f |v (b) = av X bY v X + cbY .

Observe that D f |v (b) = DX f |v (b) + DY f |v (b) = $1 f |v (b) + $2 f |v (b) + $3 f |v (b)
and that f (v) = av X vY v X + cvY � $s f |v (v) holds for all s ∈ N+.

For the proof of Proposition 5.6, we need the following two lemmata.

LEMMA 5.11. Let f be a vector of power series. Let ν + δ = f (ν). Let j ∈ N

and (s1, . . . , s j+1) ∈ N
j+1
+ . Then ν + D f |≤ j

ν (δ) � $(s1,...,s j+1) f |ν(ν).

PROOF. By induction on j . For j = 0 we have ν + D f |≤0
ν (δ) = ν + δ =

f (ν) � $s1 f |ν(ν) by Proposition 5.9.3. Let j ≥ 0. We have:

ν + D f |≤ j+1
ν (δ) = ν + D f |≤ j

ν (δ) + D f | j+1
ν (δ)

� $(s1,...,s j+1) f |ν(ν) + D f | j+1
ν (δ) (induction)

� $(s1,...,s j+1) f |ν(ν) + $(s1,...,s j+1) f |ν(δ) (Prop. 5.9.2.)

= $(s1,...,s j+1) f |ν(f (ν)) (ν + δ = f (ν))

� $(s1,...,s j+1) f |ν($s j+2 f |ν(ν)) (Prop. 5.9.3.)

= $(s1,...,s j+2) f |ν(ν)

LEMMA 5.12. Let f be a vector of power series. Let ν + δ = ν + δ′ = f (ν).
Then ν + D f |∗ν(δ) = ν + D f |∗ν(δ′).

PROOF. We show ν + D f |≤ j
ν (δ) = ν + D f |≤ j

ν (δ′) for all j ∈ N. Then the
lemma follows by ω-continuity. We proceed by induction on j . The induction base
(j = 0) is clear. Let j ≥ 0. We have:

ν + D f |≤ j+1
ν (δ) = ν + D f |≤ j

ν (δ) + D f | j+1
ν (δ)

= ν + D f |≤ j
ν (δ′) + D f | j+1

ν (δ) (induction)

= ν + D f |≤ j
ν (δ′)︸ ︷︷ ︸

=:u

+
∑

s∈N
j+1
+

$s f |ν(δ) (Prop. 5.9.2.)

Journal of the ACM, Vol. 57, No. 6, Article 33, Publication date: October 2010.

P1: VLM
JACM5706-33 Journal of the ACM October 1, 2010 22:5

Newtonian Program Analysis 33:29

By Lemma 5.11, we have u � $s f |ν(ν) for all s ∈ N
j+1
+ . In other words, for all

s ∈ N
j+1
+ there is a u′ such that u = u′+$s f |ν(ν). Hence, for all s ∈ N

j+1
+ , we have

u + $s f |ν(δ) = u′ + $s f |ν(ν) + $s f |ν(δ) = u′ + $s f |ν(f (ν)) = u + $s f |ν(δ′).
Therefore, in the above equation, we can replace δ by δ′ due to the “presence” of u:

= ν + D f |≤ j
ν (δ′) +

∑
s∈N

j+1
+

$s f |ν(δ′) (as argued above)

= ν + D f |≤ j
ν (δ′) + D f | j+1

ν (δ′) (Prop. 5.9.2.)

= ν + D f |≤ j+1
ν (δ′)

Now Proposition 5.6 follows immediately from Lemma 5.12 by a straightforward
inductive proof.

6. Derivation Trees and the Newton Approximants

The proofs of the previous section were purely algebraical. For deeper and stronger
results, we need the notion of derivation trees. To this end, we reinterpret a system
of power-series as a context-free grammar, and assign it a set of derivation trees.
We then characterize the Kleene and Newton approximants of the system in terms
of those trees. This characterization of the Newton approximants will be crucially
used in the rest of this article.

We assume that the reader is familiar with the notion of derivation tree of
a context-free grammar. Recall that the yield of a derivation tree (obtained by
reading the leaves from left to right) is a word generated by the grammar, and every
word generated by the grammar is the yield of one or more derivation trees. In
our reinterpretation, the nonterminals will be the variables of the system of power
series, and the terminals will be its coefficients.

We show that the Kleene approximants κ (i) are equal to the sum of the yields
of the derivation trees having a certain height. Similarly, we show that the Newton
approximants ν(i) are equal to the sum of the yields of the trees having a certain
dimension, a notion introduced in Definition 6.7 below.

For the rest of the section, we fix a vector f of power series over a fixed
but arbitrary ω-continuous semiring. Without loss of generality, we assume that
f X = ∑

j∈J m X, j holds for every variable X ∈ X , that is, we assume that for all
variables the sum is over the same countable set J of indices.

Consider the set of ordered trees whose nodes are labeled by pairs (X, j), where
X ∈ X and j ∈ J . Sometimes we identify a tree and its root. In particular, we say
that a tree t is labeled by (X, j) if its root is labeled by (X, j). The mappings λ, λv
and λm are defined by λ(t) := (X, j), λv (t) := X , and λm(t) := j . Given a set T
of trees, we denote by TX the set of trees t ∈ T such that λv (t) = X .

We define the set of derivation trees of f , and show how to assign to each
tree a semiring element called the yield of the tree. For technical reasons our
definition differs slightly from the straightforward generalization of derivation
trees for grammars.

Definition 6.1 (Derivation Tree, Yield). The derivation trees of f and their
yields are inductively defined as follows:

Journal of the ACM, Vol. 57, No. 6, Article 33, Publication date: October 2010.

P1: VLM
JACM5706-33 Journal of the ACM October 1, 2010 22:5

33:30 J. ESPARZA ET AL.

FIG. 10. A system of equations, a derivation tree, and its yield.

—For every monomial m X, j of f X , if no variable occurs in m X, j , then the tree t
consisting of one single node labeled by (X, j) is a derivation tree of f . Its yield
Y (t) is equal to m X, j .

—Let m X, j = a1 X1a2 X2 . . . ak Xkak+1 for some k ≥ 1, and let t1, . . . , tk be
derivation trees of f such that λv (ti) = Xi for 1 ≤ i ≤ k. Then, the tree t
labelled by (X, j) and having t1, . . . , tk as (ordered) children is also a derivation
tree of f , and its yield Y (t) is equal to a1Y (t1) . . . akY (tk)ak+1.

The yield Y (T) of a countable set T of derivation trees is defined by
Y (T) = ∑

t∈T Y (t). In the following, we mean derivation tree whenever we say
tree.

Example 6.2. Figure 10 shows a system of equations (system (1) from the
introduction, on the left). The basic idea is to read these equations as rules of a
context-free grammar, for example, the equation X = a XY + b is interpreted as
the rules X → a XY and X → b. By this reinterpretation derivation trees are
naturally associated with the given equation system. But as addition is not assumed
to be idempotent in general, we have to extend the standard definition of derivation
tree in order to handle multiplicities correctly. The derivation tree depicted in the
middle of Figure 10 therefore records which monomial of which variable gives
rise to the children of a given node. For instance, consider the node labelled by
(Y, 1) (the right child of the root). Since the first monomial of the equation for Y
is cY Z , the node has two children, say c1, c2 with λv (c1) = Y and λv (c2) = Z .
As λm(c2) = 2, the children of c2 are determined by the second monomial of the
equation for Z . Since this monomial is h, which contains no variables, c2 has no
children. The right part of the figure shows the result of labelling each node of the
tree with the yield of the subtree rooted at it.

6.1. KLEENE SEQUENCE AND HEIGHT. As a warm-up for the Newton case, we
characterize the Kleene sequence (κ (i))i∈N in terms of the derivation trees of a
certain height.

Definition 6.3 (Height). Let t be a derivation tree. The height of t , denoted by
h(t), is the length (number of edges) of a longest path from the root to some leaf.
We denote by Hi the set of derivation trees of height at most i .

Journal of the ACM, Vol. 57, No. 6, Article 33, Publication date: October 2010.

P1: VLM
JACM5706-33 Journal of the ACM October 1, 2010 22:5

Newtonian Program Analysis 33:31

FIG. 11. Trees of height at most 2 for the equation X = 1/2 · X 2 + 1/2.

PROPOSITION 6.4.
(
κ (i)

)
X = Y (Hi

X), i.e., the X-component of the i-th Kleene
approximant κ (i) is equal to the yield of Hi

X .

The proof can be found in Appendix A.
Notice that Proposition 6.4 no longer holds if nodes are only labelled with a

variable, and not with a pair. Consider for instance the equation X = a + a,
for which κ (0) = a + a. There are two derivation trees t1, t2 of height 0, both
consisting of one single node: t1 is labelled by (X, 1), and t2 by (X, 2). We get
Y (t1) + Y (t2) = a + a = κ (0). If we labelled nodes only with variables, then there
would be one single derivation tree t , and we would get Y (t) = a, which in general
is different from a + a.

Example 6.5. Consider again the equation X = 1/2 · X2 + 1/2 over the real
semiring. We have κ (2) = 89/128. Figure 11 shows the five derivation trees of
height at most 2. It is easy to see that their yields are 1/2, 1/8, 1/32, 1/32, 1/128,
which add up to 89/128.

By Kleene’s theorem we obtain that the least solution of the equation system is
equal to the yield of the set of all trees.

COROLLARY 6.6. Let T be the set of all derivation trees of f . For all X ∈ X :
(μ f)X = Y (TX).

PROOF. By Kleene’s Theorem (Proposition 2.4), we have (μ f)X =
supi∈N

(κ (i))X . The result follows from Proposition 6.4.

6.2. NEWTON SEQUENCE AND DIMENSION. We introduce a second parameter
of a tree, namely its dimension. Like the height, it depends only on the tree structure,
and not on the labels of its nodes. Loosely speaking, a tree has dimension 0 if it
consists of just one node; a tree has dimension i if there is a path from its root to
some node which has at least two children with dimension i − 1 and all subtrees
of the path that are not themselves on the path have dimension at most i − 1.
The path is called the backbone of the tree. The geometric intuition for the name
dimension is that a tree of dimension i can be naturally represented in R

i : a tree
of dimension 1 can essentially be represented as a line (with small “spikes”, see

Journal of the ACM, Vol. 57, No. 6, Article 33, Publication date: October 2010.

P1: VLM
JACM5706-33 Journal of the ACM October 1, 2010 22:5

33:32 J. ESPARZA ET AL.

FIG. 12. (a) shows the general structure of a tree of dimension i , where t<i (resp. ti−1) represents
any tree of dimension < i (resp. = i − 1). (b) and (c) give some idea of the topology of one-, resp.
two-dimensional trees.

Figure 12(b)); a tree of dimension 2 can be drawn in the plane, with the backbone
as a line, and the subtrees of dimension 1 as lines perpendicular to the backbone
(see Figure 12(c)). In general, the subtrees of an i-dimensional tree are drawn in
hyperplanes orthogonal to the line for the backbone, yielding a representation in
R

i . To the best of our knowledge, the notion of dimension has not been used before.
Formally, we use an inductive definition of dimension that is more convenient for
proofs.

Definition 6.7 (Dimension). The dimension d(t) of a tree t is inductively de-
fined as follows:

(1) If t has no children, then d(t) = 0.
(2) If t has exactly one child t1, then d(t) = d(t1).
(3) If t has at least two children, let t1, t2 be two distinct children of t such that

d(t1) ≥ d(t2) and d(t2) ≥ d(t ′) for every child t ′ �= t1. Let d1 = d(t1) and
d2 = d(t2). Then

d(t) =
{

d1 + 1 if d1 = d2

d1 if d1 > d2.

We denote by Di the set of derivation trees of dimension at most i .

Remark: It is easy to prove by induction that h(t) ≥ d(t) holds for every
derivation tree t .

In the rest of the section we show that the i-th Newton approximant ν(i) is equal
to the yield of the derivation trees of dimension at most i :

THEOREM 6.8 (TREE CHARACTERIZATION OF THE NEWTON SEQUENCE). Let
(ν(i))i∈N be the Newton sequence of f . For every X ∈ X and every i ≥ 0 we have(
ν(i)

)
X = Y (Di

X), i.e., the X-component of the i-th Newton approximant is equal
to the yield of Di

X .

The proof is as follows. We define, in terms of trees, a sequence (τ (i))i∈N sat-
isfying τ

(i)
X = Y (Di

X) (Lemma 6.10), and we prove that it is a Newton sequence
(Lemma 6.11). As the Newton sequence is unique by Proposition 5.6, we have
τ (i) = ν(i) and Theorem 6.8 follows.

Journal of the ACM, Vol. 57, No. 6, Article 33, Publication date: October 2010.

P1: VLM
JACM5706-33 Journal of the ACM October 1, 2010 22:5

Newtonian Program Analysis 33:33

We need the following definition.

Definition 6.9. A tree t is proper if d(t) > d(t ′) for every child t ′ of t . For
every i ≥ 0, let Pi be the set of proper trees of dimension i . Define the sequence
(τ (i))i∈N as follows:

τ (0) = f (0)
τ (i+1) = τ (i) + D f |∗

τ (i) (δ(i)) ,

where δ
(i)
X = Y (Pi+1

X) for all X ∈ X .

LEMMA 6.10. For every variable X ∈ X and every i ≥ 0: τ
(i)
X = Y (Di

X).

LEMMA 6.11. The sequence (τ (i))i∈N is a Newton sequence as defined in Def-
inition 3.6, that is, the δ(i) of Definition 6.9 satisfy f (τ (i)) = τ (i) + δ(i).

The proofs of Lemma 6.10 and Lemma 6.11 can be found in Appendix A.

Example 6.12. Let us recall our example from the introduction (cf. Figure 1)
with the equations

X = a · X · Y + b
Y = c · Y · Z + d · Y · X + e
Z = g · X · h + i.

Using our characterizations of κ (i) and ν(i) by means of derivation trees we see
that (a) every derivation tree t represents a terminating run of the procedure λ(t),
and, thus, (b) while κ (i) only corresponds to a finite set of trees (runs), for i > 0
every ν(i) corresponds to an infinite set of runs. Hence, it is not very surprising that
in general the Newton approximants give a better approximation of the (abstract)
semantics of a program than the Kleene approximants.

7. Idempotent Semirings

Recall that in the algebraic structure underlying the framework of Sharir and Pnueli
[1981] the summation operator is given by the join of a semilattice and, thus, sum-
mation is idempotent. We therefore study in this section the properties of our
generalized Newton’s method for this special case of ω-continuous semirings sat-
isfying the additional axiom of idempotent addition. We simply call such semirings
idempotent ω-continuous semirings, or just idempotent semirings in the following.
In idempotent semirings, the natural order can be characterized as follows: a � b
holds if and only if a +b = b. This is because a � b means by definition that there
is a c such that a + c = b. Then, we have a + b = a + a + c = a + c = b. This
extends analogously to vectors.

We start by showing that in the idempotent case the definition of the Newton
sequence (ν(i))i∈N can be simplified.

PROPOSITION 7.1. Let f be a vector of power series over an idempotent semi-
ring. Let (ν(i))i∈N denote the Newton sequence of f . It satisfies the following
equations for all i ∈ N:

(a) ν(i+1) = D f |∗
ν(i) (f (ν(i)))

Journal of the ACM, Vol. 57, No. 6, Article 33, Publication date: October 2010.

P1: VLM
JACM5706-33 Journal of the ACM October 1, 2010 22:5

33:34 J. ESPARZA ET AL.

(b) ν(i+1) = D f |∗
ν(i) (ν(i))

(c) ν(i+1) = D f |∗
ν(i) (f (0))

PROOF. We first show (a). By Theorem 3.9, we have ν(i) � f (ν(i)), hence
with idempotence ν(i) + f (ν(i)) = f (ν(i)). So we can choose δ(i) = f (ν(i)) and
have ν(i+1) = ν(i) + D f |∗

ν(i) (f (ν(i))) = D f |∗
ν(i) (f (ν(i))), because ν(i) � f (ν(i)) �

D f |∗
ν(i) (f (ν(i))). So (a) is shown.

Again by Theorem 3.9, we have f (0) = ν(0) � ν(i) � f (ν(i)). So we have,
D f |∗

ν(i) (f (0)) � D f |∗
ν(i) (ν(i)) � D f |∗

ν(i) (f (ν(i))). Hence, for (b) and (c), it remains
to show D f |∗

ν(i) (f (ν(i))) � D f |∗
ν(i) (ν(i)) and D f |∗

ν(i) (ν(i)) � D f |∗
ν(i) (f (0)), respec-

tively. For (b), we have:

D f |∗ν(i) (f (ν(i)))

� D f |∗ν(i) (f (0) + D f |ν(i) (ν(i))) (Lemma 5.4)

= D f |∗ν(i) (f (0)) + D f |∗ν(i) (D f |ν(i) (ν(i)))

� D f |∗ν(i) (ν(i)) + D f |∗ν(i) (D f |ν(i) (ν(i))) (f (0) � ν(i))

� D f |∗ν(i) (ν(i)) + D f |∗ν(i) (ν(i)) (Lemma 5.3)

= D f |∗ν(i) (ν(i)) (idempotence)

So (b) is shown.
For (c) it remains to show D f |∗

ν(i) (ν(i)) � D f |∗
ν(i) (f (0)). We proceed by induction

on i . The base case i = 0 is easy because ν(0) = f (0). Let i ≥ 1. We have:

D f |∗ν(i) (ν(i))

= D f |∗ν(i) (D f |∗ν(i−1) (ν(i−1))) (by (b))

� D f |∗ν(i) (D f |∗ν(i−1) (f (0))) (by induction)

� D f |∗ν(i) (D f |∗ν(i) (f (0))) (Theorem 3.9: ν(i−1) � ν(i))

= D f |∗ν(i) (f (0)) (see explanation below)

For the last step we used that in the idempotent case we have g∗(g∗(x)) = g∗(x)
for any linear map g : V → V . Recall that Remark 3.2.1 states that D f |ν(i) is
linear.

g∗(g∗(x)) =
∑
j∈N

g j

(∑
k∈N

gk(x)

)
(Definition 5.2)

=
∑
j∈N

∑
k∈N

g j (gk(x)) (linearity)

=
∑
l∈N

gl(x) (idempotence)

= g∗(x) (Definition 5.2)

This concludes the proof.

Journal of the ACM, Vol. 57, No. 6, Article 33, Publication date: October 2010.

P1: VLM
JACM5706-33 Journal of the ACM October 1, 2010 22:5

Newtonian Program Analysis 33:35

In the rest of the section we study commutative idempotent semirings. where
not only addition is idempotent, but multiplication is commutative. We will use the
abbreviation ci-semirings for such ω-continuous semirings in the following.

An instance of the Newton sequence in a ci-semiring has already been presented
in the counting semiring example on page 15. We show another one here.

Example 7.2. Let 〈2{a}∗, +, ·, 0, 1〉 denote the ci-semiring 〈2{a}∗, ∪, ·, ∅, {ε}〉.
The multiplication · is meant to be commutative. For simplicity, we write ai instead
of {ai }. Consider f (X1, X2) = (X2

2 + a, X2
1). We have:

D f |(v1,v2)(X1, X2) = (
v2 X2, v1 X1

)
and

D f |∗(v1,v2)(X1, X2) = (v1v2)∗
(

X1 + v2 X2, v1 X1 + X2
)
.

The first three elements of the Newton sequence are:

ν(0) = (a, 0), ν(1) = (a, a2), ν(2) = (a3)∗(a, a2).

It is easy to check that ν(2) is a fixed point of f . Hence we have ν(2) = μ f , as
ν(2) � μ f by Theorem 3.9.

In the case of ci-semirings the behaviors of the Kleene and Newton sequence
differ very much: while the Kleene sequence may still need infinitely many steps,
the Newton sequence always reaches μ f after finitely many. This was first shown
by Hopkins and Kozen in 7.3. Hopkins and Kozen defined the sequence (ν(i))i∈N

directly through the equations ν(0) = f (0) and ν(i+1) = D f |∗
ν(i) (ν(i)) from Propo-

sition 7.1(b), without noticing the connection to Newton’s method (which is not
surprising, since in the idempotent case the original equations get masked). They
proved the following result, which gives a O(3n) upper bound for the number of
Newton iterations required for a system of n equations:

THEOREM 7.3 ([HOPKINS AND KOZEN 1999]). Let f be a vector of power se-
ries over a ci-semiring and a set X of variables with |X | = n. There is a function
P : N → N with P(n) ∈ O(3n) such that ν(P(n)) = μ f .

In Section 7.1, we improve Theorem 7.3 by showing that it holds with P(n) = n.
This is achieved through our characterisation of the Newton approximants in terms
of derivation trees.

7.1. ANALYSIS OF THE CONVERGENCE SPEED. We analyze how many steps the
Newton iteration and, equivalently, the Hopkins-Kozen iteration need to reach μ f
when we consider ci-semirings.

Recall from Section 6 the concept of derivation trees (short: trees). A tree t has a
height h(t), a dimension d(t), and a yield Y (t). We define yet another tree property.

Definition 7.4. A tree t is compact if d(t) ≤ L(t), where L(t) denotes the
number of distinct λv -labels in t .

Now we are ready to prove the key lemma of this section, which states that any
tree can be made compact.

LEMMA 7.5. For each tree t there is a compact tree t ′ with λv (t) = λv (t ′) and
Y (t) = Y (t ′).

Journal of the ACM, Vol. 57, No. 6, Article 33, Publication date: October 2010.

P1: VLM
JACM5706-33 Journal of the ACM October 1, 2010 22:5

33:36 J. ESPARZA ET AL.

Example 7.6. We first sketch the proof of the lemma by means of an example.
Consider the following univariate polynomial equation system:

X = f (X) := X2 + a + b.

Consider now the following tree t ∈ TX .6

This tree has dimension 2 and is therefore not compact by definition. In order
to make it compact, we have to transform it into a derivation tree of f which is of
dimension 1 without changing its yield nor the variable-label of the root.

The idea is to reduce the left subtree to a tree of dimension 0 by reallocating
“pump trees” (encircled in the above figure) into the right subtree; after that, we
deal recursively with the right subtree.7 We first remove such a pump tree from
the rest of the tree by deleting the connecting edges and connecting the remaining
parts as depicted here:

Note that we can introduce the new edge because the roots of the pump tree and
the remaining subtree, in our example the leftmost leaf, are labeled by the same
variable. Next, we reallocate the detached pump tree into the right subtree, e.g. as
shown here:

It is easy to check that this new tree is indeed a derivation tree of f , and has the

6 To improve readability in the following illustrations, we replace the node labels (X, 1), (X, 2), (X, 3)
by (X, X 2), (X, a), (X, b), respectively.
7 Here, with “pump tree” we refer to partial derivation trees one adds or removes in the proof of the
pumping lemma for context-free grammars.

Journal of the ACM, Vol. 57, No. 6, Article 33, Publication date: October 2010.

P1: VLM
JACM5706-33 Journal of the ACM October 1, 2010 22:5

Newtonian Program Analysis 33:37

same yield as the original one. Further, this tree is already compact. In general, we
would have to proceed recursively in order to make the right subtree compact.

Note that, as we assume multiplication to be commutative, it is not important
where we insert the pump tree into the right subtree. In the following proof, we
show that we can always find such pump trees and relocate them, that is find
insertion points, if the tree under consideration is not compact.

We now give a formal proof of Lemma 7.5:

PROOF. We write t = t1 · t2 to denote that t is combined from t1 and t2 in the
following way: The tree t1 is a “partial” derivation tree, i.e., a regular derivation
tree except for one leaf l missing its children. The tree t2 is a derivation tree with
λv (t2) = λv (l). The tree t is obtained from t1 and t2 by replacing the leaf l of t1 by
the tree t2.

We proceed by induction on the number of nodes. In the base case, t has just one
node, so d(t) = 0, hence t is compact, and we are done. In the following, assume
that t has more than one node and d(t) > L(t) holds. We show how to construct a
compact tree from t .

Let without loss of generality s1, s2, . . . , sr be the children of t with d(t) ≥
d(s1) ≥ d(s2) ≥ · · · ≥ d(sr). By induction we can make every child compact, that
is, d(si) ≤ L(si). We then have by definition of dimension

L(t) + 1 ≤ d(t) ≤ d(s1) + 1 ≤ L(s1) + 1 ≤ L(t) + 1.

Hence, we have d(t) = d(s1)+1 which, by definition of dimension and compact-
ness, implies d(s1) = d(s2) = L(t) = L(s1) = L(s2). As h(s2) ≥ d(s2) = L(s2)
by the remark after Definition 6.7, we find a path in s2 from the root to a leaf
which passes through at least two nodes with the same λv -label, say X j . In other
words, we may factor s2 into tb

1 · (tb
2 · tb

3) such that λv (tb
2) = λv (tb

3) = X j . As
L(t) = L(s1) = L(s2), we also find a node of s1 labelled by X j which allows us to
write s1 = ta

1 · ta
2 with λv (ta

2) = X j .
Now we move the middle part of s2 to s1, i.e., let s ′

1 = ta
1 · (tb

2 · ta
3) and let

s ′
2 = tb

1 · tb
3 . We then have L(s ′

1) = L(s1) = L(s2) ≥ L(s ′
2). By induction, s ′

1 and
s ′

2 can be made compact, so d(s ′
1) ≤ d(s1) = d(s2) ≥ d(s ′

2). Consider the tree t ′
obtained from t by replacing s1 by s ′

1 and s2 by s ′
2. By commutativity, t and t ′ have

the same yield. If d(s ′
2) < d(s2) then d(t ′) ≤ d(t) − 1 = L(t) = L(t ′) and we are

done. Otherwise we iterate the described procedure.
This procedure terminates, because the number of nodes of (the current) s2

strictly decreases in every iteration, and the number of nodes is an upper bound for
h(s2) and, therefore, for d(s2).

Now we can prove the main theorem of this section.

THEOREM 7.7. Let f be a vector of power series over a ci-semiring S given
in the set X of variables with |X | = n. Then ν(n) = μ f .

Journal of the ACM, Vol. 57, No. 6, Article 33, Publication date: October 2010.

P1: VLM
JACM5706-33 Journal of the ACM October 1, 2010 22:5

33:38 J. ESPARZA ET AL.

PROOF. We have for all X ∈ X :

(μ f)X =
∑

trees t with λv (t)=X

Y (t) (Corollary 6.6)

=
∑

trees t with λv (t)=X
and d(t)≤n

Y (t) (Lemma 7.5)

= (ν(n))X (Theorem 6.8)

Remark 7.8 The bound of this theorem is tight, as shown by the following
example: If f (X1, . . . , Xn) = (X2

2 + a, X2
3, . . . , X2

n, X2
1), then (ν(k))X1 = a for

k < n, but a2n ≤ (ν(n))X1 = (μ f)X1 .

8. Non-Distributive Program Analyses

In this article, we have focused on distributive program analyses, which allows us
to use semirings as algebraic structure. Recall that semirings are distributive, that is,
all semiring elements a, b, c satisfy a ·(b+c) = a ·b+a ·c and (a+b)·c = a ·c+b·c.

Distributive intraprocedural analyses (i.e., for programs without procedures)
were considered first in Kildall [1973]. This seminal paper showed that, given
a program and the distributive transfer functions of a program analysis, one can
construct a vector f of polynomials such that, for every program point p, the
p-component of the least fixed point μ f coincides with the JOP0-value, that is, the
join over all valid paths where for every procedure call there is a matching return
(as described in the introduction 1.1).

The framework of Kildall [1973] was generalized to nondistributive transfer
functions in Kam and Ullman [1977]. Nondistributivity means, in our terms, that
only subdistributivity holds: a · (b + c) � a · b +a · c and (a + b) · c � a · c + b · c.8

There are interesting program analyses, such as constant propagation, which are
nondistributive, see for example, Kam and Ullman [1977], and Nielson et al.
[1999]. In those cases, the least fixed point does not necessarily coincide with the
JOP0-value, but rather safely approximates (“overapproximates”) it.

Sharir and Pnueli [1981] extended the work of Kildall [1973] to the interproce-
dural case. The generalization to nondistributive analyses was done by Knoop and
Steffen [1992], who proved that, as in the intraprocedural case, the least fixed point
is an overapproximation of the JOP0-value.

We define the JOP0-value as the vector M with M p = Y (Tp), where Tp is the
set of trees labeled with p. Notice that a depth-first traversal of a tree labeled
with p precisely corresponds to an interprocedural path from the beginning of the
procedure of p to the program point p, that is, the JOP0-value M p = Y (Tp) is
indeed the sum of the dataflow values of all paths to p. Corollary 6.6 states that
M = μ f holds in the distributive case. Proposition 2.4 and Theorem 3.9 show that
the Kleene and Newton sequences converge to this value.

8 If addition is idempotent (as for lattice joins) this condition is equivalent to the monotonicity of
multiplication, or, in traditional terms, to the monotonicity of the transfer functions [Kam and Ullman
1977]. The stricter distributivity condition, on the other hand, amounts to requiring the transfer
functions to be homomorphisms.

Journal of the ACM, Vol. 57, No. 6, Article 33, Publication date: October 2010.

P1: VLM
JACM5706-33 Journal of the ACM October 1, 2010 22:5

Newtonian Program Analysis 33:39

For the nondistributive case, the least fixed point overapproximates the JOP0-
value, that is, M � μ f , cf. Knoop and Steffen [1992].

In the following, we show that Newton’s method is still welldefined in “subdis-
tributive semirings”, and that the Kleene and Newton sequences both converge to
overapproximations of M, more precisely, we show M � supi∈N

κ (i) � supi∈N
ν(i).

For this, we first define subdistributive (ω-complete) semirings9:

Definition 8.1. A subdistributive semiring is a tuple 〈S, +, ·, 0, 1〉 satisfying
the following properties:

(1) 〈S, +, 0〉 is a commutative monoid.
(2) 〈S, ·, 1〉 is a monoid.
(3) 0 · a = a · 0 = 0 for all a ∈ S.
(4) a · (b + c) � a · b + a · c and (a + b) · c � a · c + b · c for all a, b, c ∈ S.
(5) The relation �:= {(a, b) ∈ S × S | ∃d ∈ S : a + d = b} is a partial order.

(6) For all ω-chains (ai)i∈N (i.e., a0 � a1 � a2 � . . . with ai ∈ S) sup�
i∈N

ai exists.
For any sequence (bi)i∈N define

∑
i∈N

bi := sup�{b0 + b1 + · · · + bi | i ∈ N}.
Remark 8.2. We obtain the definition of subdistributive semiring from the

definition of ω-continuous semiring by removing (7), and replacing distributivity
with subdistributivity (see (4)).

In the rest of the section 〈S, +, ·, 0, 1〉 denotes a subdistributive semiring. Poly-
nomials, vectors, differential, etc. are defined as in the distributive setting.

Note that the following inequalities still hold for all sequences (ai)i∈N, c ∈ S,
and partitions (I j) j∈J of N:

c·
(∑

i∈N

ai

)
�

∑
i∈N

(c·ai),

(∑
i∈N

ai

)
·c �

∑
i∈N

(ai ·c),
∑
j∈J

⎛⎝∑
i∈I j

a j

⎞⎠ �
∑
i∈N

ai .

Thus, any polynomial p is still monotone, although not necessarily ω-continuous.
For any sequence (v i)i∈N (of vectors) we still have p(

∑
i∈N

v i) � ∑
i∈N

p(v i).
Hence, the Kleene sequence of a polynomial system f still converges, but not
necessarily to the least fixed point of f :

COROLLARY 8.3. For any system f of polynomials, the Kleene sequence
(κ (i))i∈N is an ω-chain. Moreover, if f has a least solution μ f , then
supi∈N

κ (i) � μ f .

Since the Kleene sequence is still an ω-chain, its limit exists and is a safe
approximation of the JOP0-value:

PROPOSITION 8.4. For any polynomial system f we have (κ (i))X � Y (Hi
X),

and, hence, (supi∈N
κ (i))X � Y (TX) where TX is the set of trees labeled with X.

We skip the proof of this proposition as it is almost identical to the one of
Proposition 6.4. The only difference is that when expanding the components of κ (i)

into a sum of products of coefficients, subdistributivity only guarantees that κ (i) is

9 We drop ω-complete in the following.

Journal of the ACM, Vol. 57, No. 6, Article 33, Publication date: October 2010.

P1: VLM
JACM5706-33 Journal of the ACM October 1, 2010 22:5

33:40 J. ESPARZA ET AL.

an upper bound, but not equality anymore. Similarly, subdistributivity only allows
us to generalize the lower bound from Lemma 5.4, that is we have

f (u) + D f |u(v) � f (u + v)

for a polynomial system f and vectors u, v .
We now turn to the definition of Newton sequence.

Definition 8.5. For f a polynomial system in the variables X , and a, b vectors
we set

L f ;a;b(X) := b + D f |a(X).

Definition 8.6. Let f be a polynomial system.

—Let i ∈ N. An i-th Newton approximant ν(i) is inductively defined by

ν(0) = f (0) and ν(i+1) = ν(i) + �(i),

where �(i) has to satisfy
∑

k∈N
D f |k

ν(i) (δ(i)) � �(i) � L f ;ν(i);δ(i)

(
�(i)

)
.

—Any such sequence (ν(i))i∈N of Newton approximants is called Newton sequence.

Remark 8.7. If δ(i) exists, then possible choices for �(i) are∑
k∈N

D f |kν(i) (δ(i)), sup
k∈N

Lk
f ;ν(i);δ(i) (0) or (if it exists) μL f ;ν(i);δ(i) .

Note that in the distributive setting all three values coincide.

PROPOSITION 8.8. Let f : V → V be a vector of power series.

—For every Newton approximant ν(i) there exists a vector δ(i) such that
f (ν(i)) = ν(i) + δ(i). So there is at least one Newton sequence.

—Every Newton sequence ν(i) satisfies κ (i) � ν(i) � f (ν(i)) � ν(i+1) for all i ∈ N.

PROOF. First we prove for all i ∈ N that a suitable δ(i) exists and, at the same
time, that the inequality κ (i) � ν(i) � f (ν(i)) holds. We proceed by induction on i .
For the base case i = 0 we have:

ν(0) = f (0) = κ (0) � κ (1) = f (κ (0)) = f (ν(0)).

So, there exists a δ(0) with ν(0) + δ(0) = f (ν(0)), and hence we have:

ν(1) = ν(0) + �(0) � ν(0) +
∑
k∈N

D f |kν(0) (δ(0)) � ν(0) + δ(0) = f (ν(0)).

For the induction step, let i ≥ 0.

κ (i+1) = f (κ (i)) � f (ν(i)) = ν(i) + δ(i) � ν(i) +
∑
k∈N

D f |kν(i) (δ(i)).

As we require that
∑

k∈N
D f |k

ν(i) (δ(i)) � �(i), it now immediately follows that

κ (i+1) � ν(i) + �(i) = ν(i+1).

Journal of the ACM, Vol. 57, No. 6, Article 33, Publication date: October 2010.

P1: VLM
JACM5706-33 Journal of the ACM October 1, 2010 22:5

Newtonian Program Analysis 33:41

By definition of �(i) we have �(i) � L f ;ν(i);δ(i) (�(i)), it therefore follows:

ν(i+1) = ν(i) + �(i) � ν(i) + δ(i) + D f |ν(i)

(
�(i)

)
= f (ν(i)) + D f |ν(i)

(
�(i)

) � f
(
ν(i) + �(i)

) = f (ν(i+1)).

We complete our proof by

f (ν(i+1)) = ν(i+1) + δ(i+1) � ν(i+1) +
∑
k∈N

D f |kν(i+1) (δ(i+1))

� ν(i+1) + �(i+1) = ν(i+2).

PROPOSITION 8.9. Let M be the JOP0-value, that is, the vector M with M X =
Y (TX). Then, M � supi∈N

κ (i) � supi∈N
ν(i).

PROOF. Follows directly from Propositions 8.4 and 8.8.

PROPOSITION 8.10. For �(i) = ∑
k∈N

D f |k
ν(i) (δ(i)), we have supi∈N

ν(i) � μ f ,
if μ f exists.

PROOF. The proof is almost identical to the one of Proposition 5.1. Note that
the proof of Lemma 5.5 does not use distributivity.

THEOREM 8.11 (TREE CHARACTERIZATION OF THE NEWTON SEQUENCE). Let
(ν(i))i∈N be a Newton sequence of f . For every X ∈ X and every i ≥ 0 we have(
ν(i)

)
X � Y (Di

X), that is, the X-component of the i th Newton approximant is a
safe approximation of the yield of Di

X .

PROOF. In the distributive setting, we proved this theorem via induction where
we expanded the the terms we obtained using distributivity. In the subdistributive
case, the same proof still guarantees that

(
ν(i)

)
X � Y (Di

X).

9. Conclusions

Since its inception, the theory of program analysis has been based on two funda-
mental observations:

—Analysis problems can be reduced (using abstract interpretation [Cousot and
Cousot 1977]) to the mathematical problem of computing the least solution of a
system of equations over a semilattice.

—Such systems of equations can be solved using Kleene’s fixed-point theorem as
basic algorithm scheme.

In this article, we have contributed to both of these points. On the one hand,
we generalize the algebraic setting from semilattices to arbitrary semirings (a
generalization to idempotent semirings was already present in the work of Reps
et al. [2005] on pushdown systems for program analysis). On the other hand, we
obtain a new method for solving the dataflow equations by generalizing Newton’s
method to semirings.

The conceptually simple step from semilattices to semirings leads to a common
algebraic setting for “qualitative” analyses (which, loosely speaking, explore the
existence of execution paths satisfying a given property) and “quantitative” analyses
(in which paths are assigned a numerical weight, and one is interested in the sum of

Journal of the ACM, Vol. 57, No. 6, Article 33, Publication date: October 2010.

P1: VLM
JACM5706-33 Journal of the ACM October 1, 2010 22:5

33:42 J. ESPARZA ET AL.

the weights of all paths satisfying the property). Classical examples of qualitative
analyses are live variables, constant propagation, or alias analysis, while examples
of quantitative analysis arise in the study of probabilistic programs: probability
of termination, expected execution time or, in the interprocedural case, expected
stack height (for the latter, see Esparza et al. [2005] and Brázdil et al. [2005]).
The common setting allows us to compare the algorithmic schemes used in the
qualitative and quantitative case, and examine if a transfer of techniques is possible.
We have shown that Newton’s method can be generalized to the abstract setting. In
particular, it can be applied to qualitative analysis problems.

We have explored Newton’s method for idempotent semirings, that is, for the
semirings corresponding to qualitative analyses. We have shown that the beautiful
algebraic algorithm of Hopkins and Kozen [1999] for solving systems of equations
over commutative Kleene algebras is a particular instance of Newton’s method.
Moreover, we have proved that the algorithm requires at most n iterations for a
system of n equations, a tight bound that improves on the O(3n) bound presented
in Hopkins and Kozen [1999]. From a theoretical point of view, giving a purely
algebraic proof of this fact along the lines of Hopkins and Kozen [1999] and Aceto
et al. [2001] is an interesting challenge.

While this article imports notions of calculus and numerical mathematics into
program analysis, our work also has some consequences pointing in the opposite
direction. Quantitative analyses lead to systems of equations over the real semiring,
a particular case of the systems over the real field. Surprisingly, the performance
of Newton’s method in this special case seems not to have received much attention
from numerical mathematicians. The method turns out to have much better proper-
ties than in the general case. A consequence of our main result (which was already
proved, in a slightly more restricted form, by Etessami and Yannakakis [2009]), is
that on the real semiring Newton’s method always converges to the least fixed point
starting from zero. This is not so in the real field, where it may not converge or
converge only locally, that is, when started sufficiently close to the zero (see, e.g.,
[Ortega 1972; Ortega and Rheinboldt 1970]). In related work, we have shown that
the convergence order of the method is at least linear, meaning that the number of
accurate bits of the Newton approximants grows at least linearly with the number
of iterations [Kiefer et al. 2007; Esparza et al. 2008, 2010]

Appendix

A. Proofs of Section 6

To avoid typographical clutter in the following proofs, we use the following nota-
tion. Given some class of objects (e.g., derivation trees t) and a predicate P(t), we
write ∑

t

Y (t) : P(t)

instead of ∑
t such that P(t) holds

Y (t).

Journal of the ACM, Vol. 57, No. 6, Article 33, Publication date: October 2010.

P1: VLM
JACM5706-33 Journal of the ACM October 1, 2010 22:5

Newtonian Program Analysis 33:43

PROPOSITION 6.4.
(
κ (i)

)
X = Y (Hi

X), that is, the X-component of the i th Kleene
approximant κ (i) is equal to the yield of Hi

X .

PROOF. By induction on i . The base case i = 0 is easy. Induction step (i ≥ 0):(
κ (i+1)

)
X

= f X (κ (i))

=
∑
j∈J

m X, j (κ
(i))

=
∑
j∈J

y :

{
m X, j = a1 X1 · · · Xkak+1

y = a1κ
(i)
X1

· · · κ (i)
Xk

ak+1

by induction:

=
∑
j∈J

y :

{
m X, j = a1 X1 · · · Xkak+1

y = a1Y (Hi
X1

) · · · Y (Hi
Xk

)ak+1

=
∑
j∈J

t1,...,tk

y :

⎧⎨⎩
m X, j = a1 X1 · · · Xkak+1

t1, . . . , tk trees with h(tr) ≤ i, λv (tr) = Xr (1 ≤ r ≤ k)
y = a1Y (t1) · · · Y (tk)ak+1

=
∑
j∈J,t

Y (t) : t is a tree with h(t) ≤ i + 1, λ(t) = (X, j)

= Y (Hi
X)

The following definition of fine dimension is analogous to Definition 6.7, but
adds a second component, which measures the length of the path from the root to
the lowest node with the same dimension as the root:

Definition A.1 (Fine Dimension). The fine dimension dl(t) = (d(t), l(t)) of a
tree t is inductively defined as follows:

(1) If t has no children, then dl(t) = (0, 0).
(2) If t has exactly one child t1, then dl(t) = (d(t1), l(t1) + 1).
(3) If t has at least two children, let t1, t2 be two distinct children of t such that

d(t1) ≥ d(t2) and d(t2) ≥ d(t ′) for every child t ′ �= t1. Let d1 = d(t1) and
d2 = d(t2). Then

dl(t) =
{

(d1 + 1, 0) if d1 = d2

(d1, l(t1) + 1) if d1 > d2.

Remark A.2. Notice that, by Definition 6.9, a tree t is proper if and only if
l(t) = 0. So we have:

Y (Pi
X) =

∑
t

Y (t) : t tree with λv (t) = X, dl(t) = (i, 0)

Now we can prove the remaining lemmata from Section 6.

Journal of the ACM, Vol. 57, No. 6, Article 33, Publication date: October 2010.

P1: VLM
JACM5706-33 Journal of the ACM October 1, 2010 22:5

33:44 J. ESPARZA ET AL.

LEMMA 6.10. For every variable X ∈ X and every i ≥ 0: τ
(i)
X = Y (Di

X).

PROOF. By induction on i . Induction base (i = 0):

τ
(0)
X = f X (0) =

∑
t

Y (t) : λv (t) = X, h(t) = 0

=
∑

t

Y (t) : λv (t) = X, d(t) = 0

= Y (D0
X)

Induction step (i + 1 > 0): We need to show that D f |∗
τ (i) (δ(i)) equals exactly the

yield of all trees of dimension i + 1, that is, that for all X ∈ X

(
D f |∗τ (i) (δ(i))

)
X =

∑
t

Y (t) : λv (t) = X, d(t) = i + 1.

We prove the following stronger claim by induction on p:

(
D f |p

τ (i) (δ(i))
)

X =
∑

t

Y (t) : λv (t) = X, dl(t) = (i + 1, p)

The claim holds for p = 0 by Remark A.2. For the induction step, let p ≥ 0. Then
we have for all X ∈ X :(

D f |p+1
τ (i) (δ(i))

)
X

= (
D f |τ (i) ◦ D f |p

τ (i) (δ(i))
)

X

= D f X |τ (i) ◦ D f |p
τ (i) (δ(i))

Define the vector Ỹ by Ỹ X0 = ∑
t Y (t) : λv (t) = X0, dl(t) = (i + 1, p). Then, by

induction hypothesis (on p), above expression equals

= D f X |τ (i) (Ỹ)

=
∑
j∈J

Dm X, j |τ (i) (Ỹ) : m X, j = a1 X1 · · · ak Xkak+1

=
∑
j∈J,r

y :

⎧⎨⎩
m X, j = a1 X1 · · · ak Xkak+1

1 ≤ r ≤ k

y = a1τ
(i)
X1

· · · ar Ỹ Xr ar+1τ
(i)
Xr+1

· · · akτ
(i)
Xk

ak+1

Journal of the ACM, Vol. 57, No. 6, Article 33, Publication date: October 2010.

P1: VLM
JACM5706-33 Journal of the ACM October 1, 2010 22:5

Newtonian Program Analysis 33:45

by induction on i :

=
∑
j∈J,r,
t1,...,tk

y :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

m X, j = a1 X1 · · · ak Xkak+1

1 ≤ r ≤ k
t1, . . . , tk trees with λv (ts) = Xs (1 ≤ s ≤ k)

dl(tr) = (i + 1, p),
d(ts) ≤ i (1 ≤ s ≤ k, s �= r)

y = a1Y (t1) · · · ar Y (tr) · · · akY (tk)ak+1

=
∑
j∈J,t

Y (t) : t tree with λ(t) = (X, j), dl(t) = (i + 1, p + 1)

=
∑

t

Y (t) : t tree with λv (t) = X, dl(t) = (i + 1, p + 1)

LEMMA 6.11. The sequence (τ (i))i∈N is a Newton sequence as defined in
Definition 3.6, that is, the δ(i) of Definition 6.9 satisfy f (τ (i)) = τ (i) + δ(i).

PROOF.

f X (τ (i)) =
∑
j∈J

m X, j (τ
(i))

=
∑
j∈J

y :

{
m X, j = a1 X1 · · · ak Xkak+1

y = a1τ
(i)
X1

· · · akτ
(i)
Xk

ak+1

by Lemma 6.10:

=
∑
j∈J

t1,...,tk

y :

⎧⎨⎩
m X, j = a1 X1 · · · ak Xkak+1

t1, . . . , tk trees with λv (tr) = Xr , d(tr) ≤ i, (1 ≤ r ≤ k)
y = a1Y (t1) · · · akY (tk)ak+1

=
∑
j∈J

t1,...,tk

y :

⎧⎪⎪⎨⎪⎪⎩
m X, j = a1 X1 · · · ak Xkak+1

t1, . . . , tk trees with λv (tr) = Xr , d(tr) ≤ i, (1 ≤ r ≤ k)
such that at most one of the tr with d(tr) = i

y = a1Y (t1) · · · akY (tk)ak+1

+
∑
j∈J

t1,...,tk

y :

⎧⎪⎪⎨⎪⎪⎩
m X, j = a1 X1 · · · ak Xkak+1

t1, . . . , tk trees with λv (tr) = Xr , d(tr) ≤ i, (1 ≤ r ≤ k)
such that at least two of the tr with d(tr) = i

y = a1Y (t1) · · · akY (tk)ak+1

=
∑

t

Y (t) : t tree with λv (t) = X, d(t) ≤ i

+
∑

t

Y (t) : t tree with λv (t) = X, dl(t) = (i + 1, 0)

Journal of the ACM, Vol. 57, No. 6, Article 33, Publication date: October 2010.

P1: VLM
JACM5706-33 Journal of the ACM October 1, 2010 22:5

33:46 J. ESPARZA ET AL.

by Lemma 6.10 respectively, Remark A.2:

= τ
(i)
X + Y (Pi+1

X)

= τ
(i)
X + δ

(i)
X

ACKNOWLEDGMENT. We thank Helmut Seidl and the anonymous referees for help-
ful suggestions and remarks.

REFERENCES

ACETO, L., ÉSIK, Z., AND INGÓLFSDÓTTIR, A. 2001. A fully equational proof of Parikh’s theorem.
RAIRO, Theoretical Informatics and Applications 36, 200–2.

BRÁZDIL, T., ESPARZA, J., AND KUCERA, A. 2005. Analysis and prediction of the long-run behavior
of probabilistic sequential programs with recursion. In Proceedings of Symposium on Foundations of
Computer Science. IEEE, 521–530.

BRZOZOWSKI, J. A. 1964. Derivatives of regular expressions. J. ACM 11, 4, 481–494.
COUSOT, P., AND COUSOT, R. 1977. Abstract interpretation: a unified lattice model for static analysis of

programs by construction or approximation of fixpoints. In Proceedings of Symposium on Principles of
Programming Languages. ACM, 238–252.

DEUTSCH, A. 1994. Interprocedural may-alias analysis for pointers: Beyond k-limiting. In Proceedings
of Conference on Programming Language Design and Implementation. 230–241.

ESPARZA, J., KIEFER, S., AND LUTTENBERGER, M. 2007a. An extension of Newton’s method to ω-
continuous semirings. In Proceedings of Conference on Developments in Language Theory. LNCS
4588. Springer, 157–168.

ESPARZA, J., KIEFER, S., AND LUTTENBERGER, M. 2007b. On fixed point equations over commutative
semirings. In Proceedings of Symposium on Theoretical Aspects of Computer Science. LNCS 4397.
Springer, 296–307.

ESPARZA, J., KIEFER, S., AND LUTTENBERGER, M. 2008. Convergence thresholds of Newton’s method
for monotone polynomial equations. In Proceedings of Symposium on Theoretical Aspects of Computer
Science. 289–300.

ESPARZA, J., KIEFER, S., AND LUTTENBERGER, M. 2010. Computing the least fixed point of positive
polynomial systems. SIAM J. Comput.. To appear.

ESPARZA, J., KUČERA, A., AND MAYR, R. 2005. Quantitative analysis of probabilistic pushdown au-
tomata: Expectations and variances. In Proceedings of Symposium on Logic in Computer Science. IEEE,
117–126.

ESPARZA, J., KUČERA, A., AND MAYR, R. 2004. Model checking probabilistic pushdown automata. In
Proceedings of Symposium on Logic in Computer Science. IEEE, 12–21.

ETESSAMI, K., AND YANNAKAKIS, M. 2009. Recursive markov chains, stochastic grammars, and mono-
tone systems of nonlinear equations. J. ACM 56, 1, 1–66.

HOPKINS, M. W., AND KOZEN, D. 1999. Parikh’s theorem in commutative Kleene algebra. In Proceedings
of Symposium on Logic in Computer Science. 394–401.

JONES, N., AND MUCHNICK, S. 1982. A flexible approach to interprocedural data flow analysis and
programs with recursive data structures. In Proceedings of Symposium on Principles of programming
Languages. ACM, 66–74.

KAM, J. B., AND ULLMAN, J. D. 1977. Monotone data flow analysis frameworks. Acta Inf. 7, 305–317.
KIEFER, S., LUTTENBERGER, M., AND ESPARZA, J. 2007. On the convergence of Newton’s method for

monotone systems of polynomial equations. In Proceedings of Symposium on Theory of Computing.
ACM, 217–226.

KILDALL, G. A. 1973. A unified approach to global program optimization. In Proceedings of Symposium
on Principles of Programming Languages. ACM, 194–206.

KNOOP, J. AND STEFFEN, B. 1992. The interprocedural coincidence theorem. In Proceedings of the
International Conference on Compiler Construction. LNCS, vol. 641. Springer-Verlag, 125–140.

KUICH, W. 1997. Handbook of Formal Languages. Vol. 1. Springer, Chapter 9: Semirings and Formal
Power Series: Their Relevance to Formal Languages and Automata, 609–677.

NIELSON, F., NIELSON, H., AND HANKIN, C. 1999. Principles of Program Analysis. Springer.

Journal of the ACM, Vol. 57, No. 6, Article 33, Publication date: October 2010.

P1: VLM
JACM5706-33 Journal of the ACM October 1, 2010 22:5

Newtonian Program Analysis 33:47

ORTEGA, J. 1972. Numerical Analysis: A Second Course. Academic Press, New York.
ORTEGA, J., AND RHEINBOLDT, W. 1970. Iterative Solution of Nonlinear Equations in Several Variables.

Academic Press.
REPS, T., HORWITZ, S., AND SAGIV, M. 1995. Precise interprocedural dataflow analysis via graph reach-

ability. In Proceedings of Symposium on Principles of Programming Languages. ACM, 49–61.
REPS, T., SCHWOON, S., JHA, S., AND MELSKI, D. 2005. Weighted pushdown systems and their applica-

tion to interprocedural dataflow analysis. Sci. Comput. Prog. 58, 1–2 (October), 206–263. Special Issue
on the Static Analysis Symposium 2003.

SAGIV, S., REPS, T. W., AND HORWITZ, S. 1996. Precise interprocedural dataflow analysis with applica-
tions to constant propagation. Theoret. Comput. Sci. 167, 1&2, 131–170.

SEIDL, H., AND FECHT, C. 2000. Interprocedural analyses: A comparison. J. Log. Prog. 43, 123–156.
SHARIR, M., AND PNUELI, A. 1981. Program Flow Analysis: Theory and Applications. Prentice-Hall,

Chapter 7: Two Approaches to Interprocedural Data Flow Analysis, 189–233.

RECEIVED NOVEMBER 2008; REVISED SEPTEMBER 2009 AND MARCH 2010; ACCEPTED MARCH 2010

Journal of the ACM, Vol. 57, No. 6, Article 33, Publication date: October 2010.

