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Abstract

We provide a strongly polynomial algorithm for determining whether a given
multi-type branching process is subcritical, critical, or supercritical. The
same algorithm also decides consistency of stochastic context-free grammars.
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1. Introduction

Multi-type branching processes (MBPs) are stochastic processes modeling
populations in which the individuals of a generation produce a random num-
ber of children of different types or species in the next generation. Individuals
can be elementary particles, genes, animals, or program threads [1, 2|.

MBPs are classified into subcritical, critical, and supercritical, depend-
ing on the spectral radius of a certain matrix, the expectation matriz. This
division plays a central role, since many theorems assume that the process
belongs to one of these classes. In particular, criticality is strongly related
to the extinction probability: under some weak conditions, the population of
subcritical and critical processes goes ultimately extinct with probability 1,
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while for supercritical processes the extinction probability is strictly smaller
than 1.

We study the computational complexity of the classification problem: de-
ciding whether a given MBP is subcritical, critical, or supercritical. By
definition, the problem consists of deciding if the spectral radius of the ex-
pectation matrix is smaller than, equal to, or larger than one [2]. Etessami
and Yannakakis have observed in [3] that this problem reduces to feasibility
of a linear programming problem (LP-problem). While LP-problems can be
solved in polynomial time, no strongly polynomial algorithms are known: the
number of arithmetic operations to be performed depends on the size of the
input, which quickly degrades the performance of LP-based classificators. We
show that LP can be avoided by reducing the classification problem to the
problem of solving a system of linear equations. In particular, this leads to
an algorithm with O(n?) arithmetical operations, where n is the dimension
of the matrix, independently of the size of the entries.

Stochastic context-free grammars (SCFGs) are context-free grammars
whose rules are weighted with probabilities. They are applied in diverse
areas such as natural language processing [? |, security [? ], and biological
sequence analysis [? ]. An SCFG is called consistent if it generates a termi-
nal string with probability 1. Consistency is a fundamental characteristic of
SCFGs, and plays a central role in computations on SCFGs, see e.g. [? |. An
SCFG is naturally associated to an MBP, so that the SCFG is consistent if
and only if the extinction probability of the MBP is 1. As a consequence, our
strongly polynomial algorithm also allows to decide consistency of SCFGs.

The note is organized as follows. In Section 2 we present our strongly
polynomial algorithm for comparing the spectral radius to 1. Sections 3 and 4
explain the application of our algorithm to MBPs and SCFGs, respectively.
Finally, in Section 5 we apply the algorithm to a neutron scattering process
taken from [1], which, loosely speaking, studies when a ball of plutonium
becomes an atomic bomb.

Related work. 'The computational complexity of problems related to
branching process has been recently studied by Etessami, Stewart, and Yan-
nakakis [4, 5]. In particular, they prove that the extinction probability can
be approximated in polynomial time. This is nicely complemented by our
result, which shows how to decide in strongly polynomial time whether this
probability is exactly 1.



2. Main Result

For a square matrix M, we denote by p(M) its spectral radius, i.e., the
largest absolute value of the eigenvalues of M. A matrix is nonnegative if all
its entries are nonnegative. In this section we show:

Theorem 2.1. Given a nonnegative matriz M € [0,00)™ ™, one can decide

in strongly polynomial time and with O(n®) arithmetic operations whether
p(M) <1 orp(M)=1 orp(M)>1.

We need some notation. Let 7" be a finite set of indices with |T'| =n > 1.
For technical convenience we view (square) matrices as elements of RT*7 and
assume M € [0,00)T*T. We write I for the identity matrix. We use bold
letters for designating (column) vectors, e.g. v € R”. If the dimension is
clear from the context, we write 0 (resp. 1) for the vector (0,...,0)" (resp.
(1,...,1)T), where " denotes transpose. We write vx for v(X) where X € T.
We write v = w (resp. v < wresp. v < w) if vy = wx (resp. vy < wx resp.
vy < wy) holds for all X € T. By v < w we mean v < w and v # w. For
a nonnegative matrix M we define the matrix series M* := I+ M +M?+---.
We say M* is finite if all its entries are finite, i.e., the series converges. To a
nonnegative matrix M € [0, 00)"*7 we associate a directed graph graph(M)
whose set of vertices is T and whose edges are (X,Y) whenever Mxy > 0.
A nonnegative matrix M is irreducible if graph(M) is strongly connected. A
matrix M’ € RT*T" is a principal submatriz of M € RT*T if T" C T and
My y = Myy for all X,Y € T".

We start the proof of Theorem 2.1 by recalling three facts about nonneg-
ative matrices. The first two are standard results, see e.g. [6], while the third
follows from [6, Corollary 2.1.6].

Lemma 2.1. Let M € [0,00)"*T be a nonnegative matriz.
(a) M* is finite if and only if p(M) < 1.
(b) If M* is finite, then M* = (I — M)~%.

(¢) For all principal submatrices M of M we have p(M") < p(M). Further-
more, M has an irreducible principal submatriz M’ with p(M') = p(M).

Consider the partition 77, ..., Ty of T in strongly connected components
of graph(M), and the corresponding principal submatrices M™ ... M®)



of M. By Lemma 2.1(c) we have p(M®) < p(M) for every 1 < i < N.
Moreover, since every irreducible principal submatrix of M is also a principal
submatrix of M® for some 1 < i < N, we also have p(M) = p(M©) for
some 1 < j < N. Therefore,

p(M) = max p(M®). (1)

1<i<N

Thanks to this equation, we can focus on irreducible nonnegative ma-
trices. We recall four further facts from Perron-Frobenius theory, see [6,
Chapter 2J:

Lemma 2.2. Let M € [0,00)"*T be nonnegative and irreducible.
(a) p(M) is a simple eigenvalue of M.
(b) There exists an eigenvector v = 0 with p(M) as eigenvalue.
(c) Every eigenvector v = 0 has p(M) as eigenvalue.
(d) For all o, € R\ {0} and v > 0: if av < Mv < (v, then
a<p(M)<p.
Using these facts we prove:

Proposition 2.1. Let M € [0,00)"*T be nonnegative and irreducible.

(a) Assume that there is v € RT \ {0} such that (I — M)v =0. Ifv =0
orv <0, then p(M) = 1; otherwise, p(M) > 1.

(b) Assume that v = 0 is the only solution of (I — M)v = 0; i.e., there
exists a unique * € RT such that (I — M)x = 1. If x > 1, then
p(M) < 1; otherwise, p(M) > 1.

PROOF.

(a) From (I — M)v = 0 it follows Mv = v. So v is an eigenvector of M
with eigenvalue 1, thus p(M) > 1.

e Let v > 0 or v < 0. By Lemma 2.2(c), p(M) is the eigenvalue
of v, and so p(M) = 1.

o Let p(M) < 1, ie, p(M) = 1. By Lemma 2.2(a) and (b), the
eigenspace of the eigenvalue 1 is one-dimensional and contains a

vector & > 0. So v = a - @ for some o € R\ {0}. Hence v > 0 or
v < 0.



(b) e Letx > 1. Then Mz = ¢ — 1 < «, so we have p(M) < 1 by
Lemma 2.2(d).

e Let p(M) < 1. Suppose for a contradiction that p(M) = 1. Then,
by Lemma 2.2(a), the matrix M would have an eigenvector v # 0
with eigenvalue 1, so (I — M)wv = 0, contradicting the assumption.
So we have, in fact, p(M) < 1. By Lemma 2.1(a) and (b) this
implies x = (I — M)™'1 = M*1> 1. O

We obtain as an immediate consequence:

Proposition 2.2. Let M € [0,00)"*T be a nonnegative matriz. The follow-
ing algorithm decides whether p(M) <1 or p(M) =1 or p(M) > 1:

1. Compute the partition Ti,..., Ty of T in strongly connected com-

ponents of graph(M), and the corresponding principal submatrices
MO MM of M.

2. For each MY, solve the system (I — M(i))v = 0 using Gaussian elim-
mation.

2.1. If there is a vector v # 0 such that (I — M®)v =0, conclude
p(MD) > 1 or p(M®) =1 according to Proposition 2.1(a).

2.2. If v = 0 s the only solution of (I — MW)v =0, solve
(I = MDYv =1 wusing Gaussian elimination, and conclude
p(MD) <1 or p(M®) > 1 according to Proposition 2.1(b).

3. Use Equation (1) and the results of step 2. to conclude p(M) < 1,
p(M) =1, or p(M) > 1.

Since the partition of a graph into strongly connected components can
be computed in linear time by means of Tarjan’s algorithm [7], the matrices
MO . MW can be computed in linear time. If the dimensions of these
matrices are nq,...,ny, then we have Zfil n; = n, where n = |T'| is the
dimension of M. Since Gaussian elimination of a rational n;-dimensional
linear equation system can be carried out in strongly polynomial time using
O(n?) arithmetic operations (see e.g. [8]), steps 2. and 3. can be carried out

using O(n?) arithmetic operations. This concludes the proof of Theorem 2.1.



Example 2.1. Consider the matrix

0 0 4/9 2/9
o 0o o0 45
M=19 0 0o o
054 0 0

It has two strongly connected components, Tx = {1,3} and Tg = {2,4}, with
wrreducible principal submatrices

M(A):(g 4(/)9) M(B):<594 4(/)5>

The system (I — M)y = 0 has v = 0 as only solution. Since the only x
satisfying (I — M)z =1 is & = (13,27)7 > 1, we have p(MWY) < 1. The
system (I — MB))v = 0 has a solution v = (4,5)7 = 0, and so p(MP)) = 1.
Since p(M) = max{p(MW), p(MPBN)}, we conclude p(M) = 1.

3. Application to Multi-type Branching Processes

As mentioned in the introduction, multi-type branching processes model
populations in which the individuals of a generation produce a random num-
ber of children of different types in the next generation. Formally, a pop-
ulation over types ti,...,t, is an element of N"; intuitively, ¢ € N" is the
population containing ¢; individuals of type ¢; for each i € {1,...,n}.

Let 2 denote the random variable modeling the population of the kth
generation of a stochastic process, and let ¢*7) denote the offspring (also a
population) of the jth individual of type ¢; in 2*). Given an initial population
2z we have

A

2D — Z Z clik:d) for every k > 0.

i=1 j=1

If the ¢**7) are i.i.d. over all k > 0 and j > 1, then the process {z*)}
is called a multi-type branching process (MBP). In this case, for every vector
c € N" there is a fixed probability p; . that an individual of type ¢; produces
offspring ¢.  An MBP can be explicitly described by enumerating all the
probabilities p; . > 0, and implicitly described by giving functions f;: N* —
0, 1] such that fi(c) = pic.



A central parameter of branching processes with one single type is the
expected number m of children of an individual, given by m = >_>7 cpe,
where p. is the probability of generating c children. The process is called
subcritical, critical, or supercritical if m < 1, m = 1, or m > 1, respec-
tively. These definitions can be extended to the multi-type case. Let m;;
be the expected number of children of type j of an individual of type 1, i.e.,
Mij = Y eenn CjPies and let M be the n x n matrix given by M; ; = m; ;.

Definition 3.1. An MBP is subcritical, critical, or supercritical if m < 1,
m =1, or m > 1, respectively, where m = p(M).

Using the algorithm from Proposition 2.2 we can decide in strongly poly-
nomial time if an MBP (given by the rational probabilities p; . > 0) is sub-
critical, critical, or supercritical.

A fundamental quantity of an MBP and an initial population is the
probability of its ultimate extinction. We define the extinction probabil-
ity q == lclir{}O Pr(z® = 0). The extinction probability is closely related to

criticality [1, 2, 3]. We sketch the connection. Consider an MBP with ini-
tial population 2(®) and matrix M. W.l.o.g. we can assume that every type
tj is reachable, i.e., that Pr(zg-k) > 0) > 0 for some & > 0. (Unreachable
types t; can be removed from the description of the process without affecting
its behavior.) Now, let us inductively define mortality: type t; is mortal if
pj0 > 0orif p; . > 0 for some population ¢ € N” containing only individuals
of mortal types; otherwise, t; is immortal. We have (see e.g. [3]): if some
type is immortal (which can be easily decided in linear time), then ¢ < 1; if

all types are mortal, then ¢ = 1 iff p(M) < 1.

Example 3.1. Consider a population of commoners and nobles, both of
which can be children or adults. Common children (type 1) either die before
reaching adulthood, become common adults, or become noble adults through
marriage, with probabilities 3/9, 4/9, and 2/9, respectively. Noble children
(type 2) either die or become noble adults with probabilities 1/5 and 4/5.
Common adults (type 3) give birth to between 0 and 3 common children with
probabilities 1/10,1/10,5/10, 3/10, respectively, and noble adults (type 4) give
birth to between 0 and 3 noble children with probabilities 2/8,3/8,2/8,1/8.
Let us compute some of the entries of M. For example, ms; is the ex-
pected number of commoner children of a common adult, and so ms; =
0-1/1041-1/1042-5/10+3-3/10 = 2. Similarly, my 4 is the expected number
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of noble adults “generated” by a common child, and so my4=1-2/9 =2/9.
In fact, M is the matriz of Example 2.1 with p(M) = 1.

Since all types are mortal and reachable (assuming the initial population
contains commoners and nobles), it follows from the result above that we have
q =1, i.e., the population goes ultimately extinct almost surely.

4. Application to Stochastic Context-free Grammars

Recall that a stochastic contezt-free grammar (SCFG) is a tuple G =
(V,3, R, X1), where V = {X;,..., X,,} is a set of variables with a distin-
guished element X called the aziom, X is a set of terminals, and R is a set
of production rules X; 2 a, where a € (V UT)* and p € [0,1], such that
ZX/_ D= 1 for every variable X;. The probability of a derivation of an
SCFG is the product of the probabilities of its corresponding sequence of
rules. As explained in [3], every SCFG induces an MBP: the types of the
MBP are the variables of the SCFG, the initial population consists of an
individual of type X, and for every ¢ € N" the probability p;. is defined
as the probability that X; generates in one step a string o with (ey, ..., ¢,)
occurrences of the variables (X7,...,X,), respectively. Observe that the
branching process has no terminals and does not care about the order of
variables, only about their multiplicities. Further, in the MBP all variables
of a generation are “derived simultaneously”, to produce the next genera-
tion. However, these differences are irrelevant as far as the generation of a
terminal string is concerned, and we have [3]: the probability that an SCFG
terminates (i.e., produces a string of terminals) is equal to the extinction
probability of the induced MBP.

An SCFG G is called consistent if it terminates with probability 1. The
algorithm sketched in Section 3 to decide if ¢ = 1 can be easily turned
into a strongly polynomial algorithm to decide the consistency of G (see [3],
Figure 7): first, remove all variables X; that are not reachable from X7, i.e.,
X, cannot generate any string containing at least one occurrence of X;. If
there is some useless variable left (i.e., some variable that cannot generate
any string of terminals), then G is not consistent. Otherwise, compute the
matrix M of the associated MBP. The grammar G is consistent iff p(M) < 1.



5. An Example: Neutron Scattering Process

To illustrate the interest of our result, we consider a classical problem of
nuclear physics: determining the critical mass or, equivalently, the critical ra-
dius of a perfect sphere of plutonium?®. Roughly speaking, the critical radius
is the smallest radius that will cause a nuclear explosion. More precisely, re-
call that the explosion is produced by a chain reaction: spontaneous fission of
an atom liberates neutrons, whose collisions with other atoms induce further
fissions etc. Following Harris [1], we model the ball by an MBP describing
the population of atoms fissioning at different distances from the ball’s cen-
ter. Initially there is one free neutron in the ball. A chain reaction occurs
if its line of descendants does not go ultimately extinct (physically, this is
identical to all atoms in the ball fissioning in a very short time). Since the
spontaneous fission rate is high (several hundred atoms per second per cm?),
even a small probability that one fission causes a chain reaction results in an
explosion with large probability after a short time. So the critical radius is
approximately given by the smallest radius such that ¢ < 1.

Let us assume that the radius of the considered sphere is D, and that
a neutron born at distance & from the center collides with an atom at dis-
tance 7 from the center with probability density R(&,n). Let further py be
the probability that a collision generates k neutrons (k = 0 means that no
fission occurs). Harris uses the values py = 0.025, p; = 0.830, po = 0.07, p3 =
0.05, py = 0.025, pp = 0 for k > 4, and also gives an expression for R(&,n)
(see [1], p. 86).

The probability that a neutron starting at distance £ collides with an
atom at a distance in the interval [a,b] (with 0 < a < b < D) and generates
k neutrons can be expressed as

b
0(€,a,b.k) = py - / R(&.n) dn.

By discretizing the interval [0, D] into n segments we obtain an MBP with
n types ti,...,t,. An individual of type t; represents a neutron whose dis-
tance from the center lies in between (i —1)D/n and iD/n. The probabilities

3We assume room temperature, and so the density of plutonium is known.



n 25 50 75 100 150
Critical radius 2.9790 2.9809 2.9815 2.9815 2.9815
Precision 4+0.0005 | £0.0005 | £0.0005 | 40.0005 | £0.0005
Our algorithm <1 <1 <1 1 4
Exact LP (Maple Simplex) <1 6 32 108 588
Exact LP (QSOpt_ex solver) <1 <1 4 14 72

Table 1: Runtime in seconds for the last step of the binary search described in the text.

piec > 0 of the MBP are given by

@((- (;5)D7(j UD,JnD,k) ci=k>landc,=0for 0 #j
Pie=941—=(1—po)- fo R(“S2E )y dy =0
0, otherwise

Since all types of the MBP are mortal and all types are reachable from all
types, checking whether ¢ = 1 can be done by deciding whether p(M) < 1
for the square matrix M of the MBP as described in Section 3.

We take different discretizations n = 25,50, 75,100, 150 and combine our
algorithm with binary search to determine the critical radius up to an error
of 0.001, using the computer algebra system Maple. During the search, the
algorithm analyzes MBPs that get closer and closer to being critical. The
running times of our algorithm for the last (and most expensive) binary
search step that decreases the interval to 0.001 are given in Table 1. We
found the critical radius to be in the interval [2.981,2.982] (using the finest
discretization n = 150). Harris [1] estimates 2.9.

We also measured the time required for analyzing the MBP in the last
step of the binary search if we replace our algorithm by linear programming.
We compared our algorithm to Maple’s exact simplex package as well as the
QSOpt_ex tool [? ], a standalone exact LP solver. Our approach outperforms
both by at least an order of magnitude.
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